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Abstract

The recent development of DNA microarray technology is
creating a wealth of gene expression data. Typically these
datasets have high dimensionality and a lot of varieties.
Analysis of DNA microarray expression data is a fast grow-
ing research area that interfaces various disciplines such
as biology, biochemistry, computer science and statistics.
It is concluded that clustering and classification techniques
can be successfully employed to group genes based on the
similarity of their expression patterns. In this paper, a hier-
archical multi-bottleneck classification method is proposed,
and it is applied to classify a publicly available gene mi-
croarray expression data of budding yeast Saccharomyces
cerevisiae.

1. Introduction

DNA microarrays offer the ability to measure the levels of
expression of thousands of genes simultaneously. These ar-
rays consist of large numbers of specific oligonucleotides
or DNA sequences, each corresponding to a different gene,
affixed to a solid surface at very precise location. When
an array chip is hybridized to labelled DNA derived from a
sample, it yields simultaneous measurements of the mRNA
levels in the sample for each gene represented on the chip.
Since mMRNA levels are expected to correlate roughly with
the levels of their translation products, the active molecules
of interest, array results can be used as a crude approx-
imation to the protein content and thus the ‘state’ of the
sample[10].

DNA microarrays provide a global view of gene ex-
pression which can be analyzed by a number of methods.
For example, clustering can be performed to identify genes

which are regulated in a similar manner under many differ-
ent environmental conditions, and to predict the unknown
functions of genes based upon the known functions of other
gens in the same cluster[15, 10, 5, 23, 6]. Microarray data
can also be used to infer regulatory pathways at the level
of transcription. Toward that aim, Bayesian networks have
recently been constructed to explain the probabilistic rela-
tionships among the expression of different genes[7]. DNA
microarrays can also be used to characterize the cellular dif-
ferences between different tissue types, such as between
normal cells and cancer cells at different stages of tumor
progression, or between cancers with different responses to
treatment, or between control cells and cells treated with
a particular drug. In this area, support vector machines
(SVMs)[9] and Bayes techniques[2, 1, 10] have been used.

Classification on the basis of microarray data presents
several algorithmic challenges. For example, the data often
contain ‘technical’ noise that can be introduced at a number
of different stages, such as production of the DNA microar-
ray, preparation of the samples, and signal analysis and ex-
traction of the hybridization results[10]. In addition, they
also have ‘biological’ noise which come from non-uniform
genetic backgrounds of the samples, or from the impurity or
misclassification of samples. Furthermore, microarray ex-
pression data contain an overwhelming number of attributes
relative to the number of training samples. The combined
effect of large numbers of irrelevant genes could potentially
drown out the contributions of the relevant ones[10]. To
deal with this kind of machine learning problem, the use of
SVMs has been suggested[14]. Brown et. al.[5, 4] used the
SVMs method to analyze the microarray gene expression
data of Saccharomyces cerevisiae. Lin et. al.[11] analyzed
the ability of SVM to discriminate ribosomal protein coding



genes from all other gens of known function based on their
codon composition in Saccharomyces cerevisiae. Note that
most of SVMs applications belongs to the binary classifica-
tion problem.

In this paper, a multi-bottleneck concept is proposed
for classifying multiple gene classes. Each available class,
which has high dimensionality and/or small samples, is
transferred into an auxiliary space first. In this new space,
an information bottleneck represents the characteristics of
the class in the original space. As an ‘optimal’ bottleneck
of the class, it is independent to other bottlenecks corre-
sponding to other classes. In other words, by finding the
bottlenecks, overlapped gene classes can be separated well.
Based on this concept, a hierarchical multi-bottleneck clas-
sification (HMBC) method is presented to find the multiple
‘optimal’ bottlenecks simultaneously.

The organization of this paper is as follows. The multi-
bottleneck concept is proposed in section 2. In section 3,
the way to find the ‘optimal’ multi-bottlenecks is presented,
and the procedure of the HMBC method is shown in section
4. The classification of DNA microarray expression data of
Saccharomyces cerevisiae is reported in section 5. Finally,
in section 6, conclusions are given.

2. The Multi-Bottleneck Concept

Tishby et. al in [8, 18] first proposed the information bot-
tleneck (1B) concept. The aim of the IB is to squeeze the in-
formation that a random variable X" provides about another
variable ) through a “bottleneck” formed by a limited set
of codewords X'. Then the problem can be formalized as
that of finding a short code for X" that preserves the max-
imum information about ). Note that the idea behind the
IB is to find the connection between X and ), which of-
ten cannot be obtained directly in an explicit way. There-
fore, an auxiliary variable X, the information bottleneck
between X and ), is required. The relationships among
X, X, and ) are shown in Figure 1. It can be seen that

Figure 1: The relationships among the variable X, the
information bottleneck X', and the variable ).

the introduction of the X’ can avoid the difficulty of find-
ing the implicative relationship between X and . The IB
methods have been mainly applied in text and document
classification[17, 3, 19, 16].

In the DNA microarray expression data classification,
the relationships among different classes are very complex
and implicative, and there are noise in each class. Inspired
by the idea of IB, a multi-bottleneck concept is proposed
where each class has its own bottleneck, i.e. there are mul-
tiple bottlenecks corresponding to multiple classes. Bot-
tlenecks in the IB method are used to reflect the relation-
ship between two relevant variables. In our proposed multi-
bottleneck method, however, multiple bottlenecks are se-
lected to be independent of each other. In other words, over-
lapped classes can be separated well via their bottlenecks in
a auxiliary space. For example, two classes L and K have
two bottlenecks 7 and T*, respectively. Their relation-
ships are illustrated in Figure 2. It can be seen that there is

Figure 2: The relationships among the class L, its infor-
mation bottleneck 77, the class K, and its information
bottleneck 7.

no connection between two bottlenecks 7 and 7.
Similar to the 1B, the bottlenecks are the abstract repre-
sentations of the respective classes. Therefore, the multi-
bottleneck problem can be formalized as that of finding a
representation of a class X’ that is totally different from the
representation of the other class ). As a result, the mutual
information between 7 and 7* should be minimal, while
the mutual information between L and 7 and that between
K and 7* should be maximal. The objective function for
selecting optimal bottlenecks, 7 and 7%, is defined as,

TJITH TR = [(THT) = BuI(Ls T — B I(K; TF) (1)

where 8; and 3, are two Lagrange multipliers.

Because a bottleneck is the abstract representation of its
corresponding class, a supervised and parallel scheme is
adopt to generate it. For a class with some available sample
data, or samples in short, the bottleneck can by obtained by
studying samples using machine learning techniques. Mul-
tiple bottlenecks are generated individually and parallelly,
and they can be seen as the ‘suboptimal’/initial bottlenecks.
This is because the overlap among classes are not consid-
ered during this generation of bottlenecks.

Here, the unsupervised fuzzy clustering (UFC)
algorithm[20, 21] is applied to classes to extract their
bottlenecks, respectively. Because there is no prior knowl-
edge on the inherent structure/distribution of any class in



gene expression data, other well-known clustering algo-
rithms, for example, K-means or fuzzy c-means methods,
are not suitable. The UFC can automatically provide not
only optimal clusters, but also the optimal number of
clusters in each class. As a result, each bottleneck consists
of a set of fuzzy clusters. Note that the number of clusters
in different classes can be different due to the independent
generation scheme.

Because the UFC is an optimal clustering algorithm, the
last two terms in equation (1), I(L; 7") and I(K; T*), are
known and thus constant. Therefore, the objective function
of the multi-bottleneck method is rewritten as,

JITHTH = LTS T O]

By equation (2), it can be seen that the connections among
classes are involved. The optimal bottlenecks can be ob-
tained by minimizing this function based on the suboptimal
ones.

3. The Semi-Parametric Mixture Iden-
tification for Bottlenecks

To obtain the ‘optimal’ bottlenecks, each bottleneck is rep-
resented by a mixture. The components of the mixture are
corresponding to the clusters in the class. The number of
clusters in the class and the parameters of each cluster, such
as cluster centers, size, dispersion, etc., are available by us-
ing the UFC. Therefore, the parameters of the components,
for example, centers, variance, etc., are known. Subse-
quently, the coefficients of the components of the mixture
are set as the weights of the corresponding clusters. Hence,
in the following, the term of “coefficient” will be replaced
with “weight”.

For a mixture, each component of the mixture can be de-
scribed by a basis kernel function, or kernel in short. The
kernel corresponds to a cluster in the class. Let {PL,i =
1,2,---,c'} be aset of ¢ clusters in the class L, and sam-
ples x € X. The prior probability density distribution (pdf)
of the bottleneck 77, i.e. p(z|T"), can be represented as
a mixture with a set of kernels. The basis kernel function,
@ (z|i), is the distribution function of the cluster P! in the
class L. Therefore,

p(a|T") =) wid!(zli), 3)
i=1
where w! is the weight of the i-th kernel in the bottleneck

T!. There is the requirement as follows,

wte0,1] YV I
dwh=1 ¥V I (4)

i

w! can be reasonably fixed as the ratio of the dispersion of
P’ over the class L.

Therefore, the bottleneck-conditional prior distributions
of all C' classes can be written as a linear combination of
the kernels with the weight matrix, i.e.

P=W& (5)

where P = {p(z|T")} is the set of class prior probabilities,
® = {¢!(z]i)} is the set of basis kernels, and W = {w!} is
a weight matrix. W is not necessary to be square because
the numbers of clusters ¢! in different classes are different.
In addition, the basis kernels in a mixture can be in differ-
ent forms, such as, Gaussian, Detric, etc. The kernels in
different mixtures can also be in different forms.

Due to the parallel generation of initial bottlenecks, the
relationships among classes are ignored. Obviously, the
overlaps among classes make the initial bottlenecks are not
optimal. The optimal ones can separate the correspond-
ing classes completely. To reduce the effect of the overlap
between two classes, the weights of clusters in overlapped
area should be minimized. This problem can be dealt with
by finding the optimal weights for the mixtures. In other
words, this is a semi-parametric mixture identification prob-
lem. Most of the existing mixture identification methods,
for example, the expectation maximization (EM) algorithm
or the reversible jump Markov Chain Monte Carlo (RIM-
CMC) method[13], aim to find the optimal partitions and to
estimate the parameters of mixtures simultaneously. They
are an overkill for solving the overlap problem here. This
is because only the weights of the mixtures are needed to
be identified in this semi-parametric mixture identification
problem.

The objective function in equation (2) can then be rewrit-
ten as,

JITETH = 1(p (2| T p2|T")) (6)

where both p(z|7%) and p(z|7*) are semi-parametric mix-
tures. Note that this equation is only for two bottlenecks. To
consider the total overlaps among all classes in C, the objec-
tive function is defined as:

J £ PL) (I[p(|T"); p(x)]) (7)

=1

It is shown that .7 is the mutual information between X" and
C, I(X;C). We therefore seek the bottlenecks for which 7
is minimal.

Because each bottleneck is formed by a semi-parametric
mixture in equation (3), whose kernels are fixed but whose
weight matrix, W, is adaptive so as to minimize the overall



mutual information of classes at the bottleneck level. There-
fore, the objective function /7 should be minimized, i.e.

min {J (w})} (8)

{wi}
subject to the constraints in equation (4). The gradi-
ent of the equation (8) with respect to each weight, w!,
can be obtained straightforwardly. Then, the optimiza-
tion of {w!} for each mixture can be realized via any
optimization method, such as, steepest descent method,
Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable met-
ric method[12], etc.

4. The Procedure of the HMBC
Method

The hierarchical multi-bottleneck classification (HMBC)
method is proposed based on above discussions. There are
three stages in the HMBC.

e In the first stage, the initial bottlenecks are generated
from corresponding classes by using the UFC via a
parallel way. Thus, each bottleneck is represented by a
semi-parametric mixture.

e In the second stage, the minimum-mutual-information
approach is used to obtain the optimal weight matrix,
W = {w!}, of bottlenecks.

e In the third stage, the “optimal” bottleneck of the class
is determined. The bottleneck still consists of a set of
clusters, with a set of corresponding optimal weights.

Figure 3 illustrates the procedure of using the HMBC
method to two classes, L and K.

For categorizing an unknown data to a class, a new dis-
tance, from the image-class matching distance[22, 20], is
used. .

c s 1
D(zq,L) = 2t wi’,dwt(xq’P’) ©)
Zj:l Wqj

where, dist(xg, Pg) stands for the ground distance between
the gene vector x, and the cluster P in the class L. Nor-
mally, the Euclidian distance is adopt to be the ground dis-
tance. w,; is the another optimal weight on dist(f,, P%)
that minimizes the D(z,, L) subject to the following con-
straints:

wej 20

. I
quj <L wg S wj

Cl Cl
quj = min(l,Zwé) (10)
j=1 j=1
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Figure 3: lllustration of the procedure of the HMBC
method to two classes L and K.

where, w’, is the obtained optimal weight of the cluster P,
in the class L.

5. The Classification of DNA Mi-
croarray Expression Data of Sac-
charomyces Cerevisiae

Saccharomyces cerevisiae is an especially favorable
organism in which to conduct a systematic investi-
gation of gene expression. The genes are easy to
recognize in the genome sequence. The regulatory
elements are generally compact and close to the tran-
scription units, and much is already known about its
genetic regulatory mechanisms.  The expression data
of Saccharomyces cerevisiae used in this paper comes
from [5, 4], which are also available at the web site
http://www.cse.ucsc.edu/research/compbio/genex/express-
data.html. The data consist of 2467 annotated yeast genes



with 80 elements, which were collected at various time
points during the mitotic cell division cycle, sporulation,
temperature and reducing shocks, and the diauxic shift.

In our experiment, the DNA microarray expression data
of Saccharomyces cerevisiae needs to be preprocessed. Let
X ={zki,k =1,--- ,n} € R™ be the input data, while
X = {&pi,k = 1,--- ,n,i = 1,--- 70} is the original
expression data. Because many genes do not have the last
3 elements, only 77 elements are selected for each gene.
Therefore, m = m — 3 = 77. After then, each expression
vector is normalized by the following equation,

l ~
Thi = O8 Tki k=1,---,n. (11

> (log Z;)?

As aresult, initial analysis described here are carried out by
using a set of 77-element expression vectors for 2467 yeast
genes,ie. X = {zp;,k=1,---,2467} € R7".

For training the original bottlenecks, we use the class
definitions made by the MIPS Yeast Genome Database
(MYGD). There are six functional classes: tricarboxylic
acid cycle (TCA), respiration, cytoplasmic ribosomes, pro-
teasome, histones and helix-turn-helix proteins.  The
MYGD class definitions come from biochemical and ge-
netic studies of gene function, while the microarray expres-
sion data measures mMRNA levels of genes. Many classes
in MYGD, especially structural classes such as protein ki-
nases, will be unlearnable from expression data by any clas-
sifier. The first five classes were selected because they rep-
resent categories of genes that are expected, on biologi-
cal grounds, to exhibit similar expression profiles. Fur-
thermore, Eisen et al. suggested that the mMRNA expres-
sion vectors for these classes cluster well using hierarchical
clustering. The sixth class, the helix-turn-helix proteins, is
included as a control group. Since there is no reason to
believe that the members of this class are similarly regu-
lated, we did not expect any classifier to learn to recog-
nize members of this class based upon mMRNA expression
measurements|[5, 4].

For using the HMBC method, sample data of each avail-
able class should be provided. Based on the class definition
of MYGD, there are 17, 30, 121, 35, 11, and 16 samples
selected for the six classes, respectively. By learning the
samples of each class individually, six initial bottlenecks
are generated. Each bottleneck consists of a set of clusters.
The numbers of clusters in six classes are 10, 6, 4, 8, 10,
and 10, respectively.

After this first step, a semi-parametric mixture of each
bottleneck is constructed. The form of the basis kernel func-
tion is fixed as Gaussian here. The steepest descent method
is used to solve the optimization problem in equation (8).

The initial values of weights {w'} is set as,

dpl,

where, dpé- is the dispersion of the cluster Pé- in the class L,
and dp' is the dispersion of the class L. Its prior probability,
P(L), is defined as,

PL) =" (13)

where, N is the number of data in the input data set X, and
n! denotes the number of data in the class L.

Thus, by minimizing the objective function in equation
(7), optimal weights in each bottleneck are obtained. Based
on the obtained ‘optimal’ bottlenecks and the distance de-
fined in equation (9), the unknown function gene can be
predicted.

As reported in [5, 4], there are 25 genes for which the de-
veloped SVMs consistently disagree with the MYGD clas-
sification. In table 1, the classification results, by using the
HMBC and SVMs methods, of these 25 genes are listed.
The FP stands for false positive which occurs when the ma-
chine learning techniques include the gene in the given class
but the MYGD classification does not. A false negative
(FN) occurs when the machine learning techniques do not
include the gene in the given class but the MYGD classifi-
cation does. The positive (P) and negative (N) refer to the
agreement of the classification results between MYGD and
HMBC. It can be seen that 14 of these 25 genes are classi-
fied into suitable classes by using the HMBC method, while
11 genes are still misclassified based on the class definition
of MYGD. Many of the disagreements reflect the different
perspectives, provided by the expression data concerning
the relationships between genes, of the machine learning
techniques and MYGC. The different functional classifica-
tion can illustrate the new information that expression data
brings to biology[4].

6. Conclusion

In this paper, the multi-bottleneck concept is proposed.
Subsequently, the hierarchical multi-bottleneck classifica-
tion (HMBC) method is proposed and applied for classifica-
tion of DNA microarray expression data of Saccharomyces
cerevisiae. The characteristics of six functional classes, de-
fined by MYGD, are studied in a parallel and supervised
fashion, and they are represented by information bottle-
necks. Through the bottlenecks, classes can be discrimi-
nated well. In this paper, the analysis of the experiment re-
sults is very simple and initial. In the future, more sophisti-
cated experiments will be presented. It can be expected that
the HMBC method is used to analyze other gene features,
such as the presence of transcription factor binding sites in



Table 1:

Classification results by using the HMBC

method for 25 consistently misclassified genes in [5, 4].

Class Genes SVMs | HMBC
TCA | YPROO1W FN P
YOR142W FN FN
YNROO1C FN P
YLR174W FN P
YIL125W FN P
YDR148C FN P
YDL066W FN FN
YBLO15W FP FP
Resp | YPR191W FN P
YPL271W FN P
YDL067X FN P
YPL262W FP FP
YML120C FP FP
YKLO085W FP N
Ribo | YLR406C FN P
YPLO37C FP FP
YLRO75W FP FP
YALOO3W FP FP
Prot | YHRO027C FN P
YGR270W FN P
YDRO069C FN FN
YDL020C FN P
YGR048W FP FP
Hist | YOLO012C FN P
YKL049C FN FN

the promoter region or sequence features of the translated
protein.
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