Lenses and imaging

- Huygens principle and why we need imaging instruments
- A simple imaging instrument: the pinhole camera
- •Principle of image formation using lenses
- • Quantifying lenses: paraxial approximation & matrix approach
- "Focusing" a lens: Imaging condition
- Magnification
- Analyzing more complicated (multi-element) optical systems:
	- Principal points/surfaces
	- Generalized imaging conditions from matrix formulae

The minimum path principle

$$
\int_{\Gamma} n(x, y, z) \, \mathrm{d}l
$$

Γ is chosen to minimize this "path" integral, compared to alternative paths

(aka **Fermat**'s principle) Consequences: law of reflection, law of refraction

The law of refraction

Huygens principle

Each point on the wavefront acts as a secondary light source emitting a spherical wave

The wavefront after a short propagation distance is the result of superimposing all these spherical wavelets

Why imaging systems are needed

- • Each point in an object scatters the incident illumination into a spherical wave, according to the Huygens principle.
- \bullet A few microns away from the object surface, the rays emanating from all object points become entangled, delocalizing object details.
- • To relocalize object details, a method must be found to reassign ("focus") all the rays that emanated from a single point object into another point in space (the "image.")
- \bullet The latter function is the topic of the discipline of Optical Imaging.

• The pinhole camera blocks all but one ray per object point from reaching the image space [⇒] an image is formed (*i.e.*, each point in image space corresponds to a single point from the object space).

- Unfortunately, most of the light is wasted in this instrument.
- Besides, light diffracts if it has to go through small pinholes as we will see later; diffraction introduces artifacts that we do not yet have the tools to quantify.

Lens: main instrument for image formation

The curved surface makes the rays bend proportionally to their distance from the "optical axis", according to Snell's law. Therefore, the divergent wavefront becomes convergent at the right-hand (output) side.

Analyzing lenses: paraxial ray-tracing

09/10/01 wk2-a-9

Paraxial approximation /1

• In paraxial optics, we make heavy use of the following approximate (1st order Taylor) expressions:

$$
\sin \varepsilon \approx \varepsilon \approx \tan \varepsilon \qquad \cos \varepsilon \approx 1
$$

$$
\sqrt{1+\varepsilon} \approx 1 + \frac{1}{2}\varepsilon
$$

where ε is the angle between a ray and the optical axis, and is a small number ($\varepsilon \langle 1 \rangle$ rad). The range of validity of this approximation typically extends up to \sim 10-30 degrees, depending on the desired degree of accuracy. This regime is also known as "Gaussian optics."

Note the assumption of existence of an optical axis (*i.e*., perfect alignment!)

Paraxial approximation /2

09/10/01 wk2-a-11

09/10/01 wk2-a-12

Translation+refraction+translation /1

Starting ray: location $x_{\scriptscriptstyle 0}$ direction $\alpha_{\scriptscriptstyle 0}$ Translation through distance D_{01} (+ direction): $\alpha_1 - \boldsymbol{\omega}_0$ $\mu_1 - \mu_0$ μ_0 μ_0 $\alpha_{1}=\alpha_{1}$ α = $x_i = x_0 + D$

Refraction at positive spherical surface:

$$
x_1 = x_1
$$

$$
\alpha'_1 = \frac{n}{n'}\alpha_1 + \left[\frac{(n-n')}{n'R}\right]x_1
$$

′

Translation+refraction+translation /2

Put together:

Translation+refraction+translation /3

Sign conventions for refraction

- •Light travels from left to right
- • A radius of curvature is positive if the surface is convex towards the left
- \bullet Longitudinal distances are positive if pointing to the right
- \bullet Lateral distances are positive if pointing up
- • Ray angles are positive if the ray direction is obtained by rotating the +z axis counterclockwise through an acute angle

On-axis image formation

All rays emanating at x_0 arrive at x_2 irrespective of departure angle α_0

R n n D n D n ′ $+\frac{n}{-}=\frac{n-1}{-}$ ′ $\begin{array}{c}\n12 \quad D_{01} \quad R \quad \longrightarrow \quad \text{``Power'' of the spherical}\n\end{array}$ surface [units: diopters, 1D=1m⁻¹]

Magnification: lateral (off-axis), angle

Lateral
$$
m_x = \frac{x_2}{x_0} = \frac{n - n'}{R} \frac{D_{12}}{n'} + 1 = \dots = -\frac{n}{n'} \frac{D_{12}}{D_{01}}
$$

Angle $m_\alpha = \frac{\Delta \alpha_2}{\Delta \alpha_0} = -\frac{D_{01}}{D_{12}}$

Object-image transformation

$$
x_2 = m_x x_0
$$

$$
\alpha_2 = -\frac{1}{f'} x_0 + m_\alpha \alpha_0
$$

Ray-tracing transformation (paraxial) between object and image points

Image of point object at infinity

 $I_{12} = \frac{1}{12}$ = $\frac{1}{12}$ = f' : image focal length 12 *f n n n R D R n n D n* ≡ ′ ′ − ′ \Rightarrow $D_{12} = \frac{1}{2}$ ′ $=\frac{n-1}{n}$ ′

Point object imaged at infinity

Matrix formulation /1

Matrix formulation /2

$$
\alpha_{\text{out}} = M_{11}\alpha_{\text{in}} + M_{12}x_{\text{in}} \qquad \begin{pmatrix} n_{\text{out}}\alpha_{\text{out}} \\ x_{\text{out}} \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} n\alpha_{\text{in}} \\ x_{\text{in}} \end{pmatrix}
$$

 ′−⁼ ′′′1 1 1 1 0 1 1 *x n R n n x n* α ^α () 1 1 1 1 1 *x n R n n n n x x* ′′+ ′′=′=α α Refraction by spherical surface Power

Translation through uniform medium

$$
x_1 = x_0 + D_{01}\alpha_0
$$

$$
\alpha_1 = \alpha_0
$$

$$
\begin{pmatrix} n\alpha_1 \\ x_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ D_{01} & 1 \end{pmatrix} \begin{pmatrix} n\alpha_0 \\ x_0 \end{pmatrix}
$$

Translation+refraction+translation

Thin lens

09/10/01 wk2-a-25

The power of surfaces

• Positive power bends rays "inwards"

•Negative power bends rays "outwards"

The power in matrix formulation

$$
\begin{pmatrix}\nn_{\text{out}}\alpha_{\text{out}} \\
x_{\text{out}}\n\end{pmatrix} =\n\begin{pmatrix}\nM_{11} & M_{12} \\
M_{21} & M_{22}\n\end{pmatrix}\n\begin{pmatrix}\nn_{\text{in}}\alpha_{\text{in}} \\
x_{\text{in}}\n\end{pmatrix}
$$

 $(Ray$ bending) = $(Power) \times (Lateral$ coordinate) $=$ (Power) \times (Lateral coordinate

$$
\Rightarrow (\text{Power}) = -M_{12}
$$

Power and focal length

Thick/compound elements: focal & principal points (surfaces)

Note: in the paraxial approximation, the focal & principal surfaces are flat (*i.e.*, planar). In reality, they are curved (but not spherical!!).The exact calculation is very complicated.

Focal Lengths for thick/compound elements

EFL: Effective Focal Length (or simply "focal length") **FFL**: Front Focal Length **BFL**: Back Focal Length

• The principal planes coincide with the (collocated) glass surfaces

• The rays bend precisely at the thin lens plane (=collocated glass surfaces & PP)

The significance of principal planes /1

09/10/01 wk2-a-32

The significance of principal planes /2

Imaging condition: ray-tracing

- Image point is located at the common intersection of **all** rays which emanate from the corresponding object point
- The two rays passing through the two focal points and the chief ray can be ray-traced directly

Imaging condition: matrix form /1

Imaging condition: matrix form /2

Imaging condition: matrix form /3

09/10/01 wk2-a-37

Lateral magnification

Angular magnification

Generalized imaging conditions

Power: $P = -M_{12} \neq 0$

Imaging condition: $M_{21} = 0$

Lateral magnification: $m_x = M_{22}$

Angular magnification: m $m_{\rm a} = \frac{N}{n'} M_{11}$

$$
n_{\rm a} = \frac{n}{n'} M_1
$$