The Scheimpflug condition

The object plane and the image plane intersect at right angles at the plane of the lens.

Source of the four-
\n
$$
\oint \text{Solver} = \int \text{irr} \cdot \text{r} \cdot \text
$$

 $\begin{array}{c} 10)500 \\ 10k5-b-5 \end{array}$

Lambertian source : equivalent to smaller hole
\nin early
\nIn early
\nThe light distribution at the hole
\nnumber of the hole aperture
\n
$$
M_e = \int_{U_e} L_e \omega s \nu d\Omega = L_e \int_{U_o} \omega s \nu d\omega
$$
\nFor a lambertiam source,
\n
$$
M_e = \int_{U_e} L_e \omega s \nu d\Omega = L_e \int_{U_o} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_e} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_e} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_e} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$
\n
$$
= \frac{1}{2} \int_{U_o} \frac{1}{2} \omega s \nu d\omega
$$

 $\Delta \omega_{\rm f}$

 \mathcal{S}

ABERRATIONS

 H η η η η · Devation of the wave-front from refraction by spherical strape due to imperfect the optical elements

perfect spherical wavefort (fourses b a point)

Optical elements (lenses, mirrors) produce perfect (non-alternated) wavefronts only in the paraxial approximation (i.e., for angles of At larger angles, 5 kinds of abenations (called "Seidel" aberrations) occur

FIGURE 91

Coma, the second of the five monochromatic aberrations of a lens. Only the tangential fan of rays is shown.

FIGURE 9K Geometry of coma, showing the relative magnitudes of sagittal and tangential magnifications.

 $-7 = 3C_s$

equation of comatic figure $y = C_5 (2 + \omega s 2\psi)$ $-2 = C_5 sin 2$

FIGURE 9L

Graphs comparing coma with longitudinal spherical aberration for a series of lenses having different shapes.

 $\label{eq:convergence} \centering \begin{minipage}{0.9\textwidth} \begin{minipage}{0.9\textwidth} \centering \begin{minipage}{0.9\textwidth} \centering \end{minipage} \begin{minipage}{0.9\textwidth} \centering \begin{minipage}{0.9\textwidth} \centering \end{minipage} \begin{minipage}{0.9\textwidth} \centering \end{minipage} \begin{minipage}{0.9\textwidth} \centering \begin{minipage}{0.9\textwidth} \centering \end{minipage} \begin{minipage}{0.9\textwidth} \centering \end{minipage} \begin{minipage}{0.9\textwidth} \centering \end{minipage}$

u – seus a gunan

 $\boldsymbol{\psi}$.

 \checkmark

 $\pmb{\prime}$

(a) Perspective diagram showing the two focal lines which constitute the image

ES ES EN ENFERT EL PROPERT DE L'ARCHET DE CARDINALE DE L'ARCHET DE L'ARCHET DE L'ARCHET DE LA PROPERT DE LA PR \sim and steps and the second \sim à, $\omega_{\rm c}$ $\boldsymbol{\kappa}$ l. Ъ, ký, \sim \sim \sim \sim \sim $\langle \omega_{\rm s} \rangle \sim m_{\rm H} \sim 1$

170 FUNDAMENTALS OF OPTICS

FIGURE 9Q Astigmatic images of a spoked wheel.

FIGURE 9R

Diagrams showing the astigmatic surfaces T and S in relation to the fixed Petzval surface P as the spacing between lenses (or between lens and stop) is. changed.

172 FUNDAMENTALS OF OPTICS

هيز

(a) A properly located stop may be used to reduce field curvature. (b) Astigmatic surfaces for an anastigmat camera lens.

 \equiv

FIGURE 9T

(a) A pinhole camera shows no distortion. Images of a rectangular object screen shown with (b) no distortion, (c) barrel distortion, and (d) pincushion distortion.

癌

174 FUNDAMENTALS OF OPTICS

FIGURE 9U

(a) A stop in front of a lens giving rise to barrel distortion. (b) A stop behind a lens giving rise to pincushion distortion. (c) A symmetrical doublet with a stop hatwaan is relatively free of distortion.

 λ