The Scheimpflug condition

The object plane and the image plane intersect at right angles at the plane of the lens.

Radiometry

Fig. 4.9 Closed surface used for calculating the total radiant flux.

Radiant flux:

1 differential surface area element vector

I aka Poynting rector

Fig. 4.10 Geometry for the radiant flux integral in the case where the light possesses a range of directions.

$$L_e = \frac{dS}{d\Omega} = \frac{d^2 E_e}{\cos \theta \ln dA} \Rightarrow d^2 E_e = L_e \cos \theta \, d\Omega dA$$

\ radiance

solid angle element.

$$d\Omega = \frac{dA}{R^2}$$

10/5/00 WK5-6-4

Lambertian source: equivalent to small hale in carity

The light distribution at the hole

- · uniform across the hole aperture
- · propagates in all directions with equal radiance

For a Lambertian source,

Fig. 4.18 Annular solid angle differential

define LA such that cost = containt over da

Me, Lambertian =
$$L_e \int_0^{T/2} \cos \theta \left(2\pi \sin \theta\right) d\theta$$

= $\pi L_e \int_0^{T/2} d\left(\sin^2 \theta\right)$
= πL_e

10/5/00 Wes-6-6

å

ABERRATIONS

• Devation of the wavefront from to ideal" spherical shape due to imperfect refraction by the optical elements

perfect spherical wavefont (fource to a point)

aberrated varefront
does not come to a focus

mage s clumed

Optical elements (lenses mirrors) produce perfect (non-orderroited) wavefronts only in the paraxial approximation (i.e., for angles of propagation near the optical axis).

Propagation near the optical axis).

At larger angles, 5 kinds of aberrations (called "Seidel" aberrations) occur

PRIMARY (STIDEL) ARBREATION PPINCIPLES OF OPTIOS () At sun# more Spherical aberration Coma **5** = - 1 8 p 4 $\int = Fy_0 \rho^3 \cos\theta$ Astigmatism Currature of field $=-Cy_0^2\rho^2\cos^2\theta$ $=-\frac{1}{2}Dy_0^2\rho^2$ (c)

FIGURE 9F (a) Lenses of different shapes but with the same power or focal length. The difference is one of bending. (b) Focal length versus ray height h for these lenses.

FIGURE 9G

$$q = \frac{v_2 + v_1}{v_2 - v_1}$$

$$p = \frac{s_1^2 - s_2}{s_1^2 + s_2}$$

thin lens
$$\frac{1}{s} + \frac{1}{s} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = \frac{1}{s}$$

$$\frac{1}{s} + \frac{1}{s} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = \frac{1}{s}$$

$$\frac{1}{s} + \frac{1}{s} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = \frac{1}{s}$$

$$\frac{1}{s} + \frac{1}{s} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = \frac{1}{s}$$

$$\frac{1}{s} + \frac{1}{s} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = \frac{1}{s}$$

FIGURE 91 Coma, the second of the five monochromatic aberrations of a lens. Only the tangential fan of rays is shown.

FIGURE 9K

Geometry of coma, showing the relative magnitudes of sagittal and tangential magnifications.

$$C_{\tau} = 3C_{s}$$

equation of compatic figure
$$y = C_s (2 + \omega s 2 \psi)$$

$$z = C_s \sin 2 \psi$$

۲.

•

FIGURE 9L Graphs comparing coma with longitudinal spherical aberration for a series of lenses having different shapes.

FIGURE 9P
(a) Perspective diagram showing the two focal lines which constitute the image

170 FUNDAMENTALS OF OPTICS

· Andrews

FIGURE 9Q Astigmatic images of a spoked wheel.

FIGURE 9R

Diagrams showing the astigmatic surfaces T and S in relation to the fixed Petzval surface P as the spacing between lenses (or between lens and stop) is changed.

172 FUNDAMENTALS OF OPTICS

The state of the s

FIGURE 9S

(a) A properly located stop may be used to reduce field curvature. (b) Astigmatic surfaces for an anastigmat camera lens.

FIGURE 9T

(a) A pinhole camera shows no distortion. Images of a rectangular object screen shown with (b) no distortion, (c) barrel distortion, and (d) pincushion distortion.

174 FUNDAMENTALS OF OPTICS

١

FIGURE 9U
(a) A stop in front of a lens giving rise to barrel distortion. (b) A stop behind a lens giving rise to pincushion distortion. (c) A symmetrical doublet with a stop between is relatively free of distortion.