2.71/2.710 Optics

Units: 3-0-9, Prerequisites: 8.02, 18.03
2.71: meets the Department Elective requirement
2.710: H-Level, meets the MS requirement in Design

Class objectives

- Cover the fundamental properties of light propagation and interaction with matter under the approximations of geometrical optics and scalar wave optics, emphasizing
 - physical intuition and underlying mathematical tools
 - systems approach to analysis and design of optical systems
- Application of the physical concepts to topical engineering domains, chosen from
 - high-definition optical microscopy
 - optical switching for data communications and computer interconnects
 - optical data storage
 - interface to human visual perception and learning
 - micro-optical adaptive components (optical MEMS)

What you need

- Absolutely necessary
 - Euclidean geometry
 - calculus with complex variables
 - Taylor series approximation
 - MATLAB or other computation/visualization software
- Helpful if you know but we will cover here
 - basic electrodynamics
 - basic wave propagation
 - linear systems and Fourier analysis

Topics

- Geometrical optics
 - Basic ray-tracing
 - Image formation and imaging systems
 - Optical design
- Wave optics
 - Scalar linear wave propagation
 - Wave properties of light
 - Polarization
 - Interference and interferometry
 - Fourier/systems approach to light propagation
 - Spatial filtering, resolution, coherent & incoherent image formation, inverse problems
 - Wavefront modulation/holography

Applications

- Confocal microscopy
 - optical slicing
 - fluorescence
 - two-photon
 - real-time
 - holographic
 - Spectroscopic
 - bio-imaging, imaging through turbulence
- Super-resolution
 - apodizing filters
 - hybrid (optics+signal processing) approaches
 - information-theoretic viewpoint

- Optical data storage
 - optical disks (CD's, DVD's, MO disks)
 - holographic memories
- Optical switching
 - optical MEMS
 - liquid crystals
 - thermo-optics
 - acousto-optics
- Statistical optics
 - Coherence imaging (van Cittert-Zernicke theorem, radio astronomy)
 - Optical coherence tomography
 - X-ray tomography (Slice Projection theorem, Radon transforms)

Class compass

- Broadcasts
 - 2.710@petrosian.mit.edu
- Textbooks: "Optics" by E. Hecht, 3rd edition (Addison-Wesley)
 - [2.710 only] "Introduction to Fourier optics" by J. W. Goodman, 2nd edition (McGraw-Hill)
- Recommended texts:
 - "Waves and fields in optoelectronics" by H. A. Haus
 - "Optics" by Klein and Furtak
 - "Fundamentals of photonics" by Saleh and Teich
 - "Fundamentals of optics" by Jenkins and White
 - "Modern Optical Engineering" by W. J. Smith

Administrative: 2.71

- Grade: 30% homeworks, 40% quiz, 30% final exam
- Ten homeworks
 - each due 1 week after post date (see syllabus)
 - see website for collaboration & late policies
 - mainly "comprehension" problems
- Occasional lab demonstrations (optional)

Administrative: 2.710

- Grade: 25% homeworks, 30% quizes, 20% project, 25% final exam
- Ten homeworks
 - each due 1 week after post date (see syllabus)
 - see website for collaboration & late policies
 - both "comprehension" and "open-ended" problems
- Occasional lab demonstrations (optional)
- Project
 - teams of 2-3
 - selected among one of the application areas (topics soon TBA)
 - start first week of November
 - weekly or so info meetings with instr/TA
 - oral presentation and 3-page technical paper

Administrative: both

- Two quizes:
 - Quiz 1 on Wednesday Oct. 10, 10am (in class)
 - Quiz 1 content: geometrical optics, basic wave propagation
 - Quiz 2 on Wednesday Nov. 14, 10am (in class)
 - Quiz 2 content: Fourier optics
- Final exam:
 - scheduled by the Registrar
 - comprehensive on everything covered in class
- Absence from quizes/final: Institute policies apply
- Grading: Institute definitions apply

Administrative: both (cont.)

- Office hours: TBA
- Unlimited email access (broadcasts encouraged), best effort to reply within 24hrs.
- Recitations during scheduled class hours
 - *most* Wednesdays (some separate for 2.71 and 2.710)
 - broadcast by e-mail when not in syllabus
 - contents
 - example problems (usually before homeworks are due)
 - homework solutions (after homework due dates)
 - extended coverage of some special topics (e.g., optical design software; 2D Fourier transforms)
 - suggestions welcome

Brief history of optics

- Ancient Greeks (~5-3 century BC)
 - Pythagoras (rays emerge from the eyes)
 - Democritus (bodies emit "magic" substance, simulacra)
 - Plato (combination of both of the above)
 - Aristotle (motion transfer between object & eye)
- Middle Ages
 - Alkindi, Alhazen defeat emission hypothesis (~9-10 century AD)
 - Lens is invented by accident (northern Italy, ~12th century AD)
 - Della Porta, da Vinci, Descartes, Gallileo, Kepler formulate geometrical optics, explain lens behavior, construct optical instruments (~15th century AD)
- Beyond the middle ages:
 - Newton (1642-1726) and Huygens (1629-1695) fight over nature of light

Brief history of optics (cont'ed)

- 18th-19th centuries
 - Fresnel, Young experimentally observe diffraction, defeat Newton's particle theory
 - Maxwell formulates electro-magnetic equations, Hertz verifies antenna emission principle (1899)
- 20th century
 - Quantum theory explains wave-particle duality
 - Invention of holography (1948)
 - Invention of laser (1956)
 - Optical applications proliferate
 - computing, communications, fundamental science, medicine, manufacturing, entertainment

Particle properties of light

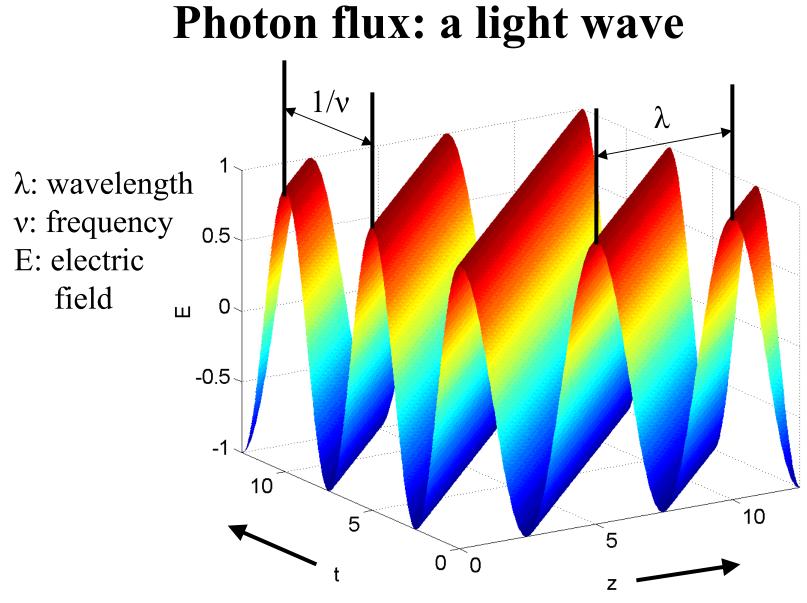
Photon=elementary light particle

Mass=0 Speed c= 3×10^8 m/sec

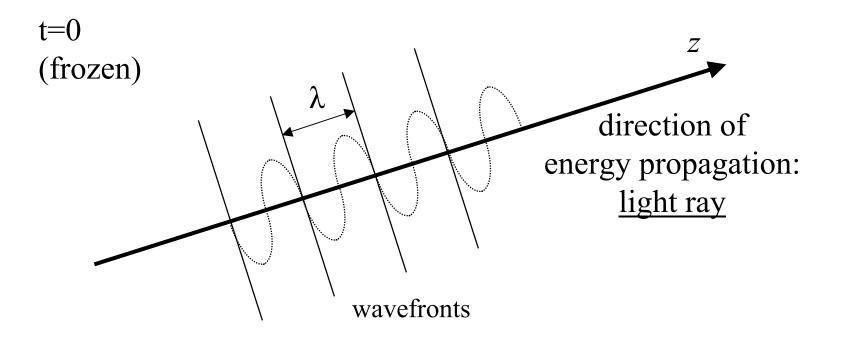
$$c=\lambda v$$

"Dispersion relation"

Energy E=hv

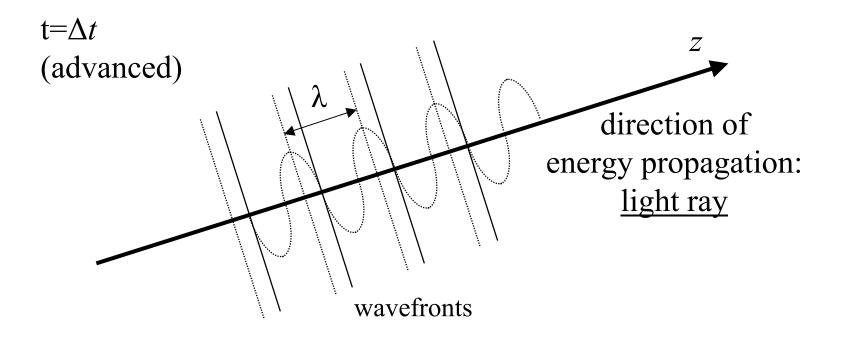

h=Planck's constant = 6.6262×10^{-34} J sec

 ν =frequency (sec⁻¹) λ =wavelength (m)


MIT 2.71/2.710 9/5/01 wk1-b-13 relates the dual particle & wave nature of light;

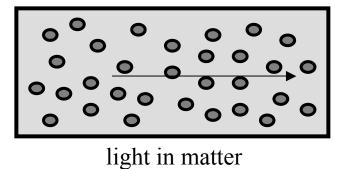
v is the temporal oscillation frequency of the light waves

 λ is the spatial period of the light waves



The concept of a "ray"

In homogeneous media, light propagates in rectilinear paths

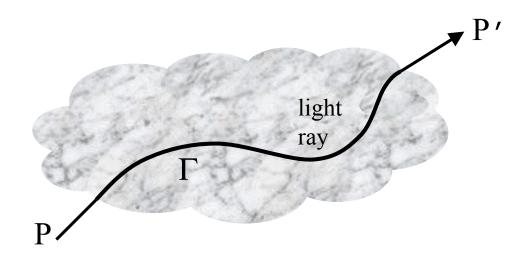

The concept of a "ray"

In homogeneous media, light propagates in rectilinear paths

Light in matter

light in vacuum

Speed $c=3\times10^8$ m/sec

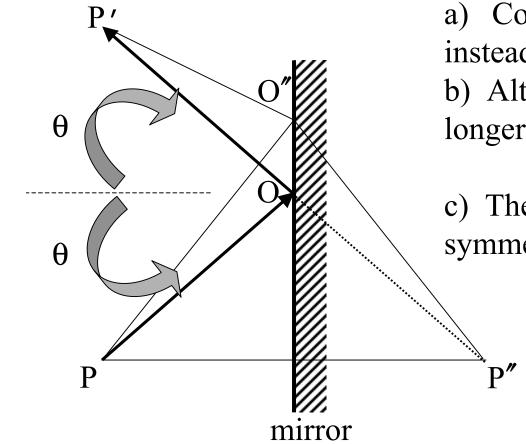

Speed *c/n n* : refractive index (or index of refraction)

Absorption coefficient 0

Absorption coefficient α energy decay coefficient, after distance L : $e^{-2\alpha L}$

E.g. glass has $n \approx 1.5$, glass fiber has $\alpha \approx 0.25$ dB/km=0.0288/km MIT 2.71/2.710 9/5/01 wk1-b-17

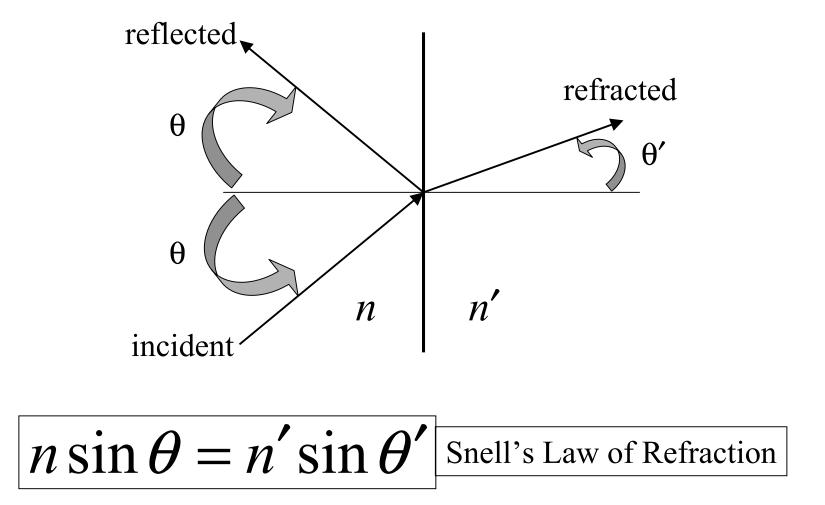
The minimum path principle

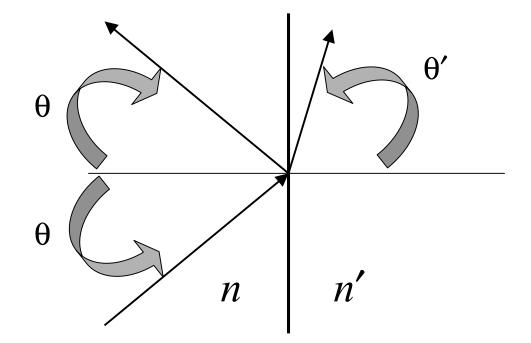


$$\int n(x, y, z) \, \mathrm{d}l$$

Γ is chosen to minimize this"path" integral, compared to alternative paths

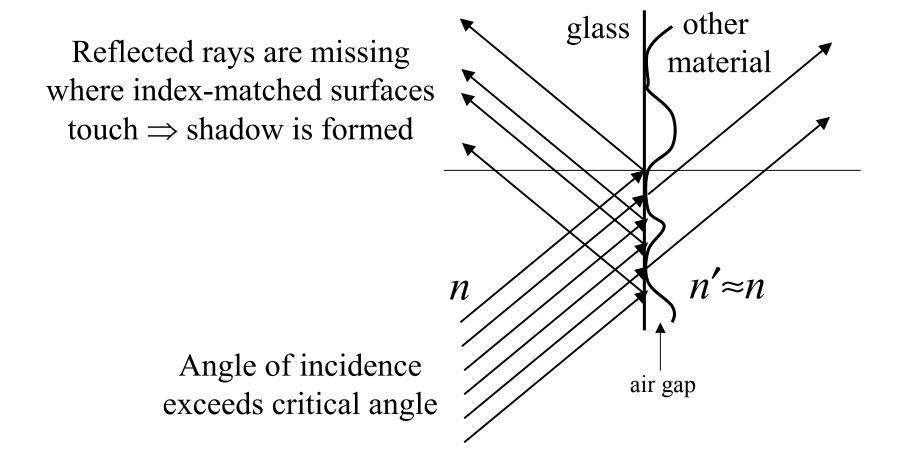
(aka **Fermat**'s principle) Consequences: law of reflection, law of refraction


The law of reflection


a) Consider virtual source P" instead of Pb) Alternative path P"O"P' is longer than P"OP'

c) Therefore, light follows the symmetric path POP'.

The law of refraction


Total Internal Reflection (TIR)

 $n > n' \Rightarrow \theta'$ becomes imaginary when $\theta > \theta_{\text{crit}} = \sin^{-1} \frac{n'}{n}$

 \Rightarrow refracted beam disappears, all energy is reflected

Frustrated Total Internal Reflection (FTIR)

