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Flow networks
Definition. A flow network is a directed graph 
G = (V, E) with two distinguished vertices: a 
source s and a sink t.  Each edge (u, v) ∈ E has 
a nonnegative capacity c(u, v).  If (u, v) ∉ E, 
then c(u, v) = 0.

Example:
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Flow networks
Definition. A positive flow on G is a function 
p : V × V → R satisfying the following: 
• Capacity constraint: For all u, v ∈ V,

0 ≤ p(u, v) ≤ c(u, v).
• Flow conservation: For all u ∈ V – {s, t}, 

0),(),( =− ∑∑
∈∈ VvVv
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The value of a flow is the net flow out of the 
source:
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A flow on a network
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The value of this flow is 1 – 0 + 2 = 3.

Flow conservation (like Kirchoff’s current law):
• Flow into u is 2 + 1 = 3.
• Flow out of u is 0 + 1 + 2 = 3.
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The maximum-flow problem
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The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network 
G, find a flow of maximum value on G.
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Flow cancellation
Without loss of generality, positive flow goes 
either from u to v, or from v to u, but not both.
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Net flow from 
u to v in both 
cases is 1.

The capacity constraint and flow conservation 
are preserved by this transformation.
INTUITION: View flow as a rate, not a quantity.
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One summation 
instead of two.

A notational simplification
IDEA: Work with the net flow between two 
vertices, rather than with the positive flow.
Definition. A (net) flow on G is a function 
f : V × V → R satisfying the following: 
• Capacity constraint: For all u, v ∈ V,

f (u, v) ≤ c(u, v).
• Flow conservation: For all u ∈ V – {s, t}, 

0),( =∑
∈Vv

vuf .

• Skew symmetry: For all u, v ∈ V,
f (u, v) = –f (v, u).
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Equivalence of definitions
Theorem. The two definitions are equivalent.
Proof. (⇒) Let f (u, v) = p(u, v) – p(v, u).
• Capacity constraint: Since p(u, v) ≤ c(u, v) and 

p(v, u) ≥ 0, we have f (u, v) ≤ c(u, v).
• Flow conservation:
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• Skew symmetry:
f (u, v) = p(u, v) – p(v, u) 

= – (p(v, u) – p(u, v))
= – f (v, u).
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Proof (continued)
(⇐) Let

p(u, v) = f (u, v) if f(u, v) > 0,
0 if f(u, v) ≤ 0.

• Capacity constraint: By definition, p(u, v) ≥ 0.  Since f
(u, v) ≤ c(u, v), it follows that p(u, v) ≤ c(u, v).

• Flow conservation:  If f (u, v) > 0, then p(u, v) – p(v, u) 
= f (u, v).  If f (u, v) ≤ 0, then p(u, v) – p(v, u) = – f (v, u) 
= f (u, v) by skew symmetry.  Therefore,
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Notation

Definition. The value of a flow f, denoted by | f |, 
is given by
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Implicit summation notation:  A set used in 
an arithmetic formula represents a sum over 
the elements of the set. 
• Example — flow conservation:

f (u, V) = 0 for all u ∈ V – {s, t}.
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Simple properties of flow
Lemma.
• f (X, X) = 0,
• f (X, Y) = – f (Y, X),
• f (X∪Y, Z) = f (X, Z) + f (Y, Z) if X∩Y = ∅.

Theorem. | f | =  f (V, t).
Proof.

| f | = f (s, V)
= f (V, V) – f (V–s, V) Omit braces.
=  f (V, V–s)
=  f (V, t) + f (V, V–s–t)
=  f (V, t).
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Flow into the sink
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| f | =  f (s, V) = 4 f (V, t) = 4



Introduction to Algorithms Day 38      L22.13© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Cuts
Definition. A cut (S, T) of a flow network G =
(V, E) is a partition of V such that s ∈ S and t ∈ T.  
If f is a flow on G, then the flow across the cut is
f (S, T).
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f (S, T) = (2 + 2) + (– 2 + 1 – 1 + 2)
= 4
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Another characterization of 
flow value

Lemma. For any flow f and any cut (S, T), we 
have | f | =  f (S, T).
Proof. f (S, T) = f (S, V) – f (S, S)

= f (S, V)
= f (s, V) + f (S–s, V)
= f (s, V)
= | f |.



Introduction to Algorithms Day 38      L22.15© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Capacity of a cut
Definition. The capacity of a cut (S, T) is c(S, T).
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c(S, T) = (3 + 2) + (1 + 2 + 3)
= 11
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Upper bound on the maximum 
flow value

Theorem. The value of any flow is bounded 
above by the capacity of any cut. 
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Residual network
Definition. Let f be a flow on G = (V, E).  The 
residual network Gf (V, Ef ) is the graph with 
strictly positive residual capacities

cf (u, v) = c(u, v) – f (u, v) > 0.
Edges in Ef admit more flow.
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Example:

Lemma. |Ef | ≤ 2|E |.
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Augmenting paths
Definition. Any path from s to t in Gf is an aug-
menting path in G with respect to f.  The flow 
value can be increased along an augmenting 
path p by )},({min)(
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Max-flow, min-cut theorem

Theorem. The following are equivalent:
1. f is a maximum flow.
2. f admits no augmenting paths.
3. | f | = c(S, T) for some cut (S, T).

Proof (and algorithms).  Next time.


