Introduction to Algorithms **6.046J/18.401J/SMA5503**

Lecture 22 **Prof. Charles E. Leiserson**

Flow networks

Definition. A *flow network* is a directed graph $G = (V, E)$ with two distinguished vertices: a *source s* and a *sink t*. Each edge $(u, v) \in E$ has a nonnegative *capacity* $c(u, v)$. If $(u, v) \notin E$, then $c(u, v) = 0$.

Flow networks

Definition. A *positive flow* on *G* is a function $p: V \times V \rightarrow \mathbb{R}$ satisfying the following:

- *Capacity constraint:* For all *^u*, *^v* [∈] *V*, $0 \leq p(u, v) \leq c(u, v)$.
- *Flow conservation:* For all $u \in V \{s, t\}$,

$$
\sum_{v \in V} p(u,v) - \sum_{v \in V} p(v,u) = 0.
$$

The *value* of a flow is the net flow out of the source:

$$
\sum_{v \in V} p(s,v) - \sum_{v \in V} p(v,s).
$$

A flow on a network

Flow conservation (like Kirchoff's current law):

- Flow into u is $2 + 1 = 3$.
- Flow out of u is $0 + 1 + 2 = 3$.
- The value of this flow is $1 0 + 2 = 3$.

The maximum-flow problem

Maximum-flow problem: Given a flow network *G*, find a flow of maximum value on *G*.

The value of the maximum flow is 4.

Flow cancellation

Without loss of generality, positive flow goes either from *u* to *v*, or from *^v* to *u*, but not both.

Net flow from *u* to *^v* in both cases is 1.

The capacity constraint and flow conservation are preserved by this transformation.

INTUITION: View flow as a *rate*, not a *quantity*.

A notational simplification

IDEA: Work with the net flow between two vertices, rather than with the positive flow.

Definition. A *(net) flow* on *G* is a function $f: V \times V \rightarrow \mathbb{R}$ satisfying the following:

• *Capacity constraint:* For all *^u*, *^v* [∈] *V*, $f(u, v) \leq c(u, v)$.

• *Flow conservation:* For all $u \in V - \{s, t\}$,

 $\sum f(u,v) = 0$. *One summation instead of two. v*∈*V*

• *Skew symmetry:* For all *^u*, *^v* [∈] *V*, $f(u, v) = -f(v, u)$.

Equivalence of definitions

Theorem. The two definitions are equivalent.

Proof. (\Rightarrow) Let $f(u, v) = p(u, v) - p(v, u)$.

- *Capacity constraint:* Since $p(u, v) \le c(u, v)$ and $p(v, u) \geq 0$, we have $f(u, v) \leq c(u, v)$.
- *Flow conservation:*

$$
\sum_{v \in V} f(u, v) = \sum_{v \in V} (p(u, v) - p(v, u))
$$

$$
= \sum_{v \in V} p(u, v) - \sum_{v \in V} p(v, u)
$$

• *Skew symmetry:*

$$
f(u, v) = p(u, v) - p(v, u)
$$

= - (p(v, u) - p(u, v))
= -f(v, u).

Proof (continued)

 (\Leftarrow) Let

$$
p(u, v) = \begin{cases} f(u, v) & \text{if } f(u, v) > 0, \\ 0 & \text{if } f(u, v) \leq 0. \end{cases}
$$

- *Capacity constraint:* By definition, $p(u, v) \ge 0$. Since f $(u, v) \leq c(u, v)$, it follows that $p(u, v) \leq c(u, v)$.
- *Flow conservation:* If $f(u, v) > 0$, then $p(u, v) p(v, u)$ $f(u, v)$. If $f(u, v) \le 0$, then $p(u, v) - p(v, u) = -f(v, u)$ $= f(u, v)$ by skew symmetry. Therefore,

$$
\sum_{v \in V} p(u,v) - \sum_{v \in V} p(v,u) = \sum_{v \in V} f(u,v).
$$

Notation

Definition. The *value* of a flow *f*, denoted by **|***f* **|**, is given by

$$
|f| = \sum_{v \in V} f(s, v)
$$

= $f(s, V)$.

Implicit summation notation: A set used in an arithmetic formula represents a sum over the elements of the set.

• **Example** — flow conservation: *f*(*u*, *V*) = 0 for all $u \in V - \{s, t\}.$

Simple properties of flow

Lemma.

•
$$
f(X, X) = 0
$$
,
\n• $f(X, Y) = -f(Y, X)$,
\n• $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ if $X \cap Y = \emptyset$.

Theorem. $|f| = f(V, t)$. *Proof.*

$$
|f| = f(s, V)
$$

= $f(V, V) - f(V-s, V)$ Omit braces.
= $f(V, V-s)$
= $f(V, t) + f(V, V-s-t)$
= $f(V, t)$.

Flow into the sink

Cuts

Definition. A *cut* (S, T) of a flow network $G =$ (V, E) is a partition of *V* such that $s \in S$ and $t \in T$. If *f* is a flow on *G*, then the *flow across the cut* is *f*(*S*, *T*).

Another characterization of flow value

Lemma. For any flow *f* and any cut (*S*, *T*), we have $|f| = f(S, T)$.

Proof.
\n
$$
f(S, T) = f(S, V) - f(S, S)
$$
\n
$$
= f(S, V)
$$
\n
$$
= f(s, V) + f(S - s, V)
$$
\n
$$
= f(s, V)
$$
\n
$$
= |f|.
$$

Capacity of a cut

Definition. The *capacity of a cut* (*S*, *T*) is *^c*(*S*, *T*).

$c(S, T) = (3 + 2) + (1 + 2 + 3)$ $= 11$

Upper bound on the maximum flow value

Theorem. The value of any flow is bounded above by the capacity of any cut.

Proof.

 $=c(S,T)$. \leq \sum \sum $c(u, v)$ $f(u,v)$ f = $f(S,T)$ u ∈S v ∈T u ∈ S v ∈ T = = ∑∑ ∑∑

Residual network

Definition. Let *f* be a flow on $G = (V, E)$. The *residual network G_f*(*V*, *E_f*) is the graph with strictly positive *residual capacities* $c_f(u, v) = c(u, v) - f(u, v) > 0.$

Edges in E_f admit more flow.

Augmenting paths

Definition. Any path from *s* to *t* in G_f is an *aug- menting path* in *G* with respect to *f*. The flow value can be increased along an augmenting $path p by c_f(p) = \min_{(u,v) \in p} \{c_f(u,v)\}.$

Max-flow, min-cut theorem

Theorem. The following are equivalent: *1. f* is a maximum flow. *2. f* admits no augmenting paths. *3.* $|f| = c(S, T)$ for some cut (S, T) .

Proof (and algorithms). Next time.