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Flow networks

Definition. A flow network 1s a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (u, v) € E has
a nonnegative capacity c(u, v). If (u,v) ¢ E,
then c(u, v) =0,

Example:
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Flow networks

Definition. A positive flow on G 1s a function
p: VxV— R satistying the following:

* Capacity constraint: For all u,v € V,
0 <p(u, v) <c(u,v).
* Flow conservation: For all u € V' — {s, t},

Zp(u,v)— Zp(v,u) =0.

vel velV

The value of a flow 1s the net flow out of the

source:
2. p(s,v)= D p(v,5).

velV vel’
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A flow on a network

positive  capacity

ﬂOW \1:3/

Flow conservation (like Kirchoff’s current law):
* Flow into u1s 2 + 1 = 3.
* Flowoutof u1s 0+ 1 + 2 =3,

The value of this flowi1s 1 — 0+ 2 = 3.
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The maximum-flow problem

Maximum-flow problem: Given a flow network
G, find a flow of maximum value on G.

The value of the maximum flow 1s 4.
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Flow cancellation

Without loss of generality, positive flow goes
either from u to v, or from v to u, but not both.

Net flow from
23 |12 i> 31 lo2  wtovinboth
cases 1s 1.

The capacity constraint and flow conservation
are preserved by this transformation.

INTUITION: View flow as a rate, not a quantity.
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A notational simplification

IDEA: Work with the net flow between two
vertices, rather than with the positive flow.

Definition. A (net) flow on G 1s a function
f V' x V— R satistying the following:

* Capacity constraint: For all u,v € V,

f(u,v) <c(u,v).

» Flow conservation: Forall u € V'— {s, t},

Z f(u,v)=0.— One summation
vel instead Oftwo,

* Skew symmetry: Forall u,v € V,

f(ua V) — _f(va M)
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Equivalence of definitions

Theorem. The two definitions are equivalent.

PI"OOf (:>) Letf(l/t, V) :p(ua V) —p(V, I/t)

* Capacity constraint: Since p(u, v) < c(u, v) and
p(v, u) >0, we have f(u, v) < c(u, v).

o Flow conservation:

Zf(uav) — Z(p(%,\/) —p(V,M))

vel vely
= Zp(u,V) - Zp(v,u)
vel vel

* Skew symmetry:
S, v) =p(u, v) = p(v, u)
=—(p(v, u) = p(u, v))
=—f(v, u).
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Proof (continued)

(<) Let

=4 e

* Capacity constraint: By definition, p(u, v) > 0. Since /
(u, v) < c(u, v), 1t follows that p(u, v) < c(u, v).

* Flow conservation: 1If f(u, v) > 0, then p(u, v) — p(v, u)

:f(u9 V)’ Iff(ua V) < Oa thenp(”? V) _p(V9 l/l) — _f(V9 I/l)
= f(u, v) by skew symmetry. Therefore,

D pu,v) =Y pru)= fu,v).

vel’ vel vel
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Notation

Definition. The value of a flow f, denoted by |/,
1s given by
fl=2_/(sv)

velV

= f(s,V).

Implicit summation notation: A set used in
an arithmetic formula represents a sum over
the elements of the set.

* Example — flow conservation:
f(u, Vy=01torallu € V— {s, t}.
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Simple properties of tflow

Lemma.

[ (X, X) =0,

S (X, V) =—f(Y, X),

f(XVY, 2)=f(X,2)+ (Y, 2) it XnY=.

Theorem. |f|= f(V, 1).
Proof.

f1=s(s,7)
=1V, V)—f(V=s, V)  Omit braces.
= f(V, V=s)
= f(V,t) + f(V, V=s—t)
= f(V, 1.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 38  L22.11




Flow into the sink

fI=1G, V)=4 J,n=4
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Cuts

Definition. A cut (S, T) of a flow network G =
(V, E) 1s a partition of /' such thats € Sand ¢ € 7.
If / 1s a flow on G, then the flow across the cut 1s

J(S, 1).

f(S,T)=(2+2)+O(—2+1—1+2)
=4
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Another characterization of
flow value

Lemma. For any flow f and any cut (S, 7), we

have | f|= (S, 7).

Proof. S5, T)=/(S, 1)
=/ (S5, 7)
=/ (s, V)
=/ (s, V)
=[ /1.
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Capacity of a cut
Definition. The capacity of a cut (S, T) 1s c(S, 7).

c(S, )=3+2)+(1+2+3)
=11
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Upper bound on the maximum
flow value

Theorem. The value of any flow 1s bounded
above by the capacity of any cut.

Proof. f1=1(8.T)
=22, [y

ueSvel

< ZZc(u,v)

ueSveTl

=c(S,7).
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Residual network

Definition. Let / be a flow on G = (V, E). The
residual network G,(V, E,) 1s the graph with
strictly positive residual capacities

¢, (1, v) = e, v) (1, ) > 0.
Edges in £, admit more flow.

Example:

0:1 4
3:5 2
Lemma. [E|<2|E].
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Augmenting paths

Definition. Any path from s to 7 in G,1s an aug-
menting path in G with respect to /. The flow
value can be increased along an augmenting

path p by ¢ (p)= min {c,(u,v)}.

(u,v)ep
Ex.: 3:5 2:6 0:2 2:5
5:5 2:3
cr(p) =2 2 4 7 2 3
3 2 1 2
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Max-flow, min-cut theorem

Theorem. The following are equivalent:
[. f1s a maximum flow.

2. fadmits no augmenting paths.
3.1 f]=c(S, T) for some cut (S, 7).

Proof (and algorithms). Next time.
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