Introduction to Algorithms 6.046J/18.401J/SMA5503

Lecture 22 Prof. Charles E. Leiserson

Flow networks

Definition. A *flow network* is a directed graph G = (V, E) with two distinguished vertices: a *source s* and a *sink t*. Each edge $(u, v) \in E$ has a nonnegative *capacity* c(u, v). If $(u, v) \notin E$, then c(u, v) = 0.

© 2001 by Charles E. Leiserson

Flow networks

Definition. A *positive flow* on *G* is a function $p: V \times V \rightarrow \mathbb{R}$ satisfying the following:

- *Capacity constraint:* For all $u, v \in V$, $0 \le p(u, v) \le c(u, v)$.
- *Flow conservation:* For all $u \in V \{s, t\}$,

$$\sum_{v\in V} p(u,v) - \sum_{v\in V} p(v,u) = 0.$$

The *value* of a flow is the net flow out of the source:

$$\sum_{v\in V} p(s,v) - \sum_{v\in V} p(v,s).$$

© 2001 by Charles E. Leiserson

A flow on a network

Flow conservation (like Kirchoff's current law):

- Flow into u is 2 + 1 = 3.
- Flow out of u is 0 + 1 + 2 = 3.
- The value of this flow is 1 0 + 2 = 3.

© 2001 by Charles E. Leiserson

Introduction to Algorithms

The maximum-flow problem

Maximum-flow problem: Given a flow network *G*, find a flow of maximum value on *G*.

The value of the maximum flow is 4.

© 2001 by Charles E. Leiserson

Flow cancellation

Without loss of generality, positive flow goes either from u to v, or from v to u, but not both.

The capacity constraint and flow conservation are preserved by this transformation.

INTUITION: View flow as a *rate*, not a *quantity*.

© 2001 by Charles E. Leiserson

Introduction to Algorithms

A notational simplification

IDEA: Work with the net flow between two vertices, rather than with the positive flow.

Definition. A *(net) flow* on *G* is a function $f: V \times V \rightarrow \mathbb{R}$ satisfying the following:

• Capacity constraint: For all $u, v \in V$, $f(u, v) \le c(u, v)$.

• *Flow conservation:* For all $u \in V - \{s, t\}$,

 $\sum_{v \in V} f(u,v) = 0. \leftarrow One \ summation \\ instead \ of \ two.$

• Skew symmetry: For all $u, v \in V$, f(u, v) = -f(v, u).

© 2001 by Charles E. Leiserson

Equivalence of definitions

Theorem. The two definitions are equivalent.

Proof. (\Rightarrow) Let f(u, v) = p(u, v) - p(v, u).

- *Capacity constraint:* Since $p(u, v) \le c(u, v)$ and $p(v, u) \ge 0$, we have $f(u, v) \le c(u, v)$.
- Flow conservation:

$$\sum_{v \in V} f(u, v) = \sum_{v \in V} \left(p(u, v) - p(v, u) \right)$$
$$= \sum_{v \in V} p(u, v) - \sum_{v \in V} p(v, u)$$

• Skew symmetry:

$$f(u, v) = p(u, v) - p(v, u) = -(p(v, u) - p(u, v)) = -f(v, u).$$

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Proof (continued)

(⇐) Let

$$p(u, v) = \begin{cases} f(u, v) & \text{if } f(u, v) > 0, \\ 0 & \text{if } f(u, v) \le 0. \end{cases}$$

- *Capacity constraint:* By definition, $p(u, v) \ge 0$. Since $f(u, v) \le c(u, v)$, it follows that $p(u, v) \le c(u, v)$.
- *Flow conservation:* If f(u, v) > 0, then p(u, v) p(v, u) = f(u, v). If $f(u, v) \le 0$, then p(u, v) p(v, u) = -f(v, u) = f(u, v) by skew symmetry. Therefore,

$$\sum_{v \in V} p(u,v) - \sum_{v \in V} p(v,u) = \sum_{v \in V} f(u,v). \square$$

Notation

Definition. The *value* of a flow f, denoted by |f|, is given by

$$|f| = \sum_{v \in V} f(s, v)$$
$$= f(s, V).$$

Implicit summation notation: A set used in an arithmetic formula represents a sum over the elements of the set.

• **Example** — flow conservation: f(u, V) = 0 for all $u \in V - \{s, t\}$.

© 2001 by Charles E. Leiserson

Simple properties of flow

Lemma.

•
$$f(X, X) = 0$$
,
• $f(X, Y) = -f(Y, X)$,
• $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ if $X \cap Y = \emptyset$.

Theorem. |f| = f(V, t). *Proof.*

$$|f| = f(s, V) = f(V, V) - f(V - s, V) Omit braces. = f(V, V - s) = f(V, t) + f(V, V - s - t) = f(V, t).$$

© 2001 by Charles E. Leiserson

Flow into the sink

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Cuts

Definition. A *cut* (*S*, *T*) of a flow network G = (V, E) is a partition of *V* such that $s \in S$ and $t \in T$. If *f* is a flow on *G*, then the *flow across the cut* is f(S, T).

Another characterization of flow value

Lemma. For any flow f and any cut (S, T), we have |f| = f(S, T).

Proof.

$$f(S, T) = f(S, V) - f(S, S)$$

$$= f(S, V)$$

$$= f(S, V) + f(S - S, V)$$

$$= f(S, V)$$

$$= |f|.$$

© 2001 by Charles E. Leiserson

Capacity of a cut

Definition. The *capacity of a cut* (S, T) is c(S, T).

c(S, T) = (3 + 2) + (1 + 2 + 3)= 11

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Upper bound on the maximum flow value

Theorem. The value of any flow is bounded above by the capacity of any cut.

Proof.

|f| = f(S,T)= $\sum_{u \in S} \sum_{v \in T} f(u,v)$ $\leq \sum_{u \in S} \sum_{v \in T} c(u,v)$ = c(S,T).

© 2001 by Charles E. Leiserson

Residual network

Definition. Let *f* be a flow on G = (V, E). The *residual network* $G_f(V, E_f)$ is the graph with strictly positive *residual capacities* $c_f(u, v) = c(u, v) - f(u, v) > 0$.

Edges in E_f admit more flow.

© 2001 by Charles E. Leiserson

Augmenting paths

Definition. Any path from *s* to *t* in G_f is an *augmenting path* in *G* with respect to *f*. The flow value can be increased along an augmenting path *p* by $c_f(p) = \min_{(u,v) \in p} \{c_f(u,v)\}.$

© 2001 by Charles E. Leiserson

Max-flow, min-cut theorem

Theorem. The following are equivalent: 1. *f* is a maximum flow. 2. *f* admits no augmenting paths. 3. |f| = c(S, T) for some cut (S, T).

Proof (and algorithms). Next time.