Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 23

Prof. Charles E. Leiserson

Recall from Lecture 22

o Flow value: |f|=1(s, V).

* Cut: Any partition (S, 7) of V'such thats € S
and 7 € T.

 Lemma. | /| =/(S, 7) for any cut (5, 7).

* Corollary. | /| < c(S, T) for any cut (S, 7).

* Residual graph: The graph G, = (V, E,) with
strictly positive residual capacities ¢ (u, v) =
c(u, v) —f(u,v)>0.

* Augmenting path: Any path from s to 7 in G,.

* Residual capacity of an augmenting path:

C = min {c,(u,v)}.
7(p)= min fe;(u.v)}

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 123.2

Max-flow, min-cut theorem

Theorem. The following are equivalent:
I. | f|=c(S, T) for some cut (S, 7).

2. f1s a maximum flow.

3. fadmits no augmenting paths.

Proof.

(/)= (2): Since | /| < c(S, T) for any cut (S5, 7) (by
the corollary from Lecture 22), the assumption that
11 =c(S, T) implies that / 1s a maximum flow.

(2) = (3): If there were an augmenting path, the
flow value could be increased, contradicting the
maximality of /.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L1233

Proof (continued)

(3) = (/): Suppose that / admits no augmenting paths.
Detine 5= {v € /" there exists a path in G, from s to v,

and let 7=V —S. Observe thats € § andt e T, and thus
(S, 7) 1s a cut. Consider any vertices u € Sand v € T.

path in G, S

%v)

T

We must have ¢, (u, v) =0, since 1t ¢, (u, v) > 0, then v € S,
notv € 7 as assumed Thus f(u, v) = c(u V), since ¢ (u, v)
=c(u, v) — f(u, v). Summing overallu € Sand v € T

yields 7(S, 7) = ¢(S, T), and since | /|

follows.
© 2001 by Charles E. Leiserson Introduction to Algorithms

= f(S, T), the theorem

Day 40 L23.4

Ford-Fulkerson max-flow
algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.5

Ford-Fulkerson max-flow
algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.6

Ford-Fulkerson max-flow
algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 123.7

Ford-Fulkerson max-flow
algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.8

Ford-Fulkerson max-flow
algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.9

Ford-Fulkerson max-flow
algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.10

Ford-Fulkerson max-flow
algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.11

Ford-Fulkerson max-flow
algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

2 billion 1terations on a graph with 4 vertices!

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.12

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s
implementations of Ford-Fulkerson augment along
a breadth-first augmenting path: a shortest path 1n
G, from s to 7 where each edge has weight 1. These
implementations would always run relatively fast.

Since a breadth-first augmenting path can be found
in O(E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses
on bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-
time bounds.)

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.13

Monotonicity lemma

Lemma. Let 6(v) = 6,(s, v) be the breadth-tirst
distance from s to v 1n G,. During the Edmonds-

Karp algorithm, o(v) 1 1ncreases monotonically.

Proof. Suppose that / 1s a flow on G, and augmentation
produces a new tlow f'. Leto'(v) =0,(s, v). We'll
show that 0'(v) = o(v) by induction on o(v). For the base
case, 0'(s) =o(s) = 0.

For the inductive case, consider a breadth-first path s —

- —> u—>vin G, We must have 0'(v) = 0o'(u) + 1, since
subpaths of shortest paths are shortest paths. Certamly,
(u, v) € £, and now consider two cases depending on
whether (u v) € E,.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 123.14

Case 1

Case: (u,v) € E,.
We have
o(v) <o(u)+1 (triangle inequality)
<o'(u)+ 1 (induction)
=0'(v) (breadth-first path),

and thus monotonicity of o(v) 1s established.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.15

Case 2

Case: (u,v) ¢ E,.
Since (u, v) € £, the augmenting path p that produced

/" from / must have included (v, u). Moreover, p 1s a
breadth-first path in G

p=S—>->Vo>U—> L.
Thus, we have

o(v) =o(u)—1 (breadth-first path)
<0o'(u)—1 (induction)
<9o'(v)—2 (breadth-first path)
<o'(v),

thereby establishing monotonicity for this case, too.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.16

Counting flow augmentations

Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) 1s O(V'E).

Proof. Let p be an augmenting path, and suppose that
we have ¢ (u, v) = ¢,(p) for edge (1, v) € p. Then, we
say that (u, v) 1s critical, and 1t disappears from the
residual graph after flow augmentation.

Example: cr(p) =2

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.17

Counting flow augmentations

Theorem. The number of flow augmentations

in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) 1s O(V'E).
Proof. Let p be an augmenting path, and suppose that
the residual capacity of edge (i, v) € p1s ¢,(u, v) = c/(p).
Then, we say (u, v) 1s critical, and 1t disappears from the
residual graph after flow augmentation.

Example:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.18

Counting flow augmentations
(continued)

The first time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1 (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example:

O Y

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.19

Counting flow augmentations
(continued)

The first time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1 (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) =5

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 123.20

Counting flow augmentations
(continued)

The first time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1 (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) =5

O Y

3(v) =6

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.21

Counting flow augmentations
(continued)

The first time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1 (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) 277

\\
\\
~—
@)

——_
_—
_—
_—

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 1.23.22

Counting flow augmentations
(continued)

The first time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1 (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) 277

O Y

5(v) > 6

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 1.23.23

Counting flow augmentations
(continued)

The first time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1 (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) 27

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 123.24

Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are
at most | /| — 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O())) times, because
0(v) Iincreases by at least 2 between occurrences. Since
the residual graph contains O(F) edges, the number of
flow augmentations 1s O(V' E).

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(V E?) time.

Proof. Breadth-first search runs in O(F) time, and all
other bookkeeping 1s O()) per augmentation.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 L23.25

Best to date

* The asymptotically fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan,
runs in O(V E logg ., 1, V) time.

» If we allow running times as a function of edge
weilghts, the fastest algorithm for maximum
flow, due to Goldberg and Rao, runs 1n time

O(min{V?3 EV?} . Elg (V¥E+2)-1g C),
where C 1s the maximum capacity of any edge
in the graph.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 40 123.26

