
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 23
Prof. Charles E. Leiserson

Introduction to Algorithms Day 40 L23.2© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Recall from Lecture 22
• Flow value: | f | = f (s, V).
• Cut: Any partition (S, T) of V such that s ∈ S

and t ∈ T.
• Lemma. | f | = f (S, T) for any cut (S, T).
• Corollary. | f | ≤ c(S, T) for any cut (S, T).
• Residual graph: The graph Gf = (V, Ef) with

strictly positive residual capacities cf (u, v) =
c(u, v) – f (u, v) > 0.

• Augmenting path: Any path from s to t in Gf .
• Residual capacity of an augmenting path:

)},({min)(
),(

vucpc fpvuf ∈
= .

Introduction to Algorithms Day 40 L23.3© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.
Proof.
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by
the corollary from Lecture 22), the assumption that
| f | = c(S, T) implies that f is a maximum flow.
(2) ⇒ (3): If there were an augmenting path, the
flow value could be increased, contradicting the
maximality of f.

Introduction to Algorithms Day 40 L23.4© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof (continued)
(3) ⇒ (1): Suppose that f admits no augmenting paths.
Define S = {v ∈ V : there exists a path in Gf from s to v},
and let T = V – S. Observe that s ∈ S and t ∈ T, and thus
(S, T) is a cut. Consider any vertices u ∈ S and v ∈ T.

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v ∈ S,
not v ∈ T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v)
= c(u, v) – f (u, v). Summing over all u ∈ S and v ∈ T
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem
follows.

ss uu vv
S Tpath in Gf

Introduction to Algorithms Day 40 L23.5© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

ss tt

109 109

109

1

109

G:

Introduction to Algorithms Day 40 L23.6© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Introduction to Algorithms Day 40 L23.7© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Introduction to Algorithms Day 40 L23.8© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Introduction to Algorithms Day 40 L23.9© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Introduction to Algorithms Day 40 L23.10© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Introduction to Algorithms Day 40 L23.11© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Introduction to Algorithms Day 40 L23.12© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

2:109 1:109

2:109

1:1

1:109

G:

2 billion iterations on a graph with 4 vertices!

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Introduction to Algorithms Day 40 L23.13© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Edmonds-Karp algorithm
Edmonds and Karp noticed that many people’s
implementations of Ford-Fulkerson augment along
a breadth-first augmenting path: a shortest path in
Gf from s to t where each edge has weight 1. These
implementations would always run relatively fast.
Since a breadth-first augmenting path can be found
in O(E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses
on bounding the number of flow augmentations.
(In independent work, Dinic also gave polynomial-
time bounds.)

Introduction to Algorithms Day 40 L23.14© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Monotonicity lemma
Lemma. Let δ(v) = δf (s, v) be the breadth-first
distance from s to v in Gf . During the Edmonds-
Karp algorithm, δ(v) increases monotonically.
Proof. Suppose that f is a flow on G, and augmentation
produces a new flow f ′. Let δ′(v) = δf ′(s, v). We’ll
show that δ′(v) ≥ δ(v) by induction on δ(v). For the base
case, δ′(s) = δ(s) = 0.
For the inductive case, consider a breadth-first path s →
L → u → v in Gf ′. We must have δ′(v) = δ′(u) + 1, since
subpaths of shortest paths are shortest paths. Certainly,
(u, v) ∈ Ef ′ , and now consider two cases depending on
whether (u, v) ∈ Ef .

Introduction to Algorithms Day 40 L23.15© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Case 1
Case: (u, v) ∈ Ef .

δ(v) ≤ δ(u) + 1 (triangle inequality)
≤ δ′(u) + 1 (induction)
= δ′(v) (breadth-first path),

and thus monotonicity of δ(v) is established.

We have

Introduction to Algorithms Day 40 L23.16© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Case 2
Case: (u, v) ∉ Ef .
Since (u, v) ∈ Ef ′ , the augmenting path p that produced
f ′ from f must have included (v, u). Moreover, p is a
breadth-first path in Gf :

p = s → L → v → u → L → t .
Thus, we have

δ(v) = δ(u) – 1 (breadth-first path)
≤ δ′(u) – 1 (induction)
≤ δ′(v) – 2 (breadth-first path)
< δ′(v) ,

thereby establishing monotonicity for this case, too.

Introduction to Algorithms Day 40 L23.17© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations
Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that
we have cf (u, v) = cf (p) for edge (u, v) ∈ p. Then, we
say that (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

ss

2

3

Gf :
4

2

7 2

1
tt

3
cf (p) = 2Example:

2

Introduction to Algorithms Day 40 L23.18© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations
Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that
the residual capacity of edge (u, v) ∈ p is cf (u, v) = cf (p).
Then, we say (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

ss
5

Gf ′:
2

4

5

3
tt

1
Example:

4 4

Introduction to Algorithms Day 40 L23.19© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

Introduction to Algorithms Day 40 L23.20© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

ss
uu

vv
tt

δ(u) = 5

δ(v) = 6

Example:

Introduction to Algorithms Day 40 L23.21© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

δ(u) = 5

δ(v) = 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

Introduction to Algorithms Day 40 L23.22© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

δ(u) ≥ 7

δ(v) ≥ 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

Introduction to Algorithms Day 40 L23.23© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

δ(u) ≥ 7

δ(v) ≥ 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

Introduction to Algorithms Day 40 L23.24© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

δ(u) ≥ 7

δ(v) ≥ 8

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

Introduction to Algorithms Day 40 L23.25© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are
at most |V| – 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O(V) times, because
δ(v) increases by at least 2 between occurrences. Since
the residual graph contains O(E) edges, the number of
flow augmentations is O(V E).

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(V E2) time.
Proof. Breadth-first search runs in O(E) time, and all
other bookkeeping is O(V) per augmentation.

Introduction to Algorithms Day 40 L23.26© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Best to date
• The asymptotically fastest algorithm to date for

maximum flow, due to King, Rao, and Tarjan,
runs in O(V E logE/(V lg V)V) time.

• If we allow running times as a function of edge
weights, the fastest algorithm for maximum
flow, due to Goldberg and Rao, runs in time

O(min{V 2/3, E1/2} ⋅ E lg (V 2/E + 2) ⋅ lg C),
where C is the maximum capacity of any edge
in the graph.

