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Recall from Lecture 22
• Flow value: | f | = f (s, V).
• Cut: Any partition (S, T) of V such that s ∈ S

and t ∈ T.
• Lemma. | f | = f (S, T) for any cut (S, T). 
• Corollary. | f | ≤ c(S, T) for any cut (S, T).
• Residual graph: The graph Gf = (V, Ef ) with 

strictly positive residual capacities cf (u, v) = 
c(u, v) – f (u, v) > 0.

• Augmenting path: Any path from s to t in Gf .
• Residual capacity of an augmenting path:
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Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.
Proof. 
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by 
the corollary from Lecture 22), the assumption that    
| f | = c(S, T) implies that f is a maximum flow.
(2) ⇒ (3): If there were an augmenting path, the 
flow value could be increased, contradicting the 
maximality of f.
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Proof (continued)
(3) ⇒ (1):  Suppose that f admits no augmenting paths.  
Define S = {v ∈ V : there exists a path in Gf from s to v}, 
and let T = V – S.  Observe that s ∈ S and t ∈ T, and thus   
(S, T) is a cut. Consider any vertices u ∈ S and v ∈ T.  

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v ∈ S, 
not v ∈ T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v) 
= c(u, v) – f (u, v).  Summing over all u ∈ S and v ∈ T
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem 
follows.

ss uu vv
S Tpath in Gf
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Ford-Fulkerson max-flow 
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:
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Ford-Fulkerson max-flow 
algorithm

Can be slow:
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Ford-Fulkerson max-flow 
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

ss tt

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)



Introduction to Algorithms Day 40      L23.9© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Ford-Fulkerson max-flow 
algorithm
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Ford-Fulkerson max-flow 
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Ford-Fulkerson max-flow 
algorithm

Can be slow:
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Ford-Fulkerson max-flow 
algorithm

Can be slow:
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2 billion iterations on a graph with 4 vertices!

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Edmonds-Karp algorithm
Edmonds and Karp noticed that many people’s 
implementations of Ford-Fulkerson augment along 
a breadth-first augmenting path: a shortest path in 
Gf from s to t where each edge has weight 1.  These 
implementations would always run relatively fast.
Since a breadth-first augmenting path can be found 
in O(E) time, their analysis, which provided the first 
polynomial-time bound on maximum flow, focuses 
on bounding the number of flow augmentations.
(In independent work, Dinic also gave polynomial-
time bounds.)
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Monotonicity lemma
Lemma. Let δ(v) = δf (s, v) be the breadth-first 
distance from s to v in Gf . During the Edmonds-
Karp algorithm, δ(v) increases monotonically.
Proof.  Suppose that f is a flow on G, and augmentation 
produces a new flow f ′.  Let δ′(v) = δf ′(s, v).  We’ll 
show that δ′(v) ≥ δ(v) by induction on δ(v).  For the base 
case, δ′(s) = δ(s) = 0.
For the inductive case, consider a breadth-first path s →
L → u → v in Gf ′.  We must have δ′(v) = δ′(u) + 1, since 
subpaths of shortest paths are shortest paths.  Certainly, 
(u, v) ∈ Ef ′ , and now consider two cases depending on 
whether (u, v) ∈ Ef .
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Case 1
Case: (u, v) ∈ Ef .

δ(v) ≤ δ(u) + 1 (triangle inequality)
≤ δ′(u) + 1 (induction)
= δ′(v) (breadth-first path),

and thus monotonicity of δ(v) is established.

We have
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Case 2
Case: (u, v) ∉ Ef .
Since  (u, v) ∈ Ef ′ , the augmenting path p that produced 
f ′ from f must have included (v, u).  Moreover, p is a 
breadth-first path in Gf :

p = s → L → v → u → L → t .
Thus, we have

δ(v) = δ(u) – 1 (breadth-first path)
≤ δ′(u) – 1 (induction)
≤ δ′(v) – 2 (breadth-first path)
< δ′(v) ,

thereby establishing monotonicity for this case, too.
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Counting flow augmentations
Theorem. The number of flow augmentations 
in the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v) ∈ p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation.
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Counting flow augmentations
Theorem. The number of flow augmentations 
in the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that 
the residual capacity of edge (u, v) ∈ p is cf (u, v) = cf (p).  
Then, we say (u, v) is critical, and it disappears from the 
residual graph after flow augmentation.
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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δ(v) = 6
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).



Introduction to Algorithms Day 40      L23.22© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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δ(u) ≥ 7

δ(v) ≥ 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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δ(u) ≥ 7

δ(v) ≥ 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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δ(u) ≥ 7

δ(v) ≥ 8

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are 
at most |V| – 1 until the vertex becomes unreachable.  
Thus, (u, v) occurs as a critical edge O(V) times, because 
δ(v) increases by at least 2 between occurrences.  Since 
the residual graph contains O(E) edges, the number of 
flow augmentations is O(V E).

Corollary. The Edmonds-Karp maximum-flow 
algorithm runs in O(V E2) time.
Proof.  Breadth-first search runs in O(E) time, and all 
other bookkeeping is O(V) per augmentation.
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Best to date
• The asymptotically fastest algorithm to date for 

maximum flow, due to King, Rao, and Tarjan, 
runs in O(V E logE/(V lg V)V) time.

• If we allow running times as a function of edge 
weights, the fastest algorithm for maximum 
flow, due to Goldberg and Rao, runs in time

O(min{V 2/3, E1/2} ⋅ E lg (V 2/E + 2) ⋅ lg C),
where C is the maximum capacity of any edge 
in the graph.


