Introduction to Algorithms **6.046J/18.401J/SMA5503**

Lecture 13 **Prof. Erik Demaine**

Fixed-universe successor problem

Goal: Maintain a dynamic subset *S* of size *ⁿ* of the universe $U = \{0, 1, ..., u-1\}$ of size u subject to these operations:

- $$
- **DELETE**(*^x* [∈] *S*): Remove *^x* from *S*.
- **SUCCESSOR**(*^x* [∈] *U*): Find the next element in *S* larger than any element *^x* of the universe *U*.
- **PREDECESSOR**(*^x* [∈] *U*): Find the previous element in *S* smaller than *^x*.

Solutions to fixed-universe successor problem

Goal: Maintain a dynamic subset *S* of size *ⁿ* of the universe $U = \{0, 1, ..., u-1\}$ of size u subject to INSERT, DELETE, SUCCESSOR, PREDECESSOR.

- Balanced search trees can implement operations in O(lg *n*) time, without fixed-universe assumption.
- In 1975, Peter van Emde Boas solved this problem in O(lg lg *u*) time per operation.
	- If *u* is only polynomial in *n*, that is, $u = O(n^c)$, then O(lg lg *n*) time per operation- exponential speedup!

O(lg lg *u***)?!**

Where could a bound of O(lg lg *u*) arise?

• Binary search over O(lg *u*) things

• $T(u) = T(\sqrt{u}) + O(1)$ $T'(lg u) = T'(lg u)/2 + O(1)$ $= O(\lg \lg u)$

(1) Starting point: Bit vector

Bit vector ν stores, for each $x \in U$,

 1 if $x \in S$ $v_x = \begin{cases} 0 & \text{if } x \notin S \end{cases}$

Example: $u = 16$; $n = 4$; $S = \{1, 9, 10, 15\}.$ $\rm 0$ 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Insert/Delete run in O(1) time. Successor/Predecessor run in O(*u*) worst-case time.

Carve universe of size *u* into \sqrt{u} widgets $W_0, W_1, ..., W_{\sqrt{u-1}}$ each of size \sqrt{u} .

Example: $u = 16$, $\sqrt{u} = 4$.

Carve universe of size *u* into \sqrt{u} widgets $W_0, W_1, ..., W_{\sqrt{u-1}}$ each of size \sqrt{u} .

*W*₀ represents 0, 1, …, $\sqrt{u} - 1 \in U;$ *W*₁ represents \sqrt{u} , \sqrt{u} +1, …, 2 \sqrt{u} −1 ∈ *U*; *W*_{*i*} represents *i* \sqrt{u} , *i* \sqrt{u} +1, …, (*i*+1) \sqrt{u} −1∈ *U*; : : $W_{\sqrt{u}-1}$ represents $u - \sqrt{u}$, $u - \sqrt{u} + 1$, ..., $u - 1 \in U$.

Define $high(x) \ge 0$ and $low(x) \ge 0$ so that $x = high(x) \sqrt{u} + low(x)$. That is, if we write $x \in U$ in binary, $high(x)$ is the high-order half of the bits, and $low(x)$ is the low-order half of the bits. For *x* ∈ *U*, *high*(*x*) is index of widget containing *^x* and $low(x)$ is the index of x within that widget. *x* = 9 $high(x)$ $= 2$ $low(x)$ $= 1$ 1 $1 0 0 1$

INSERT(*x*)

insert *x* into widget $W_{high(x)}$ at position $low(x)$. mark $W_{high(x)}$ as nonempty.

Running time $T(n) = O(1)$.

$SUCCESOR(x)$

look for successor of *x* within widget $W_{high(x)}$ starting after position *low*(*x*). **if** successor found**then return** it **else** find smallest *i* >*high*(*x*) $\mathrm{O}(\sqrt{u})$ $\mathrm{O}(\sqrt{u})$

for which W_i is nonempty. **return** smallest element in *Wi*

 $\mathrm{O}(\sqrt{u} \,)$

Running time $T(u) = O(\sqrt{u})$.

Revelation

$SUCESSOR(x)$

look for successor of *x* within widget $W_{high(x)}$ and *recursive* starting after position *low*(*x*). **if** successor found**then return** it **else** find smallest *i* >*high*(*x*) for which W_i is nonempty. *successor recursive successor recursive*

return smallest element in *Wi*

successor

(3) Recursion

Represent universe by *widget* of size *^u*. Recursively split each widget *W* of size |*W*| into *W* $sub[W][\sqrt{|W|} - 1]$ each of size $\sqrt{|W|}$. *subwidgets sub*[*W*][0], *sub*[*W*][1], …, Store a *summary widget summary*[*W*] of size *W* representing which subwidgets are nonempty.

(3) Recursion

Define $high(x) \ge 0$ and $low(x) \ge 0$ so that $x = high(x)$ $\sqrt{|W|}$ + $low(x)$.

 I ^{NSERT(*x*, *W*)} **if** *sub*[*W*][*high*(*x*)] is empty **then** INSERT(*high*(*x*), *summary*[*W*]) I NSERT(*low*(*x*), *sub*[*W*][*high*(*x*)])

Running time $T(u) = 2 T(\sqrt{u}) + O(1)$ $T'(lg u) = 2 T'(lg u) / 2 + O(1)$ $= O(\lg u)$.

(3) Recursion

SUCCESSOR(*^x*, *W*) $j \leftarrow$ SUCCESSOR(*low*(*x*), *sub*[*W*][*high*(*x*)]) **if** *j* <[∞] **then return** $high(x)$ $\sqrt{|W|} + j$ $\mathbf{else} \ i \leftarrow \mathbf{SUCCESSOR}(high(x), summary[W])$ $j \leftarrow$ SUCCESSOR $(-\infty, sub[W][i])$ r eturn $i\surd|W|$ $+j$ Running time $T(u) = 3 T(v/u) + O(1)$ $T'(lg u) = 3 T'(lg u)/2 + O(1)$ $= O((\lg u)^{\lg 3})$. $\left\{\right. T(\sqrt{u})\right\}$ $T(\sqrt{u})$ $T(\sqrt{u})$

Improvements

Need to reduce INSERT and SUCCESSORdown to 1 recursive call each.

> • 1 call: $T(u) = 1$ $T(\sqrt{u}) + O(1)$ $= O(\lg \lg n)$

- 2 calls: $T(u) = 2 T(\sqrt{u}) + O(1)$ $= O(\lg n)$
- 3 calls: $T(u) = 3 T(\sqrt{u}) + O(1)$ $= O((\lg u)^{\lg 3})$

We're closer to this goal than it may seem!

Recursive calls in successor

If *x* has a successor within *sub*[*W*][*high*(*x*)], then there is only 1 recursive call to SUCCESSOR. Otherwise, there are 3 recursive calls:

- SUCCESSOR(*low*(*x*), *sub*[*W*][*high*(*x*)]) discovers that *sub*[*W*][*high*(*x*)] hasn't successor.
- SUCCESSOR(*high*(*x*), *summary*[*W*]) finds next nonempty subwidget *sub*[*W*][*i*].
- SUCCESSOR $(-\infty, sub[W][i])$ finds smallest element in subwidget *sub*[*W*][*i*].

Reducing recursive calls in successor

If *x* has no successor within *sub*[*W*][*high*(*x*)], there are 3 recursive calls:

- SUCCESSOR(*low*(*x*), *sub*[*W*][*high*(*x*)]) discovers that *sub*[*W*][*high*(*x*)] hasn't successor.
	- Could be determined using the *maximum value* in the subwidget *sub*[*W*][*high*(*x*)].
- SUCCESSOR(*high*(*x*), *summary*[*W*]) finds next nonempty subwidget *sub*[*W*][*i*].
- SUCCESSOR $(-\infty, sub[W][i])$ finds *minimum element* in subwidget *sub*[*W*][*i*].

(4) Improved successor

 $INSENT(x, W)$ **if** *sub*[*W*][*high*(*x*)] is empty **then** INSERT(*high*(*x*), *summary*[*W*]) I NSERT(*low*(*x*), *sub*[*W*][*high*(*x*)]) $\mathbf{if}~x < min[$ $W]~\mathbf{then}~min[$ $W] \leftarrow x$ $\mathbf{if} \ x > max[W] \ \mathbf{then} \ max[W] \leftarrow x$ new (augmentation)

Running time
$$
T(u) = 2 T(\sqrt{u}) + O(1)
$$

\n $T'(lg u) = 2 T'(lg u) / 2) + O(1)$
\n $= O(lg u).$

(4) Improved successor

 $Successor(x, W)$ **if** $low(x) < max[sub[W][high(x)]]$ $\mathbf{then} \; j \leftarrow \text{SUCCESSOR}(low(x), sub[W][high(x)]) \; \} \; T(\sqrt{u})$ \bf{return} $high(x)$ $\sqrt{|W|} + j$ $\mathbf{else} \ i \leftarrow \text{SUCCESSOR}(high(x), \textit{summary}[W])$ $j \leftarrow min[sub[W][i]]$ ${\bf r}$ eturn $i\surd|W|$ $+j$ $\left\{\right. T(\sqrt{u})\right\}$

Running time $T(u) = 1$ $T(\sqrt{u}) + O(1)$ $= O(\lg \lg u)$.

Recursive calls in insert

If *sub*[*W*][*high*(*x*)] is already in *summary*[*W*], then there is only 1 recursive call to INSERT. Otherwise, there are 2 recursive calls:

- INSERT(*high*(*x*), *summary*[*W*])
- INSERT(*low*(*x*), *sub*[*W*][*high*(*x*)])

Idea: We know that *sub*[*W*][$high(x)$]) is empty. Avoid second recursive call by specially storing a widget containing just 1 element. Specifically, do not store *min* recursively.

(5) Improved insert

$INSENT(x, W)$ **if** $x \le min[W]$ then exchange $x \leftrightarrow min[W]$ **if** *sub*[*W*][*high*(*x*)] is nonempty, that is, $min[sub[W][high(x)] \neq NIL$ **then** I NSERT(*low*(*x*), *sub*[*W*][*high*(*x*)]) \mathbf{else} $min[sub[W][high(x)]] \leftarrow low(x)$ I NSERT($high(x)$, *summary* $[W]$) **if** $x > max[W]$ **then** $max[W] \leftarrow x$

Running time $T(u) = 1$ $T(\sqrt{u}) + O(1)$ $= O(\lg \lg u)$.

(5) Improved insert

Deletion

 D ELETE (x, W) **if** $min[W] = \text{NIL or } x \leq min[W]$ **then return** $\mathbf{if} \ \ x = min[W]$ **then** *i* ← *min*[*summary*[W]] $x \leftarrow i \sqrt{|W| + min[sub[W][i]]}$ $min[W] \leftarrow x$ D ELETE(*low*(*x*), *sub*[*W*][*high*(*x*)]) **if** sub[W][high(x)] is now empty, that is, $min[sub[W][high(x)] = NIL]$ **then** DELETE(*high*(*x*), *summary*[*W*]) *(in this case, the first recursive call was cheap)*