
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 13
Prof. Erik Demaine

Introduction to Algorithms Day 23 L12.2© 2001 by Erik D. Demaine

Fixed-universe
successor problem

Goal: Maintain a dynamic subset S of size n
of the universe U = {0, 1, …, u – 1} of size u
subject to these operations:

• INSERT(x ∈ U \ S): Add x to S.
• DELETE(x ∈ S): Remove x from S.
• SUCCESSOR(x ∈ U): Find the next element in S

larger than any element x of the universe U.
• PREDECESSOR(x ∈ U): Find the previous

element in S smaller than x.

Introduction to Algorithms Day 23 L12.3© 2001 by Erik D. Demaine

Solutions to fixed-universe
successor problem

Goal: Maintain a dynamic subset S of size n
of the universe U = {0, 1, …, u – 1} of size u
subject to INSERT, DELETE, SUCCESSOR, PREDECESSOR.
• Balanced search trees can implement operations in
O(lg n) time, without fixed-universe assumption.

• In 1975, Peter van Emde Boas solved this problem
in O(lg lg u) time per operation.

• If u is only polynomial in n, that is, u = O(nc),
then O(lg lg n) time per operation--
exponential speedup!

Introduction to Algorithms Day 23 L12.4© 2001 by Erik D. Demaine

O(lg lg u)?!

Where could a bound of O(lg lg u) arise?
• Binary search over O(lg u) things

• T(u) = T() + O(1)
T’(lg u) = T’((lg u)/2) + O(1)

= O(lg lg u)

u

Introduction to Algorithms Day 23 L12.5© 2001 by Erik D. Demaine

(1) Starting point: Bit vector

Bit vector v stores, for each x ∈ U,
1 if x ∈ S
0 if x ∉ Svx =

Insert/Delete run in O(1) time.
Successor/Predecessor run in O(u) worst-case time.

Example: u = 16; n = 4; S = {1, 9, 10, 15}.

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Introduction to Algorithms Day 23 L12.6© 2001 by Erik D. Demaine

(2) Split universe into widgets

Example: u = 16, 4=u .

0 1 0 0
0 1 2 3

0 0 0 0
4 5 6 7

10 1 0
8 9 10 11

0 0 0 1
12 13 14 15

W0 W1 W2 W3

Carve universe of size u into widgetsu
W0, W1, …, W 1−u each of size u .

Introduction to Algorithms Day 23 L12.7© 2001 by Erik D. Demaine

(2) Split universe into widgets

W0 represents 0, 1, …, 1−u ∈ U;
W1 represents 12 −u ∈ U;u , 1+u , …,

Wi represents 1)1(−+ ui ∈ U;ui , 1+ui , …,
:

:
W represents u – 1 ∈ U.uu − , 1+− uu , …,1−u

Carve universe of size u into widgetsu
W0, W1, …, W 1−u each of size u .

Introduction to Algorithms Day 23 L12.8© 2001 by Erik D. Demaine

(2) Split universe into widgets
Define high(x) ≥ 0 and low(x) ≥ 0
so that x = high(x)
That is, if we write x ∈ U in binary,
high(x) is the high-order half of the bits,
and low(x) is the low-order half of the bits.
For x ∈ U, high(x) is index of widget containing x
and low(x) is the index of x within that widget.

u + low(x).

x = 9

high(x)
= 2

low(x)
= 1

1 0 0 1

0 1 0 0
0 1 2 3

0 0 0 0
4 5 6 7

0 1 1 0
8 9 10 11

0 0 0 1
12 13 14 15

W0 W1 W2 W3

Introduction to Algorithms Day 23 L12.9© 2001 by Erik D. Demaine

(2) Split universe into widgets
INSERT(x)

insert x into widget Whigh(x) at position low(x).
mark Whigh(x) as nonempty.

Running time T(n) = O(1).

Introduction to Algorithms Day 23 L12.10© 2001 by Erik D. Demaine

(2) Split universe into widgets
SUCCESSOR(x)

look for successor of x within widget Whigh(x)
starting after position low(x).

if successor found
then return it
else find smallest i > high(x)

for which Wi is nonempty.
return smallest element in Wi

O()u

O()u

O()u

Running time T(u) = O().u

Introduction to Algorithms Day 23 L12.11© 2001 by Erik D. Demaine

Revelation
SUCCESSOR(x)

look for successor of x within widget Whigh(x)
starting after position low(x).

if successor found
then return it
else find smallest i > high(x)

for which Wi is nonempty.
return smallest element in Wi

recursive
successor

recursive
successor
recursive
successor

Introduction to Algorithms Day 23 L12.12© 2001 by Erik D. Demaine

(3) Recursion
Represent universe by widget of size u.
Recursively split each widget W of size |W|
into
sub[W][

W subwidgets sub[W][0], sub[W][1], …,

W

summary[W]

W

sub[W][0]

W

sub[W][1]

W

sub[W][]

W

… 1−W

Store a summary widget summary[W] of size
representing which subwidgets are nonempty.

W
1−W .] each of size W

Introduction to Algorithms Day 23 L12.13© 2001 by Erik D. Demaine

(3) Recursion

INSERT(x, W)
if sub[W][high(x)] is empty
then INSERT(high(x), summary[W])

INSERT(low(x), sub[W][high(x)])

Running time T(u) = 2 T() + O(1)
T’(lg u) = 2 T’((lg u) / 2) + O(1)

= O(lg u) .

u

Define high(x) ≥ 0 and low(x) ≥ 0
so that x = high(x) W + low(x).

Introduction to Algorithms Day 23 L12.14© 2001 by Erik D. Demaine

(3) Recursion
SUCCESSOR(x, W)

j ← SUCCESSOR(low(x), sub[W][high(x)])
if j < ∞
then return high(x)
else i ← SUCCESSOR(high(x), summary[W])

j ← SUCCESSOR(– ∞, sub[W][i])
return i

Running time T(u) = 3 T() + O(1)
T’(lg u) = 3 T’((lg u) / 2) + O(1)

= O((lg u) lg 3) .

u

W + j

W + j

T()u

T()u
T()u

Introduction to Algorithms Day 23 L12.15© 2001 by Erik D. Demaine

Improvements

• 2 calls: T(u) = 2 T() + O(1)
= O(lg n)

u

• 3 calls: T(u) = 3 T() + O(1)
= O((lg u) lg 3)

u

• 1 call: T(u) = 1 T() + O(1)
= O(lg lg n)

u

Need to reduce INSERT and SUCCESSOR
down to 1 recursive call each.

We’re closer to this goal than it may seem!

Introduction to Algorithms Day 23 L12.16© 2001 by Erik D. Demaine

Recursive calls in successor
If x has a successor within sub[W][high(x)],
then there is only 1 recursive call to SUCCESSOR.
Otherwise, there are 3 recursive calls:

• SUCCESSOR(low(x), sub[W][high(x)])
discovers that sub[W][high(x)] hasn’t successor.

• SUCCESSOR(high(x), summary[W])
finds next nonempty subwidget sub[W][i].

• SUCCESSOR(– ∞, sub[W][i])
finds smallest element in subwidget sub[W][i].

Introduction to Algorithms Day 23 L12.17© 2001 by Erik D. Demaine

Reducing recursive calls
in successor

If x has no successor within sub[W][high(x)],
there are 3 recursive calls:

• SUCCESSOR(low(x), sub[W][high(x)])
discovers that sub[W][high(x)] hasn’t successor.

• Could be determined using the maximum
value in the subwidget sub[W][high(x)].

• SUCCESSOR(high(x), summary[W])
finds next nonempty subwidget sub[W][i].

• SUCCESSOR(– ∞, sub[W][i])
finds minimum element in subwidget sub[W][i].

Introduction to Algorithms Day 23 L12.18© 2001 by Erik D. Demaine

(4) Improved successor
INSERT(x, W)

if sub[W][high(x)] is empty
then INSERT(high(x), summary[W])

INSERT(low(x), sub[W][high(x)])
if x < min[W] then min[W] ← x
if x > max[W] then max[W] ← x

Running time T(u) = 2 T() + O(1)
T’(lg u) = 2 T’((lg u) / 2) + O(1)

= O(lg u) .

u

new (augmentation)

Introduction to Algorithms Day 23 L12.19© 2001 by Erik D. Demaine

(4) Improved successor
SUCCESSOR(x, W)

if low(x) < max[sub[W][high(x)]]
then j ← SUCCESSOR(low(x), sub[W][high(x)])

return high(x)
else i ← SUCCESSOR(high(x), summary[W])

j ← min[sub[W][i]]
return i

Running time T(u) = 1 T() + O(1)
= O(lg lg u) .

u

T()u

T()u
W + j

W + j

Introduction to Algorithms Day 23 L12.20© 2001 by Erik D. Demaine

Recursive calls in insert
If sub[W][high(x)] is already in summary[W],
then there is only 1 recursive call to INSERT.
Otherwise, there are 2 recursive calls:

• INSERT(high(x), summary[W])
• INSERT(low(x), sub[W][high(x)])

Idea:We know that sub[W][high(x)]) is empty.
Avoid second recursive call by specially

storing a widget containing just 1 element.
Specifically, do not store min recursively.

Introduction to Algorithms Day 23 L12.21© 2001 by Erik D. Demaine

(5) Improved insert
INSERT(x, W)

if x < min[W] then exchange x ↔ min[W]
if sub[W][high(x)] is nonempty, that is,

min[sub[W][high(x)] ≠ NIL

then INSERT(low(x), sub[W][high(x)])
else min[sub[W][high(x)]] ← low(x)

INSERT(high(x), summary[W])
if x > max[W] then max[W] ← x

Running time T(u) = 1 T() + O(1)
= O(lg lg u) .

u

Introduction to Algorithms Day 23 L12.22© 2001 by Erik D. Demaine

(5) Improved insert
SUCCESSOR(x, W)

if x < min[W] then return min[W]
if low(x) < max[sub[W][high(x)]]
then j ← SUCCESSOR(low(x), sub[W][high(x)])

return high(x)
else i ← SUCCESSOR(high(x), summary[W])

j ← min[sub[W][i]]
return i

Running time T(u) = 1 T() + O(1)
= O(lg lg u) .

u

T()u

T()uW + j

W + j

new

Introduction to Algorithms Day 23 L12.23© 2001 by Erik D. Demaine

Deletion
DELETE(x, W)

if min[W] = NIL or x < min[W] then return
if x = min[W]
then i ← min[summary[W]]

x ← i
min[W] ← x

DELETE(low(x), sub[W][high(x)])
if sub[W][high(x)] is now empty, that is,

min[sub[W][high(x)] = NIL

then DELETE(high(x), summary[W])
(in this case, the first recursive call was cheap)

+ min[sub[W][i]]W

