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Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

uu vv

…

< 0

Bellman-Ford algorithm: Finds all shortest-path 
lengths from a source s ∈ V to all v ∈ V or 
determines that a negative-weight cycle exists.
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Bellman-Ford algorithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ←∞

for i ← 1 to |V| – 1
do for each edge (u, v) ∈ E

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

for each edge (u, v) ∈ E
do if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

initialization

At the end, d[v] = δ(s, v).  Time = O(VE).

relaxation 
step



Introduction to Algorithms Day 31      L18.4© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Bellman-Ford
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Correctness
Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford 
algorithm executes, d[v] = δ(s, v) for all v ∈ V. 
Proof.  Let v ∈ V be any vertex, and consider a shortest 
path p from s to v with the minimum number of edges.

v1
v1

v2
v2

v3
v3 vk

vk
v0
v0

…
s

v

p:

Since p is a shortest path, we have
δ(s, vi) = δ(s, vi–1) + w(vi–1, vi) .
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Correctness (continued)

v1
v1

v2
v2

v3
v3 vk

vk
v0
v0

…
s

v

p:

Initially, d[v0] = 0 = δ(s, v0), and d[s] is unchanged by 
subsequent relaxations (because of the lemma from 
Lecture 17 that d[v] ≥ δ(s, v)).
• After 1 pass through E, we have d[v1] = δ(s, v1).
• After 2 passes through E, we have d[v2] = δ(s, v2).
M

• After k passes through E, we have d[vk] = δ(s, vk).
Since G contains no negative-weight cycles, p is simple.  
Longest simple path has ≤ |V| – 1 edges.
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Detection of negative-weight 
cycles

Corollary. If a value d[v] fails to converge after 
|V| – 1 passes, there exists a negative-weight 
cycle in G reachable from s.
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DAG shortest paths
If the graph is a directed acyclic graph (DAG), we first 
topologically sort the vertices.

Walk through the vertices u ∈ V in this order, relaxing 
the edges in Adj[u], thereby obtaining the shortest paths 
from s in a total of O(V + E) time.

• Determine f : V → {1, 2, …, |V|} such that (u, v) ∈ E
⇒ f (u) < f (v).

• O(V + E) time using depth-first search.

33 55 66
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22s

77

99

8811
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Linear programming

Let A be an m×n matrix, b be an m-vector, and c
be an n-vector.  Find an n-vector x that maximizes 
cTx subject to Ax ≤ b, or determine that no such 
solution exists.

. ≤ .maximizingm

n

A x ≤ b cT x
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Linear-programming 
algorithms

Algorithms for the general problem
• Simplex methods — practical, but worst-case 

exponential time.
• Ellipsoid algorithm — polynomial time, but 

slow in practice.
• Interior-point methods — polynomial time and 

competes with simplex.
Feasibility problem: No optimization criterion.  
Just find x such that Ax ≤ b.
• In general, just as hard as ordinary LP.



Introduction to Algorithms Day 31      L18.19© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Solving a system of difference 
constraints

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s. 
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

Solution:
x1 = 3
x2 = 0
x3 = 2

Constraint graph:

vj
vjvi

vixj – xi ≤ wij
wij

(The “A”
matrix has 
dimensions
|E | × |V |.)
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Unsatisfiable constraints
Theorem. If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is 
v1 → v2 →L→ vk → v1.  Then, we have

x2 – x1 ≤ w12
x3 – x2 ≤ w23

M
xk – xk–1 ≤ wk–1, k
x1 – xk ≤ wk1

Therefore, no 
values for the xi
can satisfy the 
constraints.

0 ≤ weight of cycle
< 0
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Satisfying the constraints
Theorem. Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable.
Proof. Add a new vertex s to V with a 0-weight edge 
to each vertex vi ∈ V.

v1
v1

v4
v4

v7
v7

v9
v9

v3
v3

s

0 Note:
No negative-weight 
cycles introduced ⇒
shortest paths exist.
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The triangle inequality gives us δ(s,vj) ≤ δ(s, vi) + wij.  
Since xi = δ(s, vi) and xj = δ(s, vj), the constraint xj – xi
≤ wij is satisfied.

Proof (continued)
Claim: The assignment xi = δ(s, vi) solves the constraints.

ss

vj
vj

vi
vi

δ(s, vi)

δ(s, vj) wij

Consider any constraint xj – xi ≤ wij, and consider the 
shortest paths from s to vj and vi:
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Bellman-Ford and linear 
programming

Corollary. The Bellman-Ford algorithm can 
solve a system of m difference constraints on n
variables in O(mn) time.  
Single-source shortest paths is a simple LP 
problem.
In fact, Bellman-Ford maximizes x1 + x2 + L + xn
subject to the constraints xj – xi ≤ wij and xi ≤ 0
(exercise).
Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).
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Application to VLSI layout 
compaction

Integrated
-circuit 
features:

Problem: Compact (in one dimension) the 
space between the features of a VLSI layout 
without bringing any features too close together.

minimum separation λ
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VLSI layout compaction

11

x1 x2

2

d1

Constraint: x2 – x1 ≥ d1 + λ
Bellman-Ford minimizes maxi{xi} – mini{xi}, 
which compacts the layout in the x-dimension.


