Introduction to Algorithms **6.046J/18.401J/SMA5503**

Lecture 18 **Prof. Erik Demaine**

Negative-weight cycles

Recall: If a graph $G = (V, E)$ contains a negativeweight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a *source* $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

 $d[s] \leftarrow 0$ for each $v \in V - \{s\}$ **do** *d*[*v*] [←] [∞] **for** $i \leftarrow 1$ **to** $|V| - 1$ **do for** each edge $(u, v) \in E$ **do if** $d[v] > d[u] + w(u, v)$ $\mathbf{then} \ d[\nu] \leftarrow d[\nu] + w(u, \nu)$ initialization *relaxation step*

for each edge $(u, v) \in E$ **do if** $d[v] > d[u] + w(u, v)$ **then** report that a negative-weight cycle exists

At the end, $d[v] = \delta(s, v)$. Time = $O(VE)$.

 $2 -2$ $2 \quad 1$ $\overline{2}$ ∞ ∞ $0-\!1$ ∞∞∞*ABCDE* $\pmb{0}$ ∞∞∞∞∞∞ $0-1$ 4 ∞∞ $\overline{2}$ ∞ 1

Note: Values decrease monotonically.

Correctness

Theorem. If *G* = (*V*, *E*) contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.* Let $v \in V$ be any vertex, and consider a shortest path *p* from *^s* to *^v* with the minimum number of edges.

Since *p* is a shortest path, we have $\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i)$.

© 2001 by Charles E. Leiserson *Introduction to Algorithms* Day 31 L18.13

v

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and $d[s]$ is unchanged by subsequent relaxations (because of the lemma from Lecture 17 that $d[v] \ge \delta(s, v)$).

- After 1 pass through *E*, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through *E*, we have $d[v_2] = \delta(s, v_2)$. $\ddot{\cdot}$
- After *k* passes through *E*, we have $d[v_k] = \delta(s, v_k)$. Since *G* contains no negative-weight cycles, *p* is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value *d*[*v*] fails to converge after $|V|$ – 1 passes, there exists a negative-weight cycle in *G* reachable from *^s*.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- •• Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ \Rightarrow $f(u) \le f(v)$.
- $O(V + E)$ time using depth-first search.

© 2001 by Charles E. Leiserson *Introduction to Algorithms* Day 31 L18.16 Walk through the vertices $u \in V$ in this order, relaxing the edges in *Adj*[*u*], thereby obtaining the shortest paths from *s* in a total of $O(V + E)$ time.

Linear programming

Let *A* be an *m*×*ⁿ* matrix, *b* be an *m*-vector, and *^c* be an *n*-vector. Find an *n*-vector *x* that maximizes c^Tx subject to $Ax \leq b$, or determine that no such solution exists.

Linear-programming algorithms

- **Algorithms for the general problem**
- Simplex methods practical, but worst-case exponential time.
- Ellipsoid algorithm polynomial time, but slow in practice.
- Interior-point methods polynomial time and competes with simplex.

Feasibility problem: No optimization criterion. Just find *^x* such that *Ax* ≤ *b*.

• In general, just as hard as ordinary LP.

Solving a system of difference constraints

Linear programming where each row of *A* contains exactly one 1, one -1 , and the rest 0's.

Example:

$$
\begin{array}{c}\n x_1 - x_2 \le 3 \\
x_2 - x_3 \le -2 \\
x_1 - x_3 \le 2\n\end{array}\n\bigg\}\n\begin{array}{c}\n x_i = 3 \\
x_j - x_i \le w_{ij} \\
x_3 = 2\n\end{array}
$$

Constraint graph: $x_i - x_i \leq w_{ii}$ \longrightarrow $\left(v_i\right) \longrightarrow \left(v_i\right)$ *wij*

(The "*A*" matrix has dimensions $|E| \times |V|$.)

Solution:

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle is $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$. Then, we have

Therefore, no values for the *xi*can satisfy the constraints.

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable.

Proof. Add a new vertex *^s* to *V* with a 0-weight edge to each vertex $v_i \in V$.

Note:

No negative-weight cycles introduced [⇒] shortest paths exist.

Proof (continued)

Claim: The assignment $x_i = \delta(s, v_i)$ solves the constraints. Consider any constraint $x_j - x_i \le w_{ij}$, and consider the shortest paths from *s* to v_j and v_j :

The triangle inequality gives us $\delta(s, v_j) \leq \delta(s, v_i) + w_{ij}$.
Since $x_i = \delta(s, v_j)$ and $x_j = \delta(s, v_j)$, the constraint $x_j - x_i$ $\leq w_{ij}$ is satisfied.

Bellman-Ford and linear programming

Corollary. The Bellman-Ford algorithm can solve a system of *^m* difference constraints on *ⁿ* variables in *O*(*mn*) time.

Single-source shortest paths is a simple LP problem.

In fact, Bellman-Ford maximizes $x_1 + x_2 + \cdots + x_n$ subject to the constraints $x_j - x_i \le w_{ij}$ and $x_i \le 0$ (exercise).

Bellman-Ford also minimizes $\max_i \{x_i\} - \min_i \{x_i\}$ (exercise).

minimum separation λ

Problem: Compact (in one dimension) the space between the features of a VLSI layout without bringing any features too close together.

VLSI layout compaction

Constraint: $x_2 - x_1 \ge d_1 + \lambda$

Bellman-Ford minimizes $\max_i \{x_i\} - \min_i \{x_i\},$ which compacts the layout in the *x*-dimension.