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Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

W0

Bellman-Ford algorithm: Finds all shortest-path
lengths from a source s € Vtoall v € JVor
determines that a negative-weight cycle exists.
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Bellman-Ford algorithm

d[s] < 0 \
for eachv e V' {s! ~ 1nitialization
do d|v]| <«

fori< 1to|V| -1
do for each edge (1, v) € E
do if d[v] > d[u] + w(u, v) relaxation
then d[v] < d[u] +w(u,v) | step
for each edge (1, v) € E
do if d[v] > d[u] + w(u, v)
then report that a negative-weight cycle exists

At the end, d[v] = o(s, v). Time = O(VE).
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford
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Note: Values decrease

monotonically.
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Correctness

Theorem. If G = (), £) contains no negative-
weight cycles, then after the Bellman-Ford

algorithm executes, d[v] = o(s, v) forall v € V.

Proof. Letv € J be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.
N

p:.../@

Since p 1s a shortest path, we have
0(s, v;) = 0(s, viy) T w(vy, v)) .
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Correctness (continued)
§

p:.../@

Initially, d[v,] = 0 = o(s, v,), and d[s] 1s unchanged by
subsequent relaxations (because of the lemma from
Lecture 17 that d[v] = o(s, v)).

 After | pass through £, we have d|v,| = o(s, v,).
* After 2 passes through £, we have d[v,] = 6(s, v,).

. After k passes through £, we have d[v,| = o(s, v,).

Since G contains no negative-weight cycles, p 1s simple.
Longest simple path has < | V| — | edges.
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Detection of negative-weight
cycles

Corollary. If a value d[v] fails to converge after
| V| — 1 passes, there exists a negative-weight
cycle in G reachable from s.
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DAG shortest paths

If the graph 1s a directed acyclic graph (DAG), we first
topologically sort the vertices.

e Determine /: V— {1, 2, ...,

= f(u) <f(v).
* O(V + E) time using depth-first search.

V|} such that (i, v) € E

Walk through the vertices # € J 1n this order, relaxing
the edges 1n Adj[u], thereby obtaining the shortest paths
from s 1n a total of O() + E) time.
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Linear programming

Let 4 be an mxn matrix, b be an m-vector, and ¢
be an n-vector. Find an n-vector x that maximizes

c'x subject to Ax < b, or determine that no such
solution exists.

n

m < maximizing e

A x < b cl X
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Linear-programming
algorithms

Algorithms for the general problem

» Simplex methods — practical, but worst-case
exponential time.

* Ellipsoid algorithm — polynomial time, but
slow 1n practice.

* Interior-point methods — polynomial time and
competes with simplex.

Feasibility problem: No optimization criterion.
Just find x such that 4x < b.
* In general, just as hard as ordinary LP.
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Solving a system of difference
constraints

Linear programming where each row of 4 contains
exactly one 1, one —1, and the rest 0’s.

Example: . Solution:
Constraint graph: (The “A4”
matrix has

X;—X; < W, @ O dimensions
= £l 1)
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Unsatisfiable constraints

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences 1s unsatisfiable.

Proof. Suppose that the negative-weight cycle 1s
v, —> Vv, = -+ = v, — Vv,. Then, we have

Xo— X1 SWp

_ <
37 Ay = Was Therefore, no

Xy~ Xy W values for the x;
<wy, can satisty the
constraints.

X1 — Xg

0 < weight of cycle
<0
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Satistfying the constraints

Theorem. Suppose no negative-weight cycle
exists 1n the constraint graph. Then, the

constraints are satisfiable.
Proof. Add a new vertex s to // with a O-weight edge
to each vertex v, € V.

0 ¢! Ve Note:

R No negative-weight

§ \JVa cycles introduced =
Vs shortest paths exist.
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Proof (continued)

Claim: The assignment x; = o(s, v;) solves the constraints.

Consider any constraint x; —x; < w;;, and consider the

shortest paths from s to v, and v;:

The triangle inequality gives us o(s,v;) < o(s, yl-) +w.
Since x; = o(s, v;) and x; = o(s, v,), the constraint x; — x;
< w;; 18 satisfied.
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Bellman-Ford and linear
programming
Corollary. The Bellman-Ford algorithm can

solve a system of m difference constraints on
variables 1n O(m n) time.

Single-source shortest paths 1s a simple LP
problem.

In fact, Bellman-Ford maximizes x, +x, + - + x,
subject to the constraints x, —x;, < w, and x, < 0
(exercise).

Bellman-Ford also minimizes max_ {x,; — min {x,}
(exercise).
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Application to VLSI layout
compaction

Integrated
-clrcuit
features:

_

—

L

| —

minimum separation A

Problem: Compact (in one dimension) the
space between the features of a VLSI layout
without bringing any features too close together.
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VLSI layout compaction

—d, — —I
1
2

X1 )
Constraint: x,—x,>d,+A

Bellman-Ford minimizes max_ {x;} — min_{x;},
which compacts the layout in the x-dimension.
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