
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 2
Prof. Erik Demaine

Day 3 Introduction to Algorithms L2.2

Solving recurrences

• The analysis of merge sort from
Lecture 1 required us to solve a
recurrence.

• Recurrences are like solving integrals,
differential equations, etc.
oLearn a few tricks.

• Lecture 3: Applications of recurrences.

Day 3 Introduction to Algorithms L2.3

Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

Example: T(n) = 4T(n/2) + n
• [Assume that T(1) = Θ(1).]
• Guess O(n3) . (Prove O and Ω separately.)
• Assume that T(k) ≤ ck3 for k < n .
• Prove T(n) ≤ cn3 by induction.

Day 3 Introduction to Algorithms L2.4

Example of substitution

3

33

3

3

))2/((
)2/(

)2/(4
)2/(4)(

cn
nnccn

nnc
nnc

nnTnT

≤
−−=

+=
+≤

+=

desired – residual

whenever (c/2)n3 – n ≥ 0, for example,
if c ≥ 2 and n ≥ 1.

desired

residual

Day 3 Introduction to Algorithms L2.5

Example (continued)
• We must also handle the initial conditions,

that is, ground the induction with base
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we
pick c big enough.

This bound is not tight!

Day 3 Introduction to Algorithms L2.6

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(
4

)2/(4)(
2

nO
ncn

nnTnT

=
+≤

+=

Wrong! We must prove the I.H.

2

2)(
cn

ncn
≤

−−=

for no choice of c > 0. Lose!

[desired – residual]

Day 3 Introduction to Algorithms L2.7

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

)(

2
)2/()2/((4

)2/(4)(

2
2

1

22
2

1

2
2

1

2
2

1

ncnc
nncncnc

nncnc
nncnc

nnTnT

−≤
−−−=

+−=
+−≤

+=

if c2 > 1.
Pick c1 big enough to handle the initial conditions.

Day 3 Introduction to Algorithms L2.8

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion tree method is good for
generating guesses for the substitution method.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• The recursion-tree method promotes intuition,
however.

Day 3 Introduction to Algorithms L2.9

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

Day 3 Introduction to Algorithms L2.10

Example of recursion tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:

Day 3 Introduction to Algorithms L2.11

Example of recursion tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

Day 3 Introduction to Algorithms L2.12

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Day 3 Introduction to Algorithms L2.13

Example of recursion tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

Solve T(n) = T(n/4) + T(n/2) + n2:
n2

Day 3 Introduction to Algorithms L2.14

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

2nn2

Day 3 Introduction to Algorithms L2.15

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

2
16
5 n

2nn2

Day 3 Introduction to Algorithms L2.16

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

…

2
16
5 n

2n

2
256
25 n

n2

(n/2)2

…

Day 3 Introduction to Algorithms L2.17

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

…

2
16
5 n

2n

2
256
25 n

() ()() 1 3
16
52

16
5

16
52 L++++n

…

Total =
= Θ(n2)

n2

(n/2)2

geometric series

Day 3 Introduction to Algorithms L2.18

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

Day 3 Introduction to Algorithms L2.19

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n) .

Day 3 Introduction to Algorithms L2.20

Three common cases (cont.)
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
• f (n) grows polynomially faster than nlogba (by

an nε factor),
and f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.
Solution: T(n) = Θ(f (n)) .

Day 3 Introduction to Algorithms L2.21

Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2lg0n), that is, k = 0.
∴ T(n) = Θ(n2lg n).

Day 3 Introduction to Algorithms L2.22

Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1
and 4(cn/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/lgn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lgn.
Master method does not apply. In particular,
for every constant ε > 0, we have nε = ω(lgn).

Day 3 Introduction to Algorithms L2.23

General method (Akra-Bazzi)
)()/()(

1
nfbnTanT

k

i
ii += ∑

=

Let p be the unique solution to

() /ba
k

i

p
ii 1

1
=∑

=
Then, the answers are the same as for the
master method, but with np instead of nlogba.
(Akra and Bazzi also prove an even more
general result.)

.

Day 3 Introduction to Algorithms L2.24

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…#leaves = ah

= alogbn

= nlogba

nlogbaΤ (1)

Day 3 Introduction to Algorithms L2.25

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaΤ (1)
CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight.

CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight. Θ(nlogba)

Day 3 Introduction to Algorithms L2.26

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaΤ (1)CASE 2: (k = 0) The weight
is approximately the same on
each of the logbn levels.

CASE 2: (k = 0) The weight
is approximately the same on
each of the logbn levels.

Θ(nlogbalg n)

Day 3 Introduction to Algorithms L2.27

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaΤ (1)
CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight.

CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight. Θ(f (n))

Day 3 Introduction to Algorithms L2.28

Conclusion

• Next time: applying the master method.
• For proof of master theorem, see CLRS.

Day 3 Introduction to Algorithms L2.29

Appendix: geometric series

1

11 2
x

xx
−

=+++ L for |x| < 1

1

11
1

2
x

xxxx
n

n
−

−=++++
+

L for x ≠ 1

Return to last
slide viewed.

