Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 2

Prof. Erik Demaine

Solving recurrences

* The analysis of merge sort from
Lecture 1 required us to solve a
recurrence.

» Recurrences are like solving integrals,
differential equations, etc.

o Learn a few tricks.

» Lecture 3: Applications of recurrences.

Day 3 Introduction to Algorithms L2.2

Substitution method

The most general method.:
1. Guess the form of the solution.

2. Verify by induction.
3. Solve for constants.

Example: 1T(n)=41(n/2)+n

* [Assume that 7(1) = ©O(1).]

* Guess O(n°) . (Prove O and (2 separately.)
« Assume that 7(k) < ck’ for k<n .

* Prove 7(n) < cn’ by induction.

Day 3 Introduction to Algorithms L2.3

Example of substitution

I'(n)=4T(n/2)+n
<dc(n/2)+n
=(c/2)n3 +n
=cn’ —((¢/2)n3 —n) — desired — residual
< cn3 — desired

whenever (¢/2)n° —n > 0, for example,

ifc>2andn > 1.
residual

Day 3 Introduction to Algorithms L2.4

Example (continued)

* We must also handle the 1nitial conditions,
that 1s, ground the induction with base
cases.

* Base: T(n) = ©(1) for all n < n,, where n,
1s a suitable constant.

* For | <n <n, we have “0O(1)” <cn’, if we
pick ¢ big enough.

This bound is not tight!

Day 3 Introduction to Algorithms L2.5

A tighter upper bound?

We shall prove that 7(n) = O(n?).

Assume that 7(k) < ck? for k < n:
I'(n)=4T(n/2)+n
<4dcn? +n
— M) Wrong! We must prove the I.H.

=cn? —(-n) [desired —residual -
< cn?

for no choice of ¢ > 0. Lose!

Day 3 Introduction to Algorithms L2.6

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
* Subtract a low-order term.

Inductive hypothesis: T(k) < ¢, k* — ¢,k for k < n.
I'(n)=4T(n/2)+n
<4(c;(n/2)2 —cy(n/2)+n
=cn? —2c,n+n
=cn? —con—(cyn—n)
<cn?—con if ¢, > 1.
Pick ¢, big enough to handle the 1nitial conditions.

Day 3 Introduction to Algorithms L2.7

Recursion-tree method

* A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion tree method 1s good for
generating guesses for the substitution method.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

* The recursion-tree method promotes intuition,
however.

Day 3 Introduction to Algorithms L2.8

Example of recursion tree

Solve 7(n) = T(n/4) + T(n/2) + n?:

Day 3 Introduction to Algorithms L2.9

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n:
T(n)

Day 3 Introduction to Algorithms L2.10

Example of recursion tree
Solve 7(n) = T(n/4) + T(n/2) + n?:

2
T
1(n/4) 1(n/2)

Day 3 Introduction to Algorithms L2.11

Example of recursion tree
Solve 7(n) = T(n/4) + T(n/2) + n:
2
/ ' \
(n/4)? (n/2)?

VRN VAN
I(n/16) T(n/8) T(n/8) T(n/4)

Day 3 Introduction to Algorithms L2.12

Example of recursion tree
Solve 7(n) = T(n/4) + T(n/2) + n:
2
/ ' \
(n/4)? (n/2)?

VRN VN
(n/16)> (n/8)* (n/8)? (n/4)?

@(/1)

Day 3 Introduction to Algorithms L2.13

Example of recursion tree

Solve 7(n) = T(n/4) + T(n/2) + n?:

(n/4)? (n/2)?
VRN VN
(n/16)> (n/8)* (n/8)? (n/4)?

@(/1)

Day 3 Introduction to Algorithms L2.14

Example of recursion tree

Solve 7(n) = T(n/4) + T(n/2) + n?:

(n/ 4)2 (n/ 2)2 ------------------------- S n2
VN /N0

(n/16)> (n/8)* (n/8)? (n/4)?

@(/1)

Day 3 Introduction to Algorithms L2.15

Example of recursion tree

Solve 7(n) = T(n/4) + T(n/2) + n?:

7 A 52
/ \

(n/4y I > n2
/N /N ”s
(n/16)> (n/8) (/8 (/4> 5 n?

/

@(/1)

Day 3 Introduction to Algorithms L2.16

Example of recursion tree

Solve 7(n) = T(n/4) + T(n/2) + n?:

nz —————————————— : n2
(n/4)? (1/2)% - T
/N /N ys
(n/16)> (n/8) (/8 (/4> 5 n?
/ o
/
O(1 _ 2 2 (5¥
(1) Total =7 (1+156+(156) +(156) +)

= 0O(n?) geometric series

Day 3 Introduction to Algorithms L2.17

@

The master method

The master method applies to recurrences of
the form

I(n) = aT(n/b) + f(n),

where a > 1, 5 > 1, and f 1s asymptotically
positive.

Day 3 Introduction to Algorithms L2.18

Three common cases

Compare /(1) with n'°g:
1. f(n)= O(n'o2") for some constant & > 0.

* f(n) grows polynomially slower than 7'°:¢
(by an 7° factor).

Solution: T(n) = O(n'oer?)
2. f(n)=0O(n'"e]1g"n) for some constant & > 0.

e f(n) and n'°2¢ grow at similar rates.
Solution: T(n) = O(n'oe 1g"1n) .

Day 3 Introduction to Algorithms L2.19

Three common cases (cont.)

Compare /(1) with n'°g:
3. f(n)= Q(n'o2r¢*#) for some constant & > 0.

e f(n) grows polynomially faster than »'°2¢ (by
an n° factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) =0O(f(n)) .

Day 3 Introduction to Algorithms L2.20

Examples

Ex. T(n)=41(n/2) + n
a=4,b=2= nloti=p?; f(n)=n.
CASE 1: f(n) = O(n?) fore=1.
- T(n) = O(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2= nloti=p?; f(n)=n’
CASE 2: f(n) = O(n’1g"n), that is, k = 0.
- T(n) = O(n’lgn).

Day 3 Introduction to Algorithms L2.21

Examples

Ex. T(n) =4T(n/2) + n’
a=4,b=2= nloti=p?; f(n)=n’.
CASE 3: f(n) = Q(n* ") fore =1
and 4(cn/2)* < cn’ (reg. cond.) for ¢ = 1/2.
- T(n) = O(n?).

Ex. T(n) =4T(n/2) + n*/lgn
a=4,b=2 = nloed=p?; f(n) = n?/lgn.
Master method does not apply. In particular,
for every constant € > 0, we have n° =w(lgn).

Day 3 Introduction to Algorithms L2.22

General method (Akra-Bazzi)
T'(n)= iaiT(n/bin(n)
i=l1

Let p be the unique solution to

k
S (a,/b7)=1.

i=1
Then, the answers are the same as for the
master method, but with »” instead of n'°¢*,
(Akra and Bazzi also prove an even more

general result.)

Day 3 Introduction to Algorithms L2.23

Idea of master theorem

Recursion tree:

| Jny o f(n)
P e N
f(n/b) f(n/b) --- f(n/b)— af(n/b)

h =logn / \/‘)\
F/B?) F(/bY) - f(n/E) -~ af (n/b?)
/ .

K

#leaves = a”
— alogbn
— nlogba

nlogba T(1)

()

\4

Day 3 Introduction to Algorithms L2.24

Idea of master theorem

Recursion tree:

i fn)y f(n)

f(n/b) f(n/b) --- f(n/b)— af(n/b)
h = log;n / \ZL)\CZ

f(/BY) f(n/B?) -+ f(n/BF) s a’ f(n/b?)
/ ;
" (CASE 1: The weight increases
/| geometrically from the root to the | 02 711)
| 7(1) |1eaves. The leaves hold a constant

fraction of the total weight. O(n'oz)

Day 3 Introduction to Algorithms L2.25

Idea of master theorem

Recursion tree:

i fn)y J(n)

h = log,n /#)\

(/B f(n/B2) -+ f(/b2) a’ f(n/b?)
/ :
” . '
CASE 2: (k= 0) The weight oorg
7(1) 1s approximately the same on n'oeba T(1)
Y each of the log,n levels.
O(n'°er?g n)

Day 3 Introduction to Algorithms L2.26

Idea of master theorem

Recursion tree:

i Sy o f(n)

h =logn / \ZL)\
NN o s — a2 f(n/b?)
/ .

" (CASE 3: The weight decreases
geometrically from the root to the | 5'°2r¢ 77(1)
I 7(1) |1eaves. The root holds a constant

fraction of the total weight. O(f(n))

Day 3 Introduction to Algorithms L2.27

Conclusion

* Next time: applying the master method.
 For proof of master theorem, see CLRS.

Day 3 Introduction to Algorithms L2.28

Appendix: geometric series

) 1_x7l+1
l+x+x"+---+x"= | for x = 1
— X

2

l+x+x +---=1 for x| <1
l—x

Return to last
slide viewed. o

Day 3 Introduction to Algorithms L2.29

