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Binary-search-tree sort
T ←∅ ⊳ Create an empty BST
for i = 1 to n

do TREE-INSERT(T, A[i])
Perform an inorder tree walk of T.

Example:
A = [3 1 8 2 6 7 5] 8811

22 66

55 77
Tree-walk time = O(n), 
but how long does it 
take to build the BST?
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Analysis of BST sort
BST sort performs the same comparisons as 
quicksort, but in a different order!

3  1  8  2  6  7  5

1  2 8  6  7  5

2 6 7 5

75

The expected time to build the tree is asymptot-
ically the same as the running time of quicksort.
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Node depth
The depth of a node = the number of comparisons 
made during TREE-INSERT.  Assuming all input 
permutations are equally likely, we have
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Expected tree height
But, average node depth of a randomly built 
BST = O(lg n) does not necessarily mean that its 
expected height is also O(lg n) (although it is).

Example.

≤ lg n
nh =

)(lg
2

lg1

nO

nnnn
n

=






 ⋅+⋅≤Ave. depth



Introduction to Algorithms Day 17      L9.6© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Height of a randomly built 
binary search tree

• Prove Jensen’s inequality, which says that 
f(E[X]) ≤ E[f(X)] for any convex function f and 
random variable X.  

• Analyze the exponential height of a randomly 
built BST on n nodes, which is the random 
variable Yn = 2Xn, where Xn is the random 
variable denoting the height of the BST.

• Prove that 2E[Xn] ≤ E[2Xn ] = E[Yn] = O(n3), 
and hence that E[Xn] = O(lg n).

Outline of the analysis:
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Convex functions
A function f : R → R is convex if for all 
α,β ≥ 0 such that α + β = 1, we have

f(αx + βy) ≤ αf(x) + βf(y)
for all x,y ∈ R.

αx + βy

αf(x) + βf(y)

f(αx + βy)

x y

f(x)

f(y)
f
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Convexity lemma
Lemma. Let f : R → R be a convex function, 
and let {α1, α2 , …, αn} be a set of nonnegative 
constants such that ∑k αk = 1.  Then, for any set 
{x1, x2, …, xn} of real numbers, we have
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Proof. By induction on n.  For n = 1, we have 
α1 = 1, and hence f(α1x1) ≤ α1f(x1) trivially.

.
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Proof (continued)









−

−+=






 ∑∑
−

==

1

11 1
)1(
n

k
k

n

k
nnn

n

k
kk xxfxf

α
αααα

Inductive step:

Algebra.
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Proof (continued)
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Inductive step:

Convexity.
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Proof (continued)
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Inductive step:

Induction.
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Proof (continued)
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Inductive step:

Algebra..
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Jensen’s inequality
Lemma. Let f be a convex function, and let X
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].  
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Proof.

Definition of expectation.
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Jensen’s inequality
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Convexity lemma (generalized).

Lemma. Let f be a convex function, and let X
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].  
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Jensen’s inequality
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Proof.

Tricky step, but true—think about it.

Lemma. Let f be a convex function, and let X
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].  
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Analysis of BST height
Let Xn be the random variable denoting 
the height of a randomly built binary 
search tree on n nodes, and let Yn = 2Xn 

be its exponential height.
If the root of the tree has rank k, then 

Xn = 1 + max{Xk–1, Xn–k} , 
since each of the left and right subtrees
of the root are randomly built.  Hence, 
we have

Yn = 2· max{Yk–1, Yn–k} .
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Analysis (continued)

Define the indicator random variable Znk as

Znk = 1 if the root has rank k,
0 otherwise.

Thus, Pr{Znk = 1} = E[Znk] = 1/n, and
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Exponential height recurrence
[ ] ( )
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Take expectation of both sides.
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Exponential height recurrence
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Linearity of expectation.



Introduction to Algorithms Day 17      L9.20© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Exponential height recurrence
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Independence of the rank of the root 
from the ranks of subtree roots.
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Exponential height recurrence
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The max of two nonnegative numbers 
is at most their sum, and E[Znk] = 1/n.
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Exponential height recurrence
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Each term appears 
twice, and reindex.
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Solving the recurrence
Use substitution to 
show that E[Yn] ≤ cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions.
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Solving the recurrence
Use substitution to 
show that E[Yn] ≤ cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions.

[ ]

∑

∑
−

=

−

=

≤

=

1

0

3

1

0

4

][4

n

k

n

k
kn

ck
n

YE
n

YE

Substitution.



Introduction to Algorithms Day 17      L9.25© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Solving the recurrence
Use substitution to 
show that E[Yn] ≤ cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions.
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Solving the recurrence
Use substitution to 
show that E[Yn] ≤ cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions.
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Solving the recurrence
Use substitution to 
show that E[Yn] ≤ cn3

for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions.
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The grand finale

2E[Xn] ≤ E[2Xn ]

Putting it all together, we have

Jensen’s inequality, since 
f(x) = 2x is convex.
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The grand finale

2E[Xn] ≤ E[2Xn ]
= E[Yn]

Putting it all together, we have

Definition.
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The grand finale

2E[Xn] ≤ E[2Xn ]
= E[Yn]
≤ cn3 .

Putting it all together, we have

What we just showed.
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The grand finale

2E[Xn] ≤ E[2Xn ]
= E[Yn]
≤ cn3 .

Putting it all together, we have

Taking the lg of both sides yields
E[Xn] ≤ 3 lg n +O(1) .
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Post mortem

Q. Does the analysis have to be this hard? 

Q. Why bother with analyzing exponential 
height?

Q. Why not just develop the recurrence on
Xn = 1 + max{Xk–1, Xn–k}

directly?
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Post mortem (continued)
A. The inequality

max{a, b} ≤ a + b .
provides a poor upper bound, since the RHS 
approaches the LHS slowly as |a – b| increases.  
The bound 

max{2a, 2b} ≤ 2a + 2b

allows the RHS to approach the LHS far more 
quickly as |a – b| increases.  By using the 
convexity of f(x) = 2x via Jensen’s inequality, 
we can manipulate the sum of exponentials, 
resulting in a tight analysis.
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Thought exercises

• See what happens when you try to do the 
analysis on Xn directly.

• Try to understand better why the proof 
uses an exponential.  Will a quadratic do?

• See if you can find a simpler argument.  
(This argument is a little simpler than the 
one in the book—I hope it’s correct!)


