Introduction to Algorithms **6.046J/18.401J/SMA5503**

Lecture 9 **Prof. Charles E. Leiserson**

Binary-search-tree sort

 $T \leftarrow \varnothing$ \triangleright Create an empty BST **for** *i* = 1 to *n* **do** TREE-INSERT(*T*, *A*[*i*]) Perform an inorder tree walk of *T*.

Analysis of BST sort

BST sort performs the same comparisons as quicksort, but in a different order!

The expected time to build the tree is asymptotically the same as the running time of quicksort.

Node depth

The depth of a node $=$ the number of comparisons made during TREE-INSERT. Assuming all input permutations are equally likely, we have

Average node depth

 $\frac{1}{k}E\left(\frac{1}{k}$ comparisons to insert node i) 1 $E \rightarrow 0$ (# comparisons to insert node *i n n* $=$ $\frac{1}{n}E\left[\sum_{i=1}^{n}(t)$ # comparisons to insert node *i*

- $\frac{1}{2}O(n \lg n)$ *n* $=\pm O(n \lg n)$ (quicksort analysis)
- $= O(\lg n)$.

Expected tree height

But, average node depth of a randomly built $BST = O(\lg n)$ does not necessarily mean that its expected height is also *O*(lg *ⁿ*) (although it is).

Example.

Height of a randomly built binary search tree

Outline of the analysis:

- Prove *Jensen's inequality*, which says that $f(E[X]) \leq E[f(X)]$ for any convex function *f* and random variable *X*.
- Analyze the *exponential height* of a randomly built BST on *n* nodes, which is the random variable $Y_n = 2^{X_n}$, where X_n is the random variable denoting the height of the BST.
- Prove that $2^{E[X_n]} \leq E[2^{X_n}] = E[Y_n] = O(n^3)$, and hence that $E[X_n] = O(\lg n)$.

Convex functions

A function $f: \mathbb{R} \to \mathbb{R}$ is *convex* if for all $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$, we have $f(\alpha x + \beta y) \leq \alpha f(x) + \beta f(y)$ for all $x, y \in \mathbb{R}$. α*x* ⁺β*y ^x y* $\alpha f(x) + \beta f$ $\frac{1}{2}f(\alpha x + \beta y)$ *f*(*x*) *^f*(*y*) *^f*

Convexity lemma

Lemma. Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, and let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a set of nonnegative constants such that $\sum_k \alpha_k = 1$. Then, for any set $\{x_1, x_2, ..., x_n\}$ of real numbers, we have

$$
f\left(\sum_{k=1}^n \alpha_k x_k\right) \le \sum_{k=1}^n \alpha_k f(x_k).
$$

Proof. By induction on *n*. For $n = 1$, we have $\alpha_1 = 1$, and hence $f(\alpha_1 x_1) \leq \alpha_1 f(x_1)$ trivially.

Inductive step:

$$
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
$$

Algebra.

Inductive step:

$$
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
$$

$$
\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
$$

Convexity.

Inductive step:

$$
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
$$

$$
\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
$$

$$
\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} f(x_k)
$$

Induction.

Inductive step:

$$
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
$$

\n
$$
\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
$$

\n
$$
\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} f(x_k)
$$

\n
$$
= \sum_{k=1}^{n} \alpha_k f(x_k). \quad \Box \qquad \text{Algebra.}
$$

Jensen's inequality

Lemma. Let *f* be a convex function, and let *X* be a random variable. Then, $f(E[X]) \leq E[f(X)]$. $Proot:$
 $f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$

Definition of expectation.

Jensen's inequality

∑ ∑ ∞ =−∞*k*∞ $=f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$ $\leq \sum f(k) \cdot \Pr{X = k}$ $f(E[X]) = f \sum k \cdot Pr\{X = k\}$ *Proof.* **Lemma.** Let *f* be a convex function, and let *X* be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Convexity lemma (generalized).

Jensen's inequality

 $E[f(X)]$ $\leq \sum f(k) \cdot \Pr{X = k}$ $f(E[X]) = f \sum k \cdot Pr\{X = k\}$ *k*=−∞ $= f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$ $= L \left[\int (A) \right]$. ∑ ∑ ∞ ∞ =−∞ *Proof.* **Lemma.** Let *f* be a convex function, and let *X* be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Tricky step, but true—think about it.

Analysis of BST height

Let X_n be the random variable denoting the height of a randomly built binary search tree on *n* nodes, and let $Y_n = 2^{X_n}$ be its exponential height.

If the root of the tree has rank *k*, then

 $X_n = 1 + \max\{X_{k-1}, X_{n-k}\},$

since each of the left and right subtrees of the root are randomly built. Hence, we have

$$
Y_n = 2 \cdot \max\{Y_{k-1}, Y_{n-k}\}.
$$

Analysis (continued)

Define the indicator random variable Z_{nk} as

Znk $k = \begin{cases} 1 & \text{if the root has rank } k, \\ 0 & \text{otherwise.} \end{cases}$

Thus,
$$
Pr{Z_{nk} = 1} = E[Z_{nk}] = 1/n
$$
, and
\n
$$
Y_n = \sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})
$$

Exponential height recurrence $E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$

Take expectation of both sides.

Exponential height recurrence

$$
E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]
$$

=
$$
\sum_{k=1}^n E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]
$$

$$
= \sum_{k=1} E[Z_{nk}(2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]
$$

Linearity of expectation.

Exponential height recurrence

$$
E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]
$$

$$
= \sum_{k=1}^{n} E[Z_{nk}(2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]
$$

$$
=2\sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]
$$

Independence of the rank of the root from the ranks of subtree roots.

Exponential height recurrence $[Y_n] = E \Big| \sum Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\Big|$ $\sum E[Z_{nk}(2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$ ∑ $\sum E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-1}\}]$ = \leq \leq \sum $E[Y_{k-1}$ + Y_{n-1} k =1 k =1 =−1² n− $=$ \angle \angle E \angle L_n \vdots $=$ $\sum L |L_{nk}| \angle$ $= E\left[\sum_{k=1}^{n} Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$ *n k* $E[Y_{k-1} + Y_{n-k}]$ *n* $2 \sum E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$ *n* $E[Z_{nk}(2 \cdot \max\{Y_{k-1},Y_{n-k}\})]$ *k* $E[Y_n] = E \sum Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})$ n $\overline{k=1}$ $\frac{2}{2} \sum E[Y_{k-1} + Y_{n-k}]$ 12 \cdot max $\{Y_{k-1}, Y_{n-k}\}$

The max of two nonnegative numbers is at most their sum, and $E[Z_{nk}] = 1/n$.

Exponential height recurrence $[Y_n] = E \Big| \sum Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\Big|$ $\sum E[Z_{nk}(2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$ ∑ − ∑ $\sum E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-1}\}]$ == \leq \leq \sum $E[Y_{k-1}$ + Y_{n-1} $k=1$ k =1 = -1 / $n-$ = $= 2 \sum E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$ $= \sum E[Z_{nk}(2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$ $= E\left[\sum_{k=1}^{n} Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$ $\cdot 1$ $\rm 0$ 1 $\frac{2}{L} \sum E[Y_{k-1} + Y_{n-k}]$ 2 \cdot max $\{Y_{k-1}, Y_{n-k}\}$ $\frac{4}{2}$ $\sum E[Y_k]$ *n k* $E[Y_k]$ *n k* $E[Y_{k-1} + Y_{n-k}]$ *n* $E[Z_{nk}] \cdot E[\max\{Y_{k-1},Y_{n-k}\}]$ *n* $E[Z_{nk}(2 \cdot \max\{Y_{k-1},Y_{n-k})$ *n k* $E[Y_n] = E \sum Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})$ *n n* Each term appears twice, and reindex.

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

 $[Y_n] = \frac{4}{5} \sum$ − == $\cdot 1$ $\rm 0$ $\frac{1}{2} \sum_{k=1}^{n-1} E[Y_k]$ *k* E_n = $\stackrel{\perp}{\sim}$ $E[Y_k]$ *n E Y*

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

Substitution.

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

Integral method.

Use substitution to show that $E[Y_n] \le cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

Solve the integral.

Use substitution to show that $E[Y_n] \le cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

 $2^{E[X_n]} \leq E[2^{X_n}]$ Putting it all together, we have

> Jensen's inequality, since $f(x) = 2^x$ is convex.

 $2^{E[X_n]} \leq E[2^{X_n}]$ $= E[Y_n]$ Putting it all together, we have Definition.

 $2^{E[X_n]} \leq E[2^{X_n}]$ $= E[Y_n]$ $\leq c n^3$. Putting it all together, we have

What we just showed.

 $2^{E[X_n]} \leq E[2^{X_n}]$ $= E[Y_n]$ $\leq c n^3$. Putting it all together, we have

Taking the lg of both sides yields $E[X_n] \leq 3 \lg n + O(1)$.

Post mortem

- **Q.** Does the analysis have to be this hard?
- **Q.** Why bother with analyzing exponential height?
- **Q.** Why not just develop the recurrence on $X_n = 1 + \max\{X_{k-1}, X_{n-k}\}$ directly?

Post mortem (continued)

A. The inequality

 $\max\{a, b\} \le a + b$.

provides a poor upper bound, since the RHS approaches the LHS slowly as $|a-b|$ increases. The bound

 $\max\{2^a, 2^b\} \leq 2^a + 2^b$

allows the RHS to approach the LHS far more quickly as $|a - b|$ increases. By using the convexity of $f(x) = 2^x$ via Jensen's inequality, we can manipulate the sum of exponentials, resulting in a tight analysis.

Thought exercises

- See what happens when you try to do the analysis on X_n directly.
- Try to understand better why the proof uses an exponential. Will a quadratic do?
- See if you can find a simpler argument. (This argument is a little simpler than the one in the book—I hope it's correct!)