#### *Introduction to Algorithms* 6.046J/18.401J/SMA5503

*Lecture 20* Prof. Erik Demaine

#### **Disjoint-set data structure** (Union-Find)

**Problem:** Maintain a dynamic collection of *pairwise-disjoint* sets  $S = \{S_1, S_2, ..., S_r\}$ . Each set  $S_i$  has one element distinguished as the representative element,  $rep[S_i]$ .

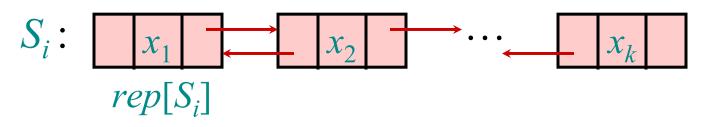
Must support 3 operations:

- MAKE-SET(x): adds new set  $\{x\}$  to S with  $rep[\{x\}] = x$  (for any  $x \notin S_i$  for all i).
- UNION(x, y): replaces sets  $S_x, S_y$  with  $S_x \cup S_y$ in S for any x, y in distinct sets  $S_x, S_y$ .
- FIND-SET(x): returns representative  $rep[S_x]$ of set  $S_x$  containing element x.

© 2001 by Erik D. Demaine

## Simple linked-list solution

Store each set  $S_i = \{x_1, x_2, ..., x_k\}$  as an (unordered) doubly linked list. Define representative element  $rep[S_i]$  to be the front of the list,  $x_1$ .



- MAKE-SET(x) initializes x as a lone node.  $-\Theta(1)$
- FIND-SET(x) walks left in the list containing x until it reaches the front of the list.  $-\Theta(n)$
- UNION(x, y) concatenates the lists containing x and y, leaving rep. as FIND-SET[x].  $-\Theta$

© 2001 by Erik D. Demaine

Introduction to Algorithms

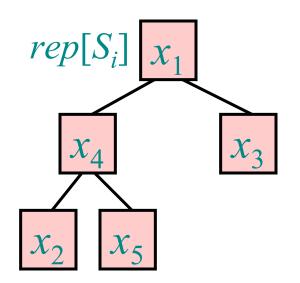
Day 33 L20.3

## Simple balanced-tree solution

Store each set  $S_i = \{x_1, x_2, ..., x_k\}$  as a balanced tree (ignoring keys). Define representative element  $rep[S_i]$  to be the root of the tree.

- MAKE-SET(x) initializes x as a lone node.  $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. \Overline(\ll g n)
- UNION(x, y) concatenates the trees containing x and y, changing rep.  $-\Theta(\lg n)$

$$S_i = \{x_1, x_2, x_3, x_4, x_5\}$$



© 2001 by Erik D. Demaine

#### **Plan of attack**

We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than  $\Theta(\lg n)$  per op., even better than  $\Theta(\lg \lg n)$ ,  $\Theta(\lg \lg \lg n)$ , etc., but not quite  $\Theta(1)$ .

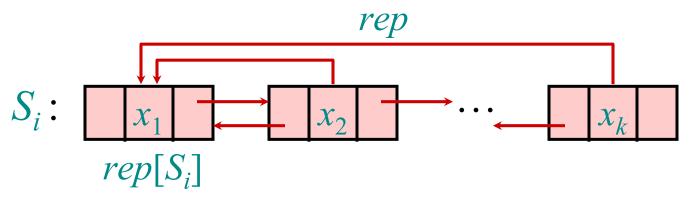
To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial  $\Theta(n)$  solution into a simple  $\Theta(\lg n)$  amortized solution. Together, the two tricks yield a much better solution.

First trick arises in an augmented linked list. Second trick arises in a tree structure.

© 2001 by Erik D. Demaine

## **Augmented linked-list solution**

Store set  $S_i = \{x_1, x_2, ..., x_k\}$  as unordered doubly linked list. Define  $rep[S_i]$  to be front of list,  $x_1$ . Each element  $x_i$  also stores pointer  $rep[x_i]$  to  $rep[S_i]$ .



- FIND-SET(x) returns rep[x].
- UNION(x, y) concatenates the lists containing x and y, and updates the *rep* pointers for all elements in the list containing y.

© 2001 by Erik D. Demaine

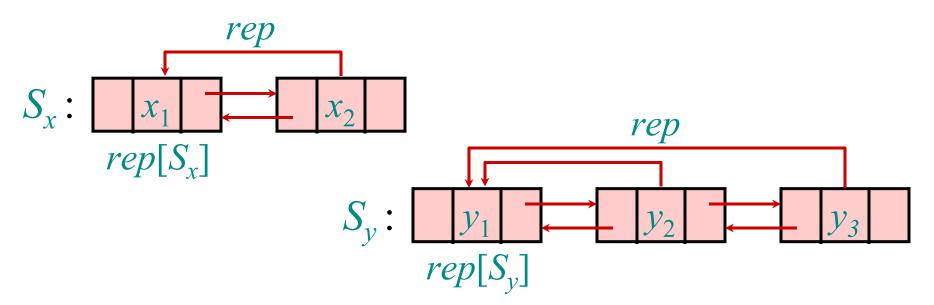
Introduction to Algorithms

Day 33 L20.6

# Example of augmented linked-list solution

Each element  $x_j$  stores pointer  $rep[x_j]$  to  $rep[S_i]$ . UNION(x, y)

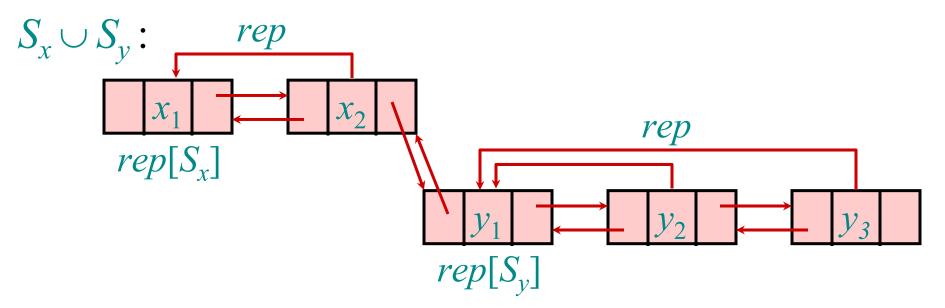
- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.



# Example of augmented linked-list solution

Each element  $x_j$  stores pointer  $rep[x_j]$  to  $rep[S_i]$ . UNION(x, y)

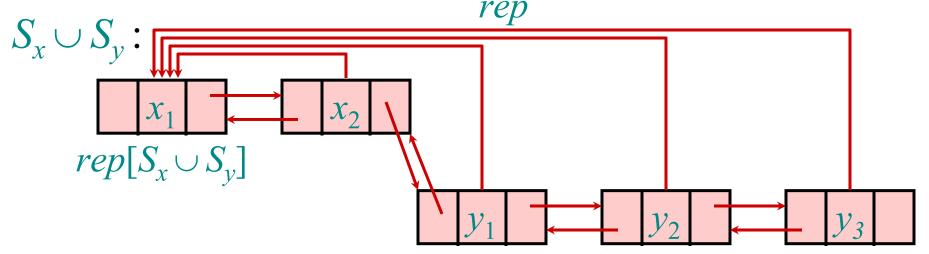
- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.



# Example of augmented linked-list solution

Each element  $x_j$  stores pointer  $rep[x_j]$  to  $rep[S_i]$ . UNION(x, y)

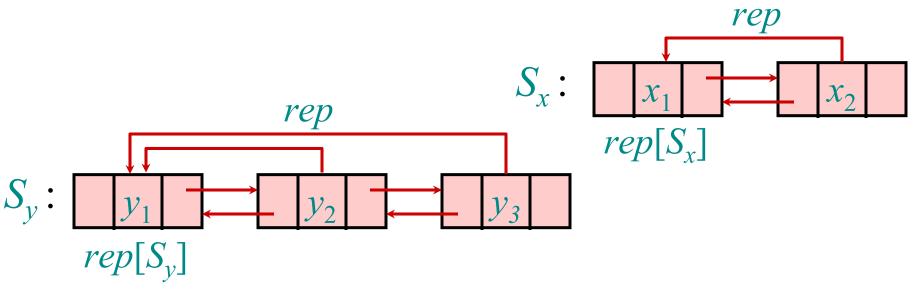
- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.



#### **Alternative concatenation**

UNION(x, y) could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.

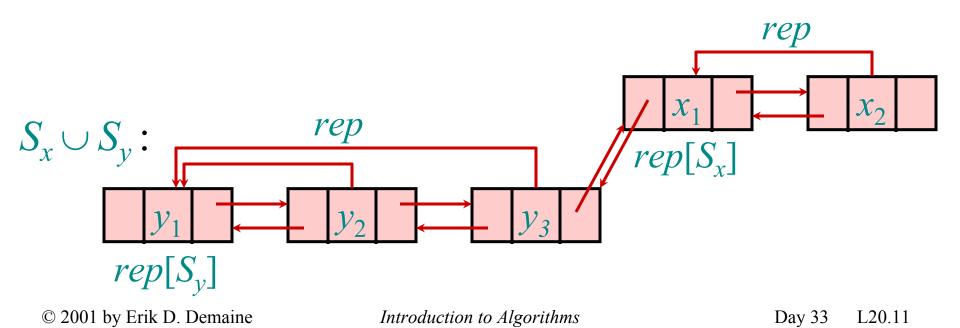


© 2001 by Erik D. Demaine

#### **Alternative concatenation**

UNION(x, y) could instead

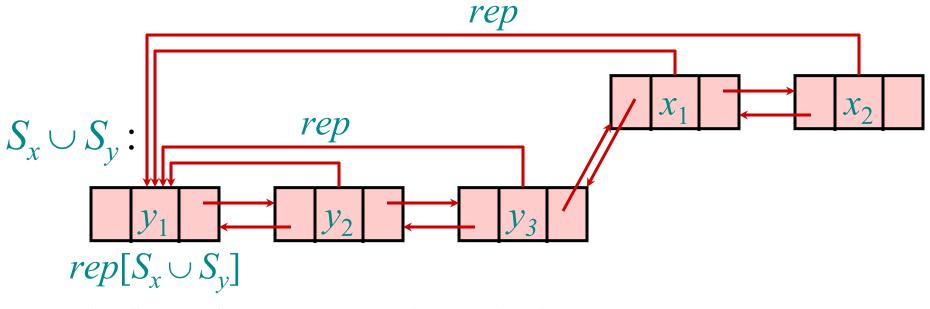
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



#### **Alternative concatenation**

UNION(x, y) could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



© 2001 by Erik D. Demaine

## Trick 1: Smaller into larger

To save work, concatenate smaller list onto the end of the larger list.  $Cost = \Theta(length of smaller list)$ . Augment list to store its *weight* (# elements).

Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations). Let *m* denote the total number of operations. Let *f* denote the number of FIND-SET operations.

**Theorem:** Cost of all UNION's is  $O(n \lg n)$ . **Corollary:** Total cost is  $O(m + n \lg n)$ .

© 2001 by Erik D. Demaine

## **Analysis of Trick 1**

To save work, concatenate smaller list onto the end of the larger list.  $Cost = \Theta(1 + length of smaller list)$ . **Theorem:** Total cost of UNION's is  $O(n \lg n)$ .

**Proof.** Monitor an element x and set  $S_x$  containing it. After initial MAKE-SET(x), weight[ $S_x$ ] = 1. Each time  $S_x$  is united with set  $S_y$ , weight[ $S_y$ ]  $\geq$  weight[ $S_x$ ], pay 1 to update rep[x], and weight[ $S_x$ ] at least doubles (increasing by weight[ $S_y$ ]). Each time  $S_y$  is united with smaller set  $S_y$ , pay nothing, and weight[ $S_x$ ] only increases. Thus pay  $\leq \lg n$  for x.

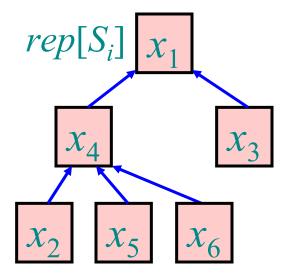
© 2001 by Erik D. Demaine

#### **Representing sets as trees**

Store each set  $S_i = \{x_1, x_2, ..., x_k\}$  as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. *rep*[ $S_i$ ] is the tree root.

- MAKE-SET(x) initializes x as a lone node.  $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. Θ(depth[x])
- UNION(*x*, *y*) concatenates the trees containing *x* and *y*...

$$S_i = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$



### **Trick 1 adapted to trees**

UNION(x, y) can use a simple concatenation strategy: Make root FIND-SET(y) a child of root FIND-SET(x).

 $X_{A}$ 

 $\mathcal{X}$ 

\*\*\*\*\*

 $\Rightarrow$  FIND-SET(y) = FIND-SET(x). We can adapt Trick 1 to this context also: Merge tree with smaller weight into tree with larger weight.

Height of tree increases only when its size doubles, so height is logarithmic in weight. Thus total cost is  $O(m + f \lg n)$ .

© 2001 by Erik D. Demaine

Introduction to Algorithms

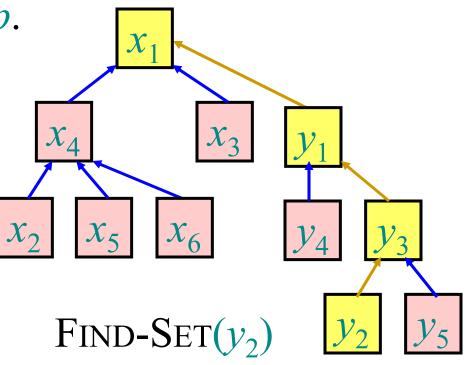
 $\chi_{\gamma}$ 

### **Trick 2: Path compression**

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

*Path compression* makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still  $\Theta(depth[x])$ .

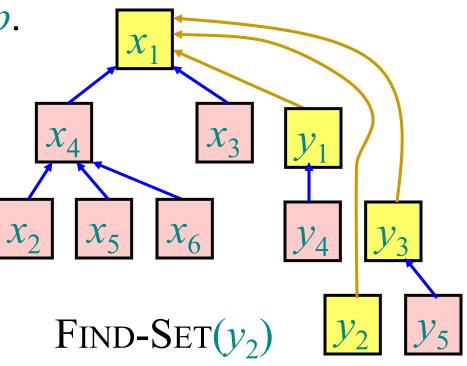


### **Trick 2: Path compression**

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

*Path compression* makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still  $\Theta(depth[x])$ .

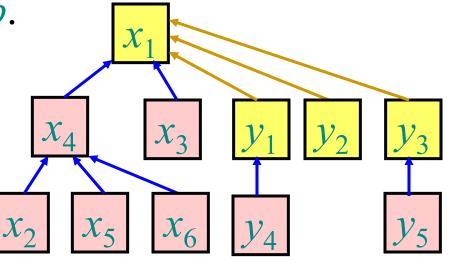


### **Trick 2: Path compression**

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

*Path compression* makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still  $\Theta(depth[x])$ .



FIND-SET $(y_2)$ 

## **Analysis of Trick 2 alone**

**Theorem:** Total cost of FIND-SET's is  $O(m \lg n)$ . *Proof*: Amortization by potential function. The *weight* of a node x is # nodes in its subtree. Define  $\phi(x_1, \ldots, x_n) = \sum_i \log weight[x_i]$ . UNION $(x_i, x_j)$  increases potential of root FIND-SET $(x_i)$ by at most  $\lg weight[root FIND-SET(x_i)] \leq \lg n$ . Each step down  $p \rightarrow c$  made by FIND-SET $(x_i)$ , except the first, moves c's subtree out of p's subtree. Thus if weight  $[c] \ge \frac{1}{2}$  weight [p],  $\phi$  decreases by  $\ge 1$ , paying for the step down. There can be at most lg nsteps  $p \to c$  for which weight  $[c] < \frac{1}{2}$  weight [p].

© 2001 by Erik D. Demaine

## **Analysis of Trick 2 alone**

**Theorem:** If all UNION operations occur before all FIND-SET operations, then total cost is O(m).

**Proof:** If a FIND-SET operation traverses a path with k nodes, costing O(k) time, then k - 2 nodes are made new children of the root. This change can happen only once for each of the n elements, so the total cost of FIND-SET is O(f + n).

#### Ackermann's function A Define $A_k(j) = \begin{cases} j+1 & \text{if } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1. \\ -iterate j+1 & \text{times} \end{cases}$ $A_0(1) = 2$ $A_0(j) = j + 1$ $A_{0}(j) = j + 1 \qquad A_{0}(1) = 2$ $A_{1}(j) \sim 2j \qquad A_{1}(1) = 3$ $A_{2}(j) \sim 2j \ 2^{j} > 2^{j} \qquad A_{2}(1) = 7$ $A_{3}(j) > 2^{2^{j}} \begin{cases} 2^{j} \\ j \end{cases} = 2^{2^{j}} \begin{cases} 2^{j} \\ j \end{cases}$ $A_{3}(j) > 2^{2^{2}} \int_{A_{4}(j)}^{J} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{i=1}^{3} \sum_$ Define $\alpha(n) = \min \{k : A_k(1) \ge n\} \le 4$ for practical *n*. © 2001 by Erik D. Demaine Introduction to Algorithms L20.22 Day 33

#### Analysis of Tricks 1 + 2

**Theorem:** In general, total cost is  $O(m \alpha(n))$ . (long, tricky proof – see Section 21.4 of CLRS)

# **Application: Dynamic connectivity**

Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v)
- ADD-EDGE(u, v)

and we want to support *connectivity* queries:

• CONNECTED(u, v):

Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

© 2001 by Erik D. Demaine

# **Application: Dynamic connectivity**

*Sets of vertices* represent *connected components*. Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v) MAKE-SET(v)
- ADD-EDGE(u, v) if not CONNECTED(u, v)then UNION(v, w)

and we want to support *connectivity* queries:

• CONNECTED(u, v): - FIND-SET(u) = FIND-SET(v)Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

© 2001 by Erik D. Demaine