
Introduction to Algorithms Day 28 
Massachusetts Institute of Technology 6.046J/18.410J 
Singapore-MIT Alliance SMA5503 
Professors Erik Demaine, Lee Wee Sun, and Charles E. Leiserson Handout 27 

Problem Set 7 Solutions 

MIT students: This problem set is due in lecture on Day 26. 

Reading: Chapters 17 

Both exercises and problems should be solved, but only the problems should be turned in. 
Exercises are intended to help you master the course material. Even though you should not turn in 
the exercise solutions, you are responsible for material covered by the exercises. 

Mark the top of each sheet with your name, the course number, the problem number, your 
recitation instructor and time, the date, and the names of any students with whom you collaborated. 

MIT students: Each problem should be done on a separate sheet (or sheets) of three-hole punched 
paper. 

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up 
should take the form of a short essay. A topic paragraph should summarize the problem you are 
solving and what your results are. The body of your essay should provide the following: 

1. A description of the algorithm in English and, if helpful, pseudocode. 

2. At least one worked example or diagram to show more precisely how your algorithm works. 

3. A proof (or indication) of the correctness of the algorithm. 

4. An analysis of the running time of the algorithm. 

Remember, your goal is to communicate. Graders will be instructed to take off points for convo
luted and obtuse descriptions. 

Exercise 7-1. Do exercise 17.1-1 on page 409 of CLRS. 

Solution: �������
No, a sequence of MULTIPUSH operations could make the amortized bound . 



2 Handout 27: Problem Set 7 Solutions 

Exercise 7-2. Do exercise 17.3-4 on page 416 of CLRS. 

Solution: 

The total cost of executing � stack operations, assuming the stack begins with ��� objects and 
finishes with ��� objects is bounded by ��������������� . 

Exercise 7-3. Do exercise 17.3-7 on page 416 of CLRS. 

Solution: �������
You use an unsorted array, so insert takes worst-case time. For DELETE-LARGER-HALF, 
you use the linear-time median algorithm to find the median, then you use PARTITION to partition �������
the array around the median, then you delete the larger side of the partition in time. 

For the amortized analysis, insert each item with 2 tokens on it. When you perform a DELETE-LARGER-HALF


operation, each item in the list pays 1 token for the operation. When you delete the larger half, the

tokens on these items are redistributed on the remaining items. If each item on the list starts with

2 tokens, they each have one after the median finding, and then each item in the deleted half gives

its token to one of the remaining items. Thus, there are always two tokens per item and we get

constant amortized time.


Exercise 7-4. Do exercise 17.4-1 on page 424 of CLRS. 

Solution: 

To keep insertion time reasonable. Insertion into a dynamic open-address hash table can be made �������
to run in time by expanding when ������� and contracting when ������� . 

Problem 7-1. Reducing the space in the van Emde Boas structure 

In this problem, we will use hashing to modify the van Emde Boas data structure presented in 
lecture in order to reduce its space usage. 

Recall the problem statement: In the fixed-universe successor problem, a data structure must ���
maintain a dynamic subset � of the universe ��������������������� . The data structure must support 
the operations of inserting elements into � , deleting elements from � , finding the successor (next 
element in � ) from any element in � , and finding the predecessor (previous element in � ) from 
any element in � . ���
Recall the outline of the van Emde Boas data structure: The universe � � ����������������� is 

represented by a widget of size � . Each widget � of size ����� stores an array sub ����� of � ����� re-� �
cursive subwidgets sub ������������� sub ������� ����������� sub ��������� ������� � each of size � ����� . In addition, 

each widget � stores a summary widget summary ����� of size � ����� , representing which subwid
gets are nonempty. Each widget � also stores its minimum element min ����� separately from all 
the subwidgets. Finally, each widget � maintains the value max ����� of its maximum element. 



1
2
3
4
5
6
7
8

1
2
3
4

5
6

7

Handout 27: Problem Set 7 Solutions 3 

����������� �
For reference, the van Emde Boas algorithms for insertion and finding successors in � 
time are given as follows. For any widget � , and for any � in the universe of possible elements � � � �
in � , define high 

� � and low 
� � to be nonnegative integers so that ��� high 

� � � ������� low 
� � . � �

Thus, high 
� � and low 

� � are both less than � ����� , and represent the high-order and low-order 
halves of the bits in the binary representation of � . � � 
VEB-INSERT ����� 

if ��� min ����� 

then exchange ��� min ����� � �
if subwidget sub ������� high 

� � � is nonempty, that is, min � sub ������� high 
� � ����� � NIL � � � �

then VEB-INSERT low 
�	 � � sub ������� high 

� � � � �
else min � sub ������� high 

� � ����� low 
� � � � � 

VEB-INSERT high 
� � � summary ����� 

if ��� max ����� 

then max ��������� 

� � 
VEB-SUCCESSOR ����� 

if ��� min ����� 

then return min ����� � �
if low

� � � max � sub ������� high 
� � ��� � � � �

then ��� VEB-SUCCESSOR low 
� � � sub ������� high 

� � � 
return high 

�� � � ��������� � � �
else ��� VEB-SUCCESSOR high 

� � � summary ����� 

return ��� ������� min � sub ������������� 

� �
(a) Argue that the van Emde Boas data structure uses � � space. (Hint: Derive a recur-� � 

rence for the space � � occupied by a widget of size � .) 

Solution: � �
The space � � occupied by the data structure is given by the recurrence � � ��� � � � ��� � � � � ��� � � � � � � � � 
because in each widget there are � � recursive subwidgets, 

� 
recursive summary wid-� 

get, and an array of size
��� � � . � �

First we prove that � � ������������� by the substitution method. Assume by induction ����� �
that � ����� ����� for all 

� ��� . Then � � ��� ��� � ��� � � � � � � � ��� � ������� � � � ��� � � ��� ���������������������� � ��� � � � ��������� � ��������� ����������� � ��������� � ������� 



1
2
3
4
5
6

4 Handout 27: Problem Set 7 Solutions 

provided that ��� is chosen large enough. The constant ��� must be chosen large enough 
to satisfy the base case. � �
Second we prove that � � ����� by the substitution method. Assume by induction ����� �
that � ��� for all 

� ��� . Then � � ��� � ��� � � � � � � � � � ��� 
� � ��� � � � � ��������� � � � ����� 

The constant � must be chosen small enough to satisfy the base case. 

Consider the following modifications to the van Emde Boas data structure. 

1.	 Empty widgets are represented by the value NIL instead of being explicitly represented by a 
recursive construction. 

2. The structure sub ����� containing the subwidgets � �
sub ������������� sub ������� ����������� sub ������� � ������� � 

is stored as a dynamic hash table (as in Section 17.4 of CLRS) instead of an array. The key 
of a subwidget sub ����������� is � , so we can quickly find the � th subwidget sub ����������� by a single 
search in the hash table sub ����� . 

3.	 As a consequence of the first two modifications, the hash table sub ����� only stores the nonempty 
subwidgets. The NIL values of the empty subwidgets are not even stored in the hash table. 
Thus, the space occupied by the hash table sub ����� is proportional to the number of nonempty 
subwidgets of � . 

Whenever we insert an element into an empty (NIL) widget, we create a widget using the following �������
procedure, which runs in time: � � �
CREATE-WIDGET � Returns a new widget containing just the element � . 

allocate a widget structure � 
min ��������� 

max ������� � 
summary ������� NIL


sub ������� a new empty dynamic hash table

return �


In the next two problem parts, you will develop the insertion and successor operations for this 
modified van Emde Boas structure. It suffices to simply describe the necessary changes from 
the VEB-INSERT and VEB-SUCCESSOR operations detailed above. In any case, you should give 
special attention to the interaction with the hash table sub ����� . 



1
2
3
4
5
6
7
8

Handout 27: Problem Set 7 Solutions 5 

(b)	 Give an efficient algorithm for inserting an element into the modified van Emde Boas 
structure, using CREATE-WIDGET as a subroutine. 

Solution: 

The algorithm is similar to VEB-INSERT. One main change is that the two cases 
are distinguished based on testing whether a particular key is stored in the hash table 
sub ����� . A second main change is that when the key is not in the hash table, a new 
widget is created using CREATE-WIDGET. We summarize with the pseudocode: � �
MODIFIED-INSERT ����� 

if � � NIL � �
then � � CREATE-WIDGET � 
else if ��� min ����� 

then exchange ��� min ����� �
if the hash table sub ����� has an entry for key high 

� � � � � �
then MODIFIED-INSERT low

� � � sub ������� high 
� � � � �

else ����� CREATE-WIDGET � �
insert into hash table sub ����� the subwidget ��� with key high 

� � � �
Sets sub ������� high 

� � ��� ��� � � �
9 MODIFIED-INSERT high 

� � � summary ����� 

10 if ��� max ����� 

11 then max ��������� 

(c)	 Give an efficient algorithm for finding the successor of an element in the modified van 
Emde Boas structure. 

Solution: 

The algorithm is identical to VEB-SUCCESSOR, except that references to sub ����������� 

translate into searches in the hash table sub ����� for key � . 
(d) Using known results, argue that the running time of your modified insertion and suc����������� � 

cessor algorithms run in � expected time, under the assumption of simple 
uniform hashing. 

Solution: �������
Each recursive call used to perform instructions, and now additionally performs ������� 

additional hash-table operations. Thus, under the assumption of simple uniform 
hashing, the total cost goes up by an expected constant factor from the normal van 
Emde Boas structure. �

(e) Prove that the space occupied by the modified data structure is
��� � . You may ignore 

the possibility of deletions, and assume that only insertions and successor operations 
are performed. 

Solution: 



6 Handout 27: Problem Set 7 Solutions 

�������
Each widget by itself (ignoring its subwidgets and summary widgets) takes 
space. We store a widget only if its min field is occupied by an element. The hash 
table increases the space by a constant factor (amortizing over the constant cost of �
each subwidgets). Thus the space is

��� � . 



Handout 27: Problem Set 7 Solutions 7 

Problem 7-2. The cost of restructuring red-black trees 

There are four basic operations on red-black trees that perform structural modifications: node 
insertions, node deletions, rotations, and color modifications. We have seen that RB-INSERT and �������
RB-DELETE use only rotations, node insertions, and node deletions to maintain the red-black 
properties, but they may make many more color modifications. 

(a) Describe a legal red-black tree with � nodes such that calling RB-INSERT to add the � ��� ����� � ��� st node causes � � color modifications. Then describe a legal red-black ����� � 
tree with � nodes for which calling RB-DELETE on a particular node causes � � 
color modifications. 

Solution: 

For RB-INSERT, consider a complete red-black tree with an even number of levels 
in which nodes at odd levels are black and nodes at even levels are red. When a ����� �
node is inserted as a child of one of the leaves, then � � color changes will be 
needed to fix the colors of nodes on the path from the inserted node to the root. For 
RB-DELETE, consider a complete red-black tree in which all nodes are black. If a leaf 
is deleted, then the ”double blackness” will be pushed all the way up to the root, with ����� � 
a color change at each level (case 2 of RB-DELETE-FIXUP), for a total of � � 
color changes. 

Although the worst-case number of color modifications per operation can be logarithmic, we shall 
prove that any sequence of � RB-INSERT and RB-DELETE operations on an initially empty red��� �
black tree causes � structural modifications in the worst case. 

(b)	 Some of the cases handled by the main loop of the code of both RB-INSERT-FIXUP 

and RB-DELETE-FIXUP are terminating: once encountered, they cause the loop to 
terminate after a constant number of additional operations. For each of the cases 
of RB-INSERT-FIXUP and RB-DELETE-FIXUP, specify which are terminating and 
which are not. (hint: Look at Figures 13.5, 13.6, and 13.7). 

Solution: 

All cases except for case 1 of RB-INSERT-FIXUP and case 2 of RB-DELETE-FIXUP 

are terminating. 

We shall first analyze the structural modifications when only insertions are performed. Let � be a � �
red-black tree, and define � � to be the number of red nodes in � . Assume that 

� 
unit of potential 

can pay for the structural modifications performed by any of the three cases of RB-INSERT-FIXUP. 

(c) Let � � be the result of applying Case 1 of RB-INSERT-FIXUP to � . Argue that � � � � � � � � ��� � � . 

Solution: 



�
�

8 Handout 27: Problem Set 7 Solutions 

Case 1 of RB-INSERT-FIXUP reduces the number of red nodes by one, a fact that can � � � � �
be seen in Figure 13.4 in CLRS. Hence, � ��� ��� � � . 

(d)	 Node insertion into a red-black tree using RB-INSERT can be broken down into three 
parts. List the structural modifications and potential changes resulting from lines 1-16 
of RB-INSERT, from nonterminating cases of RB-INSERT-FIXUP, and from terminat
ing cases of RB-INSERT-FIXUP. 

Solution: 

Lines 1-16 of RB-INSERT cause one node insertion and a unit increase in potential. 
The nonterminating case of RB-INSERT-FIXUP (Case 1) makes three color changes 
and decreases the potential by one. The terminating cases of RB-INSERT-FIXUP 

(Cases 2 and 3) cause one rotation each and do not affect the potential. 

(e) Using part (d), argue that the amortized number of structural modifications performed �������
by any call of RB-INSERT is . 

Solution: 

The number of structural modifications and amount of potential change resulting from 
lines 1-16 of RB-INSERT and from the terminating cases of RB-INSERT-FIXUP are 
constant, so the amortized cost of these parts are constant. The nonterminating case of ������� �
RB-INSERT-FIXUP may repeat up to � times, but its amortized cost is 0, since 
by our assumption the unit decrease in the potential pays for the structural modifica
tions needed. Therefore, the worst-case amortized cost of RB-INSERT is constant. ��� �

We now wish to prove that there are � structural modifications when there are both insertions 
and deletions. Let us define, for each node � , ��� � if � is red � � � � � if � is black and has no red children � � � � ��� � if � is black and has one red child � � if � is black and has two red children � 
Now we redefine the potential of a red-black tree � as � � � � � � ��� � � � ����� 

and let ��� be the tree that results from applying any nonterminating case of RB-INSERT-FIXUP or 
RB-DELETE-FIXUP to � . � � � � �

(f) Show that � ��� ��� � � for all nonterminating cases of RB-INSERT-FIXUP. 
Argue that the amortized number of structural modifications performed by any call of �������
RB-INSERT-FIXUP is . 



Handout 27: Problem Set 7 Solutions 9 

Solution: 

From Figure 13.4, we see that Case 1 of RB-INSERT-FIXUP makes the following 
changes to the tree: � Changes a black node with two red children to a red node (node � ), resulting in 

a potential change of ��� . � Changes a red node to a black node with one red child (node � in the top diagram; 
node � in the bottom diagram), resulting in no potential change. � Changes a red node to a black node with no red children (node � ), resulting in a 
potential change of 

� 
. �

The total change in potential is � , which pays for the structural modifications per-
formed, and thus the amortized cost of Case 1 (nonterminating case) is � . Because the 
terminating cases of RB-INSERT-FIXUP cause constant structural changes and con����� 

stant change in potential, since � is based solely on node color and the number of 
color changes caused by terminating cases is constant. The amortized cost of the ter
minating cases is at most constant. Hence, the overall amortized cost of RB-INSERT 

is constant. � � � � �
(g) Show that � � � ��� � � for all nonterminating cases of RB-DELETE-FIXUP. 

Argue that the amortized number of structural modifications performed by any call of �������
RB-DELETE-FIXUP is . 

Solution: 

Figure 13.7 shows that Case 2 of RB-DELETE-FIXUP makes the following changes 
to the tree: � Changes a black node with no red children to a red node (node � ), resulting in a �

potential change of � . � If � is red, then it loses a black child, with no effect on potential. � If � is black, then it goes from having no red children to having one red child, �
resulting in a potential change of � . �

The total change in potential is either � or ��� , depending on the color of � . In either 
case, one unit of potential pays for the structural modifications performed, and thus the 
amortized cost of Case 2 (nonterminating case) is at most � . Because the terminating 
cases of RB-DELETE cause constant structural changes and constant change in poten�����
tial, since � is based solely on node color and the number of color changes caused 
by terminating cases is constant. The amortized cost of the terminating cases is at 
most constant. Hence, the overall amortized cost of RB-DELETE-FIXUP is constant. 

(h) Complete the proof that in the worst case, any sequence of � RB-INSERT and RB-DELETE �
operations performs

��� � structural modifications. 

Solution: 



10 Handout 27: Problem Set 7 Solutions 

Since the amortized cost of each operation is bounded above by a constant, the actual 
number of structural modifications for any sequence of � RB-INSERT and RB-DELETE ��� �
operations on an initially empty red-black tree cause � structural modifications in 
the worst case. 


