
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 10
Prof. Erik Demaine

Introduction to Algorithms Day 18 L10.2© 2001 by Charles E. Leiserson

Balanced search trees
Balanced search tree: A search-tree data
structure for which a height of O(lg n) is
guaranteed when implementing a dynamic
set of n items.

Examples:

• AVL trees
• 2-3 trees
• 2-3-4 trees
• B-trees
• Red-black trees

Introduction to Algorithms Day 18 L10.3© 2001 by Charles E. Leiserson

Red-black trees

This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a

descendant leaf have the same number
of black nodes = black-height(x).

Introduction to Algorithms Day 18 L10.4© 2001 by Charles E. Leiserson

Example of a red-black tree

h = 4

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

Introduction to Algorithms Day 18 L10.5© 2001 by Charles E. Leiserson

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.

Introduction to Algorithms Day 18 L10.6© 2001 by Charles E. Leiserson

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2. The root and leaves (NIL’s) are black.

Introduction to Algorithms Day 18 L10.7© 2001 by Charles E. Leiserson

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

3. If a node is red, then its parent is black.

Introduction to Algorithms Day 18 L10.8© 2001 by Charles E. Leiserson

Example of a red-black tree

4. All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0

Introduction to Algorithms Day 18 L10.9© 2001 by Charles E. Leiserson

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

Introduction to Algorithms Day 18 L10.10© 2001 by Charles E. Leiserson

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

Introduction to Algorithms Day 18 L10.11© 2001 by Charles E. Leiserson

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

Introduction to Algorithms Day 18 L10.12© 2001 by Charles E. Leiserson

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

Introduction to Algorithms Day 18 L10.13© 2001 by Charles E. Leiserson

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

Introduction to Algorithms Day 18 L10.14© 2001 by Charles E. Leiserson

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h′ of leaves.

INTUITION:
• Merge red nodes

into their black
parents.

h′

Introduction to Algorithms Day 18 L10.15© 2001 by Charles E. Leiserson

Proof (continued)

h′

h

• We have
h′ ≥ h/2, since
at most half
the leaves on any path
are red.

• The number of leaves
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ lg(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 lg(n + 1).

Introduction to Algorithms Day 18 L10.16© 2001 by Charles E. Leiserson

Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(lg n) time on a red-black
tree with n nodes.

Introduction to Algorithms Day 18 L10.17© 2001 by Charles E. Leiserson

Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:
• the operation itself,
• color changes,
• restructuring the links of the tree via

“rotations”.

Introduction to Algorithms Day 18 L10.18© 2001 by Charles E. Leiserson

Rotations

AA
BB

αα ββ
γγ

RIGHT-ROTATE(B)

BB
AA

γγββ
αα

LEFT-ROTATE(A)

Rotations maintain the inorder ordering of keys:
• a ∈ α, b ∈ β, c ∈ γ ⇒ a ≤ A ≤ b ≤ B ≤ c.
A rotation can be performed in O(1) time.

Introduction to Algorithms Day 18 L10.19© 2001 by Charles E. Leiserson

Insertion into a red-black tree

88

1010

1818

2626

2222

77
Example:

33

1111

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Introduction to Algorithms Day 18 L10.20© 2001 by Charles E. Leiserson

Insertion into a red-black tree

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.

33

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Introduction to Algorithms Day 18 L10.21© 2001 by Charles E. Leiserson

Insertion into a red-black tree

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Introduction to Algorithms Day 18 L10.22© 2001 by Charles E. Leiserson

Insertion into a red-black tree

88

1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Introduction to Algorithms Day 18 L10.23© 2001 by Charles E. Leiserson

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

Introduction to Algorithms Day 18 L10.24© 2001 by Charles E. Leiserson

Pseudocode
RB-INSERT(T, x)

TREE-INSERT(T, x)
color[x] ← RED ⊳ only RB property 3 can be violated
while x ≠ root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1〉
else if x = right[p[x]]

then 〈Case 2〉 ⊳ Case 2 falls into Case 3
〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
color[root[T]] ← BLACK

Introduction to Algorithms Day 18 L10.25© 2001 by Charles E. Leiserson

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.

Introduction to Algorithms Day 18 L10.26© 2001 by Charles E. Leiserson

Case 1

BB

CC

DDAA

x
y

(Or, children of
A are swapped.)

BB

CC

DDAA

new x

Push C’s black onto
A and D, and recurse,
since C’s parent may
be red.

Recolor

Introduction to Algorithms Day 18 L10.27© 2001 by Charles E. Leiserson

Case 2

BB

CC

AA

x

y
LEFT-ROTATE(A)

AA

CC

BB

x

y

Transform to Case 3.

Introduction to Algorithms Day 18 L10.28© 2001 by Charles E. Leiserson

Case 3

AA

CC

BB

x

y
RIGHT-ROTATE(C)

AA

BB

CC

Done! No more
violations of RB
property 3 are
possible.

Introduction to Algorithms Day 18 L10.29© 2001 by Charles E. Leiserson

Analysis

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.
RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

