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Balanced search trees
Balanced search tree: A search-tree data 
structure for which a height of O(lg n) is 
guaranteed when implementing a dynamic 
set of n items.

Examples:

• AVL trees
• 2-3 trees
• 2-3-4 trees
• B-trees
• Red-black trees
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Red-black trees

This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a 

descendant leaf have the same number 
of black nodes = black-height(x).
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Example of a red-black tree

h = 4

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL
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Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.
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Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2. The root and leaves (NIL’s) are black.
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Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

3. If a node is red, then its parent is black.
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Example of a red-black tree

4. All simple paths from any node x to a 
descendant leaf have the same number of 
black nodes = black-height(x).  

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction.  Read carefully.)

• This process produces a tree in which each node 
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h′ of leaves.

INTUITION:
• Merge red nodes 

into their black 
parents.

h′
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Proof (continued)

h′

h

• We have
h′ ≥ h/2, since
at most half
the leaves on any path 
are red.

• The number of leaves 
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ lg(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 lg(n + 1).
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Query operations

Corollary. The queries SEARCH, MIN, 
MAX, SUCCESSOR, and PREDECESSOR
all run in O(lg n) time on a red-black 
tree with n nodes.
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Modifying operations

The operations INSERT and DELETE cause 
modifications to the red-black tree:
• the operation itself,
• color changes,
• restructuring the links of the tree via 

“rotations”.
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Rotations

AA
BB

αα ββ
γγ

RIGHT-ROTATE(B)

BB
AA

γγββ
αα

LEFT-ROTATE(A)

Rotations maintain the inorder ordering of keys:
• a ∈ α, b ∈ β, c ∈ γ  ⇒ a ≤ A ≤ b ≤ B ≤ c.
A rotation can be performed in O(1) time.
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Insertion into a red-black tree

88

1010

1818

2626

2222

77
Example:

33

1111

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.



Introduction to Algorithms Day 18      L10.20© 2001 by Charles E. Leiserson

Insertion into a red-black tree

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.

33

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Insertion into a red-black tree

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Insertion into a red-black tree

88

1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Insertion into a red-black tree
IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33



Introduction to Algorithms Day 18      L10.24© 2001 by Charles E. Leiserson

Pseudocode
RB-INSERT(T, x)

TREE-INSERT(T, x)
color[x] ← RED ⊳ only RB property 3 can be violated
while x ≠ root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1〉
else  if x = right[p[x]]

then 〈Case 2〉 ⊳ Case 2 falls into Case 3
〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
color[root[T]] ← BLACK
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Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.
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Case 1

BB

CC

DDAA

x
y

(Or, children of 
A are swapped.)

BB

CC

DDAA

new x

Push C’s black onto 
A and D, and recurse, 
since C’s parent may 
be red.

Recolor
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Case 2

BB

CC

AA

x

y
LEFT-ROTATE(A)

AA

CC

BB

x

y

Transform to Case 3.
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Case 3

AA

CC

BB

x

y
RIGHT-ROTATE(C)

AA

BB

CC

Done!  No more 
violations of RB 
property 3 are 
possible.
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Analysis

• Go up the tree performing Case 1, which only 
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.
RB-DELETE — same asymptotic running time 
and number of rotations as RB-INSERT (see 
textbook).


