
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 11
Prof. Erik Demaine

Introduction to Algorithms Day 20 L11.2© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Dynamic order statistics

OS-SELECT(i, S): returns the i th smallest element
in the dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

key
size
key
sizeNotation for nodes:

Introduction to Algorithms Day 20 L11.3© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of an OS-tree

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

size[x] = size[left[x]] + size[right[x]] + 1

Introduction to Algorithms Day 20 L11.4© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Selection

OS-SELECT(x, i) ⊳ ith smallest element in the
subtree rooted at x

k ← size[left[x]] + 1 ⊳ k = rank(x)
if i = k then return x
if i < k

then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i – k)

Implementation trick: Use a sentinel
(dummy record) for NIL such that size[NIL] = 0.

(OS-RANK is in the textbook.)

Introduction to Algorithms Day 20 L11.5© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

OS-SELECT(root, 5)

i = 5
k = 6

M
9

M
9

C
5

C
5

i = 5
k = 2

i = 3
k = 2

F
3

F
3

i = 1
k = 1

H
1

H
1
H
1

H
1

Running time = O(h) = O(lg n) for red-black trees.

Introduction to Algorithms Day 20 L11.6© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Data structure maintenance
Q. Why not keep the ranks themselves

in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when
inserting or deleting.

Introduction to Algorithms Day 20 L11.7© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of insertion

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

INSERT(“K”)
M
10
M
10

C
6

C
6

F
4

F
4

H
2

H
2

K
1

K
1

Introduction to Algorithms Day 20 L11.8© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Handling rebalancing
Don’t forget that RB-INSERT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.
Example:

C
11
C
11

E
16
E
16

7 3

4

C
16
C
16

E
8

E
87

3 4

∴RB-INSERT and RB-DELETE still run in O(lg n) time.

Introduction to Algorithms Day 20 L11.9© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-

black trees).
2. Determine additional information to be

stored in the data structure (subtree sizes).
3. Verify that this information can be

maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

Introduction to Algorithms Day 20 L11.10© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Interval trees
Goal: To maintain a dynamic set of intervals,
such as time intervals.

low[i] = 7 10 = high[i]

i = [7, 10]

5
4 15 22

1711
8 18

19
23

Query: For a given query interval i, find an
interval in the set that overlaps i.

Introduction to Algorithms Day 20 L11.11© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Following the methodology

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

int
m

int
m

2. Determine additional information to be
stored in the data structure.
• Store in each node x the largest value m[x]

in the subtree rooted at x, as well as the
interval int[x] corresponding to the key.

Introduction to Algorithms Day 20 L11.12© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

17,19
23

17,19
23

Example interval tree

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

m[x] = max
high[int[x]]
m[left[x]]
m[right[x]]

Introduction to Algorithms Day 20 L11.13© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Modifying operations
3. Verify that this information can be maintained

for modifying operations.
• INSERT: Fix m’s on the way down.

6,20
30

6,20
30

11,15
19

11,15
19

19191414

3030

11,15
30

11,15
30

6,20
30

6,20
30

3030 1414

1919

• Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(lg n); DELETE similar.

Introduction to Algorithms Day 20 L11.14© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

New operations
4. Develop new dynamic-set operations that use

the information.
INTERVAL-SEARCH(i)

x ← root
while x ≠ NIL and (low[i] > high[int[x]]

or low[int[x]] > high[i])
do ⊳ i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

return x

Introduction to Algorithms Day 20 L11.15© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x ← root
[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ x ← left[x]

Introduction to Algorithms Day 20 L11.16© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[14,16] and [5,11] don’t overlap
14 > 8 ⇒ x ← right[x]

Introduction to Algorithms Day 20 L11.17© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[14,16] and [15,18] overlap
return [15,18]

Introduction to Algorithms Day 20 L11.18© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x ← root
[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ x ← left[x]

Introduction to Algorithms Day 20 L11.19© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ x ← right[x]

Introduction to Algorithms Day 20 L11.20© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ x ← right[x]

Introduction to Algorithms Day 20 L11.21© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x = NIL ⇒ no interval that
overlaps [12,14] exists

Introduction to Algorithms Day 20 L11.22© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Analysis
Time = O(h) = O(lg n), since INTERVAL-SEARCH
does constant work at each level as it follows a
simple path down the tree.
List all overlapping intervals:
• Search, list, delete, repeat.
• Insert them all again at the end.

This is an output-sensitive bound.
Best algorithm to date: O(k + lg n).

Time = O(k lg n), where k is the total number of
overlapping intervals.

Introduction to Algorithms Day 20 L11.23© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Correctness
Theorem. Let L be the set of intervals in the
left subtree of node x, and let R be the set of
intervals in x’s right subtree.
• If the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.

Introduction to Algorithms Day 20 L11.24© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Correctness proof
Proof. Suppose first that the search goes right.
• If left[x] = NIL, then we’re done, since L = ∅.
• Otherwise, the code dictates that we must have

low[i] > m[left[x]]. The value m[left[x]]
corresponds to the right endpoint of some
interval j ∈ L, and no other interval in L can
have a larger right endpoint than high(j).

L
high(j) = m[left[x]]

i
low(i)

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.

Introduction to Algorithms Day 20 L11.25© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof (continued)
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] =

high[j] for some j ∈ L.
• Since j ∈ L, it does not overlap i, and hence

high[i] < low[j].
• But, the binary-search-tree property implies that

for all i ′ ∈ R, we have low[j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

L

i j
i ′

