
Introduction to Algorithms Day 29
Massachusetts Institute of Technology 6.046J/18.410J
Singapore-MIT Alliance SMA5503
Professors Erik Demaine, Lee Wee Sun, and Charles E. Leiserson Handout 28

Problem Set 8 Solutions

MIT students: This problem set is due in lecture on Day 29.

Reading: Chapter 15, 16, 23

Both exercises and problems should be solved, but only the problems should be turned in.
Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation instructor and time, the date, and the names of any students with whom you collaborated.

MIT students: Each problem should be done on a separate sheet (or sheets) of three-hole punched
paper.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convo­
luted and obtuse descriptions.

2 Handout 28: Problem Set 8 Solutions

Exercise 8-1. Do exercise 15.4-4 on page 356 of CLRS

Solution:

�When computing a particular row of the -table, only the previous row is needed. Only two rows
need to be kept in memory at a time. ����������������� ��� ��������������������� . If ����� ������� , compute the LCS-LENGTH � otherwise compute ������� ����� ���������LCS-LENGTH � . In either case, use the method given in Exercise ?? to use ��� �
space.

Actually only one row need be kept in memory at a time. When an element of the current row
is computed, it should be stored in a temporary variable. After the next element is computed, the
previous element may be placed in the row.

Exercise 8-2. Do exercise 16.2-2 on page 384 of CLRS.

Solution:

����� � represents the total value that can be taken from the first � items when the knapsack can hold �
.

Exercise 8-3. Do exercise 16.2-3 on page 384 of CLRS.

Solution:

Go greedy. Take the item with maximum value. This item also has the smallest weight and �������therefore, the largest � ratio. One wouldn’t ever take something besides the optimal choice
because the optimal choice weighs at most as much and is worth as least as much as any other
item.

Exercise 8-4. Do exercise 23.2-2 on page 573 of CLRS.

Solution:

Use an array (or a field) to store the distance of each node from the growing tree. Simply search �the entire list to find the node with least distance. There are � iterations each taking ����� time �(for the search) for a total time of ������� .

Problem 8-1. Typesetting

In this problem you will write a program (real code that runs!) to solve the following typesetting
scenario. Because of the trouble you may encounter while programming, we advise you to
START THIS PROBLEM AS SOON AS POSSIBLE. � � ���������You have an input text consisting of a sequence of words of lengths ��� � ��� , where the �
length of a word is the number of characters it contains. Your printer can only print with its built-in
Courier 10-point fixed-width font set that allows a maximum of � characters per line. (Assume

�
�

Handout 28: Problem Set 8 Solutions 3

��� ����������������� � �����that � � for all .) When printing words and on the same line, one space
character (blank) must be printed between the two words. In addition, any remaining space at the
end of the line is padded with blanks. Thus, if words � through

�
are printed on a line, the number

of extra space characters at the end of the line (after word
�
) is � � � ��� � � � � � � � ���

There are many ways to divide a paragraph into multiple lines. To produce nice-looking output,
we want a division that fills each line as much as possible. A heuristic that has empirically shown
itself to be effective is to charge a cost of the cube of the number of extra space characters at the
end of each line. To avoid the unnecessary penalty for extra spaces on the last line, however, the � ��� �cost of the last line is � . In other words, the cost linecost � for printing words � through

�
on a

line is given by � � � if words � through
�

do not fit on a line, � � ��� ��� ���linecost � � � � if
�

(i.e., last line), � � � ��� �� �������� � � ��� � otherwise

The total cost for typesetting a paragraph is the sum of the costs of all lines in the paragraph. �An optimal solution is an division of the words into lines in such a way that the total cost is
minimized.

(a) Argue that this problem exhibits optimal substructure.

Solution: � � ��������������� ��� �Note that � is defined to be � if the words � through do not fit on a line to
guarantee that no lines in the optimal solution overflow. (This relies on the assumption � ��������������� ��� �that the length of each word is not more than � .) Second, notice that � ���is defined to be 0 when

�
, where � is the total number of words; only the actual

last line has zero cost, not the recursive last lines of subproblems, which, since they
are not the last line overall, have the same cost formula as any other line. � � �Now, consider an optimal solution of printing words through . Let be the index
of the first word printed on the last line of this solution. Then typesetting of words ������������� � � must be optimal. Otherwise, we could paste in an optimal typesetting
of these words and improve the total cost of solution, a contradiction. Also note that �the same cut-and-paste argument can be applied if we take to be the index of the � ���first word printed on the � th line, where � � . Therefore this problem displays
optimal substructure.

(b) Recursively define the value of an optimal solution.

Solution:

�
�

4 Handout 28: Problem Set 8 Solutions

� � �Let � be the optimal cost of printing words 1 through
�
. From part (a), it is clear �that given the optimal (i.e., the index of the first word printed on the last line of an

optimal solution), we have � � � ����� � ��������������������� ��� ��� � � � �
However, since we do not know what � is optimal, we need to consider every possible � , so our recursive definition of the optimal cost is � � � ��������� � � ��������������������� ��� ����� � � ��� � � � ��� �

���To accommodate this recursive definition, we define � ��� � .

(c)	 Give an efficient algorithm to compute the cost of an optimal solution. Analyze the
running time and storage space of your algorithm.

Solution: � �We calculate the values of the array from index 1 to , bottom up, which can be � � � � ��� � � �done efficiently since each ��� for � will be available by the time � is
computed. To keep track of the actual optimal arrangement of the words, we record an � �array � , where ����� is the � (in the recursive definition of) which led to the optimal � � ��� ��� . Then, after the arrays for � and � are computed, the optimal cost is � � and the ���optimal solution can be found by printing words ��� through � on the last line, words ��� ��� ��� � ������� � through ��� � on the next to last line, and so on. � ��������������� ��� �A good optimization can be obtained by noticing that computing � takes � �������in general ��� � time because of the summation in the formula. However, it ���is possible to do this computation in ��� time with some additional pre-processing. � ��������� �����We create an auxiliary array � � , where � is a cumulative sum of lengths of �words through � .

� ��� � � � � � ������� ��� ����� ��� � � � � � � ��� �
� ��� ��������������� ��� �Filling in this array takes ��� time using recursion. In order to then compute � ���in ��� time, we modify the formula as follows:

� � if words � through
�

do not fit into a line, � � ��� ���

���linecost � � � if
�

(i.e. last line), � � ��� � � ��� ������� � ��� � ����� ��� � � otherwise

Handout 28: Problem Set 8 Solutions 5

��� � �This algorithm uses ��� space for the arrays and runs in ��� � time, since each � � �value of takes up to calculations as each value of is considered. By noticing �������that at most ����� ��� words can fit on a single line, we can reduce running time � �to ��� � —another significant improvement—by considering only those � for which � � � ������� ��������� � ������� ��� when calculating each � � .

(d)	 Write code (in any programming language you wish1) to print an optimal division of
the words into lines. For simplicity, assume that a word is any sequence of characters
that are not blanks. Thus, a word is a substring strictly between two space characters
or bounded by the beginning or end of the input.

Solution:

The following code is written in C. It is a straightforward implementation of the � � ��� � algorithm described in part (c). The program takes as arguments the name
of the input file and a value for � , reads the input words from the file, computes the
optimal cost, and then reconstructs an optimal solution, which is printed out.

/* 6.046 Spring 1998 Problem 6-1(d) */�
/* NOTE: This is an implementation of the O(nM) algorithm. */�
/* DISCLAIMER: No effort has been made to streamline memory */�
/* management or micro-optimize performance. */�

/* standard header files */�
#include <stdio.h>�
#include <limits.h>�

/* arbitrary data size limits, so no dynamic allocation needed */�
#define WORD_NUM 1024 /* arbitrary max for number of input words */�
#define WORD_LENGTH 32 /* arbitrary max for length of input words */�
#define LINE_LENGTH 80 /* arbitrary max for length of output lines */�

/* macros */�
#define max(A, B) ((A) > (B) ? (A) : (B))�

/* global array of words */�
char words[WORD_NUM+1][WORD_LENGTH]; /* array for input words */�
int auxL[WORD_NUM+1]; /* auxillary array for computing lengths�

of lines - MM*/

/* function prototypes */�
long linecost(int n, int M, int i, int j);�
long dynamic_typeset(int n, int M, int p[]);�

1The solution will be written in C.

*/

6 Handout 28: Problem Set 8 Solutions

/* main expects two arguments: the input file name and M */
int main (int argc, char *argv[]) {

FILE *ifile; /* input file */
int p[WORD_NUM]; /* array of how to get min costs */
char lines[WORD_NUM+1][LINE_LENGTH]; /* buffer for output lines */
int M; /* output line length */
int n; /* number of input words */
char read_word[WORD_LENGTH]; /* for use during reading */
int i, j, k, l; /* aux vars used during construction of solu›

tion */

/* verify arguments */
if(argc != 3) /* verify number of arguments */
exit(1);

if(!(ifile = fopen(argv[1], "r"))) /* open input file */
exit(2);

if(!sscanf(argv[2], "%d", &M)) /* get length of output line */
exit(3);

/* read input words */
n = 1;
while(!feof(ifile)) {
if(1 == fscanf(ifile, "%s", read_word)) { /* assumes input word fits

strcpy(words[n++], read_word);
if(n == WORD_NUM)
break; /* no more room for words */

}
}
n--;
/*fill in auxillary array of word lengths */
auxL[0] = 0;
for(k = 1; k <= n; k++)
auxL[k] = auxL[k-1] + strlen(words[k]);

/* compute and output min cost */�
printf("COST = %ld\n", dynamic_typeset(n, M, p));�

/* construct and output the actual solution */�
j = n; /* start at last line and work backwards */�
l = 0;�

Handout 28: Problem Set 8 Solutions 7

do {
l++;
lines[l][0] = 0; /* line starts off as empty string */
for(i = p[j]; i <= j; i++) { /* words i..j make up a line */

strcat(lines[l], words[i]);
strcat(lines[l], " "); /* space in between words */

}
j = p[j] - 1; /* recurse ... */
/* ... and construct next line */

}�
while(j != 0); /* just finished first line */�

for(i = l; i > 0; i--) /* output lines in right order */
printf("%d:[%d]\t%s\n", l-i+1, strlen(lines[i])-1, lines[i]);

}

/**** algorithmic part *****/

/* returns min cost and a min solution in p[] */
long dynamic_typeset(int n, int M, int p[]) {

int i, j;
/* need an extra space for c[0], so c is indexed from 1 to n, */
/* instead of from 0 to n-1 (like p) */
long c[WORD_NUM+1];
c[0] = 0; /* base case */
for(j = 1; j <= n; j++) { /* fill in c[] bottom-up */
c[j] = LONG_MAX;�
/* find min i (only look at the O(M/2) possibilities) */�
for(i = max(1, j+1-(M+1)/2); i <= j; i++) {�

long lc = linecost(n, M, i, j), cost = c[i-1] + lc;
if(lc > -1 && cost < c[j]) {
c[j] = cost; /* record the cost (c indexed from 1) */
p[j] = i; /* record the min i (p indexed from 0) */

}
}

}
return c[n]; /* min cost of all n words */

}

/* compute cost of a single line, i and j indexed from 0 */
long linecost(int n, int M, int i, int j) {

int k;

8 Handout 28: Problem Set 8 Solutions

long extras = M - j + i; /* compute number of extra spaces */�
extras -= (auxL[j] - auxL[i-1]);�
if(extras < 0)�
return -1; /* signal infinity */

else if(j == n) /* last line (non-recursive defn of last line) */
return 0;

else
return extras*extras*extras; /* assumes result fits in a long */

}

Here is sample output. Please note that for some samples and values of � there exist
several different outputs with optimal cost. Below we have included each sample for
each for the two values of � .

Sample 1, Line length = 40
COST = 2588
1:[40] Typesetting is defined as the production
2:[38] of type, and is therefore a mechanical
3:[38] and creative craft. There are numerous
4:[34] ways to set type, the early way of
5:[40] doing it being called "hot type" because
6:[36] it was done by heating molten metal.
7:[37] Originally type was set by hand, this
8:[33] involved arranging the individual
9:[40] letters on a tray, line by line. Because
10:[35] these letters could be arranged and
11:[39] moved about they were known as "movable
12:[35] type". Up until the 1880s, this was
13:[34] the only method of composition and
14:[38] the number of typefaces and fonts were
15:[39] few. Johann Gutenberg is a famous name,
16:[37] and contrary to popular belief he did
17:[37] not invent the printing press, or the
18:[36] ink or movable type. He did however,
19:[35] perfect the art of handsetting with
20:[39] movable type. It is odd why Gutenberg’s
21:[34] name is so well known, considering
22:[36] that he was not thought to be one of
23:[38] the leading contributers to the art of
24:[37] communication. There were many others
25:[39] who invented and created much more than
26:[38] Gutenberg, but it is his name which is

the
by

one of

Handout 28: Problem Set 8 Solutions 9

27:[37] attached to so many of these historic�
28:[38] events, many of which he didn’t do. In�
29:[39] Typographic Milestones, by Allan Haley,�
30:[38] he tells of a theory which states that�
31:[37] Gutenberg was not the first to invent�
32:[34] typography. This theory tells of a�
33:[37] man named Lourens Coster who was from�
34:[36] Holland. Supposedly one day during a�
35:[35] walk in the woods he busied himself�
36:[37] by cutting letters out of beech bark,�
37:[36] and when he returned home he decided�
38:[38] to put them next to each other to form�
39:[38] words and sentences. For entertainment�
40:[38] purposes he inked them and put them on�
41:[37] paper to amuse his grandchildren. The�
42:[40] rumour has it that he later used letters�
43:[38] cast from metal in place of the wooden�
44:[39] ones and actually printed entire books,�
45:[34] until Gutenberg stole the idea and�
46:[38] became rich off his "invention", while�
47:[19] Coster got nothing.�

Sample 1, Line length = 72�
COST = 1651�
1:[68] Typesetting is defined as the production of type, and is there-�
fore a�
2:[71] mechanical and creative craft. There are numerous ways to set type,�
3:[68] early way of doing it being called "hot type" because it was done�
4:[68] heating molten metal. Originally type was set by hand, this involved�
5:[71] arranging the individual letters on a tray, line by line. Be-�
cause these�
6:[69] letters could be arranged and moved about they were known as "movable�
7:[66] type". Up until the 1880s, this was the only method of composition�
8:[67] and the number of typefaces and fonts were few. Johann Guten›�
berg is�
9:[67] a famous name, and contrary to popular belief he did not in-�
vent the�
10:[67] printing press, or the ink or movable type. He did how-�
ever, perfect�
11:[67] the art of handsetting with movable type. It is odd why Guten›�
berg’s�
12:[71] name is so well known, considering that he was not thought to be�

many
is

many of

was from

he

-- --

10 Handout 28: Problem Set 8 Solutions

13:[69] the leading contributers to the art of communication. There were�
14:[67] others who invented and created much more than Gutenberg, but it�
15:[71] his name which is attached to so many of these historic events,�
16:[71] which he didn’t do. In Typographic Milestones, by Allan Ha-�
ley, he tells�
17:[67] of a theory which states that Gutenberg was not the first to invent�
18:[72] typography. This theory tells of a man named Lourens Coster who�
19:[72] Holland. Supposedly one day during a walk in the woods he bus›�
ied himself�
20:[66] by cutting letters out of beech bark, and when he returned home�
21:[71] decided to put them next to each other to form words and sen›�
tences. For�
22:[71] entertainment purposes he inked them and put them on pa-�
per to amuse his�
23:[69] grandchildren. The rumour has it that he later used let›�
ters cast from�
24:[68] metal in place of the wooden ones and actually printed en-�
tire books,�
25:[67] until Gutenberg stole the idea and became rich off his "in›�
vention",�
26:[25] while Coster got nothing.�

Sample 2, Line length = 40�
COST = 2026�
1:[35] The first practical mechanized type�
2:[36] casting machine was invented in 1884�
3:[37] by Ottmar Mergenthaler. His invention�
4:[38] was called the "Linotype". It produced�
5:[37] solid lines of text cast from rows of�
6:[37] matrices. Each matrice was a block of�
7:[36] metal usually brass into which�
8:[34] an impression of a letter had been�
9:[39] engraved or stamped. The line-composing�
10:[32] operation was done by means of a�
11:[35] keyboard similar to a typewriter. A�
12:[37] later development in line composition�
13:[32] was the "Teletypewriter". It was�
14:[36] invented in 1913. This machine could�
15:[37] be attached directly to a Linotype or�
16:[39] similar machines to control composition�
17:[39] by means of a perforated tape. The tape�
18:[40] was punched on a separate keyboard unit.�

to

-- --

Handout 28: Problem Set 8 Solutions 11

19:[36] A tape-reader translated the punched�
20:[39] code into electrical signals that could�
21:[38] be sent by wire to tape-punching units�
22:[40] in many cities simultaneously. The first�
23:[35] major news event to make use of the�
24:[31] Teletypewriter was World War I.�

Sample 2, Line length = 72�
COST = 940�
1:[67] The first practical mechanized type casting machine was in-�
vented in�
2:[69] 1884 by Ottmar Mergenthaler. His invention was called the "Linotype".�
3:[72] It produced solid lines of text cast from rows of matri›�
ces. Each matrice�
4:[70] was a block of metal usually brass into which an im›�
pression of a�
5:[69] letter had been engraved or stamped. The line-composing op›�
eration was�
6:[72] done by means of a keyboard similar to a typewriter. A later development�
7:[64] in line composition was the "Teletypewriter". It was in-�
vented in�
8:[70] 1913. This machine could be attached directly to a Lino›�
type or similar�
9:[66] machines to control composition by means of a perforated tape. The�
10:[70] tape was punched on a separate keyboard unit. A tape-reader translated�
11:[70] the punched code into electrical signals that could be sent by wire�
12:[71] tape-punching units in many cities simultaneously. The first ma›�
jor news�
13:[56] event to make use of the Teletypewriter was World War I.�

Sample 3, Line length = 40�
COST = 2011�
1:[35] Throughout his life, Knuth had been�
2:[38] intrigued by the mechanics of printing�
3:[35] and graphics. As a boy at Wisconsin�
4:[36] summer camp in the 1940s, he wrote a�
5:[35] guide to plants and illustrated the�
6:[39] flowers with a stylus on the blue ditto�
7:[40] paper that was commonly used in printing�
8:[36] at that time. In college, he recalls�
9:[38] admiring the typeface used in his math�
10:[37] texbooks. But he was content to leave�

1977,

12 Handout 28: Problem Set 8 Solutions

11:[38] the mechanics of designing and setting�
12:[37] type to the experts. "I never thought�
13:[39] I would have any control over printing.�
14:[34] Printing was done by typographers,�
15:[36] hot lead, scary stuff. Then in 1977,�
16:[37] I learned about new printing machines�
17:[39] that print characters made out of zeros�
18:[39] and ones, just bits, no lead. Suddenly,�
19:[40] printing was a computer science problem.�
20:[34] I couldn’t resist the challenge of�
21:[35] developing computer tools using the�
22:[34] new technology with which to write�
23:[34] my next books." Knuth designed and�
24:[36] implemented TeX, a computer language�
25:[39] for digital typography. He explored the�
26:[39] field of typography with characteristic�
27:[37] thoroughness. For example, he wrote a�
28:[39] paper called "The letter S" in which he�
29:[39] dissects the mathematical shape of that�
30:[37] letter through the ages, and explains�
31:[34] his several day effort to find the�
32:[38] equation that yields the most pleasing�
33:[8] outline.�

Sample 3, Line length = 72�
COST = 1191�
1:[65] Throughout his life, Knuth had been intrigued by the me›�
chanics of�
2:[70] printing and graphics. As a boy at Wisconsin summer camp in the 1940s,�
3:[71] he wrote a guide to plants and illustrated the flowers with a sty›�
lus on�
4:[69] the blue ditto paper that was commonly used in printing at that time.�
5:[71] In college, he recalls admiring the typeface used in his math texbooks.�
6:[71] But he was content to leave the mechanics of designing and set›�
ting type�
7:[72] to the experts. "I never thought I would have any control over printing.�
8:[71] Printing was done by typographers, hot lead, scary stuff. Then in�
9:[71] I learned about new printing machines that print charac›�
ters made out of�
10:[69] zeros and ones, just bits, no lead. Suddenly, printing was a computer�
11:[71] science problem. I couldn’t resist the challenge of de›�
veloping computer�

the

Handout 28: Problem Set 8 Solutions 13

12:[66] tools using the new technology with which to write my next books."�
13:[67] Knuth designed and implemented TeX, a computer language for digital�
14:[67] typography. He explored the field of typography with characteristic�
15:[68] thoroughness. For example, he wrote a paper called "The let›�
ter S" in�
16:[67] which he dissects the mathematical shape of that letter through�
17:[67] ages, and explains his several day effort to find the equa›�
tion that�
18:[33] yields the most pleasing outline.�

For part (d), you should turn in a printout of the code you have written and the output of your pro-
gram on the input samples which are provided at the end of the problem set. Use two values of � ��� ���(the maximum number of characters per line), namely � � and � � , on each input sample.
You can download these input samples from the 6.046 webpage.

If, for some reason, you need to type the samples in yourself, please be careful about reproducing

text accurately. For example, substituting double quotes in place of two single quotes will result

in a different layout. Remember that collaboration, as usual, is allowed to solve problems, but you

must write your program by yourself.

(e)	 Suppose instead that the cost of a line is defined as just the number of extra spaces.
That is, when words � through

�
are put on a line, the cost of that line is �� � if words � through

�
do not fit on a line, �

linecost ��� ��� � ��� ��� � if
�

(i.e., last line),�� � ��� � � � � otherwise � ��� � � � �
and that the total cost is still the sum of the costs of all lines in the paragraph. Give an
efficient algorithm that finds an optimal solution in this case.

Solution:

We use a straightforward greedy algorithm, which puts as many words as possible on
each line before going to the next line. The algorithm clearly runs in linear time.

We need to show that any optimal solution has the same cost as the solution obtained
by this greedy algorithm. Consider some optimal solution. If this solution is the same �as the greedy solution, then we are done. If it is different, then there is some line
which has enough space left over for the first word of the next line. In this case, we ����� �move the first word of line to the end of line . This does not change the total
cost, since if the length of the word moved is � , then the reduction to the cost of line �
will be ����� , for the word and the space before it, and the increase of the cost of line ����� will also be ����� , for the word and the space after it. (If the moved word was the
only word on line ����� , then by moving it to the previous line the total cost is reduced,
a contradiction to the supposition that we have an optimal solution.) As long as there

14 Handout 28: Problem Set 8 Solutions

are lines with enough extra space, we can keep moving the first words of the next lines
back without changing the total cost. When there are no longer any such lines, we will
have changed our optimal solution into the greedy solution without affecting the total
cost. Therefore, the greedy solution is an optimal solution.

Problem 8-2. Scheduling to minimize average completion time � � ��������� � � �Suppose you are given a set � ��� � � � � of tasks, where task � requires � units of �
processing time to complete, once it has started. You have one computer on which to run these
tasks, and the computer can run only one task at a time. Let ��� be the completion time of task � � � , that is, the time at which task � completes processing. Your goal is to minimize the average �������� ����completion time, that is, to minimize � � � � . For example, suppose there are two tasks, � � ��� ���and � , with ��� and � , and consider the schedule in which � runs first, followed by � � . � � � ��� � ��� ��������� �������Then � , � , and the average completion time is � � . � ��� ���(a) Suppose there are two tasks with ��� and � . Consider (1) the schedule in �

which task 1 runs first, followed by task 2 and (2) the schedule in which task 2 runs � �first, followed by task 1. In each case, state the values of � and and compute the �
average completion time.

Solution:

For (1) the schedule in which task 1 runs first, followed by task 2: � � ��� � � ��� � ��� and � ��� � � � � ��� ��� ������� �������average completion time � � � � � �
For (2) the scedule in which task 2 runs first, followed by task 1: � � ��� � � ��� � and � � � ��� � � � � ��� ��� ������� �������average completion time � � � � � �

(b) Give an algorithm that schedules the tasks so as to minimize the average completion �time. Each task must run nonpreemptively, that is, once task is started, it must run �continuously for � units of time. Prove that your algorithm minimizes the average
completion time, and state the running time of your algorithm.

Solution:

Run tasks in shortest processing time order. This can be done by sorting the elements
using heap sort or merge sort and then scheduling them in the order of increasing ���������scheduling times. This algorithm takes ��� . ���������This algorithm uses a greedy strategy. It is shown to be optimal as follows:����������������������� ����� � � � ��� � � ���This cost can also be expressed as ��� ����� � ����� � � � � � ��� � � � ��� ����� ����� ����� � ��� . ��� is added in the most times, then � , etc. As a result,� � � ��� should have the shortest processing time, then � , etc. otherwise, you could cut �
and paste in a shorter processing time and produce a faster algorithm. As a result, the
greedy property holds and our algorithm is correct.

Handout 28: Problem Set 8 Solutions 15

�Suppose now that the tasks are not all available at once. That is, each task has a release time �
before which it is not available to be processed. Suppose also that we allow preemption, so that �a task can be suspended and restarted at a later time. For example, a task with processing time ����� � may start running at time 1 and be preempted at time 4. It can then resume at time 10 but
be preempted at time 11 and finally resume at time 13 and complete at time 15. Task � has run for
a total of 6 time units, but its running time has been divided into three pieces.

(c)	 Give an algorithm that schedules the tasks so as to minimize the average completion
time in this new scenario. Prove that your algorithm minimizes the average completion
time, and state the running time of your algorithm.

Solution:

This problem also exhibits the greedy property which can be exploited by running
tasks in shortest remaining processing time order. Use a priority queue which priori­
tizes based on the task with the shortest time remaining. Each time a new task comes
up, insert it into the queue and if it would take less time to do that task then the one
you are on, do the shorter task. Each time you finish a task, the next task you should
do is the one with the least remaining time until completion. The priority queue can ���������be maintained in ��� time.

This algorithm minimizes the average completion time and the proof is similar to part
�
. If we do not schedule using the greedy algorithm based on remaining processing

time, then we will be able to swap two time slots which would then improve the sum
of the completion times and thus result in a contradiction. For example, assume you � �have two tasks at time , where task has � processing time remaining and

�
has �

processing time remaining where ����� . Assume for the purposes of contradicction � � � �that the optimal answer has task running before task . If is done before then � ��� ��������� ��������� � � and � � . The average completion time is ��� ��� . However if
� ��������� � ��������� �were done before � , then � � and � . The average completion time � ���

is now ��� � � which is less the average completion time for the “optimal” solution �since ����� . As a result, the task with the lowest time remaining should be done first.

