FEYNMAN RULES FOR TREE GRAPHS
IN QED, QCD AND THE STANDARD MODEL

2→2 cross section formula
\[\sigma = \frac{1}{4[(p_1 \cdot p_2)^2 - m_1^2 m_2^2]^{1/2}} |A|^2 \frac{d\text{Lips}}{d\omega} \frac{1}{(2\pi)^{3n-4}} \]

1→2 decay formula
\[d\text{Lips} = \frac{n \frac{d^3\Phi_n}{2E_n}}{2E_n} \delta(p_c - p_f) \]
\[d\Gamma = \frac{1}{2m_1} |A|^2 d\text{Lips} (m_1; p_2, p_3). \]

Note that for two identical particles in the final state an extra factor of \(\frac{1}{2} \) must be included in these formulae.

The amplitude \(A \) is the invariant matrix element for the process under consideration, and is given by the Feynman rules of the relevant theory. For particles with non-zero spin, unpolarised cross sections are formed by averaging over initial spin components and summing over final.

\(A \) is a complex number, function of momenta & helicity of the particles.

F.1. qed: rules for tree graphs

F.1.1 External particles

Spin-\(\frac{1}{2} \). For each fermion or antifermion line entering the graph include the spinor (column vector in 4-d space). \(\bar{\psi} \) creation
\[\bar{\psi} \rightarrow u(p, s), \quad \text{or} \quad \bar{\psi}(p, s) \rightarrow \psi(-p, -s) \]
and for spin-\(\frac{1}{2} \) particles leaving the graph, the spinor (row vector)
\[\psi \text{ creation} \]

Photons. For each photon line entering the graph include a polarisation vector \(v_\mu(k, \lambda) \) in 4-d Lorentz Space
\[4 \text{ d Lorentz Space} \]
And for photons leaving the graph the vector
\[\xi^\mu(k', \lambda') \text{ for real photons} \]
Useful Formulae

\[\sigma \leq (2J+1) \frac{8\pi}{5} \]

\[h = 6.58 \times 10^{-23} \text{ GeV sec} = 1 \]
\[\hbar = 0.197 \text{ GeV F} = 1 \]

\[(1 \text{ GeV})^{-2} = 0.389 \text{ mb} \]
\[\alpha = \frac{\alpha^2}{4\pi} = \frac{1}{137} \]

\[x^\mu = (x, x) \]
\[p^\mu = (E, p) = \left(\frac{\partial}{\partial t} - \nabla \right) = i \partial^\mu \]
\[p \cdot x = E t - p \cdot x, \quad p^2 = p^\mu p_\mu = E^2 - p^2 = m^2 \]
\[(\sigma^2 + m^2)\phi = 0, \quad (i\gamma^\mu \partial_\mu - m)\psi = 0. \]

In an electromagnetic field, \(i \partial^\mu \rightarrow i \partial^\mu + eA^\mu \) (charge \(-e \))

\[j^\mu = -ie(\phi^\mu \partial_\mu \psi - \psi \partial_\mu \phi^\mu), \quad j^\mu = -e\bar{\psi}\gamma^\mu \psi \]

\(\gamma \)-Matrices

\[\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2\sigma^\mu \gamma^\nu, \quad \gamma^\mu = \gamma^0 \gamma^\mu \gamma^0. \]
\[\gamma^0 = \gamma^0, \quad \gamma^0 \gamma^0 = 1; \quad \gamma^k = -\gamma^k, \quad \gamma^k \gamma^k = -1, \quad k = 1, 2, 3. \]
\[\gamma^5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3, \quad \gamma^5 \gamma^5 + \gamma^5 \gamma^5 = 0, \quad \gamma^{51} = \gamma^5. \]

(Trace theorems on pages 123 and 261)

Standard representation:

\[\gamma^0 = \beta = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \gamma = \beta \alpha = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix}, \quad \gamma^5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]
\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

Spinors

\[u = u^\gamma \]
\[\bar{u} = \bar{u} \gamma^0 \]
\[u'(\gamma^1 + 2E \delta_{\gamma^1}) = 0, \quad \bar{u}'(\gamma^0 + 2m \delta_{\gamma^0}) = 0 \]
\[u'(\gamma - \gamma^1) u = u_1, \quad (1 + \gamma^1) u = u_R. \]

If \(m = 0 \) or \(E \gg m \), then \(u_1 \) has helicity \(\lambda = -\frac{1}{2} \), \(u_R \) has \(\lambda = \frac{1}{2} \).
TABLE 6.2
Feynman Rules for $-i\mathcal{M}$

<table>
<thead>
<tr>
<th>Multiplicative Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Lines</td>
</tr>
<tr>
<td>Spin 0 boson (or antiboson)</td>
</tr>
<tr>
<td>Spin $\frac{1}{2}$ fermion (in, out)</td>
</tr>
<tr>
<td>antifermion (in, out)</td>
</tr>
<tr>
<td>Spin 1 photon (in, out)</td>
</tr>
<tr>
<td>Internal Lines—Propagators (need $+i\epsilon$ prescription)</td>
</tr>
<tr>
<td>Spin 0 boson</td>
</tr>
<tr>
<td>Spin $\frac{1}{2}$ fermion</td>
</tr>
<tr>
<td>Massive spin 1 boson</td>
</tr>
<tr>
<td>Massless spin 1 photon (Feynman gauge)</td>
</tr>
<tr>
<td>Vertex Factors</td>
</tr>
<tr>
<td>Photon—spin 0 (charge $-e$)</td>
</tr>
<tr>
<td>Photon—spin $\frac{1}{2}$ (charge $-e$)</td>
</tr>
</tbody>
</table>

Loops: $\int d^4k/(2\pi)^4$ over loop momentum; include -1 if fermion loop and take the trace of associated γ-matrices

Identical Fermions: -1 between diagrams which differ only in $e^- \leftrightarrow e^-$ or initial $e^- \leftrightarrow$ final e^+
F.1.2 Propagators

Spin-0

\[\frac{1}{p^2} \]

Spin-\(\frac{1}{2} \)

\[\frac{1}{p^2 - m^2 + i\epsilon} \]

Photon

\[\frac{i}{k^2} \left(-\frac{\not{q}^2}{k^2} + (1 - \xi) \frac{k^2 k'^2}{k^2} \right) \]

\[\frac{i}{k^2} \left(\frac{\not{k}^2}{k^2} \right) \]

for a general \(\xi \) gauge. Calculations are usually performed in Lorentz or Feynman gauge with \(\xi = 1 \) and photon propagator
F.1.3 Vertices

Spin-0

\[-ie(p + p')_\mu \]
(for charge \(+e \))

\[2ie^2 g_{\mu\nu} \]

Spin-\(\frac{1}{2} \)

\[-ie\gamma_\mu \]
(for charge \(+e \))
F.2 QCD: rules for tree graphs

F.2.1 External particles

Quarks. The SU(3) colour degree of freedom is not written explicitly: the spinors have $3(\text{colour}) \times 4(\text{Dirac})$ components

\[
\text{ingoing: } u(p, s) \quad \text{or} \quad v(p, s) \\
\text{outgoing: } \bar{u}(p', s') \quad \text{or} \quad \bar{v}(p', s')
\]
as for QED.

Gluons. Besides the spin-1 polarisation vector, external gluons also have a 'colour polarisation' vector $a^\mu(\alpha = 1, 2, \ldots, 8)$ specifying the particular colour state involved:

\[
G_\mu^\alpha
\]

\[
\text{ingoing: } e_\mu^\alpha(k, \lambda) a^\alpha \\
\text{outgoing: } e_\mu^\alpha(k', \lambda') a^\alpha
\]

F.2.2 Propagators

Quark

\[
\frac{i}{\not{p} - m} = \frac{i}{\not{p}^2 - m^2}
\]

Gluon

\[
\frac{i}{q^2} \left(-g^{\mu\nu} + (1 - \xi) \frac{q^\mu q^\nu}{q^2} \right) \delta^{\alpha\beta}
\]

for a general ξ gauge. In Feynman gauge this reduces to

\[
\frac{i}{q^2} (-g^{\mu\nu}) \delta^{\alpha\beta}
\]

which is usually the most convenient form.

\[
\lambda_1 \equiv \begin{pmatrix}
\sigma^1 \\
\sigma^2 \\
\sigma^3
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
\sigma^3
\end{pmatrix}, \begin{pmatrix}
\sigma^1 \\
\sigma^2 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
\sigma^3 \\
0
\end{pmatrix}
\]

\[
\lambda_3 = \left(\sigma_{+1} + i \sigma_{-2} \right) / \sqrt{3}
\]

F.2.3 Vertices
It is important to remember that the rules given above are only adequate for tree diagram calculations in QCD (see Chapter 14.4).

F.3 The standard model of electroweak interactions: rules for tree graphs.

F.3.1 External particles

Leptons and quarks

Ingoing: \(u(p, s) \) or \(v(p, s) \)

Outgoing: \(\bar{u}(p', s') \) or \(\bar{v}(p', s') \).

Vector bosons

Ingoing: \(\varepsilon_\mu^\lambda(k, \lambda) \)

Outgoing: \(\varepsilon_\nu^\hat{\lambda}(k', \hat{\lambda}) \).

Take \(k \parallel \Sigma \), \(\lambda = \pm 1 \), \(\varepsilon_\pm = \pm \sqrt{\frac{1}{2}}(0, 1, \pm i, 0) \)

F.3.2 Propagators

Leptons and quarks

\[
\frac{i}{p - m} = i \frac{p + m}{p^2 - m^2}.
\]
Vector mesons (U gauge)

\[W^\pm, Z^0 \quad = \quad \frac{i}{k^2 - M_V^2} \left(-g^\mu + k^\mu k^\nu / M_V^2 \right) \quad -M_V^2 \Rightarrow -M_V^2 + i M_V \]

where the mass \(M_W \) of the charged W bosons is given by

\[\frac{G_F}{2^{1/2}} = \frac{g^2}{8 M_W^2} \]

with \(g \sin \theta_W = e \) (where, in our convention, \(e > 0 \)) so that

\[M_W = \frac{\sqrt{(1 + \Delta r)} e (m_e)}{2^{5/4} G_F^{1/2} \sin \theta_W} \approx \left(\frac{37.3}{\sin \theta_W} \right) \text{GeV}/c^2 \sqrt{(1 + \Delta r)} \]

The mass of the neutral Z boson is related to that of the charged W bosons by

\[M_Z = M_W / \cos \theta_W . \]

Higgs scalar

\[\quad = \quad \frac{i}{p^2 - \mu^2} \]

F.3.3 Vertices

Charged current weak interactions

\[\quad -i \frac{g}{2^{1/2} \gamma_5} \frac{1 - \gamma_3}{2} \]

\[\quad -i \frac{g}{2^{1/2} \cos \theta_W \gamma_5} \frac{1 - \gamma_3}{2} \]
Neutral current weak interactions

Massless neutrinos

Massive fermions

where
\[c_L = -\frac{1}{2} + \sin^2 \theta_W, \quad c_L = +\frac{1}{2} - \frac{3}{2} \sin^2 \theta_W, \quad c_L = -\frac{1}{2} + \frac{1}{2} \sin^2 \theta_W, \]
\[c_R = \frac{1}{2} \left(1 - \gamma_5 \right), \quad c_R = -\frac{1}{2} \sin^2 \theta_W, \quad c_R = \frac{1}{2} \sin^2 \theta_W, \]
\[c_R = \frac{1}{2} + \frac{1}{2} \sin^2 \theta_W, \]

(massless neutrinos have \(c_L = \frac{1}{2}; c_R = 0 \)).

Vector boson couplings. (a) Trilinear couplings

\[YW^+W^- \text{ vertex} \]

\[i e \left[g_{\mu\nu}(k_1 - k_2) + g_{\mu\nu}(k_2 - k_2) + \frac{1}{2} (k_1 - k_1) \right] \]
Fermion Yukawa couplings (massive fermions, mass m_i)

\[\frac{ie}{\sin 2\theta_w} M_Z g_{\alpha i} \]

Trilinear self-coupling

\[\frac{ie}{2 \sin \theta_w M_W} m_i \]

(b) Quadrilinear couplings

$\sigma \sigma W^+ W^-$ vertex

\[-i \frac{3\mu^2 e}{2 M_W \cos \theta_W} \]

$\sigma \sigma ZZ$ vertex

\[\frac{ie^2}{4 \sin^3 \theta_W} g_{\mu \nu} \]

\[\frac{ie^2}{2 \sin^2 2\theta_W} g_{\mu \nu} \]