12.010 Computational Methods of Scientific Programming
Lecture 13

Today’s lecture
• More Mathematica functionality
• Mathematica Version of poly_area.f

Review of Lecture 12

• Started looking at Mathematica and went over the basic features:
 – Front End / Kernel
 – Notebooks
 – Arbitrary Numerical Precision
 – Programming Control Features
Resources

• Mathematica Book
• Third Party Books
 – Programming in Mathematica
 – Beginner’s Guide to Mathematica
 • Electronic Book as well!!*
• Web Sites*
 – http://www.wolfram.com
 – http://www.mathsource.com
• Internal*
 – ? and ??
 – Help

Conversion of Units*

• Add the units package: <<Miscellaneous`Units
• Convert[quantity with units, new units]
• ConvertTemperature[number, old scale, new scale]
• SI[], MKS[], CGS[]
Variables and Scope

• Variable Types (optional, but can be helpful)
• Contexts (Global` and others)
• Local variables in Module
• Mathematica iterator in Do, Table, and others*
 – {max}, {symbol, max}, {symbol, min, max}
 – {symbol, min, max, increment}

Assignment and Delayed Assignment

• Assignment and delayed assignment
 – = is immediate
 – := is delayed
• Functions that remember their values*
 – f[x_] := f[x] = function of x
 – Mathematica looks for specific definitions first, so it checks first for previously calculated values are checked
 – ? yields the usage, if defined: f::usage = "string";
 – ?? yields the definition and all the values
String Operations*

- ToString[] and ToExpression[]
- String Manipulation
 - StringTake
 - StringDrop
 - StringJoin
- Sorting strings
- Characters from strings

Importing and Exporting*

- Directories and $Path
- Importing Data
- Images
- Saving Variables (Save[])
- Saving Kernel States (DumpSave[])
Mathematica Programming

- Evolution of code
 - Set of statements
 - Group into functions
 - Package of functions
- Use of Module
 - no compiling
- Mathematica Compile[]
 - logical, integer, real, or complex arguments
 - single value returned (not a list)
 - speeds up numerical calculations

Translating poly_area.f

- Expressions go from Mathematica to FORTRAN with FortranForm[]*
- Basic Translation from FORTRAN to Mathematica
 - Possible, but not Mathematica savvy
- Mathematica style
 - Descriptive variable names (begin with lower case and use embedded capitals)
 - Short functions that use the power of Mathematica
 - Use lists instead of arrays
 - "map" over lists rather than loop
- Example of poly_area.f -> polyArea*