
1.00/1.001 Introduction to Computers and Engineering 
Problem Solving 

Fall 2002 

Problem Set 3 

Due: Day 11 

Problem 1. Finding the Median (15%) 
Write a method that takes in an integer array and returns an integer that is the median of 
the array. For example, if array A = { 5, 2, 10, 3, 7, 8, 6 }, the returned value should be 6. 
The median can be found by sorting the array first and then choosing the middle value. 
Therefore, if you have an array like {2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7}, the median should 
be 3. For an array with even number of elements, calculate the average of the two middle 
values. For example, array B = { 4, 6, 11, 9 }, the median should be (6+9)/2. Since this 
method should return an integer, we would accept value with either 7 or 8 in this case. In 
main(), write a test that verifies that your implementation is correct. 

There are many sorting methods, you are welcome to use anything you know. Here we 
will introduce insertion sort. It is an efficient algorithm for sorting a small number of 
elements. Insertion sort works the way many people sort a hand of playing cards. We 
start with an empty left hand and the cards face down on the table. We then take the first 
card off the top and hold it in our left hand. Next we take the second card off the top and 
then compare with the first card and put it in place. Then the third card is taken and 
compared to the two cards we have already sorted and again placed in the right position. 

Basically we take one card at a time from the table and insert it into the correct position 
in the left hand. The way to do this is by comparing it with each of the cards already in 
the hand, from right to left. At all times, the cards held in the left hand are sorted. If we 
are sorting an array { 5, 2, 9, 3, 7 } with increasing order, 

5 2 9 3 7 

We take the first number out (which is 5) and by itself, it is sorted. 

5 2 9 3 7 

We look at the second number and notice that the left hand side is not sorted. 

5 9 32 7 



Therefore we switch the two numbers and make them sorted. 

2 5 9 3 7 

Now the left hand side is sorted, let us look at the next number 9, and the left hand side is 
still sorted. 

2 5 9 3 7 

Next is 3, 

2 5 9 3 7 

The left hand side is not sorted anymore, because 3 is not greater than 9. Therefore, we 
swap them. 

2 5 3 9 7 

The left hand side is still not sorted. We will continue to swap the number 3 with the 
number that comes before it until the left hand side is sorted. 

2 3 5 9 7 

Now we have one more number to go, we find that 7 is less than the number that comes 
before it(which is 9), so we will use the method that we used before to put the number 7 
in the correct position such that the entire array is sorted. At the end, we would get 

2 3 5 7 9 

(Hint: In Java®, you would need two loops to achieve sorting, one within the other) 

Problem 2. Median Filtering (85%) 
Introduction 
In this problem,nyou will learn a bit about how modern computers represent and 
manipulate images. More importantly, you will write a class that will perform a simple 
but important image restoration technique called median filtering. We will return to 
image display and computer graphics later in the course. In order to shield you from some 
of the messy details, this problem set will supply four of the five classes you will need to 



solve the problem. But in writing your class to fit into the structure provided by the 
prewritten code, you will practice another important skill -- learning to use a preexisting 
API (application programming interface). 

Images and Color 
Computers store images on secondary storage like hard disk in many formats. Often these 
formats perform image compression because images can be very large. Most modern 
computers, however, represent images in main memory in one of only a very limited 
number of formats. Java® has chosen one of these, arguably the simplest and most general, 
as the standard. In this format, an image is represented as a rectangular array of color 
points or pixels. Each pixel is represented by three small numbers, a red, green, and blue 
intensity, since most colors that we can perceive can be represented by a combination of 
these three additive primary colors. Java® also includes a fourth small number called the 
alpha component that represents the color's transparency, but we will ignore it in this 
problem set. Most humans can not distinguish more than 256 levels of any color so Java® 
uses 8 bits or a byte to represent each of the color and alpha components. This has the 
advantage that the whole pixel can be packed into a single 32-bit integer or int. (For those 
who are interested, the alpha goes into the high order byte, then the red and green 
components, and finally the blue component goes in the low order or rightmost position 
in the int.) Java® has a number of classes that can be used to represent and manipulate 
images. These classes allow you to access individual pixels or blocks of pixels and also to 
disassemble the color components. 

The Problem 
My baby sister’s birthday is coming up in two weeks. However, our beloved dog just 
passed away recently. She misses him a lot. There is an old picture of him, unfortunately 
our neighbor’s baby boy played around with it and bent it. There are a few scratches on 
the photo. I have scanned the picture and saved it as a jpeg file. I am hoping that you 
could implement a median filter function that will get rid of the defects in the photo. You 
will definitely make my sister very happy on her birthday. 

Median Filter 
In this problem, you will write a simple program that does median filtering. Median

filters are useful when there are impulse spikes (noise; eg. dust, scratches) in the images. 

When the median filter is applied over a pixel A, it looks at the neighbor pixel values and 

its own pixel value, and assigns pixel A the median of those values.


There are some pre-written classes provided for this problem which you can find on the

1.00 class website. A simple description of these files is provided below:


Pixel.java, which contains the static methods to unpack and repack the color

components from the int representation of a pixel.

ImageComparator.java, which displays the original and the resultant image side by

side.

FilterOp.java, which is a glue class that provides some boilerplate needed for Java®

image handling.




Problem2Main.java, which contains the main() method, loads the image and

coordinates the rest of the program.

puppy.jpg, which is the picture you are going to filter.


In this problem, you are to write a class called MedianFilter. When combined with the

four classes that we are supplying to you, it will form an application that will load and

display an image named on the command line, perform median filtering on the red, green, 

blue components and then redisplay the filtered image side by side with the original.


This class should have one private integer data member size, which is the size of the 
filter. The size of the filter refers to the ‘neighborhood’ over which the median is to be 
found for any pixel except those near the edges of the image. Here we will only consider 
square filters with odd length (for example: 3x3, 5x5, etc.) You should initialize this 
value in the constructor. 

Your should start your MedianFilter class with the following import statement: 

import java.awt.image.*; 

Then declare the data field and write its constructor. Your constructor should check if the 
filter size is valid. 

Implement the following method in the MedianFilter class:

public void filter(BufferedImage source_image, BufferedImage

result_image)


You can read about BufferedImage in the online documentation, but we will tell you

everything that you need to know here. Here are some useful methods from the classes

BufferedImage and Pixel.


BufferedImage:

int getWidth(): returns the width in pixels of the BufferedImage instance it is called

on.

int getHeight(): returns the height.

int getRGB(int x, int y): returns the packed red, green, and blue components of

pixel (x,y) in the BufferedImage it is called on, as an int. 

void setRGB (int x, int y, int rgb) : sets a pixel in this BufferedImage to the

specified RGB value.


Pixel:

static int getRed(int pix): takes an int argument as returned by getRGB() and

returns its red component as an int.

static int getGreen(int pix), static int Pixel.getBlue(int pix): similar to

getRed(int pix) above.




static public int createRGB(int r, int g, int b): takes three int arguments 
representing the red, green and blue component of a pixel and create the corresponding 
pixel. 

The filter() method should go through the source_image pixel by pixel, and 
determine the new value for each pixel. For each pixel, the filter should perform median 
filtering on the red, green and blue components and use the results to create the new pixel 
value. You can assume that source_image and result_image are the same size. Pixel 
values have to be positive integers. The result_image is simply an empty image to 
contain the result of the median filter. 

Lets suppose we have a 5x5 single color image, and a filter of size 3 (a 3x3 square filter). 

So first we look at pixel at position (0, 0), the median among (2, 7, 5, 
3) (values at position (0, 0), (0, 1), (1, 0), (1, 1)) is 4 and 4 should be its 
new value after using median filter. 

The pixel at position (0, 1), the median among (2, 7, 3, 5, 3, 7) is 4. 

The pixel at position (1, 1), the median among (2, 7, 3, 5, 3, 7, 7, 4, 9) 
is 5, and 5 will be the new value at position (1, 1). 

If you have filtered this entire 5x5 image, you should get: 

The median is always found using the pixel values from the original 
figure and not using the new pixel values. You should notice that for 
pixels that are at the four corners, you only look at 4 values and choose 
the median, whereas those on the sides(but not on the corners), you 
would have to look at 6 values and choose the median. For the 
rest(those in the middle), you would need to look at 9 values before 

choosing the median. 

How is the result image when you choose a filter size of 3? What if you use a filter size 
of 5? Comment on the advantage and the disadvantage of having a larger filter size. 
(Include your answers to these questions at the end of your MedianFilter class.) Read 
the next few pages for instructions on how you should set command line arguments in 
Forte before you run/execute your code. 

2 7 3 2 2 
5 3 7 5 6 
7 4 9 6 4 
1 3 5 5 3 
9 2 8 4 6 

2 7 3 2 2 
5 3 7 5 6 
7 4 9 6 4 
1 3 5 5 3 
9 2 8 4 6 

2 7 3 2 2 
5 3 7 5 6 
7 4 9 6 4 
1 3 5 5 3 
9 2 8 4 6 

4 4 4 4 3 
4 5 5 5 4 
3 5 5 5 5 
3 5 5 5 4 
2 4 4 5 4 



Extra Credit (25 %) 
1 . Make changes in main() such that the user could enter the number of times the image 
will be filtered before outputing the final image. 

2 . Explain(in a comment in the file) why there should not be a System.exit(0), at the 
end of main(). 

Compile and Run… 
You should make sure all your files compile correctly before you do the following: 
(please also make sure you have mounted a file system (the folder where all your 
problem set 3 files are)) 

Go to “Build” and then choose “Set Arguments…” 

Set your argument as “puppy.jpg” as the following 

then click ok. Now we have set the argument we want to pass to the main() function, we 
are going to set the working directory to be the same as our Filesystems directory. 



Click on “Problem2Main”, then you should see that below the “Explorer” window is the 
“Properties of Problem2Main” window. Click on the “Execution” Tab. 

Then click on “External Execution” and click again on “…” 



Then a window which looks like the following should pop up. 

Click on the “Expert” tab, and you should see the following window. 



Then click on the cell next to “Working Directory” and click again on “…” 

Now please choose the same folder as your Filesystem. In this example, it is 
“C:\1.00\pset3” 

Click ok after you are finished. Click ok again then all the pop up windows should not be 
closed. Now you are ready to run/execute Problem2Main.java. 



Turnin 
Turnin Requirements 

• Hardcopy and electronic copy of ALL source code (all .java files). 

•	 Place a comment with your name, username, section, TA's name, assignment number, 
and list of people with whom you have discussed the problem set on ALL files you 
submit. 

• Do NOT turn in electronic or hardcopies of compiled byte code (.class files). 

Electronic Turnin 

Use SecureFX (or another secure ftp or secure shell program) to upload your problem set 
to your 1.00 homework locker. 
Detailed instructions of how to upload are on the course website. 

Since your problem set is due at the beginning of lecture, your uploaded problem should 
have a timestamp of no later than morning on the due date. 

Penalties 

• Missing Hardcopy: -10% off problem score if missing hardcopy. 

• Missing Electronic Copy: -30% off problem score if missing electronic copy. 

•	 Late Turnin: -30% off problem score if 1 day late. More than 1 day late = NO 
CREDIT. 

If your problem set is late, or if a professor has granted you an extension in advance, do 
not submit a printed copy of your problem set. 

abgupt
Java® is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.




