Massachusetts Institute of Technology Handout 3
6.854/18.415: Advanced Algorithms September 14, 1999
David Karger

Problem Set 1 Solutions

Problem 1. Suppose that we have a chain of n — 1 nodes in a Fibonacci heap and we do the
following: Insert 3 items 21 < 9 < x3 < x4 = current minimum. Delete-min. Decrease-key(z3, z1).
Delete-min.

@ @@ @@ @ @@ @@
O Bl o bl o w5

CONNCRENC .
&

C
(=3 (%3 @
del-min() ® dec-key(z3, z1) o del-min() O

g 5 g

So the first delete-min removes z1, links x5 and x3, making xo the parent of z3, and links o and
the old chain, making z, the parent. Now the decrease-key rips z3 off the tree, and the delete-min
removes it. We are left with x5 at the top of our old chain, giving a chain of length n.

Since we can make a chain of length 1 by inserting an item, we can iterate this procedure to produce
a single chain of length n for any n.

Comments from graders: A few students used consolidate as a basic operation. Some did not
consider base case. Most students got 10 points.

Problem 2. Let D(n) be the maximum degree of any heap-ordered tree in a fibonacci heap
having n elements. Recall that the exponential descendants lemma proves that D(n) = O(logn).
We analyze the general case when a node is cascading cut after more than c of its children are
removed. Instead of maintaining a mark bit for each node, a mark counter is maintained. When

2 Handout 3: Problem Set 1 Solutions

the mark counter reaches ¢, a cascading cut is performed and the mark counter is reset to 0. We
assume the potential function to be of the form

¢ = a - number of roots 4+ b - sum of mark counters

where a and b are constants we pick later.

We will now analyze the amortized cost of operations. All in-register operations such as operating
with local variables, executing instructions, etc are assumed to be free operations. We moreover
assume that memory allocation is free.

Insert: Insert is performed by linking a node holding the key to the list of roots. We assume this
to be a unit operation. The actual cost of insert is 1 and the change in potential is a. So the
amortized cost of insert is a + 1.

Decrease-key: The decrease-key operation cuts the specified node, incurring 1 unit cost. Then,
for each cascading cut, 2 units of work is done to increment the mark counter and perform
the cut. The final mark counter increment costs 1 unit. So the actual cost of decrease-key is
2 + 2k, where k is the number of cascading cuts. In this process, k + 1 new roots are created,
k mark counters are reset to 0 and a mark counter is incremented. So the change in potential
isa(k+1)—bck+b= (a—bc)k+a+b. Therefore the amortized cost is 2+ (a —bc+2)k+a+b.
For the amortized cost to be O(1), we require

bc>a+2 (1)

Delete-min: Let r be the number of roots and d be the degree of the current minimum element.
The current minimum is held in the data structure. Removing the minimum item and attach-
ing its children as roots will take 1 unit of work (assuming that all lists are maintained as
doubly linked lists). Now the fibonacci heap has r + d — 1 roots.

The consolidation procedure involves
(a) Creation of at most D(n) buckets: We assume the creation of the bucket array to be free

(b) Finding the new minimum and placing each tree in corresponding bucket: We need to do
r + d — 1 unit cost node operations.

(c) Merging trees in buckets: Let 7; be the number of roots after consolidation. A single
merge involves two read-key operations and one merge. Since each merge reduces the
number of trees by one, we have r +d — 1 — ry merges taking 3(r +d —ry) — 3.

(d) Placing the trees in buckets as roots: This takes r; units of work.

So the actual cost is
r+d—1+3(r+d—rp)=3+r;=4r+4d —2ry —4=4(r —ry) +2d +2r; — 4

The number of roots reduces from r to ry. Therefore the change in potential is a(r —rf). So
the amortized cost of delete-min is (4 — a)(r —ry) + 2d + 2r;. Notice that both d and r; can
be at most D(n). Thus we have a (4 — a)(r — ry) + 4D(n) bound on the cost of delete-min.
We will show later that D(n) = O(logn). For delete-min to be O(logn) we require,

a>4 (2)

Handout 3: Problem Set 1 Solutions 3

The cost of insert and decrease-key can be at most a + 1 and a + b + 2 respectively provided (1)
and (2) are satisfied. The upper bound on cost of delete-min however remains the same as long
as (1) and (2) are satisfied. Therefore, we would like to minimize ¢ and b given the constraints on
them and reduce the cost of insert and decrease-key. Solving for this we get a =4, b = 6/c and

¢ = 4 - number of roots + 6/c - sum of mark counters

Now we can upper bound the amortized cost of insertion, decrease-key and deletion by 5, 6 + 6/c¢
and 4 + D(n) respectively. When ¢ = 1, the cost of decrease-key is 12 units. This is improved to 9
units when c¢ is increased to 3.

We will now estimate D(n) for any c¢. This is similar to the case for ¢ = 1. The ith child of a node
will have degree at least i — 1 — ¢. Therefore we have the following recurrence on the minimum
number of descendants F(k) of a node with degree k:

Fk)y=Fk—-c—1)+Flk—c—2)+ -+ F(k—c—k)

where F(i) =1 for i < 0. By taking the difference of F/(k) and F(k — 1) we get

F(k) - F(k—1) = F(k —c—1)

The solution to this linear recurrence is of the form

F(k):clalf-i-cQa’f-l—...

where each «; is a root to the equation

For ¢ = 1, the largest root is (1 + /5)/2 ~ 1.62. For ¢ = 3, the largest root is 1.38 (computed
numerically). So the value of F(k) is ©(1.38%). We can see that D(n) = 1.38 4 o(1). Therefore the
constant associated with lgn reduces from 1/1g1.62 to 1/1g1.38, a factor of ~ 1.5. The additive
constant o(1) is ignored in this analysis. For ¢ = 4, we get a factor of ~ 1.74.

Comments from graders: The most common error was to find constants in the potential
function by directly solving for equations instead of minimizing cost given inequalities as constraints.
One point was taken off for this minor error. Some students did not find out exactly how fast
decrease-key runs in (b). The constant factor slow-down of decrease-key was not computed in (b).
These errors cost 1-2 points.

Problem 3. The goal of this problem is to achieve a constant amortized time lazy insert routine
in priority queues.

(a)

Handout 3: Problem Set 1 Solutions

We can augment the priority queue P with a bucket (implemented as a linked list). An insert
operation places the element in the bucket. We define a consolidate operation to incorporate
(say) m elements in the bucket in P as follows. A priority queue is constructed on the
elements in the bucket using O(m) make-heap and is merged with P in O(logn) time. The
time taken for consolidation is O(m + logn) where m is the size of the bucket. Delete-min
performs a consolidate followed by the standard delete-min for P. Simiarly, merge performs the
consolidate operation on both heaps and then performs the merge. If we define the potential
function ¢ as the size of the bucket, the amortized cost of insert and delete-min become O(1)
and O(logn) respectively.

We will now extend the potential function to account for merge. Consider a set of initially
empty heaps (which may be merged later) on which all operations are performed. The potential
associated with these heaps is the sum of their bucket sizes. An insert or delete-min operation
on heap h will take O(1) or O(logny) amortized time respectively, where ny, is the number
of elements held in the heap h. A merge operation done on two heaps h and h’ will incur an
amortized cost of O(logny + logny) = O(log(ny + npr)).

Although binary heaps do not support O(logn) merge, it is possible to perform the consolidate
operation in O(m+logn) time. We will now describe two methods of consolidation depending
on whether m is more than n/2 or not.

Case I: m > n/2 A make-heap is done on all the n elements. Elements are added level-by-
level from the lowest level to the root. Inserting level of height 4 consisting of 1/2¢ elements
will take O((1 + i) - n27%) time. Therefore the total cost will be Zigﬁ O((1 +i)n27%) =
O(n) = O(m).

Case II: m < n/2 The elements in the bucket need to be consolidated into a complete binary
heap. Each element is placed in the binary heap ensuring that the heap is complete in
each step. Notice that the lowest one/two levels of the binary heap are filled with new
unbalanced elements. Now, a level-by-level cascade operation is done on the newly inserted
elements. Intutively, the number of elements to be cascaded-up reduces by a factor of 2
in every level.

Lemma 1 The consolidation operation takes O(m + logn) time.

Proof. At most two levels (lowest and next-to-lowest) can be occupied by the newly
inserted elements. In each level, the elements are placed next to each other. Let us
consider one of these contiguous blocks. Let T' be the smallest subtree of the heap having
elements in this block as leaves. Subtree T" has at most 2m leaves and therefore consists of
at most 4m elements. A cascade can be performed on the elements in 7'. After reaching
the root of T', only O(logn) cascade-up operations can be performed. Therefore each
block requires O(m + logn) cascade-up operations. There are at most two such blocks. m

Thus, we have a O(m + logn)-time consolidate. Now we can apply the result shown in (a) to
achieve O(1) insert binary heaps.

Aliter (brief outline): We maintain a binary heap of heaps H. Each node z in the binary
heap H has a reference x.heap to a heap and its key z.key as the minimum of z.heap. The
consolidate operation can be performed by constructing a binary heap in linear time and
inserting a reference to it in H. Delete-min can be performed in O(logn) time in the data
structure after consolidation.

Handout 3: Problem Set 1 Solutions 5

Comments from graders: Most solutions to problem (a) were correct. The heap of heaps
solution was popular. The rest were more likely to make mistakes in analysis.

Problem 4. We use a F-heap to maintian the bucket data structure.

(a) The amortized cost of insert is the cost of searching down k levels and then moving up & level

during its deletion. Therefore insert takes O(k) time if a F-heap is used to organize elements
in a bucket. The amortized cost of decrease-key is the cost of a delete-min and an insert. So
decrease-key takes O(log A) time. The cost of delete-min is the cost of one delete-min on a
bucket, which takes O(log A) time. Recall that A = C/%. We set k = log A = k= 'log C' to
minimize the cost of a priority queue operation. Therefore each priority queue operation takes
O(y/Iog C) when k = v/Iog C.
Aliter (brief outline): An alternate solution is to “make the queue” circular. That is,
insert the values in the queue mod C. Since the range of values used at any time is only C,
the only possible resulting confusion is that the minimum value in the queue may not be the
minimum value mod C. This is easily remedied by adding the successor operation and using
successor and delete to get the next minimum instead of find-min and delete.

(b) Let G = (V, E) be an undirected graph with edge weights c(e) € 1,2,...C. Let n = |V| and
m = |E|. There are m decrease-keys and n inserts and deletes. Finding shortest paths on G
using the above data structure will take O((m + n)y/log C) time.

We can also tune the data structure to optimize for the cost of finding shortest paths, which is
O(n(tinsert + tdelete) + mtdkey)- Now, tinsert 18 O(l + k) and tgejete = Ldkey = O(l + k7! log C)
The cost of finding shortest paths when nk = mk~!log C is O(m + v/mnlogC).

Comments from graders: Some solutions did not account for the difficulty in determining the
next minimum in the second approach. Two points were taken off for incomplete description. Each
part is worth 2 points in part (a).

Problem 5. The Van Emde Boas data structure comprises of a recursive VEB data structure H
on high-half words and a VEB data structure L(h) for each high-half word in H. It also has a hash
table that holds (high-half-word, present/not) pairs. A query on the presence of a high half
word takes constant time. Finally, the VEB data structure stores the current minimum item. We
augment the data structure to hold the current maximum item too.

If a VEB data structure has only one element, we just keep the element, we do not create the
recursive structures. Let b = log U. Assume for simplicity that b is a power of 2 and that we will
not store two elements with the same value. Notice that we can use a linked list to store items with
same value. Insert and delete operations need to maintain a consistent current maximum. This is
similar to the maintenance of current minimum.

We will now describe the operations find(v), succ(v) and pred(v). We denote an item v as (vp,v;)
if vy, and v; are the high and low half words respectively. Recall that the operations are efficient
only if one recursive call happens to a VEB data structure, halving the number of bits operated
on.

6 Handout 3: Problem Set 1 Solutions

find(v): If the structure has only one item, see if v is it. Otherwise, do a find on vy, in the hash
table and a recursive find on v; in L(vy) and report

find(v) = (vy, € H) A L(vp,). find(v;).

pred(v) If v is the minimum item in its bucket, do a pred on vy in H and return the maximum of
that bucket. Otherwise do a pred on v; in the recursive structure at the bucket corresponding
to vp. In short

(H.pred(vy), L(H.pred(vy)).mazx) if (v, € H) V (v, = L(vy).min)
(vp, L(vp).pred(vy)) otherwise

pred(v) = {

The underlined expression is a common sub-expression that is evaluated only once. So we
perform only one recursive call.

succ(v) Successor can be done similarly.

(H.suce(vy), L(H.succ(vy)).min) if (v, &€ H) V (v, = L(vy).max)
(vp, L(vp,).succ(vy)) otherwise

succ(v) = {

Again, the underlined expression is a common sub-expression that is evaluated only once. So
we perform only one recursive call.

The number of bits operated on is reduced by 1/2 with each iteration. Each iteration performs
O(1) hash table lookups and O(1) minimum/maximum field lookups, taking O(1) time. So all the
above operations take O(logb) time, where b is the maximum number of bits in an item.

Comments from graders: Some solutions did not handle the absence of the item on which
prev/succ were called. The most common major error was to use an auxiliary data structure with
w(1)-time per operation instead of maintaining max.

