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Problem �� Suppose that we have a chain of n � � nodes in a Fibonacci heap and we do the 
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So the �rst delete�min removes x1 

	 links x2 

and x3 

	 making x2 

the parent o f x3 

	 and links x2 

and 

the old chain	 making x2 

the parent� Now the decrease�key rips x3 

o� the tree	 and the delete�min 

removes it� We are left with x2 

at the top of our old chain	 giving a chain of length n� 

Since we can make a c hain of length � by inserting an item	 we can iterate this procedure to produce 

a single chain of length n for any n� 

Comments from graders� A few students used consolidate as a basic operation� Some did not 

consider base case� Most students got �� points� 

Problem �� Let Dn� b e the maximum degree of any heap�ordered tree in a �bonacci heap 

having n elements� Recall that the exponential descendants lemma proves that Dn� � Olog n�� 

We analyze the general case when a node is cascading cut after more than c of its children are 

removed� Instead of maintaining a mark bit for each node	 a mark counter is maintained� When 
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the mark counter reaches c� a cascading cut is performed and the mark counter is reset to �� We 

assume the potential function to be of the form 

� � a � number of roots � b � sum of mark counters 

where a and b are constants we p i c k later� 

We will now analyze the amortized cost of operations� All in�register operations such as operating 

with local variables� executing instructions� etc are assumed to b e free operations� We moreover 

assume that memory allocation is free� 

Insert� Insert is performed by linking a node holding the key to the list of roots� We assume this 

to be a unit operation� The actual cost of insert is � and the change in potential is a� So the 

amortized cost of insert is a � �� 

Decrease�key� The decrease�key operation cuts the speci�ed node� incurring � unit cost� Then� 

for each cascading cut� � units of work is done to increment the mark counter and perform 

the cut� The �nal mark counter increment costs � u n i t � So the actual cost of decrease�key is 

� � � k� where k is the number of cascading cuts� In this process� k � � new roots are created� 

k mark counters are reset to � and a mark counter is incremented� So the change in potential 

is a	k � �
 � bck � b � 	 a � bc
k � a � b� Therefore the amortized cost is � � 	a � bc � �
 k � a � b� 

For the amortized cost to be O	�
� we require 

bc � a � �	 	�
 

Delete�min� Let r b e th e n umber of roots and d be the degree of the current minimum element� 

The current minimum is held in the data structure� Removing the minimum item and attach�

ing its children as roots will take � unit of work 	assuming that all lists are maintained as 

doubly linked lists
� Now the �bonacci heap has r � d � � roots� 

The consolidation procedure involves 

	a
 Creation of at most D	n
 b u c kets� We assume the creation of the bucket array to be free 

	b
 Finding the new minimum and placing each tree in corresponding bucket� We n e e d t o d o 

r � d � � unit cost node operations� 

	c
 Merging trees in buckets�	 Let rf 

b e the numb e r of roots after consolidation� A single 

merge involves two read�key operations and one merge� Since each merge reduces the 

number of trees by one� w e have r � d � � � rf 

merges taking �	r � d � rf 


 � �� 

	d
 Placing the trees in buckets as roots� This takes rf 

units of work�


So the actual cost is


r � d � � � �	 r � d � rf 


 � � � rf 

�  r �  d � �rf 

�  � 	 r � rf 


 � � d � � rf 

�  

The number of roots reduces from r to rf 

� Therefore the change in potential is a	r � rf 


� So 

the amortized cost of delete�min is 	 � a
	r � rf 


 � � d � � rf 

� Notice that both d and rf 

can 

b e at most D	n
� Thus we have a 	 � a
	r � rf 


 �  D	n
 bound on the cost of delete�min� 

We w ill show later that D	n
 � O	log n
� For delete�min to be O	log n
 w e require� 

a � 	 	�
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The cost of insert and decrease�key can b e at most a � � and a � b � � respectively provided ��� 

and ��� are satis�ed� The upper b o u n d on cost of delete�min however remains the same as long 

as ��� and ��� are satis�ed� Therefore	 we w ould like to minimize a and b given the constraints on 

them and reduce the cost of insert and decrease�key� Solving for this we g e t a 
 �	 b 
 � �c and 

� 
 � � number of roots � � �c � sum of mark counters 

Now w e can upper bound the amortized cost of insertion	 decrease�key and deletion by 	 � � ��c 

and � � D�n� respectively� When c 
 �	 the cost of decrease�key is �� units� This is improved to � 

units when c is increased to �� 

We w ill n o w estimate D�n� for any c� This is similar to the case for c 
 �� The ith child of a node 

will have degree at least i � � � c� Therefore we have the following recurrence on the minimum 

number of descendants F �k� of a node w ith degree k� 

F �k� 
 F �k � c � �� � F �k � c � �� � � � � � F �k � c � k� 

where F �i� 
 � for i � �� By taking the di�erence of F �k� and F �k � �� we get 

F �k� � F �k � �� 
 F �k � c � �� 

The solution to this linear recurrence is of the form 

F �k� 
 c1 

�k � c2 

�k � � � �1 2 

where each �i 

is a root to the equation 

�c+1 � �c 
 � 

For c 
 �	 the largest root is �� � 

p
��� � ����� For c 
 �	 the largest root is ���� �computed 

numerically�� So the value of F �k� is � �� ���k �� We can see that D�n� 
 � ��� � o���� Therefore the 

constant associated with lg n reduces from �� lg ���� to �� lg ����	 a factor of � ��� The additive 

constant o��� is ignored in this analysis� For c 
 � 	 w e get a factor of � ����� 

Comments from graders� The most common error was to �nd constants in the p o t e n tial 

function by directly solving for equations instead of minimizing cost given inequalities as constraints� 

One p o i n t was taken o� for this minor error� Some students did not �nd out exactly how fast 

decrease�key runs in �b�� The constant factor slow�down of decrease�key was not computed in �b�� 

These errors cost ��� points� 

Problem �� The goal of this problem is to achieve a constant amortized time lazy insert routine 

in priority queues� 



� Handout �� Problem Set � Solutions 

�a� We can augment the priority queue P with a bucket �implemented as a linked list�� An insert 

operation places the element in the bucket� We de�ne a consolidate operation to incorporate 

�say� m elements in the bucket in P as follows� A priority queue is constructed on the 

elements in the bucket using O�m� make�heap and is merged with P in O�log n� time� The 

time taken for consolidation is O�m � log n� where m is the size of the bucket� Delete�min 

performs a consolidate followed by the standard delete�min for P � Simiarly� merge performs the 

consolidate operation on both heaps and then performs the merge� If we de�ne the potential 

function � as the size of the bucket� the amortized cost of insert and delete�min become O��� 

and O�log n� respectively� 

We will now extend the p o t e n tial function to account for merge� Consider a set of initially 

empty heaps �which m a y be merged later� on which all operations are performed� The potential 

associated with these heaps is the sum of their bucket sizes� An insert or delete�min operation 

on heap h will take O��� or O�log nh� amortized time respectively� where nh 

is the numb er 

of elements held in the heap h� A merge operation done on two heaps h and h0 will incur an 

amortized cost of O�log nh 

� log nh0 � 	 O�log�nh 

� nh0 ��� 

�b� Although binary heaps do not support O�log n� merge� it is possible to perform the consolidate 

operation in O�m � log n� t i m e � We w i l l n o w describe two methods of consolidation depending 

on whether m is more than n�
 or not� 

Case I�	 m � n�
 A make�heap is done on all the n elements� Elements are added level�by�
level from the lowest level to the root� Inserting level of height i consisting of n�
i elements 

will take O��� � i� � n
�i � time� Therefore the total cost will be 

Plg n O��� � i�n
�i � 	
i�� 

O�n� 	 O�m�� 

Case I I� m � n� 
 The elements in the bucket need to be consolidated into a complete binary 

heap� Each element is placed in the binary heap ensuring that the heap is complete in 

each step� Notice that the lowest one�two levels of the binary heap are �lled with new 

unbalanced elements� Now� a level�by�level cascade operation is done on the newly inserted 

elements� Intutively� the numb e r o f elements to be cascaded�up reduces by a factor of 



in every level�


Lemma � The consolidation operation takes O�m � log n� time�


Proof� At most two levels �lowest and next�to�lowest� can b e occupied by the newly


inserted elements� In each level� the elements are placed next to each other� Let us


consider one of these contiguous blocks� Let T be the smallest subtree of the heap having


elements in this block a s l e a ves� Subtree T has at most 
m leaves and therefore consists of


at most �m elements� A cascade can be performed on the elements in T � After reaching


the root of T � only O�log n� cascade�up operations can b e performed� Therefore each


block requires O�m � log n� cascade�up operations� There are at most two s u c h blocks�


Thus� we h a ve a O�m � log n��time consolidate� Now w e can apply the result shown in �a� to 

achieve O��� insert binary heaps� 

Aliter �brief outline�� We maintain a binary heap of heaps H� Each node x in the binary 

heap H has a reference x�heap to a heap and its key x�key as the minimum of x�heap� The 

consolidate operation can b e performed by constructing a binary heap in linear time and 

inserting a reference to it in H � Delete�min can b e performed in O�log n� time in the data 

structure after consolidation� 
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Comments from graders� Most solutions to problem �a� were correct� The heap of heaps 

solution was popular� The rest were more likely to make mistakes in analysis� 

Problem �� We use a F�heap to m aintian the bucket data structure� 

�a� The amortized cost of insert is the cost of searching down k levels and then moving up k level 

during its deletion� Therefore insert takes O�k� time if a F�heap is used to organize elements 

in a bucket� The amortized cost of decrease�key is the cost of a delete�min and an insert� So 

decrease�key takes O�log �� time� The cost of delete�min is the cost of one delete�min on a 

bucket� which t a k es O�log �� time� Recall that � � C 

1�k � We set k � log � � k�1 log C to 

minimize the cost of a priority queue operation� Therefore each p r i o r i t y queue operation takes 

O�
p
log C� w hen k � 

p
log C� 

Aliter �brief outline�� An alternate solution is to �make the queue	 circular� That is� 

insert the values in the queue mod C� Since the range of values used at any time is only C� 

the only possible resulting confusion is that the minimum value in the queue may not be the 

minimum value mod C � This is easily remedied by adding the successor operation and using 

successor and delete to get the next minimum instead of 
nd�min and delete� 

�b� Let G � � V � E � be an undirected graph with edge weights c�e� � �� �� � � � C � Let n � jV j and 

m � jEj� There are m decrease�keys and n inserts and deletes� Finding shortest paths on G 

using the above data structure will take O��m  n�
p
log C� time� 

We can also tune the data structure to optimize for the cost of 
nding shortest paths� which i s 

O�n�tinsert 

 tdelete 

�  mtdkey 

�� Now� tinsert 

is O��  k� and tdelete 

� tdkey 

� O��  k�1 log C �� 

�1The cost of 
nding shortest paths when nk � mk log C is O�m  

p
mn log C �� 

Comments from graders� Some solutions did not account for the di�culty in determining the 

next minimum in the second approach� Two points were taken o� for incomplete description� Each 

p a rt is w orth � points in part �a�� 

Problem �� The Van Emde Boas data structure comprises of a recursive VEB data structure H 

on high�half words and a VEB data structure L�h� for each high�half word in H � It also has a hash 

table that holds �high�half�word� present�not� pairs� A query on the presence of a high half 

word takes constant time� Finally� the VEB data structure stores the current minimum item� We 

augment the data structure to hold the current maximum item too� 

If a VEB data structure has only one element� we just keep the element� we do not create the 

recursive structures� Let b � log U � Assume for simplicity that b is a p ower of � and that we will 

not store two elements with the same value� Notice that we can use a linked list to store items with 

same value� Insert and delete operations need to maintain a consistent current m a x i m um� This is 

similar to the maintenance of current minimum� 

We w i l l n o w describe the operations f ind�v�� succ�v� and pred�v�� We denote an item v as �vh 

� v l 

� 

if vh 

and vl 

are the high and low half words respectively� Recall that the operations are e�cient 

only if one recursive call happens to a VEB data structure� halving the numb e r of bits operated 

on� 
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�nd�v�� If the structure has only one item� see if v is it� Otherwise� do a �nd on vh 

in the hash 

table and a recursive � n d o n vl 

in L�vh 

� and report 

f ind�v� � � vh 

2 H � ^ L�vh 

��f ind�vl 

�� 

pred�v� If v is the minimum item in its bucket� do a pred on vh 

in H and return the maximum of 

that bucket� Otherwise do a pred on vl 

in the recursive structure at the bucket corresponding 

to vh 

� In short 

( 

2 H � _ �vh 

� L�vh 

��min��H�pred�vh 

�� L �H �pred �vh 

���max� if �vh 

6
pred�v� � 

�vh 

� L �vh 

��pred�vl 

�� otherwise 

The underlined expression is a common sub�expression that is evaluated only once� So we 

perform only one recursive call� 

succ�v� Successor can be done similarly� 

( 

�H �su cc �vh 

�� L �H �su cc �vh 

���min� if �vh 

62 H � _ �vl 

� L�vh 

��max� 

succ�v� � 

�vh 

� L �vh 

��succ�vl 

�� otherwise 

Again� the underlined expression is a common sub�expression that is evaluated only once� So 

we perform only one recursive call� 

The numb e r of bits operated on is reduced by ��	 with each iteration� Each iteration performs 

O��� hash table lookups and O��� minimum
maximum �eld lookups� taking O��� time� So all the 

above operations take O�log b� time� where b is the maximum number of bits in an item� 

Comments from graders� Some solutions did not handle the absence of the item on which 

prev
succ were called� The most common major error was to use an auxiliary data structure with 

�����time per operation instead of maintaining max� 


