Massachusetts Institute of Technology Handout 13
6.854/18.415: Advanced Algorithms November 2, 1999
David Karger

Problem Set 7

Due: November 9, 1999.

NO COLLABORATION IS ALLOWED ON THIS PROBLEM SET.

Problem 1. Consider an ordinary binary search tree augmented by adding to each node
x the field size[z], giving the number of keys stored in the subtree rooted at z. Let « be a
constant in the range 1/2 < o < 1. We say that a given node z is a-balanced if

size[left[z]] < asize[z]

and
size[right[z]] < asize[z]

The tree as a whole or a subtree of it is a-balanced if every node in the tree or subtree
respectively is a-balanced.

(a) A 1/2-balanced tree is, in some sense, as balanced as it can be. Given a node
in an arbitrary binary search tree, show how to rebuild the subtree rooted at x
so that it becomes 1/2-balanced. You algorithm should run in time O(size[x]),
and it can use O(size[z]) auxiliary storage.

(b) Show that performing a search in an n node a-balanced binary search tree takes
O(logn) time for any constant a.

(c) Assume that the constant « is strictly greater than 1/2. Suppose that INSERT
and DELETE are implemented as usual for an unbalanced n-node binary search
tree, except that after every such operation, if any node in the tree is no longer
a-balanced, then the subtree rooted at the highest such node is “rebuilt” so that
it becomes 1/2 balanced. Show that insert and delete take O(logn) amortized
time per operation. (It might be useful to define a potential function that is a
sum of potentials over the nodes.)

Problem 2. An arc is upward critical for a min-cost flow problem if increasing its cost
changes the cost of the optimum solution; downward critical of decreasing its cost decreases
the optimum cost.

(a) Must every min-cost flow problem with nonzero flow have an upward critical arc?

(b) Give an algorithm for finding all upward and downward critical arcs efficiently.

2 Handout 13: Problem Set 7

Problem 3. Suppose you are given a maximum flow problem, but are willing to settle for
finding a flow within a multiplicative factor of 1 — € times the optimum for some small e.

(a) Give a simple algorithm for approximating the maximum flow value to within a
multiplicative factor of m in O(mlogn) time (that is, find a value which is at
least 1/m and no more than m times the flow value).

(b) Suppose you round all edge capacities down to the nearest integer. By how much
can you decrease the maximum flow value?

(c) Using the previous two parts, find a way to find a (1 — ¢) times maximum flow
in O(mnlog(m/e)) time.

* Problem 4. Suppose you are given p < n max-flow problems that are related in the fol-
lowing way: the only arcs that change capacity are the arcs out of the source, and they
each change linearly. That is, with each problem p there is an associated parameter «; such
that the capacity u(s,x) = ug(s,x) + apui(s,), where uy and uy are the same for all of the
problems and always non-negative.

You can obviously solve these problems with p invocations of a maximum flow subroutine,
but we’d like to do better. Suppose the problems are arranged such that oy < ay < ... < a,.
Consider the following algorithm:

1. run Push-Relabel with FIFO selection on the first problem p;, giving the maximum
flow f; and leaving behind final distance labels d;

2. fori=1top—1

using f; and d; as starting points, saturate arcs out of the source for p;,; and run
Push-Relabel with FIFO selection on p;;; (giving f;1 and d;).

It’s not obvious that this even works, much less runs fast; your job is to show both:

(a) Show that f; is a feasible flow for p; ;.

(b) Show that the final distance labels d; are valid for p;;; as soon as we saturate
arcs out of the source.

(c) Show that overall the algorithm performs only O(n?) relabels, O(nm) saturating
pushes, and O(n?®) non-saturating pushes, so in terms of worst-case asymptotic
bounds, the time to solve all of the problems is the same as the time to solve one
of them.

Problem 5. You work for the Short-Term Capital Management company and start the
day with D dollars. Your goal is to convert them to Yen through a series of currency trades
involving assorted currencies, so as to maximize the amount of Yen you end up with. You

Handout 13: Problem Set 7 3

are given a list of pending orders: client 7 is willing to convert up to u; units of currency a;
into currency b; at a rate of r; (that is, he will give you r; units of currency b; for each unit
of currency ;). Assume that going around any directed cycle of trades, [[r; <1 that is,
there is no opportunity to make a profit by arbitrage.

(a) Formulate a linear programming formulation for maximizing the amount of Yen
you have at the end of trading.

(b) Show that it is possible to carry out trades to achieve the objective of the linear
program, without ever borrowing currency (hint: there is a sense in which your
solution can be made acyclic).

(c) Show that there is a sequence of trades that will let you end the day with the
optimum amount of Yen and no other currency except dollars.

**Problem 6. For the simplex method, we ignored the issue of finding a starting vertex.
Suppose you have a box that solves min {cz | Az = b,z > 0} if given a vertex of the polytope.
Suppose you have such a problem but no vertex. Show how two calls to the box can be used
to solve the problem. (Hint: devise a new linear program with an obvious vertex, whose
optimal solutions are vertices of the original linear program.)

