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Problem �� We augment the dynamic connectivity data structure proposed by Holm
 Licht�
enb e r g and Thorup to maintain key values on nodes� The dynamic connectivity data structure 

maintains a spanning forest F0 

at level � c o n taining all vertices of the graph 
say� G� We use the 

augmented ET�tree from problem � of problem set � to store F0 

� Find
 split and insert operations 

performed on F0 

can b e done in the augmented ET�tree with O
�� slowdown� We have not dis�
cussed the join operation on splay trees in the solution of the referenced problem� Join can be done 

by attaching the root of one splay tree to the other 
preprocessed to contain no right subtree�
 and 

updating the min p o i n ter of the new root� Therefore insert and delete take O
log n� time in F0 

� 

The dynamic connectivity data structure achieves O
log2 n��time insert�edge and delete�edge� 

Find�min and decrease�key are supported on F0 

in O
log n� time� Since F0 

is a spanning forest
 

the components in F0 

are same as those of G� So we can perform �nd�min and decrease�key on F0 

achieving O
log n� time bound on these operations� 

Problem �� Again we use the Thorup et al data structure to maintain dynamic connectivity o n 

the graph 
say� G� Forest F0 

spans G and therefore has the same components as G� We need to 

support output
v � w � operation on the graph� 


a� Output
v � w � performs a depth��rst�search on v to �nd a path to w� Since F0 

has at most 

n � � edges
 output is an O
n��time operation� This is an improvement o ver O
m� which we 

get by a depth��rst�search o n G� 


b� Again we output the path from	 v to w in forest F0 

� Let l b e the length of this path� We 

assume that F0 

is stored as an ET�sequence implemented by a splay t r e e � Each v ertex stores 

the list of edges incident to it
 called the adjacency list� Maintaining the adjacency lists on 

insert�edge and delete�edge operations takes constant time� So we d o n o t h a ve a n y asymptotic 

slowdown in the ET�tree operations� 

We are interested in �nding a path from v to w� First we determine whether v and w are 

connected� If not
 operation output returns that there is no existing path� We iterate on each 

edge e incident o n v and remove i t � Then
 we c heck if v and w are connected� 

Lemma � Edge e separates v and w i� e is on the path from v to w� 

Proof� Since F0 

is a tree
 every edge on the path separates v and w 
proof for the �if� part�� 

An edge that separates v and w exclusively connects components of v and w generated by i t s 

deletion� So can be no path that does not include e 
proof for the �only�if� part�� 

From Lemma �
 we c a n s a y that an edge that separates v and w belongs to the path from 

v to w� The initial check made in operation output ensures that v and w are connected in the 

graph� So we will encounter an e � 
 v� u � satisfying the above condition� We can then output 

e � output
u� w�
 recursively computing output
u� w�� 
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Finding an edge on the path involves d delete�edge and �nd operations� So the cost of 

generating one edge on the path is O�d log n�� Therefore output runs in O�ld log n� time 

where l is the length of the path� 

We can improve the runtime to O�l log d log n� as follows� Adjacency lists of vertices are 

maintained in splay trees� Since O��� updates are made to adjacency lists during insert�edge 

and delete�edge� there is no asymptotic loss of performance in the data structure� 

The adjecency list of a vertex v starts with its active copy�s outgoing edge in the ET�tree� 

The next edge corresponds to the subsequent c o p y o f v in the cyclic ET�sequence� and so on� 

Since insertion of edges is done next to the active copy� there is only an O�log d� overhead 

in maintaining the adjacency list during insertion� Deletion of an edge also takes O�log d� 

time� This overhead is asymptotically negligible when compared to the O�log n� work done 

by insert�edge and delete�edge operations� 

On a path query from v to w� w e rotate the ET�sequence at the active copy o f v� Now� the 

adjacency list of v has the same order of edge appearence as in the ET�sequence� By splitting 

the ET�sequence at a copy of v� w e c a n c heck whether the active copy o f w lies to the left or 

right of the copy o f v� Therefore a binary search can be done on v�s active copies to compute 

the edge that encloses the active occurrence of w� This edge lies on the path from v to w� 

Thus we reduce the numb e r of splits and �nds to O�log d� p e r vertex� The time complexity 

of output is now O�l log d log n�� 

Problem �� We consider the gross 	ow m o d e l � 

�a�	 False� Consider vertices v and w having an edge from v to w and another from w to v� Given 

a 	ow f de�ned on these edges� we can increment b o t h f ��v � w �� and f ��w � v �� by 
 to get 

another valid 	ow� �In the net 	ow model� note f �v � w � � �f �w � v � so falseness is obvious�� 

�b�	 True� Consider any pair �v � w � with both f �v � w � and f �w � v � positive� Assume without loss 

of generality that f �v � w � � f �w � v �� Decrease b o t h quantities by f �v � w �� One is now zero� 

but 	ow conservation and �since the 	ow values only decreased� capacity bounds have been 

maintained� 

�c�	 False� Consider the graph in Figure �� The max�	ow value is �� But this can b e achieved 

by sending 	ow along �s� v� t� or � s� v� w� t�� 

s 1 t 

2 3 

4v 

w 

Figure �� Counter�example for problem 
�c� 

�d�	 False� A simple counter�example is given in Figure �� If �s� t� is directed the maximum 	ow 

value is �� Otherwise� the max�	ow v alue is �� 

Problem �� Let G b e the directed graph of interest� A node v with incoming edges EI 

�v�� 

outgoing edges EO 

�v� and node capacity w�i� can be converted to a regular edge�capacity graph as 
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s 1 t 

Figure �� Counter�example for problem ��d� 

shown in Figure �� Let G0 be the graph obtained by c o n verting G� 

EI 
EO EI EO 

vI v O 

vc(e ) = w(v) 

Figure �� Converting node capacities to edge capacities 

Lemma � A valid �ow in G corresponds to a valid �ow in G0 with the same �ow value and vice�

versa� 

Proof� Let f 

0 �e� b e th e � ow along edge e in G0 � Let f �v� denote the �ow i n to vertex v in G� We 

can transform a valid �ow on G to one on G0 by satisfying f �e� � f 

0 �e� and f 

0 �ev 

� � f �v� for all 

vertices and edges� It is evident that the �ow v alues are the same� 

Therefore a maximum �ow on G0 yields a maximum �ow on G� We can compute the �ow in 

each edge using the equivalence used in the proof of Lemma �� 

The transformation takes time linear in the numb e r o f edges if we use an adjacency list repre�

sentation of graph G� Graph G0 has �n � � nodes and m 	 n � � edges� We only consider the case 

when m � n � 
� Otherwise� we can consider only the component containing s and t to perform 

the max��ow computation� An O�m��time depth��rst�search will give the component and we will 

be left with a graph having m � n � 
� Therefore the numb e r o f v ertices and edges in G0 are O�n� 

and O�m� respectively� There is no change in asymptotic performance of the max��ow algorithm� 

Problem �� Family i can b e represented as a source si 

of members� with node capacity a�i�� 

Table j can be represented as a sink tj 

of members� with node capacity b�j�� Since no two members 

of the same family can sit on the same table� we can ship at most one member from si 

to tj 

for all 

i� j� Thus we h a ve a fully bipartite directed graph with sources si 

connected to sinks tj 

with unit 

capacity edges� We convert this to a standard max��ow problem by transforming node capacities 

to edge capacities �refer the solution to problem 
�� transforming multiple sources and sinks to a 

single source and sink� and compressing paths to single edges� The graph �say� G obtained after 

the conversion is shown in Figure 
� 

Lemma � A valid �ow with integral �ow values on edges of graph G corresponds to a valid seating 

arrangement and vice�versa� The �ow value corresponds to the number of people successfully seated 

in tables� 
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Figure �� The max��ow e q u i v alent of seating arrangement problem 

Proof� We establish the following equivalence b e t ween �ows and seating arrangements� Let f �e� 

b e th e � ow along edge e in G� Flow v alue f ��si 

� t j 

�� is either � or �� If it is �	 it corresponds to a 

member in family i seated in table j� Otherwise	 there is no member of family i seated in table j� 

The lemma follows from the constraints we h a ve established in the graph� 

From Lemma 
	 the seating arrangement problem is equivalent to the max��ow problem on 

G� We can use any max��ow algorithm that gives integral �ows for problems with integral edge 

capacities� The objective of seating all family members is attained if the �ow v alue is 

P 

1�i�p 

a�i�	  

i�e�	 all edges from s are saturated� Lemma 
 guarantees that max��ow on G gives the maximum 

number of people that can be seated successfully� 

Problem �� A student can attend lecture i after attending lecture j i� 

bi 

� rij 

� aj 

��� 

Thus we can generate a g ra p h G with edges from i to j if ��� is satis
ed� A source of students 

can supply students to each of these lectures� A student can go from any lecture to a sink �i�e� a 

co�ee shop�� Now w e impose the constraint that every lecture is attended	 i�e�	 every lecture node 

has incoming �ow of at least �� 

Lemma � A valid �ow with integral �ow values on edges of graph G is a valid covering of lectures 

and vice�versa� The �ow value is equal to the number of students involved� 

Proof� Again we use present a one�to�one relationship from �ows in the graph to lecture coverings� 

The �ow can be decomposed to paths of unit �ow� Each path is equivalent to a student covering 
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lectures involved in that path� The constraints imposed prove the lemma� 

Now� we need to compute the minimum �ow in G� We will do a series of simpli�cations to 

�nally compute the �ow� The lemmas involved in the process of simpli�cation are presented later� 

�	 Using the technique shown in problem �� we can convert graph G to an equivalent graph with 

lower b o u n d edge capacities� Let vi 

and wi 

correspond to the �in� and �out� vertices for 

lecture i� 

�	 Sending one student per lecture gives us a feasible lecture covering� We construct the equivalent 

�ow F in G� w h i c h sends one unit along the path �s� vi� w i 

� t 	 for each 
 � i � p� The residual 

graph GF 

is computed� 

�	 Flow F has �ow 
 from each vi 

to wi 

� So the residual graph has wi 

to vi 

edges with �ow 
� 

We remove these backward �ow edges� thereby ensuring that at least one unit is sent from 

each vi 

to wi� Let G0

F 

be the resulting graph� 

� From Lemmas � and �� the minimum �ow v alue in G can be found by computing the max��ow 

from sink t to source s� We perform max��ow on G0

F 

from t to s� The resulting �ow added 

with F gives us the min��ow f r o m s to t satisfying lower bounds� 

Thus we can solve this problem by computing a max��ow on a graph with O�n	 and O�m	 nodes 

and upper bound capacities on edges� where m is n plus the numb er of � i� j	 pairs satisfying �
	� 

Lemma � Graph G is a directed acyclic graph� 

Proof� A cycle in the graph can happen only if a lecture can be attended twice� which is absurd� 

Equation �
	 shows that the starting time of lectures for nodes in any walk in G are increasing 

provided bi 

� a i 

for each i� 

Lemma � For a directed acyclic graph G 
 �V � E 	 with lower bound edge capacities b��	� the 

minimum �ow from s to t is the negated maximum �ow from t to s� 

Proof� Since G is a DAG� any cut isolating s and t will be such that all edges go from s�s cut to 

t�s cut� The max�cut of G has �ow in each edge as its lower bound capacity� The min��ow value is 

therefore 

X 

Fmin 


 max b�e	 

S 

e2(S�V �S) 

While computing the maximum �ow f r o m t to s� the minimum cut will be such that the �ow i n 

each edge e is �b�e	� 

X 

Fmax 


 min �b�e	 

T 

e2(V �T �T ) 

X 


 � max b�e	 

T 

e2(V �T �T ) 


 �Fmin 

The result follows� 
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Problem �� We can reduce the problem to one of computing max��ows as follows� Source si 

denotes the row�sum of row i� Similarly sink tj 

denotes the column�sum of column j� Sources and 

sinks have node �upper bound� capacities as their value� Nodes vij 

represent the matrix elements� 

We connect in�nite capacity edges from si 

to vij 

and from vij 

to tj 

for all i� j� 

Matrix elements disclosed in Y are processed as follows� The row and column sums are reduced 

by the disclosed value� Then the nodes corresponding to those entries are removed� This reduction 

is equivalent t o forcing exactly dij 

into vij 

where dij 

is a disclosed entry� We refer to the reduced 

graph as G� 

A v alid assignment of matrix elements corresponds to a �ow i n G saturating the node capacities 

of sources and sinks� By performing max��ow on G� we can �nd such an assignment if it exists� 

Let F be the max��ow computed� 

Lemma � Element dij 

is deducible i� there is no cycle from vij 

with positive non�zero e dge capac�

ities in GF 

� 

Proof� We refer to directed cycles with positive non�zero edge capacities as perturbations� It is 

evident that a perturbation incident o n vij 

can augment GF 

to get another solution to the system 

having a di�erent v alue for dij 

� This proves the 	only�if
 part� 

We will now p r o ve the 	if
 part of the lemma� Assume that dij 

is not deducible� Then there are 

two maximum �ows F and F 

0 satisfying G� Consider di�erence d�e� � f �e� � f 

0 �e� on each edge� 

The value d�e� maintains the conservation and skew symmetric properties of �ows� The �ow v alue 

of d�e� is �� Now� we c a n decompose the �ow de�ned by d�e� to cycles� Since d�e� is non�zero for 

edge e incident o n vij 

� there exists a cycle in the decomposition of the �ow de�ned by d�e�� This 

cycle is a perturbation incident o n vij 

� w hen �ow F is de�ned on the graph� Thus the 	if
 part is 

also proved� 

Computing perturbations on GF 

takes O�m� � O�pq� time� From Lemma 
� we can compute 

deducible elements in O�p2 q2 � � M �O�pq�� O �pq��� where M �n� m� is the time taken to compute 

max��ow on a graph with n nodes and m edges� 


