Massachusetts Institute of Technology Handout 10
6.854/18.415: Advanced Algorithms September 28, 1999
David Karger

Problem Set 4 Solutions

Problem 1. We augment the dynamic connectivity data structure proposed by Holm, Licht-
enberg and Thorup to maintain key values on nodes. The dynamic connectivity data structure
maintains a spanning forest Fj at level 0 containing all vertices of the graph (say) G. We use the
augmented ET-tree from problem 3 of problem set 3 to store Fy. Find, split and insert operations
performed on Fj can be done in the augmented ET-tree with O(1) slowdown. We have not dis-
cussed the join operation on splay trees in the solution of the referenced problem. Join can be done
by attaching the root of one splay tree to the other (preprocessed to contain no right subtree), and
updating the min pointer of the new root. Therefore insert and delete take O(logn) time in Fj.
The dynamic connectivity data structure achieves O(log? n)-time insert-edge and delete-edge.

Find-min and decrease-key are supported on Fy in O(logn) time. Since Fy is a spanning forest,
the components in Fj are same as those of G. So we can perform find-min and decrease-key on Fj
achieving O(logn) time bound on these operations.

Problem 2. Again we use the Thorup et al data structure to maintain dynamic connectivity on
the graph (say) G. Forest Fjy spans G and therefore has the same components as G. We need to
support output(v,w) operation on the graph.

(a) Output(v,w) performs a depth-first-search on v to find a path to w. Since Fj has at most
n — 1 edges, output is an O(n)-time operation. This is an improvement over O(m) which we
get by a depth-first-search on G.

(b) Again we output the path from v to w in forest Fy. Let [be the length of this path. We
assume that Fj is stored as an ET-sequence implemented by a splay tree. Each vertex stores
the list of edges incident to it, called the adjacency list. Maintaining the adjacency lists on
insert-edge and delete-edge operations takes constant time. So we do not have any asymptotic
slowdown in the ET-tree operations.

We are interested in finding a path from v to w. First we determine whether v and w are
connected. If not, operation output returns that there is no existing path. We iterate on each
edge e incident on v and remove it. Then, we check if v and w are connected.

Lemma 1 FEdge e separates v and w iff e is on the path from v to w.

Proof. Since Fy is a tree, every edge on the path separates v and w (proof for the “if” part).
An edge that separates v and w exclusively connects components of v and w generated by its
deletion. So can be no path that does not include e (proof for the “only-if” part).

From Lemma 1, we can say that an edge that separates v and w belongs to the path from
v to w. The initial check made in operation output ensures that v and w are connected in the
graph. So we will encounter an e = (v, u) satisfying the above condition. We can then output
e + output(u, w), recursively computing output(u,w).

Handout 10: Problem Set 4 Solutions

Finding an edge on the path involves d delete-edge and find operations. So the cost of
generating one edge on the path is O(dlogn). Therefore output runs in O(ldlogn) time
where [is the length of the path.

We can improve the runtime to O(llog dlogn) as follows. Adjacency lists of vertices are
maintained in splay trees. Since O(1) updates are made to adjacency lists during insert-edge
and delete-edge, there is no asymptotic loss of performance in the data structure.

The adjecency list of a vertex v starts with its active copy’s outgoing edge in the ET-tree.
The next edge corresponds to the subsequent copy of v in the cyclic ET-sequence, and so on.
Since insertion of edges is done next to the active copy, there is only an O(logd) overhead
in maintaining the adjacency list during insertion. Deletion of an edge also takes O(logd)
time. This overhead is asymptotically negligible when compared to the O(logn) work done
by insert-edge and delete-edge operations.

On a path query from v to w, we rotate the ET-sequence at the active copy of v. Now, the
adjacency list of v has the same order of edge appearence as in the ET-sequence. By splitting
the ET-sequence at a copy of v, we can check whether the active copy of w lies to the left or
right of the copy of v. Therefore a binary search can be done on v’s active copies to compute
the edge that encloses the active occurrence of w. This edge lies on the path from v to w.
Thus we reduce the number of splits and finds to O(logd) per vertex. The time complexity
of output is now O(llogdlogn).

Problem 3. We consider the gross flow model.

(a)

(b)

(d)

False: Consider vertices v and w having an edge from v to w and another from w to v. Given
a flow f defined on these edges, we can increment both f((v,w)) and f((w,v)) by A to get
another valid flow. (In the net flow model, note f(v,w) = —f(w,v) so falseness is obvious.)

True: Consider any pair (v, w) with both f(v,w) and f(w,v) positive. Assume without loss
of generality that f(v,w) < f(w,v). Decrease both quantities by f(v,w). One is now zero,
but flow conservation and (since the flow values only decreased) capacity bounds have been
maintained.

False: Consider the graph in Figure 1. The max-flow value is 1. But this can be achieved
by sending flow along (s,v,t) or (s,v,w,t).

W

S t

Figure 1: Counter-example for problem 3(c)

False: A simple counter-example is given in Figure 2. If (s,t) is directed the maximum flow
value is 0. Otherwise, the max-flow value is 1.

Problem 4. Let G be the directed graph of interest. A node v with incoming edges E;(v),
outgoing edges Fo(v) and node capacity w(i) can be converted to a regular edge-capacity graph as

Handout 10: Problem Set 4 Solutions 3
S .1—,. t
Figure 2: Counter-example for problem 3(d)

shown in Figure 3. Let G’ be the graph obtained by converting G.

NN
T

Vo

Figure 3: Converting node capacities to edge capacities

Lemma 2 A wvalid flow in G corresponds to a valid flow in G' with the same flow value and vice-
versa.

Proof. Let f'(e) be the flow along edge e in G'. Let f(v) denote the flow into vertex v in G. We
can transform a valid flow on G to one on G’ by satisfying f(e) = f'(e) and f'(e,) = f(v) for all
vertices and edges. It is evident that the flow values are the same.

Therefore a maximum flow on G’ yields a maximum flow on G. We can compute the flow in
each edge using the equivalence used in the proof of Lemma, 2.

The transformation takes time linear in the number of edges if we use an adjacency list repre-
sentation of graph G. Graph G’ has 2n — 2 nodes and m +n — 2 edges. We only consider the case
when m > n — 1. Otherwise, we can consider only the component containing s and ¢ to perform
the max-flow computation. An O(m)-time depth-first-search will give the component and we will
be left with a graph having m > n — 1. Therefore the number of vertices and edges in G’ are O(n)
and O(m) respectively. There is no change in asymptotic performance of the max-flow algorithm.

Problem 5. Family i can be represented as a source s; of members, with node capacity a(i).
Table j can be represented as a sink ¢; of members, with node capacity b(j). Since no two members
of the same family can sit on the same table, we can ship at most one member from s; to ¢; for all
i,7. Thus we have a fully bipartite directed graph with sources s; connected to sinks ¢; with unit
capacity edges. We convert this to a standard max-flow problem by transforming node capacities
to edge capacities (refer the solution to problem 4), transforming multiple sources and sinks to a
single source and sink, and compressing paths to single edges. The graph (say) G obtained after
the conversion is shown in Figure 4.

Lemma 3 A wvalid flow with integral flow values on edges of graph G corresponds to a valid seating
arrangement and vice-versa. The flow value corresponds to the number of people successfully seated
in tables.

4 Handout 10: Problem Set 4 Solutions

Unit capacity edges

Figure 4: The max-flow equivalent of seating arrangement problem

Proof. We establish the following equivalence between flows and seating arrangements. Let f(e)
be the flow along edge e in G. Flow value f((s;,;)) is either 0 or 1. If it is 1, it corresponds to a
member in family ¢ seated in table j. Otherwise, there is no member of family i seated in table j.
The lemma follows from the constraints we have established in the graph.

From Lemma 3, the seating arrangement problem is equivalent to the max-flow problem on
G. We can use any max-flow algorithm that gives integral flows for problems with integral edge
capacities. The objective of seating all family members is attained if the flow value is 3, ;< a(i),
i.e., all edges from s are saturated. Lemma 3 guarantees that max-flow on G gives the maximum
number of people that can be seated successfully.

Problem 6. A student can attend lecture ¢ after attending lecture j iff
bi +1ij < aj (1)

Thus we can generate a graph G with edges from i to j if (1) is satisfied. A source of students
can supply students to each of these lectures. A student can go from any lecture to a sink (i.e. a
coffee shop). Now we impose the constraint that every lecture is attended, i.e., every lecture node
has incoming flow of at least 1.

Lemma 4 A valid flow with integral flow values on edges of graph G is a valid covering of lectures
and vice-versa. The flow value is equal to the number of students involved.

Proof. Again we use present a one-to-one relationship from flows in the graph to lecture coverings.
The flow can be decomposed to paths of unit flow. Each path is equivalent to a student covering

Handout 10: Problem Set 4 Solutions 5

lectures involved in that path. The constraints imposed prove the lemma.

Now, we need to compute the minimum flow in G. We will do a series of simplifications to
finally compute the flow. The lemmas involved in the process of simplification are presented later.

e Using the technique shown in problem 4, we can convert graph G to an equivalent graph with
lower bound edge capacities. Let v; and w; correspond to the “in” and “out” vertices for
lecture 1.

e Sending one student per lecture gives us a feasible lecture covering. We construct the equivalent
flow F in G, which sends one unit along the path (s, v;, w;,t) for each 1 <7 < p. The residual
graph Gp is computed.

e Flow F has flow 1 from each v; to w;. So the residual graph has w; to v; edges with flow 1.
We remove these backward flow edges, thereby ensuring that at least one unit is sent from
each v; to w;. Let G’ be the resulting graph.

e From Lemmas 5 and 6, the minimum flow value in G can be found by computing the max-flow
from sink ¢ to source s. We perform max-flow on G’ from ¢ to s. The resulting flow added
with F' gives us the min-flow from s to ¢ satisfying lower bounds.

Thus we can solve this problem by computing a max-flow on a graph with O(n) and O(m) nodes
and upper bound capacities on edges, where m is n plus the number of (7, j) pairs satisfying (1).

Lemma 5 Graph G is a directed acyclic graph.

Proof. A cycle in the graph can happen only if a lecture can be attended twice, which is absurd.
Equation (1) shows that the starting time of lectures for nodes in any walk in G are increasing
provided b; > a; for each i.

Lemma 6 For a directed acyclic graph G = (V, E) with lower bound edge capacities b(-), the
minimum flow from s to t is the negated mazimum flow from t to s.

Proof. Since G is a DAG, any cut isolating s and ¢ will be such that all edges go from s’s cut to
t’s cut. The max-cut of G has flow in each edge as its lower bound capacity. The min-flow value is
therefore

Fpin = max Z b(e)
ee(S,V=15)

While computing the maximum flow from ¢ to s, the minimum cut will be such that the flow in
each edge e is —b(e).

Fu: = min Z —b(e)

The result follows.

6 Handout 10: Problem Set 4 Solutions

Problem 7. We can reduce the problem to one of computing max-flows as follows. Source s;
denotes the row-sum of row ¢. Similarly sink ¢; denotes the column-sum of column j. Sources and
sinks have node (upper bound) capacities as their value. Nodes v;; represent the matrix elements.
We connect infinite capacity edges from s; to v;; and from v;; to ¢; for all ¢, 5.

Matrix elements disclosed in Y are processed as follows. The row and column sums are reduced
by the disclosed value. Then the nodes corresponding to those entries are removed. This reduction
is equivalent to forcing exactly d;; into v;; where d;; is a disclosed entry. We refer to the reduced
graph as G.

A valid assignment of matrix elements corresponds to a flow in G saturating the node capacities
of sources and sinks. By performing max-flow on G, we can find such an assignment if it exists.
Let F' be the max-flow computed.

Lemma 7 Element d;; is deducible iff there is no cycle from v;; with positive non-zero edge capac-
ities in Gp.

Proof. We refer to directed cycles with positive non-zero edge capacities as perturbations. It is
evident that a perturbation incident on v;; can augment Gy to get another solution to the system
having a different value for d;;. This proves the “only-if” part.

We will now prove the “if” part of the lemma. Assume that d;; is not deducible. Then there are
two maximum flows F' and F’ satisfying G. Consider difference d(e) = f(e) — f'(e) on each edge.
The value d(e) maintains the conservation and skew symmetric properties of flows. The flow value
of d(e) is 0. Now, we can decompose the flow defined by d(e) to cycles. Since d(e) is non-zero for
edge e incident on v;;, there exists a cycle in the decomposition of the flow defined by d(e). This
cycle is a perturbation incident on v;;, when flow F'is defined on the graph. Thus the “if” part is
also proved.

Computing perturbations on G takes O(m) = O(pq) time. From Lemma 7, we can compute
deducible elements in O(p%q?) + M(O(pq), O(pq)), where M(n,m) is the time taken to compute
max-flow on a graph with n nodes and m edges.

