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Problem �� The init operation declares an array A of size n and an array B of size n� Each 

element A�i
 is a � x� j� tuple
 where j an index to array B� Each element i n B holds an index to A� 

De�nition � An item with index j b elon gs to array B i� � � j � Bmax 

� 

De�nition � An item with index i belongs to array A holding �x� j� i� 

�a� j belongs to array B� 

�b� B�j
 � i 

Init sets Bmax 

to �� Let �x� j� be the tuple held in A�i
� Get�i� returns x if A�i
 belongs to array 

A� Set�i� y� stores �y� j � in A�i

 if A�i
 belongs to array A� Otherwise
 set�i� y� increments Bmax 





stores �y�B max 

� in A�i
 and stores i in B�Bmax 






Lemma � An item with index i belongs to A i� it has been set by some operation after which no


init happened�


Proof� Once init sets Bmax 

to �
 all items do not belong to array A anymore� If set�i� x� happens


on index i such th at i does not belong to array A
 a new entry is created in B and index i is made


valid� If such a set operation does not happen
 there is no entry belonging to B that holds index


i� According to above de�nitions
 the item does not belong to array A� 

Lemma � The above data structure is correct and performs all operations in constant time� 

Proof� Get returns empty if an item does not belong to array A� From lemma �
 an item belongs


to array A only if it has b e e n set after the previous init operation� Thus the data structure is


correct� It is evident t h a t e a c h operation takes constant time


Problem �� Let m b e t h e n umber of accesses made
 and let p�x� � m be the number of accesses 

made to item x� The access time has a information theoretic lower bound of ��m 

P 

�p�x� log p�x���x 

It takes ��m� to process the sequence� Therefore the optimal access time is ��m�m 

P 

�p�x� log p�x���  x 

k 

�a� Search data structure Sk 

holds 	2 most frequently accessed items� 

Lemma � The search data structure is statically optimal� 
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Proof� There are at most ��p�x� items with more access frequency than x� Therefore x must 

belong to an Sk 

such that 

�2 

k�1 

� ��p�x� 

i�e�� �k � ��� � log p�x��� Therefore the search time in Sk 

is O��k � � O�� � log p�x��� The 

� 

1search time in smaller Si 

�s is O��0 � � � � � � � 

k�1� which i s O��k �� So the total access time 

is O�m � m 

P 

�p�x� log p�x�� which matches the lower bound� x 

�b� We make the data structure dynamic�	 Sk 

now holds the �2
k 

most frequently accessed items 

that have been accessed at least once previously� The search data structure is still optimal in 

search time since Sk 

still holds at least �2
k 

most frequently accessed items that can be accessed 

by the subsequent search� 

The items in Sk 

are also organized in a search tree in the increasing order of access fre	

quencies� It can be seen that every insert or delete operation in Sk 

will still take O��k � tim e� 

Item x in inserted in Si 

if p�x� of x is more than the minimum access frequency in Si 

� If the 

bucket Si 

is full� the item with minimum access frequency is deleted� Notice that the deleted 

item will be present in a higher Sj 

data structure� 

A new Sl+1 

needs to be created if Sl 

cannot hold all elements after an insert� The creation of 

this level costs O�n log n� time� We w ill n o w s h o w that the cost of insert is O�log n� amortized� 

Lemma � The amortized cost of insert operation is O�log n�� 

Proof� The cost of insertions in each level is 

� 

1O��0 � � � � � 

l � � O��l � � O�log n� 

since �2
l 

� n� The cost of creating a new level is O�n log n�� But we have to create a new 

level only if n � � 

2l 

� We de
ne the potential function 

� � � 

l+1 

� � elem en ts in Sl 

� �2
l�1 

where Sl 

is the last search data structure� The change in p o t e n tial if a new level is not 

created is only �l+1 � The change is potential if a new level is created is 

�l+1 ��2
l 

� �2
l�1 

� � �l 

� �2
l 

� n lg n 

which p a ys for the cost of creating a new level� 

�c� Recall that in �b�� the access frequencies were organized in a search tree for each Sk 

� The data 

structure now updates values in the search tree on accesses and maintains the current access 

frequency of every element i n Sk 

� 

Lemma � The dynamic online data structure is statically optimal� 
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Proof� The cost of the jth search is O�log�j�f �x� j���� where f �x� j� is the current access 

frequency of item searched� Therefore the total time to process the access sequence is 

X 

T �m� � O�log�j�f �x� j��� 

x Y 

�	 O�log�m�� �mp�x����� 

x 

P 

Let us denote mp�x� by mx� Note that mx 

� m� By plugging in the Stirling approxi�x 

mation of factorials� we g e t 

�	 � 

m�1�2 e 

�mm
T �m� � O log Q

x
m �1�2

mx 

x e 

�mx �	 � 

mm X 

� O log � log mxQ
x

mmx 

x 

x �	 �mm
� O log � mQ

x
mmx 

x 

P 

since x 

log mx 

� O�m�� 

�d� Instead of holding the most frequently accessed items�	 we hold the most recently accessed 

item� We can replace the search tree on access frequencies by a doubly linked list holding the 

items in LRU order� The proof that working set theorem is satis	ed is similar to lemma �� 

Problem �� We augm ent every node x in the splay tree with the numb e r x�desc of descendants 

�including itself� and a reverse bit x�reverse� No key needs to be maintained� 

Each node x has a minor child x�minor and a major child x�major� The left child x�lef t is the 

minor child and the right c hild x�right is the major child if an even number of ancestors �including 

itself � have their reverse bit set� Otherwise x�right is the minor child and x�lef t is the major child� 

An in�order traversal T rav �x� on node x is de	ned as T rav �x�minor�� x � T rav �x�major�� We 

ensure the invariant t h a t T rav �t�� where t is the root� is the list of elements in order� 

When splay tree operations are performed� the notion of left and right c hildren is replaced with 

that of minor and major children� The minor and major children of a node x can be identi	ed by 

looking at the reverse bits of its ancestors� This computation can b e done when a search for x is 

performed� 

It is evident that all splaying operations preserve T rav �t� i f w e update the reverse bit appropri�

ately� For example in Figure Problem �� the reverse bit of z is modi	ed z �rev erse � x �reverse � 

y �rev erse � where � denotes the exclusive�or operation� Similarly� the value of number descendants 

can be updated on rotations� For example in Figure Problem �� the value of z �d esc is updated to 


 � y�major�desc � z�major�desc� 

The p o t e n tial function argument works for the data structure as it does for splay trees except 

w h e n a r e v erse bit is �ipped� When a reverse bit x �reverse is �ipped� the major and minor children P 

are �ipped for all the descendants of x� However this does not change the potential r�x��x 
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x 

y 

z x 

y 

z 

Zig-zag 

Therefore we can perform splay operation correctly in O�log n� amortized time� Split and join 

operations can be de�ned on our structure� The removal or addition of a root only causes changes 

to the new root� 

We can perform access�k� b y a search based on desc �eld� Operation insert�k � x � is done like a 

splay t r e e insert� using split and join� The reverse �i� j� involves �ipping x�reverse where x is the 

subtree containing the range �i� j� as its descendants� To obtain an x of this form� we split at i and 

then at j� We now have x as the root of a splay tree� After �ipping x �reverse � the three trees can 

be joined� 

Problem �� Given the value t�key of root node t� the successor operation cost as much a s a s p l a y� 

Therefore� the operation has amortized cost O�log n�� 

We can improve the bound using the scanning theorem� First we w i l l s h o w that we can assume 

the splay tree to b e h ave a single node as the left child of root 

Lemma � If no splay operations are done on the subtree S of descendants of node x� the subtree 

S can be replaced by a leaf node y� 

Proof� Follows from de�nition of splay operation� 

So the complexity of operations are exactly the same as having a single node left child of root� 

Let m b e t h e n umber of elements with key greater than the root� The total time to scan m	
 nodes 

of the tree takes O�m� time� So successor takes O��� amortized time if it is applied repeatedly 

until the rightmost node is reached� 

Problem �� Observe �rst that the claim in the question is not true for n � 
 � it is not possible 

to turn a zig�zig into a zig�zag by s p l a ying �try it�� 

Claim� For n � �� it is possible to turn any n node binary search tree into any other by a 

sequence of splay operations� 

Proof� 

We will prove this claim by induction on n� 
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Base case� n � �� We can turn the tree into a left path by splaying on the items in order� �It is 

easy to show this for all n by induction� The key observation is that the last step of each successive 

splay must be a zig or zig�zag� which pushes the root onto the left path�� This is true for all n It 

remains to check t h a t w e can turn a left path into anything� 
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Inductive step� We n e e d t o s h o w that if it is possible to restructure any n � 	 node binary search 

tree into any other by a sequence of splay operations then the same is true for any n node binary 

search tree� 

We will accomplish this goal via the following four lemmas� 

Lemma � Any node in a binary search tree with � � nodes can be moved to a leaf position by an 

appropriate sequence of splay operations� 

Lemma � A leaf node will remain a leaf node under a sequence of splay operations if it is not 

splayed� 

Lemma � The structure of the tree containing the descendants of a node that is splayed has no 

e�ect on the structure of the tree that results� 

Lemma �� No two binary search trees on n nodes di�er only in the position of one leaf node� 
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By Lemma � we can pick a node that is to b ecom e a leaf in the �nal tree and make it a leaf� 

Now Lemmas � and � say that this leaf will stay a leaf if we splay the other nodes� and will not 

a�ect the results of splaying on the other nodes� Thus by the inductive h ypothesis we know that 

we can restructure the other n � � nodes to match the desired tree� Finally� b y Lemma �	 we know 

that we h a ve gotten the desired tree� 

Proof of �� Let i denote the item we wish to turn into a leaf� If i is the minimum item we can 

turn it into a leaf by sp laying on i and its successor� If i is the maximal element w e c a n handle it 

symmetrically� If i is not the second element� splay i
s predecessor
s predecessor� i
s� predecessor� 

i� and i
s successor� giving the following situation� 

i 

j 

h 

g 

splay at g g 

j 

i 

h 

If i is the second element w e can handle it symmetrically� �Splay succ�succ�i

� succ�i
� i� pred�i
� 

and then succ�succ�i
 again�
 

Proof of �� It is clear from the de�nition of splaying that no leaf node is ever given a descendant 

unless it is splayed� 

Proof of �� It is clear from the de�nition of splaying that descendants of a splayed node have n o 

e�ect on the result of the operation� 

Proof of ��� Suppose two binary search trees di�ered only in the position of one leaf node� Then 

the path from the root to the leaf di�ers in these two trees� Look at the place where it �rst di�ers� 

In order for the path to go left at this p o i n t the leaf must b e less than this node� in order for 

the path to go right the leaf mu s t b e g r e a t e r than this node� It is impossible for both of these to 

happen� Contradiction� 

Several people misinterpreted this question by assuming that they could just apply the zig� zig�

zig� and zig�zag cases at will� A splay operation applies the three cases as appropriate until the 

item is at the root� So splay�x
 always brings x all the way to the root� Thus you cannot just splay 

in subtrees� and inversion of splays is di�cult� �This theorem implies that you can invert splays� 

but you can
t use this theorem to prove itself�
 


