Massachusetts Institute of Technology Handout 7
6.854/18.415: Advanced Algorithms September 21, 1999
David Karger

Problem Set 2 Solutions

Problem 1. The init operation declares an array A of size n and an array B of size n. Each
element A[i] is a (z, j) tuple, where j an index to array B. Each element in B holds an index to A.

Definition 1 An item with indez j belongs to array B iff 0 < j < Bmas-

Definition 2 An item with indez i belongs to array A holding (x,j) iff

(a) j belongs to array B.

(b) Blj] =i

Init sets Byay to 0. Let (z,7) be the tuple held in Afi]. Get(i) returns = if A[i] belongs to array
A. Set(i,y) stores (y,j) in A[i], if A[i] belongs to array A. Otherwise, set(i,y) increments By,
stores (y, Byay) in Afi] and stores ¢ in B[Byq4],

Lemma 1 An item with index i belongs to A iff it has been set by some operation after which no
it happened.

Proof. Once init sets Bq, to 0, all items do not belong to array A anymore. If set(7,) happens
on index ¢ such that ¢ does not belong to array A, a new entry is created in B and index 7 is made
valid. If such a set operation does not happen, there is no entry belonging to B that holds index
1. According to above definitions, the item does not belong to array A.

Lemma 2 The above data structure is correct and performs all operations in constant time.

Proof. Get returns empty if an item does not belong to array A. From lemma 1, an item belongs
to array A only if it has been set after the previous init operation. Thus the data structure is
correct. It is evident that each operation takes constant time

Problem 2. Let m be the number of accesses made, and let p(x) - m be the number of accesses
made to item z. The access time has a information theoretic lower bound of Q(m ", —p(z) log p(x)).
It takes €2(m) to process the sequence. Therefore the optimal access time is Q(m+m Y, —p(x) log p(z)).

(a) Search data structure Sy holds 22" most frequently accessed items.

Lemma 3 The search data structure is statically optimal.

Handout 7: Problem Set 2 Solutions

Proof. There are at most 1/p(z) items with more access frequency than . Therefore z must
belong to an Sy such that

22" < 1/p(x)

i.e., 28 < 2(1 —logp(x)). Therefore the search time in Sy, is O(2¥) = O(1 — log p(z)). The
search time in smaller S;’s is O(2° 4+ 2! + ... + 28=1) which is O(2*). So the total access time
is O(m +m Y., —p(z)logp(z)) which matches the lower bound.

We make the data structure dynamic. Sy now holds the 22" most frequently accessed items
that have been accessed at least once previously. The search data structure is still optimal in
search time since S still holds at least 22 most frequently accessed items that can be accessed
by the subsequent search.

The items in Si are also organized in a search tree in the increasing order of access fre-
quencies. It can be seen that every insert or delete operation in Sj, will still take O(2*) time.

Item z in inserted in S; if p(x) of = is more than the minimum access frequency in S;. If the
bucket .S; is full, the item with minimum access frequency is deleted. Notice that the deleted
item will be present in a higher S; data structure.

A new S; 11 needs to be created if S; cannot hold all elements after an insert. The creation of
this level costs O(nlogn) time. We will now show that the cost of insert is O(log n) amortized.

Lemma 4 The amortized cost of insert operation is O(logn).

Proof. The cost of insertions in each level is
0(2° + 21 +- 4+ 25 = 0(2)) = O(logn)

since 22 > n. The cost of creating a new level is O(nlogn). But we have to create a new
level only if n = 22" We define the potential function

¢ = 271 . 4t elements in S, — 22

where S is the last search data structure. The change in potential if a new level is not
created is only 211, The change is potential if a new level is created is

o1 (22 — 227y > 20 9% = plgn

which pays for the cost of creating a new level.

Recall that in (b), the access frequencies were organized in a search tree for each Si. The data
structure now updates values in the search tree on accesses and maintains the current access
frequency of every element in Sj.

Lemma 5 The dynamic online data structure is statically optimal.

Handout 7: Problem Set 2 Solutions 3

Proof. The cost of the jth search is O(log(j/f(x,j))), where f(z,j) is the current access
frequency of item searched. Therefore the total time to process the access sequence is

T(m) = > 0(log(j/f (7))
= O(log(m!/ [(mp(x))1))

Let us denote mp(z) by m,. Note that > m, = m. By plugging in the Stirling approxi-

mation of factorials, we get
m—1/2 ,—m
@] (log 0 m — _1/62)
m xr

x 10T e Mo

m
O <log # + Z log mm)
T

T(m)

T T

0] <log % + m)
x M

since), logmg, = O(m).

(d) Instead of holding the most frequently accessed items, we hold the most recently accessed
item. We can replace the search tree on access frequencies by a doubly linked list holding the
items in LRU order. The proof that working set theorem is satisfied is similar to lemma 3.

Problem 3. We augment every node x in the splay tree with the number x.desc of descendants
(including itself) and a reverse bit z.reverse. No key needs to be maintained.

Each node z has a minor child z.minor and a major child z.major. The left child z.left is the
minor child and the right child z.right is the major child if an even number of ancestors (including
itself) have their reverse bit set. Otherwise z.right is the minor child and z.left is the major child.

An in-order traversal Trav(z) on node z is defined as Trav(xz.minor) + x + Trav(z.major). We
ensure the invariant that Trav(t), where ¢ is the root, is the list of elements in order.

When splay tree operations are performed, the notion of left and right children is replaced with
that of minor and major children. The minor and major children of a node = can be identified by
looking at the reverse bits of its ancestors. This computation can be done when a search for x is
performed.

It is evident that all splaying operations preserve Trav(t) if we update the reverse bit appropri-
ately. For example in Figure Problem 3, the reverse bit of z is modified z.reverse @ x.reverse @
y.reverse, where @& denotes the exclusive-or operation. Similarly, the value of number descendants
can be updated on rotations. For example in Figure Problem 3, the value of z.desc is updated to
1 4+ y.major.desc + z.major.desc.

The potential function argument works for the data structure as it does for splay trees except
when a reverse bit is flipped. When a reverse bit z.reverse is flipped, the major and minor children
are flipped for all the descendants of z. However this does not change the potential Y, r(z).

4 Handout 7: Problem Set 2 Solutions

Zig-zag

AN

Therefore we can perform splay operation correctly in O(logn) amortized time. Split and join
operations can be defined on our structure. The removal or addition of a root only causes changes
to the new root.

We can perform access(k) by a search based on desc field. Operation insert(k, z) is done like a
splay tree insert, using split and join. The reverse(i,j) involves flipping z.reverse where z is the
subtree containing the range [7, j] as its descendants. To obtain an z of this form, we split at 7 and
then at 7. We now have x as the root of a splay tree. After flipping x.reverse, the three trees can
be joined.

Problem 4. Given the value t.key of root node ¢, the successor operation cost as much as a splay.
Therefore, the operation has amortized cost O(logn).

We can improve the bound using the scanning theorem. First we will show that we can assume
the splay tree to be have a single node as the left child of root

Lemma 6 If no splay operations are done on the subtree S of descendants of node x, the subtree
S can be replaced by a leaf node y.

Proof. Follows from definition of splay operation.

So the complexity of operations are exactly the same as having a single node left child of root.
Let m be the number of elements with key greater than the root. The total time to scan m+2 nodes
of the tree takes O(m) time. So successor takes O(1) amortized time if it is applied repeatedly
until the rightmost node is reached.

Problem 5. Observe first that the claim in the question is not true for n = 3; it is not possible
to turn a zig-zig into a zig-zag by splaying (try it).

Claim: For n > 4, it is possible to turn any n node binary search tree into any other by a
sequence of splay operations.

Proof:

We will prove this claim by induction on n.

Handout 7: Problem Set 2 Solutions 5

Base case: n = 4. We can turn the tree into a left path by splaying on the items in order. (It is
easy to show this for all n by induction. The key observation is that the last step of each successive
splay must be a zig or zig-zag, which pushes the root onto the left path.) This is true for all n Tt
remains to check that we can turn a left path into anything:

Inductive step: We need to show that if it is possible to restructure any n— 1 node binary search
tree into any other by a sequence of splay operations then the same is true for any n node binary
search tree.

We will accomplish this goal via the following four lemmas:

Lemma 7 Any node in a binary search tree with > 4 nodes can be moved to a leaf position by an
appropriate sequence of splay operations.

Lemma 8 A leaf node will remain a leaf node under a sequence of splay operations if it is not
splayed.

Lemma 9 The structure of the tree containing the descendants of a node that is splayed has no
effect on the structure of the tree that results.

Lemma 10 No two binary search trees on n nodes differ only in the position of one leaf node.

6 Handout 7: Problem Set 2 Solutions

By Lemma 7 we can pick a node that is to become a leaf in the final tree and make it a leaf.
Now Lemmas 8 and 9 say that this leaf will stay a leaf if we splay the other nodes, and will not
affect the results of splaying on the other nodes. Thus by the inductive hypothesis we know that
we can restructure the other n — 1 nodes to match the desired tree. Finally, by Lemma 10 we know
that we have gotten the desired tree.

Proof of 7. Let 1 denote the item we wish to turn into a leaf. If ¢ is the minimum item we can
turn it into a leaf by splaying on ¢ and its successor. If ¢ is the maximal element we can handle it
symmetrically. If ¢ is not the second element, splay i’s predecessor’s predecessor, ¢’s, predecessor,
1, and 4’s successor, giving the following situation:

0 splay at g @
() o

3
th))
o) 0

If 7 is the second element we can handle it symmetrically. (Splay succ(succ(7)), succ(i), ¢, pred(z),
and then succ(succ(i) again.)

Proof of 8. It is clear from the definition of splaying that no leaf node is ever given a descendant
unless it is splayed.

Proof of 9. 1t is clear from the definition of splaying that descendants of a splayed node have no
effect on the result of the operation.

Proof of 10. Suppose two binary search trees differed only in the position of one leaf node. Then
the path from the root to the leaf differs in these two trees. Look at the place where it first differs.
In order for the path to go left at this point the leaf must be less than this node; in order for
the path to go right the leaf must be greater than this node. It is impossible for both of these to
happen. Contradiction.

Several people misinterpreted this question by assuming that they could just apply the zig, zig-
zig, and zig-zag cases at will. A splay operation applies the three cases as appropriate until the
item is at the root. So splay(z) always brings = all the way to the root. Thus you cannot just splay
in subtrees, and inversion of splays is difficult. (This theorem implies that you can invert splays,
but you can’t use this theorem to prove itself.)

