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Problem 1.  Another way to formulate the maximum flow problem as a linear program is
via flow decomposition. Suppose we consider all (exponentially many) s-t paths P in G, and
let fp be the amount of flow on path P. Then maximum flow says to find

z = mafop
ZfP S Ue

P>e

fp

(the first constraint says that the total flow on all paths through e must be less than w,).
Take the dual of this linear program and give an English explanation of the objective and
constraints.
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Problem 2. As was discussed briefly in class, the strongly polynomial min-cost flow algo-
rithms work by finding a minimum mean cost cycle—that is, a cycle minimizing the ratio of
cost to number of edges. Consider the following linear program:

w = mianijfij
S fi—fi = 0 (Vi)
J

Yy =1

(a) Explain why this captures the minimum mean cycle problem (Hint: f;; is a
circulation so can be decomposed into cycles).

(b) Give the dual of this linear program—it will involve maximizing a certain variable

A

(c) Give an explanation (in terms of reduced costs) for why this formulation also
captures minimum mean cycles (hint: how much is added to the cost of a k-edge
cycle?)
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(d) Suggest a combinatorial algorithm (not based on linear programming) that uses
binary search to find the right A to solve the dual problem. Can you use this
to find a minimum mean cycle? Note: to know when you can terminate the
search, you will need to lower bound the difference between the smallest and
next smallest mean cost of a cycle.

Problem 3.  Although the dual can tell you a lot about the structure of a problem, knowing
an optimal dual solution does not in general help you solve the primal problem. Suppose
we had an LP algorithm that could optimize an LP with an m X n constraint matrix in
O((m + n)*) time.

e Argue that any LP optimization problem can be transformed into the following form:
min{0 | Az = b, x > 0}. (This LP has optimum value 0 if it is feasible, and oo if it is
infeasible.)

e What is the dual of this linear program?
e Argue that if the primal is feasible, the dual has an obvious optimum solution.

e Deduce that given the above algorithm, you can build an LP algorithm that will solve
any LP without knowing a dual solution in the same asymptotic time bounds.

Problem 4.  Markov chains. An nxn matrix P is stochastic if all entries are nonnegative
and every row sums to 1, that is Zj pij = 1 (so each row can be thought of as taking a
convex combination). Stochastic matrices are used to represent the transition matrices
of Markov chains—random walks through a series of states. The term p;; represents the
probability, if you are in a current state i, that your next state will be j (thus the sum to
one rule). If you have a probability distribution 7 over your current state, where 7; dentoes
the probability you are in state 7, then after a transition with probability defined by P, your
new probability distribution is 7 P.

Use duality (or Farkas’ Lemma) to prove that for any stochastic matrix P, there is a nonzero
m > 0 such that 7P = 7. The vector m can be normalized to 1, in which case it represents a
probability distribution that is stationary under the action of the transition matrix—that
is, if 7 is the probability distribution on what state you are in before a transition, it is also
the probability distribution after the transition. This proves that every Markov chain has a
stationary probability distribution.

Hint: you must somehow express the constraint 7 > 0 (a strict inequality). Consider the
constraint Y m; = 1.

Problem 5. Submit a %— to 1-page writeup of your project plan, on a page separate from
your problem set. The writeup can be the same as your other group members’, but each
person should submit one. It should include references.
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**Problem 6. Game theory (this problem is neat, and not really hard, but you are working
too hard so it is optional). In a 0-sum 2-player game, Alice has a choice of n so-called pure
strategies and Bob has a choice of m pure strategies. If Alice picks strategy ¢+ and Bob picks
strategy j, then the payoff is a;;, meaning a;; dollars are transfered from Alice to Bob. So
Bob makes money if a;; is positive, but Alice makes money if a;; is negative. Thus, Alice
wants to pick a strategy that minimizes the payoff while Bob wants a strategy that maximizes
the payoff. The matrix A = (a;;) is called the payoff matriz.

It is well known that to play these games well, you need to use a mized strategy a random
choice from among pure strategies. A mixed strategy is just a particular probability distri-
bution over pure strategies: you flip coins and then play the selected pure strategy. If Alice
has mixed strategy =, meaning he plays strategy ¢ with probability x;, and Bob has mixed
strategy y, then it is easy to prove that the expected payoff in the resulting game is zAy.
Alice wants to minimize this expected payoff while Bob wants to maximize it. Our goal is
to understand what strategies each player should play.

We'll start by making the pessimal assumption for Alice that whichever strategy she picks,
Bob will play best possible strategy against her. In other words, given Alice’s strategy z,
Bob will pick a strategy y that achieves max, xAy. Thus, Alice wants to find a distribution
x that minimizes max, xAy. Similarly, Bob wants a y to maximize min, v Ay.

So we are interested in solving the following 2 problems:

min max xAy
Yai=13y;=1

max min xAy
Yyi=13z=1

Unfortunately, these are nonlinear programs!

(a) Show how to convert each program above into a linear program, and thus find
an optimal strategy for both players in polynomial time.

(b) Give a plausible explanation for the meaning of your linear program (why does
it give the optimum?)

(c) Use strong duality (applied to the LP you built in the previous part) to argue
that the above two quantities are equal.

The second statement shows that the strategies x and y, besides being optimal, are in Nash
Equilibrium: even if each player knows the other’s strategy, there is no point in changing
strategies. This was proven by Von Neumann and was actually one of the ideas that led to
the discovery of strong duality.



