
Massachusetts Institute of Technology Handout � 

������������� Advanced Algorithms Septemb e r ��	 �


 

David Karger 

Problem Set � 

Due� October �� ����� 

Problem �� Build an uncompressed su�x tree for �banana�� Show the structure and 

node traversal path for each su�x insertion� Mark the su�x links that are actually used as 

shortcuts in the e�cient construction algorithm� 

Problem �� The longest common substring of two strings is simply the longest sub�
string that appears in b o t h � This problem is used as a common example for dynamic pro�
gramming	 which gives an O�mn� time algorithm for handling two strings of length m and 

n�	 We will derive an O�m � n� time algorithm� 

�� Draw the compressed su�x tree for �banana� 

��	 Add to your tree the set of su�xes of �cabana�� �this is slightly less messy than 

drawing the su�x tree for �bananacabana���� 

��	 By eye	 determine the longest common substring of �banana� and �cabana�� 

Mark its corresponding node in your su�x tree� What is important about the 

subtree rooted at this node� 

��	 Give an O�m � n� time algorithm for �nding the longest common substring in 

two strings of length m and n respectively� 

Problem 	� Consider a data structure that supports the following operations on a forest 

of rooted trees with values at each node� 


nd�min�r� �nd the minimum value node in the tree with root r 

decrease�key�v� x� decrease the value of node v to x 

split�r� split the tree with root r by cutting o� node r and deleting it �so all of the children 

of r become roots� 

Give a data structure that supports m decrease�key operations	 m �nd�min operations and 

n splits on a forest with n nodes in O�m log n� time� �Assume m � n �� 

Hint� consider Euler tour trees� 



� Handout �� Problem Set � 

Problem �� The least common ancestor �sometimes called lowest common ancestor� of 

nodes v and w in an n node rooted tree T is the node furthest from the root that is an 

ancestor of both v and w� 

The following algorithm solves the o�ine problem� That is� given a set of query pairs� it 

computes all of the answers quickly� It makes use a union��nd data structure� �See Cormen� 

Leiserson� and Rivest Chapter ���� 

O�ine LCA� Associate with each node an extra �eld 	name
� Process the nodes of T in 

postorder� To process a node� consider all of the query pairs it is a memb e r of� For each 

pair� if the other endpoint has not yet been processed� do nothing� If the other endpoint h a s 

b een p ro cessed do a �nd on it� and record the 	name
 of the result as the LCA of this pair� 

After considering all of the pairs� union the node with its parent� and set the 	name
 of the 

set representative to b e the parent� 

We leave it as an exercise �not to b e turned in�� that this algorithm is correct� and takes 

O��n � m���n�� time� �If you haven�t met � b e f o r e � it is an inverse of Ackerman�s function 

and grows VERY� VERY slowlyeven slower than log �n� It is only � on the numb er of 

particles in the universe�� 

Of course� in some instances we would like to �nd least common ancestors online� That is� 

we aren�t told all of the pairs up front� we get queries one at a time� 

�a�	 Show h o w to use the techniques of persistent data structures to preprocess a tree 

in O�n log n� time so as to allow LCA queries to b e answered in O�log n� time� 

Aim for simple solution here� even if you solve part �b�� Hint� path compression 

is messy for the persistent data structure� and is not necessary to achieve O�log n� 

time for union and �nd operations� Note also that nodes have arbitrary indegree� 

so path copying won�t work� 

� �b� Improve your solution to take O�n� preprocessing time� 

Problem �� The previous is not the b e s t online LCA algorithm� O��� query time is 

achievable� even if the queries arrive online� Let�s get part�way there� Give an algorithm 

to preprocess an arbitrary rooted tree so that queries of the form 	is node v an ancestor of 

node w
 can b e answered in O��� time� Hint� Consider Euler tours� 

�� Problem �� Looking back at priority queues� we s a w that very di�erent structures applied 

when we considered the RAM model �which allows indirect indexing into an array� and 

derived bucket heaps� and when we considered the 	pointer machine
 model �which only 

allows �xed�size node structures with pointers to other nodes� and derived Fibonacci heaps� 

But we noticed today that we de�ned Fibonacci heaps to use an array of non�constant size 

�during consolidation of roots�� Show that Fibonacci heaps can be made fully pointer based 

by �nding a pointer machine scheme for consolidating the roots �you may n e e d to maintain 

some extra p o i n ters all the time to prepare for consolidation�� 


