
Massachusetts Institute of Technology Handout � 

������������� Advanced Algorithms Septemb e r ��	 �


 

David Karger 

Problem Set � 

Due� Septemb e r ��� ����� 

Problem �� Devise a way to avoid initializing large arrays� More speci�cally	 develop a 

data structure that holds n items according to an index i � f�� � � � n g and supports the 

following operations in O�� time �worst case p e r operation� 

init Initializes the data structure to empty�


set�i� x places item x at index i in the data structure�


get�i returns the item stored in index i	 or �empty� if nothing is there�


Your data structure should use O�n space and should work regardless of what garbage 

values are stored in that space at the beginning of the execution� Hint� use extra space to 

remember which entries of the array h a ve been initialized� 

Problem �� Let S b e a search data structure that performs insert	 delete and search in 

O�log n time	 where n is the number of elements stored� An empty data structure S can be 

created in O�� time� 

We	 w ould like to construct a static data structure with n elements that is statically optimal 

in total access time	 given the number of times an element is accessed in an access sequence� 

The data structure is constructed as follows� Search data structure Sk 

holds the �2
k 

most 

frequently occurring items in the access sequence� A search on v is done on S0 

� S 1 

� � � � until 

an Si 

holding v is encountered� Notice that all elements in Si 

are held in Si+1 

� 

�a�	 Show that the above data structure is asymptotically comparable to the optimal


static tree in terms of the total time to process the access sequence�


�b�	 Make the data structure capable of insert operations� Assume that the numb e r o f


searches to be done on v is provided when v is inserted� The cost of insert should


be O�log n amortized time	 and total cost of searches should still b e optimal


�non�amortized�


�c�	 Improve y our solution to work even if the frequency of access is not given during


the insert� Your data structure now satis�es the static optimality theorem on


splay trees�


�d�	 Make your data structure satisfy the working set theorem on splay trees� Ignore


the static optimality condition�




� Handout �� Problem Set � 

Problem �� Describe a data structure that represents an ordered list of elements under 

the following three types of operations� 

access�k�� Return the kth element of the list �in its current order�� 

insert�k � x �� Insert x �a new element� after the kth element in the current version of the 

list� 

reverse�i� j� Reverse the order of the ith through jth elements� 

For example� if the initial list is �a� b� c� d� e�� then access��� returns b� After reverse������ the 

represented list becomes �a� d� c� b� e�� and then access��� returns d�


Each operation should run in O�log n� amortized time� where n is the �current� numb e r of


elements in the list� The list starts out empty�


Hint� First consider how to implement access and insert using splay t r e e s � Then think about 

a special case of reverse in which the �i� j� range is represented by a whole subtree� Use these 

ideas to solve the real problem� Rememb e r � if you store extra information in the tree� you 

must state how this information can be maintained under various restructuring operations� 

�This data structure is useful in e	ciently implementing the Lin Kernighan heuristic for the 

travelling salesman problem� This i s a g o o d idea for a project in this course�� 

Problem �� Using the splay operation as a subroutine� implement t h e successor opera

tion� This takes as input a p o i n ter to the root of a tree� and restructures the tree so that 

the successor of the root becomes the root� The operation does not change the tree if the 

root is already the rightmost element of the tree� The new root is returned� You may m a k e 

the assumption that every key in the tree is di�erent� 

�a�	 Explain why the amortized cost of your implementation is O�log n�� 

�b�	 Prove that the amortized running time of the successor operation is O��� if it is 

applied repeatedly until it nds the rightmost node in the tree� �Use a theorem 

that�s stated in the JACM paper�� 

�	 Problem �� Given the theorem about access time in splay trees� it is tempting to con

jecture that splaying does not create trees in which it would take a long time to nd an 

item� Show that this conjecture is false by showing that for large enough n� it is possible to 

restructure any binary tree on n nodes into any other binary tree on n nodes by a sequence 

of splay operations� 

�� Problem �� Prove the dynamic optimality conjecture� over any given access sequence� 

splay trees take time proportional to the best possible �pointer based� data structure for the 

problem� even if that data structure is allowed to adjust itself during accesses �the adjustment 

time counts toward the overall cost� of course�� 


