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Problem Set � Solutions 

Problem �� We are given polyhedra P � fxjAx � bg and Q � fxjDx � dg� 

�a�	 Among all pairs of points in P and Q	 choose x � P � y � Q that have the smallest 

distance ky � xk� We know that ky � xk � �	 since P and Q do not share common 

p o in ts� Let c � y � x� 

Lemma � Let x � P � y � Q be such that ky � xk is minimum� Then� any point z � P 

has cz � cx� Simiarly every z � Q has cz � cy� 

Proof� By contradiction� Let z � P b e such that cz � cx� The projection of y � z 

along c is given by 

c � y � z� c � y � z� 

c � y � x� � ky � x�	 �� 

c � c c � y � x� 

where k � �� Let y � z � ky � x� � w	 where w is a vector orthogonal to c� 

Since P is convex	 the p oin t x0 � � � ��x � �z for a small � � � will also lie in P � 

Now the distance from x0 to y is 

� � �y � x0 � � ky � � � ��x � �zk 

� k� � ��y � x� � �y � z�k 

Now	 we can use the decomposition of z shown in Equation �� to get 

� � �y � x0 � � k� � ��y � x� � k� y � x� � kw k 

� k� � �k � ���y � x� � k �w k 

�	

q
� � �k � ���2 kck2 � k2 �2 kwk2 

As � � �	 the �rst order term of ky � x0 k � k y � xk is �k � �� kck� Therefore x0 is 

closer to y than x� This is a contradiction� So cz � cx for all z � P � Similarly	 w e can 

argue that cz � cy for all z � Q� 

�Corollary � Let x� � P � y � Q be such that ky� � x� k is minimum� Then� c � y� � x� 

is such that cx � cy for all x � P � y � Q� 

Proof� It is evident that cx� � cy� � kck2 � �	 since x� �� y� � We can now apply 

Lemma � to the corollary� 
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�b�	 Constraints Ax � b� Dx � d de�ne the set P � Q� Therefore we can run an LP to �nd


minf�jAx � b� Dx � dg to �nd an x � P � Q�


The solution to part �a� is not very useful in �nding a separating hyperplane because 

the minimization constraint for the problem is not linear� But we k n o w that a separating 

plane exists if P � Q � �� In other words� we k n o w that there is a c such that cx � cy 

for all x � P and y � Q� 

Consider the polyhedron " # " # " # 

A I � x b 

� 

�D � �I s d 

By Farkas� lemma� if the above equality is not satis�ed� there exists a y such that " # 

A I � 

y	 � � 

�D � �I " # 

b 

y � � 

d 

Let y be a solution to the above constraints� Any Ax1 

� b� Dx 2 

� d satis�es " # 

y 	A � D
 

x1 � yA x 1 

� yD x 2 

� yb � yd � � 

x2 

Therefore y 	A � D
 is a separating hyperplane� Computing such a y involves a 

single LP with objective � � 

Comments from graders� Part �b� was found to be hard� Solutions had to depend on Farkas� 

lemma since strong duality� although equivalent� was not introduced in this problem set� Many 

incorrect solutions to part �b� attempted to minimize the norm�� distance using LP� 

Problem �� 

�a�	 If x is optimal it is evident that no x � �y can have a better solution� So cy � �� We n ow


prove the converse of this statement� If x is not optimal� then let z be the optimal point�


Clearly all p o i n ts of the form � � ��x � �z� for � � 	�� 
 are in the polyhedron� since


the polyhedron is convex� Thus we can consider a small � � �+ so that x � ��z � x� is


feasible and c�x ���z � x�� � cx� Therefore z � x is a feasible direction with c�z � x� � ��


�b�	 This proof is simlar to the proof for �a�� An optimal x that is unique cannot have


cy � � for a feasible direction y� Otherwise c�x � �y� � cx and the optimality o f x will


be violated� The converse is proved by assuming a non�unique and possibly non�optimal


solution x� Now a di�erent optimal point z will be such th a t cz � cx� i�e�� c�z � x� � ��


Now� let y � z � x be the direction� Direction y is feasible since x � �y� for small � � �+


is a convex combination of x and z� The value of cy � �� We have thus shown that


every non�unique and possibly non�optimal solution has a feasible direction that does


not increase the objective function�
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�c�	 Let us consider a feasible direction y� The point x��y will have a strictly better objective


function i� cy � �� from part �b�� The objective function is given by cB 

A 

�1 B � c�N 

xN 

�
B 

where c�N 

	 cN 

�1 AN 

gives the reduced costs� If all reduced costs are positive� � cB 

AB 

the objective function will decrease i� at least one non
basic variable is decreased� But 

all non
basic variables are � and cannot be negative� The result follows� 

Comments from graders� Most solutions to this problem were correct� Some failed to prove 

the existence of a feasible direction in parts �a� and �b�� 

Problem �� Let n b e t h e n umber of dimensions and m be the number of de�ning points in the 

p oly top e� 

�a�	 A polytope is de�ned by the constraints 

� � 

x(1) 

� � �	 � 

�x 	 � 

� �	

� � 

x(m) 

m X 

�i 

	 � 

i�1 

� � � 

where x(1) � � � � � x 

(m) are de�ning points of the polytope� Clearly the set of feasible 

p oints �x1 

� � � � � x n� � 1 

� � � � � � m� is a polyhedron� We still have to prove that the set 

of p oints �x1 

� � � � � x n� de�nes a polyhedron where �x1 

� � � � � x n� is a projection of some 

feasible point � x1 

� � � � � x n� � 1 

� � � � � � m�� This can be proved by the repeated application 

of lemma  given below� 

Lemma � The projection of an n � � �dimensional polyhedron on n�dimensions is a 

polyhedron� 

Proof� Let us consider all constraints on the �n���st dimension xn+1 

� The constraints� 

including equality constraints� can be written as 

xn+1 

� f 

(i) 

�x1 

� � � � � x n� ��l 

xn+1 

� fg 

(j)�x1 

� � � � � x n� ��	 �� 

where fg 

and fl 

de�ne linear combinations on their parameters� Consider the constraints 

f 

(i) 

�x1 

� � � � � x n� �� � f g 

(j)�x1 

� � � � � x n� �� �� ij� ���l 

Any solution to constraints �� gives a solution to contraints ���� Similarly any solution 

to ��� with 

xn+1 

� �maxff 

(i) 

�x1 

� � � � � x n� �� j ig� minffg 

(j)�x1 

� � � � � x n� �� j jg�l 

which is a non
empty range� gives a feasible solution to ��� 
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�b�	 Let the p o in t in the polyhedron b e x� We will prove that x is linear combination


of the vertices of the polyhedron by induction on the numb e r of linearly independent


constraints satis�ed tightly� If n constraints are tight� the point x is the vertex de�ned


by those constraints� Let the point x satisfy m tight constraints� Consider a line drawn


through x and a vertex v satisfying those constraints� Such a v ertex v exists� since any


polyhedron with some constraints made tight is a polyhedron� if feasible� The existence


of x proves feasibility� One p o i n t of intersection of this line with the boundary of the


polyhedron is v� Let the other point o f i n tersection of this line be x0 � Now� x0 belongs to


at least one face that is not a linear combination of the m constraints that are already


tight� Otherwise� the ray from x to x0 can be extended in�nitesimally without violating


any constraint� thereby c o n tradicting the de�nition of x0 � Point x0 now t i g h tly satis�es


m � � linearly independent constraints� The result follows from induction�


�c�	 The above inductive proof added one vertex to the convex sum per satis�ed constraint�


Initially� at least � constraints are tightly satis�ed� The base case involved n constraints


and expressed the point as a trivial convex combination of one vertex� Thus any p o i n t


in the polyhedron can be expressed as a convex combination of n � � v ertices�


Comments from graders� Many solutions to this problem� especially part �a�� were not rigorous� 

Problem �� Since x is non	degenerate� it is de�ned by exactly n tight constraints� Every non	

basic variable therefore de�nes a feasible direction� say y(i) � 

�a�	 Since x is the unique optimum� every feasible direction has cy � �� from problem



�b�� So the feasible directions y(i) should have c�N 

y(i) � �� which is true only if every


component i n c�N 

� ��


�b�	 Let z be the optimal vertex� Since x is a non	optimum vertex� y � z � x is a feasible


direction� The direction y has non	negative components for non	basic variables and


can b e expressed as a non	negative combination of y(i) s� The improvement in the


objective function is given by c�N 

y which i s n e g a t i v e� Therefore at least one of the terms


c�N 

y(i) � �� Thus some pivot step yeilds a strictly better solution�


Comments from graders� The solution to problem 
�b� cannot be directly applied in part �a�� 

since some y(i) may not be feasible and could have non	positive reduced cost associated with it� 

Problem �� We write the problem as Ax � b � e� x � �� where e is the vector of �i values� 

�a�	 Since all rows are linearly independent� every set of basic variables B de�nes an invertible


AB 

� Let B1 

� � � � � B z 

denote all possible sets of basic variables� None of the vertices


de�ned by these sets are equal if


� A�1A�1 �b � e� 6
Bj 

�b � e� �8 ij�
Bi 

Consider the equations de�ned by 

A�1A�1 �b � e� � 

Bj 

�b � e� �8 ij�
Bi 
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Consider any equality de�ned above� Since Bi 

6� Bj 

� there is atleast one power of � that 

has a non�zero coe�cient� Thus each equality de�nes some roots for �� An � smaller 

than the smallest positive root will ensure that all vertices de�ned by basic variables 

are unequal� thereby ensuring that there are no degenerate vertices� 

�b�	 Let B
� b e the basis of an optimum basic feasible solution to the perturbed problem�


The optimal solution is unique if � is su�ciently small �as de�ned by part �a��� The


vector of reduced costs for the perturbed problem is given by cN 

� cB 

A
�1 

AN 

� which
B 

is the same for the original problem� Since the solution to the perturbed problem is 

unique� all reduced costs are positive �from problem 	�a��� From problem 
�b�� the 

solution to the original problem is optimal� 

Comments from graders� Some solutions failed to account for degeneracy due to linearly 

dependent r o ws in A that cannot be corrected by perturbation� 


