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Problem Set 8 Solutions

Problem 1.  We are given polyhedra P = {z|Az < b} and Q = {z|Dz < d}.

a) Among all pairs of points in P and (), choose z € P,y € () that have the smallest
g
distance ||y — z||. We know that ||y —z| > 0, since P and @ do not share common
points. Let c =y — .

Lemma 1 Let x € P,y € Q be such that ||y — z|| is minimum. Then, any point z € P
has cz < cx. Simiarly every z € Q has cz > cy.

Proof. (By contradiction) Let z € P be such that ¢z > cz. The projection of y — z
along c is given by

=2, _ely=z
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where k > 1. Let y — 2 = k(y — z) + w, where w is a vector orthogonal to c.

Since P is convex, the point 2’ = (1 — €)z + ez for a small e > 0 will also lie in P.
Now the distance from z’ to y is

ly=2"] = lly— (1 —e)z— ezl
= 01— ey —=z) +ely —2)||

Now, we can use the decomposition of z shown in Equation (1) to get

ly =2l = (1 =)y — o)+ ke(y — z) + kuw]|
11 +e(k = 1))y — ) + kew]|

= 0+ elh = 1)) el + k22 [|uw]|?

As € — 0, the first order term of ||y — 2’| — ||y — z|| is €(k — 1) ||c||. Therefore z' is
closer to y than z. This is a contradiction. So cz < cx for all z € P. Similarly, we can
argue that cz > cy for all z € Q.

Corollary 1 Let z* € P,y* € Q be such that ||y* — z*|| is minimum. Then, ¢ = y* —x*
is such that cx < cy for all z € P,y € Q.

Proof. 1t is evident that cz* — cy* = ||¢[|* > 0, since z* # y*. We can now apply
Lemma 1 to the corollary.
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(b) Constraints Az < b, Dz < d define the set P N Q. Therefore we can run an LP to find
min{0|Az < b, Dz < d} to find an z € PN Q.

The solution to part (a) is not very useful in finding a separating hyperplane because
the minimization constraint for the problem is not linear. But we know that a separating
plane exists if PN Q = (. In other words, we know that there is a ¢ such that cz < cy
forallz € P and y € Q.

Consider the polyhedron
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By Farkas’ lemma, if the above equality is not satisfied, there exists a y such that
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Let 4 be a solution to the above constraints. Any Az < b, Dzo < d satisfies
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Therefore y[A — D] is a separating hyperplane. Computing such a y involves a
single LP with objective 0.

Comments from graders: Part (b) was found to be hard. Solutions had to depend on Farkas’
lemma since strong duality, although equivalent, was not introduced in this problem set. Many
incorrect solutions to part (b) attempted to minimize the norm-2 distance using LP.

Problem 2.

(a) If z is optimal it is evident that no x + ey can have a better solution. So cy > 0. We now
prove the converse of this statement. If x is not optimal, then let z be the optimal point.
Clearly all points of the form (1 — €)z + €z, for € € [0,1] are in the polyhedron, since
the polyhedron is convex. Thus we can consider a small € — 07 so that z + e(z — x) is
feasible and c¢(z+¢€(z—1z)) < cz. Therefore z— 1 is a feasible direction with ¢(z—z) < 0.

(b) This proof is simlar to the proof for (a). An optimal z that is unique cannot have
cy < 0 for a feasible direction y. Otherwise ¢(x + ey) > cx and the optimality of z will
be violated. The converse is proved by assuming a non-unique and possibly non-optimal
solution z. Now a different optimal point z will be such that cz > cz, i.e., ¢(z —z) > 0.
Now, let y = z— 2 be the direction. Direction ¥ is feasible since x + ey, for small € — 0T
is a convex combination of z and z. The value of cy < 0. We have thus shown that
every non-unique and possibly non-optimal solution has a feasible direction that does
not increase the objective function.
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(c) Let us consider a feasible direction y. The point z+ey will have a strictly better objective
function iff cy < 0, from part (b). The objective function is given by CBAng + ¢nzN,
where ¢y = ey — CBA;A ~ gives the reduced costs. If all reduced costs are positive,
the objective function will decrease iff at least one non-basic variable is decreased. But
all non-basic variables are 0 and cannot be negative. The result follows.

Comments from graders: Most solutions to this problem were correct. Some failed to prove
the existence of a feasible direction in parts (a) and (b).

Problem 3. Let n be the number of dimensions and m be the number of defining points in the
polytope.

(a) A polytope is defined by the constraints

zM
r = A :
z(m)
m
i o=1
i=1
A >0

where x(l), . ,x(m) are defining points of the polytope. Clearly the set of feasible
points (%1,...,Zp, A\1,-.-,Am) is a polyhedron. We still have to prove that the set
of points (z1,...,2,) defines a polyhedron where (z1,...,xz,) is a projection of some
feasible point (x1,...,%n, A1,-..,Am). This can be proved by the repeated application
of lemma 2 given below.

Lemma 2 The projection of an n + 1-dimensional polyhedron on n-dimensions is a
polyhedron.

Proof. Let us consider all constraints on the (n+1)st dimension z,,4+1. The constraints,
including equality constraints, can be written as

Tn+1 > fl(i)(mla"'axnal)
Tn+1 < féj)(mlaamnal) (2)

where f, and f; define linear combinations on their parameters. Consider the constraints
fl(l)(ﬂ?l,,.'ll'n,].) S fgg])(xlaaxnal) (VZJ) (3)

Any solution to constraints (2) gives a solution to contraints (3). Similarly any solution
to (3) with

Tni1 € [max{ [\ (z1, ..., @0, 1) | i}, min{ fO (z1,. .., 20, 1) | 5]

which is a non-empty range, gives a feasible solution to (2).
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(b) Let the point in the polyhedron be z. We will prove that z is linear combination
of the vertices of the polyhedron by induction on the number of linearly independent
constraints satisfied tightly. If n constraints are tight, the point z is the vertex defined
by those constraints. Let the point z satisfy m tight constraints. Consider a line drawn
through z and a vertex v satisfying those constraints. Such a vertex v exists, since any
polyhedron with some constraints made tight is a polyhedron, if feasible. The existence
of x proves feasibility. One point of intersection of this line with the boundary of the
polyhedron is v. Let the other point of intersection of this line be z’. Now, 2’ belongs to
at least one face that is not a linear combination of the m constraints that are already
tight. Otherwise, the ray from z to 2’ can be extended infinitesimally without violating
any constraint, thereby contradicting the definition of z'. Point 2’ now tightly satisfies
m + 1 linearly independent constraints. The result follows from induction.

(¢) The above inductive proof added one vertex to the convex sum per satisfied constraint.
Initially, at least O constraints are tightly satisfied. The base case involved n constraints
and expressed the point as a trivial convex combination of one vertex. Thus any point
in the polyhedron can be expressed as a convex combination of n + 1 vertices.

Comments from graders: Many solutions to this problem, especially part (a), were not rigorous.

Problem 4. Since z is non-degenerate, it is defined by exactly n tight constraints. Every non-
basic variable therefore defines a feasible direction, say y(*).

(a) Since z is the unique optimum, every feasible direction has cy > 0, from problem
2(b). So the feasible directions y) should have éyy® > 0, which is true only if every
component in éy > 0.

(b) Let z be the optimal vertex. Since z is a non-optimum vertex, y = z — z is a feasible
direction. The direction y has non-negative components for non-basic variables and
can be expressed as a non-negative combination of y()’s. The improvement in the
objective function is given by ¢yy which is negative. Therefore at least one of the terms
ény < 0. Thus some pivot step yeilds a strictly better solution.

Comments from graders: The solution to problem 2(b) cannot be directly applied in part (a),
since some y(* may not be feasible and could have non-positive reduced cost associated with it.

Problem 5. We write the problem as Az = b+ e,z > 0, where e is the vector of € values.

(a) Since all rows are linearly independent, every set of basic variables B defines an invertible
Ap. Let By,...,B, denote all possible sets of basic variables. None of the vertices
defined by these sets are equal if

Api(b+e) # Api(b+e) (Vif)
Consider the equations defined by

A,;il(b +e) = Ag}(b +e) (Vij)
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Consider any equality defined above. Since B; # Bj, there is atleast one power of € that
has a non-zero coefficient. Thus each equality defines some roots for €. An e smaller
than the smallest positive root will ensure that all vertices defined by basic variables
are unequal, thereby ensuring that there are no degenerate vertices.

(b) Let B* be the basis of an optimum basic feasible solution to the perturbed problem.
The optimal solution is unique if € is sufficiently small (as defined by part (a)). The
vector of reduced costs for the perturbed problem is given by cy — cBAjg.lA ~, which
is the same for the original problem. Since the solution to the perturbed problem is
unique, all reduced costs are positive (from problem 4(a)). From problem 2(b), the
solution to the original problem is optimal.

Comments from graders: Some solutions failed to account for degeneracy due to linearly
dependent rows in A that cannot be corrected by perturbation.



