Massachusetts Institute of Technology Handout 2
6.854/18.415: Advanced Algorithms September 14, 1999
David Karger

Problem Set 1

Due: September 21, 1999.

Starred (*) questions are likely to be more challenging.
Double starred (**) questions are for brownie points.

Problem 1. Professor Pinocchio claims that the height of an n-node Fibonacci heap is
O(logn). Show that the Professor is mistaken by exhibiting, for any positive integer n, a
sequence of Fibonacci heap operations that creates a Fibonacci heap consisting of just one
tree that is a linear chain of n nodes.

Problem 2. 1In this problem we’ll try to understand more about the constant factors
associated with Fibonacci heaps. Assume for this problem that single “node operations”
such as cutting a node, linking a node as a root or a child, checking a mark bit, or comparing
two keys, take one time unit. In-register computations involving a constant number of items
are free (you can tinker with this model as you need to; just be explicit).

(a) Tune the potential function to get the best bounds (measure constant factors)
on the amortized number of such basic operations per heap operation.

(b) Suppose we change Fibonacci heaps so that up to 4 children can be cut from a
node before we cascade the cut. Which operations get faster (by constant factors)
and which slower? By how much?

Problem 3. More on amortizing heap operations. The bounds asked for can of course be
derived from Fibonacci heaps; the goal is to work with the data structures specified rather
than introducing complicated new ones.

(a) Let P be a priority queue that performs insert, delete-min and merge in O(logn)
time and make-heap in O(n) time, where n is the size of resulting priority queue.
Show that P can be modified to perform insert in amortized O(1) time, without
affecting the cost of delete-min or merge. Assume that the priority queue does
not support an efficient decrease-key.

(b) Using the above technique, show that even binary heaps can be modified to
achieve amortized constant time insert operation and O(logn) delete-min. Note
that binary heaps do not support O(logn) merge operation.

2 Handout 2: Problem Set 1

Problem 4. In the multi-level buckets data structure, deletions are expensive because we
may have to search though many empty buckets to find the minimum item. Suppose that at
each level we keep a Fibonacci heap indicating which buckets are occupied. Note this is not
the “heap-on-top” queue from “Buckets, Heaps, Lists, and Monotone Priority Queues.”

(a) What tradeoff in time bounds does this give for insert, delete-min, and decrease-
key?

(b) What is the best running time you can achieve for shortest paths using this
modified structure?

Problem 5. In class we saw how to use a van Emde Boas priority queue to get O(loglogU)
time per queue operation (insert, delete-min, decrease-key) when the range of values is U.
Show that for shortest paths (on a graph with n nodes and range of edge lengths C'), although
the range of values is nC, we can get O(loglog C') time per queue operation.

* Problem 6. Augment the VEB priority queue to support the following operations on
integers in the range 1..U in O(loglogU) time each:

find(v) report whether the item v is stored in the structure

pred(v) return v’s predecessor, the item of largest value less than v (return nothing if v is
the minimum item)

succ(v) return v’s successor, the item of smallest value greater than v (return nothing if v
is the minimum item)

** Problem 7. Keeping a mark bit around in Fibonacci heaps may be wasteful. Suppose
that instead, each time I do a cut, I flip a coin to decide whether to cascade that cut to the
parent. If the coin is unbiased, show that the expected behavior of these markless Fibonacci
heaps is like that of standard ones. Can I bias the coin, so that a cascade is more than 50%
likely, to achieve the effect of cascading after (say) one and a half children are cut? Can this

be used to improve the time for delete-min at the cost of increasing the time for decrease
key?

** Problem 8. Can a VEB type data structure be combined with some ideas from Fibonacci
Heaps to support insert/decrease-key in O(1) time with delete-min in O(loglogU) time?

