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Problem 1.  Suppose you are given two polyhedra P = {z | Az < b} and Q = {z | Dz < d}.

(a) Using our polyhedral techniques, prove that if the polyhedra have empty inter-
section (i.e. no point is in both) then there is a separating hyperplane for P and
@ (that is, a ¢ such that cx < cy for x € P and y € Q).

(b) Suppose you have a linear programming algorithm. Argue that with this algo-
rithm you can either find a point in P N Q or find their separating hyperplane
c.

Problem 2. Consider the problem of minimizing cz over a polyhedron P. Prove the
following:

a) x is optimal if and only if cy > 0 for every feasible direction y (that is, direction
i timal if and only if cy > 0 fi feasible directi that is, directi
y such that z + ey € P for sufficiently small positive €).

(b) A feasible solution is the unique optimum if and only if ¢y > 0 for every feasible
direction y.

(c) Under the simplex algorithm, if the reduced cost of every nonbasic variable is
positive, then x is the unique optimum.

Problem 3. In class we defined a polyhedron as an intersection of finitely many halfspaces.
A related concept is a polytope: the set of convex combinations of finitely many points.

(a) Prove that any polytope is a polyhedron. Hint: the polytope is an intersection
of many halfspaces (why?). What if such a halfspace intersects less than n of the
defining points?

(b) Prove that in any bounded polyhedron (that is, one where every ray from inside
eventually hits a boundary), every point is a convex combination of vertices.
Hint: use induction on the number of satisfied constraints.

(c) Prove that any element of a bounded n-dimensional polyhedron can be expressed
as a convex combination of at most n 4+ 1 vertices of the polyhedron. Hint:
consider the set of all possible representation of x as convex combinations.
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Problem 4.  One thing that makes LP hard in practice is degeneracy in the input prob-
lem. Given an LP, a vertex is degenerate if more than n constraints are tight at that vertex.
Consider the simplex algorithm for a minimization LP in standard form and suppose you
are at a vertex x.

(a) Prove that if z is the unique optimum and is nondegenerate, then the reduced
cost of every nonbasic variable is positive.

(b) Prove that if x is any nondegenerate, nonoptimum vertex, then there is a pivot
step to a strictly better solution (so no cycling pivots occur).

Problem 5.  One (theoretical) way to eliminate degeneracy is perturbation. Suppose we
take a standard form (Az = b, > 0) problem, and replace b; by b; + €'.

(a) Assuming that the rows of A are linearly independent, prove that for all suffi-
ciently small €, there are no degenerate vertices.

(b) Show that for sufficiently small €, an optimum basic feasible solution for the
perturbed problem is also an optimum (under the same basis) for the original
problem.

£ (c) Prove that if the polytope you are optimizing over is full-dimensional, the per-
turbed problem is still feasible.



