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Problem �� The uncompressed su�x tree for �banana� is shown in Figures �	 � and �� �Your 

TA could not print � on the �gures for reasons beyond his control�� 
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Figure �� Su�x tree for �banana�� Step �	 � and � 

Comments from graders� Many solutions had minor errors in the �gures� 

Problem �� A compressed su�x tree for the string �banana�� is shown in Figure �� For clarity	 

the edges are represented by substrings and not indices as in the actual algorithm� After adding 

su�xes of �cabana��	 we get Figure �� The solid node in Figure � corresponds to the longest 

common substring of banana and cabana� 

A node is a substring of banana and cabana if it has both ��� and ��� in its subtree of descendants� 

Among all such nodes	 the marked node corresponding to the longest common substring has the 

maximum numb e r o f c haracters on its path to the root� 

We can now design an algorithm for computing longest common substring in linear time� Let w 

and w b e t h e t wo given strings� Let w be m characters long and w be n characters long� 2 1 2 

Lemma � Consider the su�x tree containing su�xes of �w 1 

�w 2 

��� String wx 

corresponding to 

node x is a common substring i� the subtree rooted at x has a su�x containing �$� and another 

su�x not containing �$�� 

1 
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Figure �� Su�x tree for �banana��� Step � and �
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Figure �� Su�x tree for �banana��� Step � and 	




� Handout �� Problem Set � Solutions 

a 
banana$ 

na 

na$ $ 

$ 

na 

$ 

$ 

na$ 

Figure �� Compressed su�x tree for �banana�� 

Proof� Let the su�xes b e s1 

and s2 

respectively� Both of them start with w � The occurrence x 

of w in s1 

happens before the ��� character� Therefore w is a substring of w1 

� Using a similar 

argument about s2	 w e know that w is a substring of w2 

� 

x x 

x 

Su�xes s1 

� � � � � s m+1 

contain ��� and su�xes sm+2 

� � � � s m+n+2 

do not� We construct a su�x tree 

for w1 

�w2 


� From this su�x tree we compute the longest common substring as follows� 

�a� Mark every su�x tree node that has in its subtree a su�x containing ���� This can be done 

in linear time by performing a postorder traversal of the tree� when we examine a node	 we 

have already checked all its children mark the node if any of its children is marked� Do the 

same to mark every node with a su�x not containing ���� 

�b� With one more tree traversal	 �nd the deepest node marked with both features� Just maintain 

a �current depth� counter increment it by the length of any edge traversed downward and 

decrement b y the length of any e d g e t r a versed upward� 

Our algorithm requires two linear time traversals of the linear�size su�x tree	 so is linear� 

Comments from graders� Some solutions had super�linear time computation of nodes corre�

sponding to common substrings� 

Problem �� The forest of rooted trees can be represented as Euler tour trees� Vertices and edges 

of the forest are stored separately� Each v ertex points to its active c o p y in the Euler tour tree� Each 

edge p o i n ts to its two occurrences in the Euler tour tree� We use a splay tree implementation for 

the Euler tour trees� We w i l l n o w augment this data structure to handle �nd�min and decrease�key 

queries� 

De�nition � The value of a node x representing vertex v is the value of vertex v if the x is the 

active copy and 1 otherwise� 

Every node in the tree holds a pointer called the min pointer to the minimum value node in 

its descendants �including itself�� Thus the root of the Euler tour tree holds a p o i n ter to the the 

minimum value node in that tree� 
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Figure �� Compressed su�x tree having su�xes of �banana�� and �cabana��� The marked node 

shows the longest common substring� 
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Figure �� Updating min pointers on a rotation 

After a rotation done on the tree� we can get back consistent v alues for best	descendant pointer 

as shown in Figure 
� A splay operation is composed of rotations� Therefore we can extend the 

splay operation so that consistent v alues of min pointers are maintained� Similarly we can update 

min pointers on splitting and joining edges� Thus all operations on our augmented splay trees will 

maintain consistent min pointers� 

Find	min�r� can be done by sp la ying r to the root of the ET	tree and returning the min pointer� 

A decrease	key operation on node x can be done by sp la ying x and decreasing its key value� Notice 

that only xs min pointer needs to b e updated after this operation� Both these operations take 

O�log n� tim e� 

The adjacency list of each v ertex is maintained in the copy of the forest held in our data structure� 

Since our ET	tree supports split and join� splitting a root can be done by repeated removal of edges 

adjacent to r� At most n � � edges will be removed during the execution of the algorithm� Each 

edge removal takes O�log n� time and therefore the total time to do splits is O�n log n�� The total 

running time of the algorithm is O�m log n� sin ce m � n � 

Comments from graders� Many solutions did not return the minimum node on �nd	min� Some 

solutions attempted to keep a separate heap� This idea does not work well since splitting the heap 

is a costly operation� 
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Problem �� The o�ine algorithm for LCA traverses nodes in post�order and joins each node�s 

component with its parent�s component� When handling a query on �v � w �� the o�ine algorithm 

�nds the name of v�s component when processing w �if v has already b e e n processed�� After 

processing all pairs incident on w� the algorithm 	destroys
 this version �say Vw 

� of the data 

wstructure� If we maintain V in a partially persistent data structure� the query on the �v� w � pair 

can be done online� 

Speci�cally� w e assign timestamp t to the tth node in the post�order traversal� Let � �v� denote 

the timestamp of node v� A v ersion is maintained for each timestamp in f�� � � � � n g� A LCA query 

on �v� w �� looks for the node with smaller timestamp �say w� and performs a �nd on v in the � �w�th 

version of the data structure� We need to show how we can get a partially persistent union��nd 

data structure with the following operations� 

Find�v � t �� Find the name of v�s component in th e tth version of the data structure�


Union�w � p� t �� Union the component with name w and the component with name p at timestamp


t� The resulting component is named p� Timestamp t has to be one more than the timestamp 

of the previous update� 

�a� We use the union by rank heuristic of linking the smaller depth tree as the child of the larger 

tree�s root� This achieves O�log n� depth trees� For clarity� we refer to parents �roots� in the 

union��nd data structure as UF�parents�UF�roots�� 

Lemma � The UF�parent pointer of every node is initially null� During the execution of the 

algorithm� the UF�parent pointer of a node is updated at most once� 

Proof� The union by rank heuristic never changes the UF�parent p o i n ter of a non�root node� 

Root nodes have n ull UF�parent p o i n ter� The lemma follows� 

We can augment the parent pointer with its time of creation� to make the traversal of 

this data structure partially persistent� Due to Lemma � the parent p o i n ter is not changed 

again� To do a f in d �v � t �� we traverse UF�parent p o i n ters from v till we reach an edge with 

time�stamp more than t� The node we reach will be the UF�root of the component� We n e e d 

however compute the name of the component� 

So we maintain a log of operations done on the union��nd data structure� The log is an 

array mapping time�stamps to the names of the components unioned� To compute the root 

node� we can lookup the name of the parent component corresponding to the time�stamp of 

the last edge traversed� It is evident that the �nd operation takes O�log n� time� 

Union�w � p� t � i n volves �nding the UF�root of w�s and p�s components� This �nd operation 

works on the current v ersion of the data structure� Then we do union by rank and timestamp 

the edge added with t� A log entry �w � p � is added to the tth element in the log array� Each 

union operation takes O��� � time for  �nds which is O�log n� time� So the preprocessing 

time is O�n log n�� 

�b� Notice that union is de�ned for nodes that are the names of their component�	 In the LCA 

algorithm this translates to the fact that a union of node w to its parent p has both w and p 

as the roots of their respective components� 

So we maintain an ephemeral pointer from each root in the tree to the UF�root of its 

component� This cuts down the �nd cost while doing a union� The preprocessing is therefore 

O�n�� 
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Comments from graders� It is necessary to distinguish UF�roots and UF�parents from actual 

roots and parents� Some solutions had errors that did not recognize this di�erence� There were 

many solutions based on union��nd data structures represented as linked lists and Euler tours� 

There were many simple and elegant solutions that did not use persistent data structures� 

Problem �� We construct an Euler tour sequence of the tree starting form its root� Each node 

holds the index of its �rst and last occurrence in the sequence� 

Lemma � Node v is the descendant of node w i� the �rst and last indices of v are within the �rst 

and last indices of w� 

Proof� Node w is accessible from root only through its parent� So the �rst occurrence of w 

corresponds to the edge connecting w�s parent to w� The edge from w to its parent now b ecom es 

a cut�edge� Since we are interested in an Euler tour sequence� this cut�edge will not b e traversed 

till all edges in w�s subtree are exhausted� Therefore all nodes occurring in�between the �rst and 

last occurrences of w are descendants of w� This proves the �if� part of the lemma� 

Since the 	only
 path from the root to v passes through w� the �rst occurrence of v in the Euler 

tour sequence is greater than that of w� The same argument applies for the reverse of the Euler 

tour sequence� We h a ve s h o wn the �only if� part of the lemma� 

From Lemma �� we have a data structure with O	n
�time preprocessing and constant time 

ancestor query�


Comments from graders� The solution to this problem is straightforward if Euler tours or dfs


traversal is considered�



