
Massachusetts Institute of Technology Handout �

������������� Advanced Algorithms September ��	 �

David Karger

Problem Set � Solutions

Problem �� The uncompressed su�x tree for �banana� is shown in Figures �	 � and �� �Your

TA could not print � on the �gures for reasons beyond his control��

b

a

n

a

n

a

a

n

a

n

a

b

a

n

a

n

a

a

n

a

n

a

b

a

n

a

n

a

n

a

n

a

Figure �� Su�x tree for �banana�� Step �	 � and �

Comments from graders� Many solutions had minor errors in the �gures�

Problem �� A compressed su�x tree for the string �banana�� is shown in Figure �� For clarity	

the edges are represented by substrings and not indices as in the actual algorithm� After adding

su�xes of �cabana��	 we get Figure �� The solid node in Figure � corresponds to the longest

common substring of banana and cabana�

A node is a substring of banana and cabana if it has both ��� and ��� in its subtree of descendants�

Among all such nodes	 the marked node corresponding to the longest common substring has the

maximum numb e r o f c haracters on its path to the root�

We can now design an algorithm for computing longest common substring in linear time� Let w

and w b e t h e t wo given strings� Let w be m characters long and w be n characters long� 2 1 2

Lemma � Consider the su�x tree containing su�xes of �w 1

�w 2

��� String wx

corresponding to

node x is a common substring i� the subtree rooted at x has a su�x containing �$� and another

su�x not containing �$��

1

� Handout �� Problem Set � Solutions

a

n

a

n

a

�

�

b

a

n

a

n

a

�

n

a

n

a

�

a

n

a

n

a

�

�

b

a

n

a

n

a

�

n

a

n

a

�

�

Figure �� Su�x tree for �banana��� Step � and �

a

n

a

n

a

�

�

�

b

a

n

a

n

a

�

n

a

n

a

�

�

a

n

a

n

a

�

�

�

b

a

n

a

n

a

�

n

a

n

a

�

�

�

Figure �� Su�x tree for �banana��� Step � and 	

� Handout �� Problem Set � Solutions

a
banana$

na

na$ $

$

na

$

$

na$

Figure �� Compressed su�x tree for �banana��

Proof� Let the su�xes b e s1

and s2

respectively� Both of them start with w � The occurrence x

of w in s1

happens before the ��� character� Therefore w is a substring of w1

� Using a similar

argument about s2	 w e know that w is a substring of w2

�

x x

x

Su�xes s1

� � � � � s m+1

contain ��� and su�xes sm+2

� � � � s m+n+2

do not� We construct a su�x tree

for w1

�w2

� From this su�x tree we compute the longest common substring as follows�

�a� Mark every su�x tree node that has in its subtree a su�x containing ���� This can be done

in linear time by performing a postorder traversal of the tree� when we examine a node	 we

have already checked all its children mark the node if any of its children is marked� Do the

same to mark every node with a su�x not containing ����

�b� With one more tree traversal	 �nd the deepest node marked with both features� Just maintain

a �current depth� counter increment it by the length of any edge traversed downward and

decrement b y the length of any e d g e t r a versed upward�

Our algorithm requires two linear time traversals of the linear�size su�x tree	 so is linear�

Comments from graders� Some solutions had super�linear time computation of nodes corre�

sponding to common substrings�

Problem �� The forest of rooted trees can be represented as Euler tour trees� Vertices and edges

of the forest are stored separately� Each v ertex points to its active c o p y in the Euler tour tree� Each

edge p o i n ts to its two occurrences in the Euler tour tree� We use a splay tree implementation for

the Euler tour trees� We w i l l n o w augment this data structure to handle �nd�min and decrease�key

queries�

De�nition � The value of a node x representing vertex v is the value of vertex v if the x is the

active copy and 1 otherwise�

Every node in the tree holds a pointer called the min pointer to the minimum value node in

its descendants �including itself�� Thus the root of the Euler tour tree holds a p o i n ter to the the

minimum value node in that tree�

� Handout �� Problem Set � Solutions

a

na

na$!

$

na
cabana!

bana!

$!

$
!

!

$

na$

bana

!na$

Figure �� Compressed su�x tree having su�xes of �banana�� and �cabana��� The marked node

shows the longest common substring�

y

x

C

B A

Rotation

x.min = min_ptr(C.min, y.min, x)

y.min = min_ptr(A.min, B.min, y)

B.min A.min

C.min

y

x

A B

C
A.min B.min

C.min

Figure �� Updating min pointers on a rotation

After a rotation done on the tree� we can get back consistent v alues for best	descendant pointer

as shown in Figure
� A splay operation is composed of rotations� Therefore we can extend the

splay operation so that consistent v alues of min pointers are maintained� Similarly we can update

min pointers on splitting and joining edges� Thus all operations on our augmented splay trees will

maintain consistent min pointers�

Find	min�r� can be done by sp la ying r to the root of the ET	tree and returning the min pointer�

A decrease	key operation on node x can be done by sp la ying x and decreasing its key value� Notice

that only xs min pointer needs to b e updated after this operation� Both these operations take

O�log n� tim e�

The adjacency list of each v ertex is maintained in the copy of the forest held in our data structure�

Since our ET	tree supports split and join� splitting a root can be done by repeated removal of edges

adjacent to r� At most n � � edges will be removed during the execution of the algorithm� Each

edge removal takes O�log n� time and therefore the total time to do splits is O�n log n�� The total

running time of the algorithm is O�m log n� sin ce m � n �

Comments from graders� Many solutions did not return the minimum node on �nd	min� Some

solutions attempted to keep a separate heap� This idea does not work well since splitting the heap

is a costly operation�

Handout �� Problem Set � Solutions	 �

Problem �� The o�ine algorithm for LCA traverses nodes in post�order and joins each node�s

component with its parent�s component� When handling a query on �v � w �� the o�ine algorithm

�nds the name of v�s component when processing w �if v has already b e e n processed�� After

processing all pairs incident on w� the algorithm 	destroys
 this version �say Vw

� of the data

wstructure� If we maintain V in a partially persistent data structure� the query on the �v� w � pair

can be done online�

Speci�cally� w e assign timestamp t to the tth node in the post�order traversal� Let � �v� denote

the timestamp of node v� A v ersion is maintained for each timestamp in f�� � � � � n g� A LCA query

on �v� w �� looks for the node with smaller timestamp �say w� and performs a �nd on v in the � �w�th

version of the data structure� We need to show how we can get a partially persistent union��nd

data structure with the following operations�

Find�v � t �� Find the name of v�s component in th e tth version of the data structure�

Union�w � p� t �� Union the component with name w and the component with name p at timestamp

t� The resulting component is named p� Timestamp t has to be one more than the timestamp

of the previous update�

�a� We use the union by rank heuristic of linking the smaller depth tree as the child of the larger

tree�s root� This achieves O�log n� depth trees� For clarity� we refer to parents �roots� in the

union��nd data structure as UF�parents�UF�roots��

Lemma � The UF�parent pointer of every node is initially null� During the execution of the

algorithm� the UF�parent pointer of a node is updated at most once�

Proof� The union by rank heuristic never changes the UF�parent p o i n ter of a non�root node�

Root nodes have n ull UF�parent p o i n ter� The lemma follows�

We can augment the parent pointer with its time of creation� to make the traversal of

this data structure partially persistent� Due to Lemma � the parent p o i n ter is not changed

again� To do a f in d �v � t �� we traverse UF�parent p o i n ters from v till we reach an edge with

time�stamp more than t� The node we reach will be the UF�root of the component� We n e e d

however compute the name of the component�

So we maintain a log of operations done on the union��nd data structure� The log is an

array mapping time�stamps to the names of the components unioned� To compute the root

node� we can lookup the name of the parent component corresponding to the time�stamp of

the last edge traversed� It is evident that the �nd operation takes O�log n� time�

Union�w � p� t � i n volves �nding the UF�root of w�s and p�s components� This �nd operation

works on the current v ersion of the data structure� Then we do union by rank and timestamp

the edge added with t� A log entry �w � p � is added to the tth element in the log array� Each

union operation takes O��� � time for �nds which is O�log n� time� So the preprocessing

time is O�n log n��

�b� Notice that union is de�ned for nodes that are the names of their component�	 In the LCA

algorithm this translates to the fact that a union of node w to its parent p has both w and p

as the roots of their respective components�

So we maintain an ephemeral pointer from each root in the tree to the UF�root of its

component� This cuts down the �nd cost while doing a union� The preprocessing is therefore

O�n��

� Handout �� Problem Set � Solutions

Comments from graders� It is necessary to distinguish UF�roots and UF�parents from actual

roots and parents� Some solutions had errors that did not recognize this di�erence� There were

many solutions based on union��nd data structures represented as linked lists and Euler tours�

There were many simple and elegant solutions that did not use persistent data structures�

Problem �� We construct an Euler tour sequence of the tree starting form its root� Each node

holds the index of its �rst and last occurrence in the sequence�

Lemma � Node v is the descendant of node w i� the �rst and last indices of v are within the �rst

and last indices of w�

Proof� Node w is accessible from root only through its parent� So the �rst occurrence of w

corresponds to the edge connecting w�s parent to w� The edge from w to its parent now b ecom es

a cut�edge� Since we are interested in an Euler tour sequence� this cut�edge will not b e traversed

till all edges in w�s subtree are exhausted� Therefore all nodes occurring in�between the �rst and

last occurrences of w are descendants of w� This proves the �if� part of the lemma�

Since the 	only
 path from the root to v passes through w� the �rst occurrence of v in the Euler

tour sequence is greater than that of w� The same argument applies for the reverse of the Euler

tour sequence� We h a ve s h o wn the �only if� part of the lemma�

From Lemma �� we have a data structure with O	n
�time preprocessing and constant time

ancestor query�

Comments from graders� The solution to this problem is straightforward if Euler tours or dfs

traversal is considered�

