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Problem Set 9 Solutions

Problem 1. The primal is:

z = mafop
Z fP < U
P>e
frp >0

The dual is a minimization problem. Each variable in the dual corresponds to a constraint in the
primal. Since there is a constraint per edge, we can name our variables y, for each edge e. Variable
Ye 18 positive, since the corresponding constraint in the primal is a < constraint. The constant
associated with y. in the objective function is u.. Each constraint in the dual corresponds to a
variable in the primal. We have one variable per path and all variables are positive. Therefore the
constraints in the dual are > constraints. Thus, the dual is:

w = min Z Uele
Z Ye > 1
ecP

Y > 0

An English explaination of the dual: Assign each edge e to a weight y,, such that the total weight
along any path is 1. Among all such valid assignments, take the one that minimizes the weighted
sum of u,’s with weights ye.

If the values of y. are integers, it is clear that y. can only take values 0 and 1. In this case, the
solution defines a cut over the graph, since all paths from the source to sink cross over an edge e
with y. = 1.

Comments from graders: Most solutions to this problem were correct.

Problem 2.  Variable f;; denotes the flow in edge 7j.

(a) The conservation constraints on f;; ensure that the flow defined by f;; is a circulation.

The net flow in the circulation is 1. Notice that there are no capacity constraints on
the solution.
Consider the cycle decomposition of a solution f;;. Each cycle C' with flow fc contributes
fo X jec cij to the objective. Moreover the cycle contributes |C|fc to the 3 fi; =
1 constraint. The ratio of contribution to objective to the contribution of net flow
is minimum for the minimum mean-cost cycle. Thus the cycle decomposition of the
solution can have only minimum mean-cost cycles.
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(b) The primal is:
w = mianijfij
o fii—fi = 0 (Vi)
J
Zfij
ij

v
o

The dual of the above LP is:

Zz = max\
vi—yi+ A < ¢y (Vij)
Yis A u/s (Vi)

(c) The dual assigns potentials to different nodes and computes reduced costs. All the re-
duced costs are more than —\. The algorithm maximizes J, i.e., minimizes the smallest
reduced cost. Recall that the sum of reduced cost over a cycle is same as the sum of
original costs. So —A\ should be at least the mean cost in the minimum mean cost cycle.
We will now prove that there exists a potential assignment that works for

—A = mean cost of the minimum mean cost cycle

Consider a graph G* with costs reduced by A. This graph does not have a negative cost
cycle, since such a cycle will be a smaller mean cost cycle. So there exists a potential
assignment for this graph. The same potential assignment for the original graph will
have atleast —\ reduced cost.

(d) Given a A\, we can subtract it from edge costs to get graph G*. We can check whether
we can assign potential to nodes in G* such that all reduced costs are positive, using
Bellman-Ford algorithm. Such an assignment is possible for all A smaller than the
optimal A and is not possible for other values. We can do a binary search to compute
the value of X\. If we work with integer costs, we can stop the binary search once the
range of investigation is reduced to 1/n%. This is because the difference of two unequal
fractions my/ny and mo/ng is at least 1/nyng < 1/n.

Comments from graders: Some solutions to (d) did not mention how Bellman-Ford algorithm
can be used to check whether a A satisfies the dual.

Problem 3. Let the primal LP be min{cz | Az = b,z > 0}.

(a) The dual for this LP is max{yb | yA < ¢}. Adding slack variables s, we can write the
dual in the form max{fz | Dz = e,z > 0}. Adding the constraint that primal and dual
objective functions are equal, i.e., yb = fz, we can compute the optimal primal and
dual solutions. Thus we have reduced the LP to min{0 | Az = b,Dz = e,z > 0,z > 0}
which can be written in the form min{0 | Az = b,z > 0}.
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(b) If the transformed LP is min{0 | Az = b,z > 0}, its dual is max{yb | yA > 0}.
(c) If the primal is feasible, the dual has optimum value of 0. This happens when y = 0.

(d) We are given a LP algorithm that solves an LP in O((m + n)*) time given the dual
solution. We can solve the problem after performing the transformation in (a). The
transformation takes O(mn)-time. Recall that the dual solution of y = 0 is known for
the transformed problem. The primal is feasible due to strong duality. The solution to
the primal will give the solution to the LP (and its dual). Thus without knowing the
dual solution, we can devise an algorithm that takes O((m +n)¥ +mn) = O((m + n)¥)
time. We assume that & > 2, since all elements in A need to be examined by the LP
algorithm given to us.

Comments from graders: Most solutions to this problem were correct.

Problem 4. Consider the primal LP

w = max0
m(P—-1I) = 0
n
Zﬂ'i =1
i=1
™ > 0

Any solution to the above LP is a stationary distribution on P. The dual of the above LP is

= minA\

z
A

T
P —111] [ .
T unrestricted

?

By strong duality, A < 0 if the primal is infeasible. Assume there exists a solution to the dual with
A < 0. Consider the maximum z;, where z = (z; ... xz,). The ith constraint in the dual is therefore

(a convex sum of z1,...2,) —z; + A >0

since rows in P consist of positive entries that sum to one. By the choice of i, the LHS of the above
inequality is at least A\. Therefore A > 0 which is a contradiction. Thus the primal is feasible and
there exists a stationary distribution 7.

Comments from graders: Many solutions used Farkas’ lemma instead of duality. Both the
approaches are equivalent however.



