Massachusetts Institute of Technology Handout 16
6.854/18.415: Advanced Algorithms Nov 11, 1999
David Karger

Problem Set 7 Solutions

Problem 1. Let n be the number of elements in the tree (say) T'.

(a) Given a node z, we can perform an in-order traversal of its subtree T, and store the
(sorted) keys belonging to T, in an auxiliary array. A 1/2-balanced tree can be con-
structed from the array by repeatedly computing the middle element. We refer to this
operation as BALANCE.

(b) The search begins at the root node r which has size[r] = n. At each step, a traversal
from (say) z to y is such that size[y] < asize[x]. Therefore the size function drops from
n to 1 in after k traversals where,

ofn <1l< ok n

i.e.,
logn
k= |—="—| =O0(l
[log(l/a)—‘ Ollogn)
since « is a constant.

(c) For each node x, we define its potential ¢(x) as 3 times the difference of size[left[x]]
and size[right[z]]. The potential of the data structure

e=> o).

zeT

Any a-balanced node z has ¢(z) < (2a — 1)|Ty|. A BALANCE operation done on node
z if p(z) > B(2a — 1)|Ty|. After the operation, the node z is 1/2-balanced and has
its potential ¢(z) < B. Therefore potential p(z) decreases by at least 3(2a — 1)|T,].
The actual cost of BALANCE(z) is O(|Ty|). By suitably adjusting 3, we can make the
amortized cost of BALANCE at most 0.

From (b), we know that the height of the tree is O(logn). So an INSERT operation has
O(logn) actual cost. The potential increases by at most 1 in each traversed node. Since
the tree has height O(logn), we can bound the potential increase by O(logn). Thus
the amortized cost is also O(logn).

A DELETE can be performed by replacing the deleted node by its leftmost descendant
in the right subtree. Again the actual cost is asymptotically bounded by the height
which is O(logn). The potential increases in each traversed node by at most 1. By
reasoning similar to the analysis of INSERT, we can bound the amortized cost of DELETE
by O(logn).

Comments from graders: Parts (a) and (b) were trivial. Many alternative correct potential
functions were used for this problem, such as sum of sizes of nodes in the tree. Some potential
functions gave Q(logn) bounds for insert and delete.

2 Handout 16: Problem Set 7 Solutions

Problem 2. Let G be the graph under consideration.

(a) Yes, every min-cost flow problem has an upward critical arc. Any edge belonging to a
min-cut is an upward critical arc since it has to be saturated.

(b) We compute the min-cost max-flow using any efficient algorithm.We then compute
the reduced costs for edges. The prices can be found using O(mn)-time Bellman-
Ford shortest paths algorithm. Computing reduced costs from prices is an O(m) time
operation.

Given the reduced cost c,(e) for edge e = (v,w) in residual graph G, we know the
following:

¢p(e) > 0: There is no flow even after small changes in cost. So edge e is neither upward
critical nor downward critical.

¢p(e) < 0: This case does not occur in Gp.

¢p(e) = 0: Let f(e) be the flow on e. Using excesses, deficits and max-flows on 0 reduced
cost edges, we can find out if there exists a min-cost max-flow with no flow on e,
and one with saturated e. The former implies that e is not upward critical and the
latter implies that e is not downward critical.

Lemma 1 The above algorithm is correct.

Proof. 1If an arc is computed to be “not upward critical” by the above algorithm,
the algorithm also shows another flow with same value and cost. Therefore arcs
that are not upward critical are correctly recognized by the algorithm. We will now
prove that every arc that is reported by the algorithm as upward critical is in fact
upward critical. The proof is by contradiction. If an arc is not upward critical,
there is a flow F’ with same cost. Flow F' has 0 flow through e. Flow F — F’
gives a circulation that has f(e) through e. Moreover this circulation involves only
0 reduced cost edges. The max-flow with excess and deficit of f(e) would have
identified this circulation. So it is not possible that the algorithm reported e as
upward critical. We can argue similarly for downward critical arcs.]

Comments from graders: There were many circuitous solutions to part (a). Some faulty solu-
tions to part (b) computed single augmenting cycles containing e.

Problem 3. We use maximum augmenting paths to solve this problem.

(a) A maximum augmenting path algorithm achieves O(mlogn) time bound (using a
Dijkstra-like algorithm) and computes a flow with value at least 1/m times the max-
imum flow. The computed flow is feasible and is therefore smaller in value than the
max-flow.

(b) Consider the edges incident on s. If edge capacities are rounded down to the nearest
integer, the decrease in flow value is at most n, since edges incident on s cannot ship
any more flow.

(c) We first get the maximum augmenting path value in G, say f. Initially we set parameter
M’ to mf. We know that M’ is at least the max-flow of G and at most m times the

Handout 16: Problem Set 7 Solutions 3

max-flow of G. So the capacity of each edge e can be set to the value min{c(e), M'}
without changing the flow value.
From (b), the flow value reduces by nd if we set reduce the capacity of each edge to
[c(e)/d] - 6. This reduction results in a (1 — €)-approximation if § < eM/n. We do not
have the value of M though. So we estimate M as M’ which is in the range [M, mM].
So we have a lower bound eM’/n for 4.
We now use the O(mnlogU) algorithm to compute max-flow on the graph with costs
[c(e)/d]. The algorithm is dependent on the value of U. We can upper bound the value
of U however.

M’ M’ n

U< —=——-X<
-9 eM'/n ~ €
The resulting flow is multiplied by ¢ to get a (1 — €)-approximation of the flow value.
Thus we have a O(mnlogn/e)-time algorithm.

Comments from graders: Part (a) and (b) were easier than part (c¢). Solutions that did not
use the O(mnlogU)-time scaling algorithm were usually faulty. Reducing the cost of edges to
min{c(e), M'} is a crucial step that some solutions skipped.

Problem 4.

a) All that changes between problems is that some capacities increase. Thus f; can’t
g p p
possibly violate capacity constraints in p;;1, and we do nothing that would disrupt
conservation or antisymmetry constraints.

(b) Recall that for a distance labeling to be valid, we must have d(v) < d(w) + 1 for all
residual arcs (v,w). When we switch to p; 11 we introduce new residual arcs from the
source, and saturate the ones going to nodes with distance labels less than the source.
Thus we get new residual arcs from nodes with distance labels less than the source to the
source, and from the source to nodes with distance labels at least as big as the source.
Thus all new arcs are uphill and don’t violate the validity of the distance labeling.

(c) Distance labels are bounded by 2n in each problem, so they are bounded by 2n overall.
Further, they never decrease, so there can be at most O(n?) relabelings overall.
It is still the case that for two saturating pushes to happen on the same arc both ends
must be relabeled, so there can be at most O(nm) saturating pushes. There are also
the extra saturating pushes from the source, but only O(np) = O(n?) of them.
Recall that we bounded the number of non-saturating pushes for FIFO by looking at
the potential function ¢ = maxactivey d(v). We call one pass through the queue a phase.
A node is removed from the queue after a saturating push, so there can be at most
O(n) saturating pushes per phase. There are two cases for a phase. First, a relabeling
occurs. Second, no relabeling occurs. In this case, all excess moves down one, so ¢
decreases by 1. The first case can be bounded by the number of relabelings, that is,
O(n?). We bound the second by the total increase in the potential. Inside a problem,
only a relabel can increase the maximum distance label, and we know that the total
increase due to all relabelings is O(n?). The start of a problem can also increase the

4 Handout 16: Problem Set 7 Solutions

potential by O(n). So the total number of phases is O(n? + np) = O(n?), and the total
number of non-saturating pushes is O(n?).

Comments from graders: Some solutions to part (b) did not use the correct definition of valid
distance labelling. Many arguments to (c¢) had minor errors.

Problem 5. This problem is based on flows. We are given currencies 1,...,n, where currency
1 is dollar and currency n is yen. Let ci,...cy, be the clients. We can set up a graph with each
currency as a vertex and client ¢ as an edge from vertex a; to b; with capacity u;. Notice that u; is
the limit on amount of a; converted. Rate r; determines the multiplicative factor in the conversion.
Because of the rates we cannot express this problem in terms of standard flow problems.

(a) Let X; denote the amount of currency a; traded by client i.

Mazx Z i X;
ilbi=k
Xi <
Yo Xi— > Xy <0
ila;=j i|b;=j
> X; <D
ila;=1
X, > 0

foralll1<i<nand1<j<m.
The constraint on trading D dollars is possible since recycling dollars will not result in
more currency.

(b) We can consider the solution to the LP as a flow on a graph with currencies as nodes and

clients as edges. The flow conservation rules are not the same due to the multiplicative
factor.
We can decompose the flow into paths. Given any path in the graph starting from
s, we compute the currency that is effectively traded by the path. This computation
involves finding the minimum of f(e;)/I],;<;7(e;). We will end up with a path and
cycle decomposition. The paths can be executed one after another till all operations
are performed. Cycles do not earn money due to the “no profit by arbitrage” condition.
So we can ignore them. Thus no borrowing is necessary.

(¢) Paths that do not end in yens can be ignored. Thus we can construct a flow based on
the paths we extracted. This simplified flow will have the same value and will end the
day with only dollars and yen.

Comments from graders: Some solutions applied constraints on the LP in part (a) that can be
justified only in (b) and (¢). Of these, some solutions skipped (b) and (c¢) by claiming that the
formulation in part (a) avoided excesses and cycles. A few solutions had very large LP formulations.

