
Massachusetts Institute of Technology Handout ��

������������� Advanced Algorithms Novemb e r � 	 �

David Karger

Problem Set � Solutions

Problem �� Given the graph G	 we compute the max��ow F � Let GF

b e the residual graph�

Source s and sink t are disconnected in GF

�

�a�	 Increasing the capacity o f a r c e � v � w � increases the �ow v alue i� there is an augment
�
ing path in GF

after adding a small capacity i n e� There exists in augmenting path i�

v belongs to the component o f s and w belongs to the component o f t in GF

�

�b�	 Decreasing the capacity of arc e � v� w � by a small value decreases the �ow value i�

�ow cannot be routed from v to w in GF

� e� There exists such a path i� v and w are

disconnected in GF

�

Problem �� Let G be the graph under consideration�

�a�	 We assume that the array creation takes constant time� There are n insert	 m decrease�

key and n delete�min operations� The insert and decrease�key operations take O���

time� Delete�min takes O�� � d� time	 where d is the number of empty buckets skipped

during the delete�min operation� The bucket number of the last element deleted is D�

Thus the total cost of delete�min is O�m � D��

�b�	 Given the shortest path P from s to v of length dv

	 the path P � vw is known to have

d
length dv

� lvw

� Therefore

w

� dv

� lvw

���

and the reduced edge length lvw

is non�negative�

�c�	 For any path P � sv2

� v 2

v3� � � � � v k�1

vk

�	 the total reduced edge length is

� � �	 � � ldld vk�1

vk

 �lsv

� ds

� dv

� � � � � � � lvk�1

vk

� dvk�1

� dvk

�sv 2	

2 2

 ds

� � lsv

� � � � � lvk�1

vk

� � dvk2

Therefore all paths to a vertex v have reduced length as the length minus �constant�

dvk

� So the shortest path to v is the same and has length dv

� dv

 ��

�d�	 The scaling algorithm works as follows� We initially start with edge lengths �	 and

distance function d1 �v� � for all v� In step k	 w e shift a bit of the length in each e d g e 	

and compute distances dk+1 with reduced edge lengths based on dk � We use distance
0

function dk+1 dk

0

� dk+1 for the reduced costs in the next step� After dlog Ce steps the

exact distance will be computed� We will now prove the correctness of this algorithm

and analyze its running time�

Consider graph G0 � V � E � constructed from the original graph G � V � E � with edge

length l0 blvw

��c� In a scaling step	 the distances in G0 are used to compute reduced vw

edge length in G� Notice that part �b� and �c� of this problem work for any distance

� Handout ��� Problem Set � Solutions

function satisfying ���� So if we de�ne the distance function as distance in G0 � w e still

have the same shortest paths in G and G0 � This proves the correctness of the algorithm�

The length of shortest paths is � in the reduced graph G0 � This means that in the

original graph G the length of the shortest path is at most n� So Dial�s algorithm

takes O�m 	 n�
 O�m� time� The total time complexity f o r dlog C e steps is therefore

O�m log C ��

�e�	 If a base b representation is used� there are dlogb

Ce scaling steps� The maximum

distance D in each shortest path computation is bounded tightly by n�b � ��� Thus

the time complexity of our scaling algorithm is O��m 	 n�b � ��� � logb

C �� If we set

b
 � 	 m�n we achieve O�m log2+m�n

C � running time�

Problem �� Let G be the graph under consideration�

�a� After p 	

p
m 	 � blocking �ows� the source and sink at least p 	

p
m 	 � nodes apart�

In other words� any path from the source to sink will have a t l e a s t p 	

p
m other nodes�

Even if all the p special nodes occur in the path� there will be at least

p
m unit capacity

edges� So the numb e r of unit capacity edges saturated in the following

p
m blocking

�ows will be at least

p
m � pm
 m� Thus we have bounded the numb e r of blocking
p

�ows needed by � m 	 p
 O�
p
m 	 p��

�b�	 Using dynamic trees� we can perform one blocking �ow in O�m log n� time� The total

time for solving max��ow is therefore O�m3�2 log n 	 mp log n��

�c�	 There are only two u n bounded capacity edge in any s�t path� After performing

p
m 	�

blocking �ows� we h a ve at least

p
m unit capacity edges in each p a t h � So we can bound

the number of blocking �ows by �

p
m 	 �
 O�

p
m��

A blocking �ow can b e done using the advance�retreat method mentioned in class�

Retreat is not done on any node incident on sink t however� Similarly the �ow value

of a path is set to the minimum of the capacities involved in the path� Both these

contribute to O��� overhead in computing a path� Thus we h a ve a O�m��time blocking

�ow algorithm� The total time complexity i s O�m3�2 ��

Problem �� During the push�relabel algorithm the distance labels increase monotonically� More�

over pushes cannot b e done from node v to w if d�v� � d�w� 	 � � So if there are no nodes with

distance label l� no push or relabel done on nodes with greater distance label will cause �ow to

reach nodes with smaller distance label �including t��

Now consider applying discharge operations to the vertices with distance labels greater than l

b e f o r e applying discharge operations to any of the other vertices� No �ow can reach the sink� So

all excesses are sent b a c k to the source� This suggests that we c heck for creation of such gaps in the

distance labels� and set aside any nodes that end up on the source side of a gap� When all excess

has either been processed or set aside� we can convert the pre�ow t o � o w eciently as given in the

solution to the next problem�

Problem �� Consider a decomposition of the pre�ow� It consists of paths from s to excesses�

Handout ��� Problem Set � Solutions	 �

paths from s to t� and cycles� Only the paths from s to t matter for the value� so we w ould like t o

remove the paths from s to excesses without removing the �ow i n to the sink� To d o this consider

only the arcs already carrying �ow� Start at some excess and search b a c kwards on the �ow carrying

arcs until we reach the source or �nd a �ow cycle� If we �nd a path to the source� push as much

�ow as we c a n on it �empty some arc or empty the node�� If we �nd a �ow cycle� push �ow back

around it to empty some arc� Repeat at until all of the excess is gone� There are several things to

notice about this algorithm�

� We only remove � o w from arcs that were carrying it� so there is no notion of creating a reverse

arc wearc� and once we empty a n n e v er have to look at it again�

� Since there are no de�cits except at the source� we can�t ever 	get stuck
 searching back a l o n g

�ow paths� so we only have t o p a y for time spent a d v ancing in our search and pushing �ow�

� By construction we�ll never remove � o w e n tering the sink� so the value will remain unchanged�

�a�	 In the unit case� each arc only carries one unit of �ow� so if we push on a path or cycle

we remove all the �ow from all of the arcs involved� Since we don�t add �ow at all� this

eliminates them from all future consideration� So every time we l o o k a t a n a r c � w e will

soon eliminate it from all future consideration� This means that the total cost is only

O�m��

ca ses��b�	 In the capacitated case� there are two Either we eliminate one arc when pushing

�ow on a path or cycle� or we remove the excess at the node we were working on� So

we charge the path to the eliminated arc or the emptied node� The length of any path

or cycle is only O�n�� so the total time is O��m � n�n� � O�mn��

�c�	 We do better by using dynamic trees to push the �ow� When we advance in our search

we do a link operation� If we reach the source or notice that we are about to form a

cycle� we use the �ndmin and addpath operations to �nd the bottleneck arc� push �ow

along the path� and identify the right place to restart our search� The same charging

argument as �b� applies� but the cost per edge of the path is now o n l y O�log n�� so the

total is O��m � n� log n� � O�m log n��

Problem ��

�a�	 There are clearly only O�
p
m� relabels per node� so the relabeling time is O�m

p
m� and

the numb e r o f saturating pushes is O�m
p
m�� There are no nonsaturating pushes� so

the total time is just O�m
p
m��

�b�	 If the capacities were bounded by �� there could b e only one nonsaturating push on

an edge before b o t h endpoints increased label� because there could only b e another

nonsaturating push if �ow w as pushed back� Thus there could only be O�m
p
m�
 non

saturating pushes� and the time bound would be unchanged�

�c�	 We know that the distance labels are a lower bound on actual distances to the sink�

so if all excess is at labels greater than

p
m� then only O�

p
m� units of excess could

possibly reach the sink� �Each unit would use its own path of

p
m arcs� and there are

� Handout ��� Problem Set � Solutions

only O�m� arcs to be had�� So at this point we can use ��a� to convert our pre�ow into

a O�
p
m

O�m
p
m

w that is at most � units of �o

�ow with augmenting paths in

� o w s h y o f m a x im um� We can �nd the remaining

� tim e�

�d�	 Consider the graph from question � made unit capacity� Relabel �� �� �� � � � n � � �all

to ��� Relabel �� �� � � � � n � � �all to ��� Continue in this fashion	 doing O�n2 � relabels

before doing any pushes� This graph has m
 � n	 so
 n2 O�m
p
m�is not

Problem ��

3

1

1

1

1

1

2

t

s

n-2

n-3

. . .

1

2

3

n-2

1

�a�	 The starting con�guration has all nodes at label � and � unit of excess at each� So we

could relabel node n � � to �	 and push the unit of �ow to the sink� Then we could

relabel node n � �	 push to n � �	 and push to the sink� Then	 node n � �	 and so on�

This will do only O�n� relabels	 but it will cause O�n2 � pushes�

�b�	 If we initialize with distance from the sink	 node i will get label n � i � �� Now we must

push from � to �	 then � to �	 etc� So we initialize labels in linear time and then do

O�n� pushes�

�c�	 This suggests that it can be useful to have exact distance labels� So one obvious imple�

mentation heuristic is to start with exact distance labels� It also turns out to be useful

to compute exact distances every now and then during the computation�

