

StarLogo TNG:

The Convergence of Graphical Programming and Text Processing

by

Corey McCaffrey

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 26, 2006

Copyright 2006 Corey McCaffrey. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__
Department of Electrical Engineering and Computer Science

May 26, 2006

Certified by__
Eric Klopfer

Thesis Supervisor

Accepted by___
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

StarLogo TNG:
The Convergence of Graphical Programming and Text Processing

by
Corey McCaffrey

Submitted to the

Department of Electrical Engineering and Computer Science

May 26, 2006

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

StarLogo TNG is a robust graphical programming environment for secondary students.
Despite the educational advantages of graphical programming, TNG has sustained
criticism from some who object to the exclusion of a textual language. Recognizing the
benefits of text processing and the power of controlling software with a keyboard, I
sought to incorporate text-processing techniques into TNG’s graphical language. The
key component of this work is an innovation dubbed “Typeblocking,” by which users
construct block code through the use of a keyboard.

Thesis Supervisor: Eric Klopfer
Title: Director, MIT Teacher Education Program

3

Acknowledgments
First, I would like to thank my research advisor, Eric Klopfer. I feel extremely lucky to
have joined his team as an undergraduate researcher at the beginning of my sophomore
year. I admire his passion for education, commitment to his students, and great sense of
humor, all of which make him a pleasure to work for. I would also like to congratulate
Eric for receiving tenure this month. !מזל טוב

I would also like to thank Eli Meir and his company, Simbiotic Software, for providing
me with new and exciting opportunities to extend StarLogoBlocks and for helping to
support my graduate studies.

Thank you to Daniel Jackson and Srini Devadas, professors of 6.170: Software
Engineering Laboratory, who gave me the opportunity to teach and helped support my
graduate studies.

I would like to thank Andrew Begel, the lead designer and developer of LogoBlocks and
many versions of StarLogo, including TNG, who was my mentor for the past four years.
Andy contributed immeasurably to my technical skills for which I feel greatly indebted.

Thank you to Daniel Wendel, my programming partner and fellow graduate researcher,
who helped make this past year’s work and courses seem fun and easy.

Thank you to David Greenspan, Adam Rosenfield, William Jacobs, Lauren Clement, and
Lawrie Gibson, undergraduate researchers who tirelessly pushed the limits to make
StarLogoBlocks what it is today.

I would like to thank the many undergraduate researchers who contributed to other
components of StarLogo TNG, including David Blau, Viknash Samy, Radu Berinde,
Aleksander Zlateski, Ricarose Roque, John Jackman, Mike Matczynksi, Mike Lin, Jane
Lanyue, and Kevin Wang.

Thank you to Rob Miller, who teaches an excellent course called 6.831: User Interface
Design and Implementation, where I learned many of the techniques and methodologies I
applied to this work.

Thank you to my parents Kevin and Jan, and my sister Caitlin, who showed me
incredible love and support during my years at MIT and always reminded me not to work
too hard.

Finally, thank you to Michelle Desnick, who always reminded me to work at least hard
enough to graduate on time. Her love and encouragement over the past four and a half
years have meant the world to me. Michelle, I cannot thank you enough.

4

Table of Contents
Acknowledgments ... 3

Table of Contents .. 4

List of Figures.. 6

1 Introduction... 7
1.1 The Questionable Inevitability of Text ... 7
1.2 My Solution... 8
1.3 Outline... 9

2 Text Processing.. 9
2.1 Keyboard Entry ... 10
2.2 Word Processors .. 11
2.3 Text-Assist IDEs.. 11

3 Graphical Programming... 13
3.1 Direct Manipulation... 13
3.2 WYSIWYG Markup .. 14
3.3 GUI Builders ... 15
3.4 Tangible Programming .. 15
3.5 Visual Syntax .. 16

3.5.1 Correctness and Control Flow.. 17
3.5.2 Fun and Educational .. 18

3.6 The Magnetic Poetry Effect ... 19

4 Hybrid Systems.. 20
4.1 Leogo .. 20
4.2 Pet Park Blocks.. 21
4.3 Alice2.. 21
4.4 Tinkertoy... 22

5 Keyboard Shortcuts .. 23
5.1 Efficiency .. 23

5.1.1 Flow .. 24
5.1.2 Speed... 25

5.2 Expectations .. 26
5.2.1 User Expectations .. 26
5.2.2 Developer Expectations ... 27

5.3 Learnability ... 27
5.3.1 Visibility.. 28
5.3.2 Social Factors .. 29

5

6 StarLogo TNG... 30
6.1 History... 30

6.1.1 StarLogo.. 30
6.1.2 LogoBlocks.. 32
6.1.3 StarLogo TNG ... 33

6.2 Goals ... 34
6.3 Users ... 34

6.3.1 Students ... 35
6.3.2 Teachers .. 35
6.3.3 Researchers.. 35
6.3.4 StarLogo 2 Users ... 36

6.4 Spaceland .. 36
6.5 StarLogoBlocks ... 37

6.5.1 Overview ... 37
6.5.2 Managing Complexity.. 41
6.5.3 Reactions ... 47

7 The Mythical Algebra Block... 49
7.1 Algebraic Expressions ... 49
7.2 Calculator Syndrome ... 50
7.3 The Myth of the Algebra Block.. 51

8 Typeblocking ... 53
8.1 Block Cursor.. 53
8.2 Workspace Navigation... 54

8.2.1 Search.. 54
8.2.2 Zoom ... 56

8.3 Context Awareness .. 56
8.4 Auto-Completion ... 58
8.5 Animation.. 58
8.6 Typing Modes.. 60

9 Future Work.. 62
9.1 Alternative Input Modalities .. 63

9.1.1 Speech Recognition ... 63
9.1.2 Gesture Recognition... 64

9.2 Accessibility .. 64
9.3 Collaborative Programming ... 65

10 Conclusion ... 65

References.. 67

6

List of Figures
Figure 1: StarLogo 2.2 - Textual code and 2D rendering of agent-based model 31

Figure 2: StarLogo TNG - Graphical language and 3D renderer 33

Figure 3: Rich 3D environments in StarLogo TNG [10] .. 37

Figure 4: Overview of StarLogoBlocks ... 38

Figure 5: Properties are magenta, and commands are colored by category. 39

Figure 6: Triangular port shape only accepts number blocks.. 40

Figure 7: The "If" block stretches to accommodate the blocks inside. 40

Figure 8: User-defined parameterized procedure and dynamically generated call block. 40

Figure 9: Easy substitution for blocks with a family .. 42

Figure 10: Blockdoc tool tips help users remember what each block does. 42

Figure 11: Procedures collapse to utilize space more efficiently. 43

Figure 12: The equality block morphs to contain Boolean, number, and string values.... 45

Figure 13: The Breed Bar with the "Turtles" drawer open ... 46

Figure 14: Zoom in to focus on a particular stack of blocks. .. 46

Figure 15: Zoom out to get an overview of a project.. 47

Figure 16: The Minimap provides easy navigation of the block workspace.................... 47

Figure 17: Search reveals blocks and categories that match the query............................ 55

Figure 18: Scatter PC accepts multiple blocks of the same type. 57

7

1 Introduction

The art of programming has come a long way since the days of mechanical punch cards.

Today, programmers write code in increasingly higher-level languages that make short

work of once arduous tasks, giving them time to take on more challenging endeavors.

The tools of their craft have evolved as well. Although the keyboard still resembles those

found on the typewriters of old, intelligent computer software now processes each

keystroke.

As technology improves, educators look for ways to improve the art of teaching

programming as well. Today’s complex software technology raises the bar higher for

students and teachers who want to create modern-looking programs. Fortunately, it also

provides opportunities to create more advanced programming teaching tools that go

beyond traditional text processing. The relatively recent innovation of the Graphical

User Interface (GUI) has given rise to many graphical programming environments

designed to teach the fundamentals of computer programming to students without the

steep learning curve of more powerful traditional textual languages.

1.1 The Questionable Inevitability of Text

This thesis examines the trade-offs between programming and learning to program in

graphical and textual environments and explores the following question: Can a graphical

programming environment support novice and expert users alike without relying on an

underlying textual language?

8

1.2 My Solution

In order to study this question, I worked with StarLogo TNG. “The Next Generation” of

StarLogo is a programming teaching tool under development within the Teacher

Education Program at the Massachusetts Institute of Technology [5, 13, 14, 16, 20]. The

curriculum guidebook written for the previous version of StarLogo begins with an

explanation of the purpose of StarLogo:

StarLogo is designed especially for helping people create models of

decentralized systems—that is, systems in which patterns arise from

interactions among lots of individual objects. For example, StarLogo is

well designed for exploring how bird flocks arise from interactions among

individual birds, or how traffic jams arise from interactions among

individual cars [7].

The wide variety of decentralized systems in life and the depth of understanding they

provide students make StarLogo an excellent tool in classes ranging from biology and

physics to math and economics.

StarLogo TNG is a purely graphical programming environment. Featuring a puzzle

piece-like procedural language called StarLogoBlocks and a three-dimensional output

renderer called Spaceland, StarLogo TNG seeks to motivate today’s students raised on

visually compelling video games to learn to program. In addition to serving as a

programming teaching tool, the models developed with StarLogo TNG provide

interdisciplinary learning opportunities. Designed to support novice students as well as

expert researchers, I chose StarLogo TNG as the ideal software system for studying the

convergence of graphical programming and text processing. It sports an advanced

graphical programming environment and, as a design goal, maintains no underlying

textual language [5]. Instead of grafting on a textual language to make the environment

more appealing to seasoned programmers, I extracted techniques common to text

processing environments and applied them to StarLogoBlocks. To some extent, this task

consisted of carefully designing keyboard shortcuts to control the block code with

9

efficient keystrokes. More importantly, this work led to an innovation that I call

“Typeblocking,” which provides a framework for constructing block code by typing

instead of dragging a mouse.

1.3 Outline

This thesis begins with an overview of text processing and graphical programming

environments, including their relative strengths and weaknesses. Next, it presents the

state of the art of existing hybrid solutions for graphical programming and text

processing. Based on the premise that many of the benefits of a textual language are

derived from the use of a keyboard, the following section discusses recent findings

regarding the benefits and usability of keyboard shortcuts. Then it introduces StarLogo

TNG, along with the application of Typeblocking and the convergence of graphical

programming and text processing in depth. This thesis concludes with a proposal for

further study and an assessment of the potential value of this work.

2 Text Processing

Fundamentally, textual languages are composed of just that—text, and nothing more.

Written characters and words, typically formed by typing on a keyboard, appear on the

screen or printed page interspersed with symbols such as braces and parentheses. In fact,

one of the advantages of a textual language is that it does not require any special software

to change it. Programmers are free to read and write textual code in any text editor they

like. This section considers some of the features provided by modern text processors to

facilitate writing code.

10

2.1 Keyboard Entry

The keyboard is the ideal tool for crafting textual code, because it provides a key for each

character in the code, and users can train themselves to type quickly. In fact, early text

editors were designed for exclusive control with a keyboard, since they were created

before the advent of GUIs and mice.

There is a substantial body of evidence suggesting that the keyboard is a more efficient

input device than the mouse for expert users [1, 15,19]. Nevertheless, keyboards can be

intimidating to novices. Typing comes with a steep learning curve and requires extensive

training in hand posture and movement. It also requires a degree of literacy that younger

children may not have developed yet. With over a hundred keys at their disposal,

sometimes even experienced typists need to look at the keyboard, taking their eyes and

their attention away from the task on the screen.

Furthermore, the act of programming with a keyboard multiplies the difficulty level. Just

like a writer, a programmer also suffers from writer’s block, struggles with word choice,

and scans carefully to ensure correct spelling and syntax. The difference is that a human

being can often understand even the poorest writing, whereas a computer demands

unambiguous perfection. “Entering programs as text can be much harder than

alternatives such as direct manipulation or form filling but often gives the student more

power,” according to a survey of programming environments for novices [11]. My

impression of their results is that the power comes specifically from the speed of the

keyboard, but the power is difficult to obtain.

11

2.2 Word Processors

There is more to understanding the power of text processing than simply the keyboard

input device. Even the most trivial word processors do so much more than typewriters,

which simply echo the characters you type to the printed page. A blinking cursor allows

the writer to navigate through pages of digital text, deleting, overwriting, and even

inserting characters anywhere. Users can cut, copy, and paste large swaths of text

without ever picking up scissors or tape. Type a word or phrase into a search bar, and the

program will show the user every instance of text within dozens or even thousands of

pages. These commonplace features that we now mostly take for granted were

revolutionary for typists accustomed to mechanical typewriters and printed documents.

2.3 Text-Assist IDEs

Like word processors, which were designed to alleviate some of the hassles for writers,

many advanced text editors and Integrated Development Environments have been created

to ease some of the pain that programmers used to experience. These include Emacs,

Eclipse, Sun Microsystem’s NetBeans, Microsoft’s Visual Studio, Apple’s XCode, and

JetBrain’s IntelliJ IDEA, to name just a few. These IDEs support a multitude of textual

computer languages such as Java, C/C++, Perl, Python, the .NET platform, and more.

Although it is entirely possible to write thousands or millions of lines of Java code in

Microsoft Notepad, text-assist IDEs incorporate many features besides integrated

compilers and debuggers to make writing code easier:

• Syntax Highlighting:

By automatically color-coding categories of text such as method names,

variable names, keywords, and comments, programmers can quickly identify

key components of the code.

12

• Outline View:

By organizing the component hierarchy of a code file, programmers can

quickly jump to the section they wish to modify.

• Search:

In addition to providing the search capabilities of a typical word processor,

most IDEs provide advanced filters to search for or within specific code

modules.

• Auto-Complete:

This feature eases two burdens. First, higher-level languages encourage

verbose naming conventions, and auto-complete finishes partially typed words

to save time. Second, component names and parameter lists are hard to

remember, and auto-complete provides a list of valid completions for a

particular section of code.

• Refactor:

Recognizing that programmers occasionally need to move, rename, or change

their component interfaces, many IDEs can scan entire projects and make

appropriate changes to affected code.

• Auto-Format:

Textual languages have both mandatory formatting rules and conventional

styles. IDEs perform auto-formatting to remind the programmer of the rules

and often provide preferences to customize the style applied when formatting.

• Find Declaration:

Typically for procedural languages, in which reusable code segments are

componentized and called from other parts of the code, it is often useful to

review the original code segment. Find Declaration is a special search that

automatically jumps from a procedure call or other instances of component

usage to the code that defines that component.

13

• Call Hierarchy:

In many ways the inverse of Find Declaration, Call Hierarchy is a specialized

search that scans an entire project to construct a tree of potential stack traces.

It allows programmers to find quickly every method that calls a particular

method, and which other methods call those methods, all the way to the

beginning of a potential execution sequence.

Some of these features such as syntax highlighting are applied automatically, whereas

other features are invoked by the user, either via a GUI element such as a toolbar button

or by a keyboard shortcut that the user has memorized. It is worth noting that while these

features are now common to professional IDEs supporting textual languages, all of these

techniques can be applied to graphical programming languages as well.

3 Graphical Programming

Despite the many advantages afforded to contemporary programmers by the latest IDEs,

textual languages remain challenging, to novices in particular. Graphical programming

environments strive to ease those challenges with the help of a well-designed GUI.

3.1 Direct Manipulation

Direct manipulation is a common catchphrase for GUIs that highlights their key

usefulness; everything is point-and-click. Users press buttons drawn on the screen. They

drag files and drop them into folders. Users slide a bar along a track. Graphical

languages such as StarLogo TNG utilize common GUI metaphors to create an intuitive

interface. The development team noted that as the student users “were already familiar

with using a computer by dragging and dropping objects, StarLogo TNG came very

naturally to them [20].”

14

Of course, applying the term “direct manipulation” to GUIs is somewhat misleading.

Sure, GUIs emulate real knobs, buttons, and switches with startling realism, but pointing

and clicking with a mouse is hardly direct manipulation. A touch screen might be better,

and a tactile, tangible interface better still. Nevertheless, GUIs still deliver more natural

direct manipulation than a keyboard-controlled interface, which is a significant advantage

for novices learning a new system.

3.2 WYSIWYG Markup

Recognizing the pain associated with writing code from scratch, many software programs

provide features to make the job easier. When creative writers and publishers first

wanted to use computers to create fancy documents and web pages, they had to learn

markup languages such as HTML to tag their text with appropriate formatting. This

challenge gave rise to What-You-See-Is-What-You-Get (WYSIWYG) markup, software

that shows you the available formatting options and what the formatted text will look like

up front without having to code a single tag. If a user wants bold text, with the push of a

button a block of text suddenly looks bold. The best word processors all rely heavily on

GUI elements such as menus and toolbars to expose a myriad of formatting options to the

user, and the mouse allows the user to drag images and other media within a document

instead of describing its position with textual tags. Nonetheless, WYSIWYG word

processors and web editors are not graphical programming environments; they are

computer-aided publishing tools in the same sense that architects and engineers use CAD

software to perform Computer Aided Design.

15

3.3 GUI Builders

A GUI builder is a tool, usually part of an IDE, which facilitates the construction of GUIs

by allowing programmers to drag and drop components such as buttons and text fields in

a window. Instead of describing the GUI in textual code, the user is treated to a

WYSIWYG experience. Some languages, such as Microsoft Visual Basic, were designed

around this idea. However, “‘visual’ is a misnomer, especially given that, when

Microsoft says ‘visual’ they really mean textual augmented with a direct manipulation

GUI builder [17].” The distinction is that programmers construct the graphical

component of their software graphically as opposed to constructing their code itself

graphically.

3.4 Tangible Programming

Some language designers who believe in the principles of graphical programming also

view its pseudo-direct manipulation as a serious flaw. This belief has resulted in many

efforts to create tangible programming environments, such as Timothy McNerney’s

Tangible Programming Bricks [17]. The basis of McNerney’s thesis is that,

“constructing and modifying programs using even the most modern GUIs is an

unnecessary obstacle to programming [17].” Specifically, McNerney perceives:

Screen-based graphical programming languages suffer from a number of

limitations: Tools for manipulating textual programming languages are

much more mature than graphical programming tools. Textual

programming languages make better use of screen real estate than

graphical programming languages, which often include extra decorations

around each functional block [17].

However, his criticism of the most modern graphical programming implementations at

the time of his writing does not adequately reflect the state of current solutions, nor does

it explain why tangible programming survives the same criticism.

16

Nevertheless, working under the assumption that physical bricks better satisfy the

educational goals of graphical programming, McNerney compares his system to Andrew

Begel’s LogoBlocks, the innovative graphical programming language that was also the

precursor to StarLogoBlocks [2]. Tangible Programming Bricks are “much like the Logo

Blocks [sic] system, which uses a ‘puzzle pieces’ metaphor for connecting blocks, and

makes a distinction between control flow and data flow connections [17].” Although

tangible programming certainly supports direct manipulation better than GUIs, it has

other more serious shortcomings. For example, McNerney correctly observes, “One

limitation of Logo Blocks that is also an issue for tangible programming is the fixed size

of the blocks, which sometimes makes it cumbersome to assemble certain legitimate

programs without introducing ‘padding’ blocks. In Logo Blocks, this could be solved by

making certain blocks stretchable [17].” While LogoBlocks never did make certain

blocks stretchable, a key feature of StarLogoBlocks is dynamically stretching blocks that

expand to accommodate other blocks that they contain.

Unconstrained by physical reality, GUIs evolve in ways that are more difficult or

impossible for tangible programming systems. Finally, though tangible programming

systems embrace many of the benefits of graphical programming, they forego the

possibility of incorporating the many advantages of text processing.

3.5 Visual Syntax

As it applies to programming, syntax comprises the set of rules for a particular language

that dictate the arrangement of characters and symbols that create well-formed code.

Unlike written human languages that can still be understood with some errors, computer

code must be flawless because today’s computers require unambiguous instructions as

determined by the positions of the symbols defined in the language. The universal and

fundamental feature of all graphical programming environments is the use of visual

17

syntax. “Using graphical representations of objects, you can more concretely show

object orientation … eliminate annoying syntax (like {}’s and ()’s in C, BEGIN and

END’s and ()’s in Pascal, and ()’s in Lisp) and better visualize the pathways that your

program is following [2].”

3.5.1 Correctness and Control Flow

In recent classroom testing of StarLogo TNG, we observed that the “visual blocks

provided a certain amount of implicit programming guidance that text does not offer

[20].” Specifically, there is no risk that a student will use a curly brace where a square

bracket was required or a number where the language required a Boolean value, nor is

there a risk of unmatched parentheses or misspelled commands, because the visual syntax

enforces these rules automatically. “Novice programmers need only to recognize the

names of commands and the syntax of the statements is encoded in the shapes of the

objects, preventing them from creating syntactically incorrect statements [11].”

Programmers frequently describe two classes of code defects. The first kind is a syntax

error such as the ones described above, and they prevent their code from running at all. It

is similar to a teacher telling a student that he will not read a paper until the student has

crossed every ‘t’ and dotted every ‘i’. “Often a major stumbling block to teaching kids to

program is that they find the syntax overwhelming [2].” The more complex the syntax,

the greater the number of defects, and the sooner a novice will give up in frustration.

The second kind of code defect is a logic error. These arise when the programmer runs a

syntactically correct program, but the program does not behave the way the programmer

intended. It indicates a problem with the content of the code as opposed to the form of

the code. For our StarLogo TNG students, “When bugs did happen, the students ended

up debugging their programming logic rather than syntax [20].” Despite that logic errors

are typically more insidious, programmers may derive greater satisfaction and learning

18

from finding and correcting a logic error. This apparent paradox is due to the fact that

fixing logic errors leads to a deeper understanding of the user’s program, whereas fixing

syntax errors leads to increased frustration directed at the restrictions imposed by the

rules of the language.

In addition to eliminating syntax errors, visual syntax also depicts control flow more

clearly than sequences of characters in textual languages. When tracking logic errors,

students “often pointed to and followed the programming blocks as they were debugging

[20].” There was never a question as to whether a particular brace terminated a loop or a

conditional branch; the shape of the enclosing block made it easier to comprehend where

the computer was going to go next. Furthermore, “Parallelism can also be made more

explicit; all of the different program clusters on your screen can run at the same time,”

unlike sequences of characters that appear linear but may not run linearly [2]. This

feature is especially important for StarLogo, because hundreds or thousands of simulated

agents could be running different clusters of code simultaneously.

3.5.2 Fun and Educational

As a corollary to the notion that visual syntax eliminates syntax errors, it makes the act of

programming more fun: “The nature of the programming blocks prevented students from

making errors that would usually frustrate them; it kept their interest level high without

getting bogged down [20].” The shallow learning curve and lively animated blocks

“usually yielded instant gratification that the kids enjoyed [20].”

Fortunately, the students were not only having fun but learning to program as well. In

spite of only weekly meetings, “the highly visual aspect of StarLogo TNG made it easy

for students to recall blocks they learned in the previous weeks. They only needed to

recognize the blocks as opposed to the commands plus the syntax [20].” In other words,

19

visual syntax encourages students to exercise their programming skills, not their memory

of arbitrary rules and symbols.

3.6 The Magnetic Poetry Effect

With visual syntax and a repository of command blocks, graphical programming

environments give rise to what I call the Magnetic Poetry Effect. The vast majority of

people are not poets. When confronted with a blank page, many would be hard-pressed

to compose a poem that they would proudly share with the rest of the world. And if one

imposes any structural requirement, be it iambic pentameter or rhyming, fewer still could

produce a sonnet or even a limerick.

Enter magnetic poetry. This extremely popular toy consists of nothing more than a box

of flat magnets with single words printed on them. Far from depicting every word in the

dictionary, a magnetic poetry set contains carefully selected words to aid the aspiring

writer in waxing poetic. Give a magnetic poetry kit to the same person who sat

dumbstruck in front of that blank page, and odds are his refrigerator will be littered with

philosophical musings in no time.

The irony is that the refrigerator surface is still a blank page, and the user has fewer

options than he did with a pen, which is capable of tracing out any word in the dictionary.

Thus, the Magnetic Poetry Effect is twofold:

• The concept of sliding magnetic words together is novel, making the act of

composing poetry with magnets new and fun.

• Fewer options, all laid bare before the hopeful poet, reduce the time it takes to

select a sequence of words and improve the poet’s confidence that the words

selected will sound poetic.

20

Graphical programming environments share the Magnetic Poetry Effect. The concept of

dragging blocks together is novel, making the act of programming with blocks new and

fun. Also, a limited set of commands laid out in a list of visible blocks reduces the time

to find a useful block and improves the programmer’s confidence that the blocks selected

will form a correct program. In our recent study, we concluded that “the advantages

provided by block programming lowers [sic] the entry point for programming, and the

built-in error prevention mechanisms give students a more structured programming

environment than that of the traditional text entry model [20].” Just as text poets and

magnetic poets both start with a blank slate, both textual and graphical languages begin

with an empty page. Nevertheless, thanks to the Magnetic Poetry Effect, graphical

programming environments provide structure that enables novices to program in

situations where they otherwise would not have.

4 Hybrid Systems

Up to this point, the systems described have been purely textual or purely graphical.

Some developers recognize that both have advantages as well as shortcomings. In some

environments, developers added graphical modes to express preexisting textual

languages, and in other environments, developers added underlying textual languages to

support preexisting graphical frameworks. The latter developers believed that pure

graphical languages “[lead] to frustration for sophisticated programmers who want to

concisely express a statement that might be better represented using text [2].”

4.1 Leogo

According to the 2005 survey of programming languages for novices, Leogo was the only

programming environment classified as, “Provide[s] Multiple Methods for Creating

Programs [11].” Although several systems provided some degree of both graphical and

21

textual programming, Leogo was the only system they studied that was designed to

support three different program creation methods equally. Specifically, Leogo “provides

three [methods]: a typed syntax similar to Logo, a direct manipulation interface in which

the turtle is dragged around and his actions are recorded, and an iconic language which

contains templates for defining structures and using common turtle commands [11].”

Whenever the user changes one of the representations of the program, the other two

representations automatically update to reflect that change.

4.2 Pet Park Blocks

According to the 2005 taxonomy, “Pet Park Blocks is a graphical programming language,

inspired by LogoBlocks… Pet Park Blocks provides a button that allows users to see

their Blocks program as a textual program. This allows users to gradually transition to

text-based programming [11].” Unlike Leogo, which provides a textual language mode

as a primary interface, Pet Park Blocks only provides text for users to read a textual

representation of the blocks code, under the assumption that it helps users learn to use

traditional textual languages.

4.3 Alice2

Alice2 has the distinction of being one of few complex graphical languages: “Where

many no-typing programming systems present users with only a few of the standard

programming constructs, Alice allows students to gain experience with all of the standard

constructs taught in introductory programming classes without making syntax errors

[11].” Specifically, these constructs include parameterized procedures, conditional

branching, variables, loops, and parallelism [10]. Incidentally, StarLogoBlocks is

another complex graphical language that supports all of these constructs as well.

22

Results of user testing of an older version of Alice with a textual language supported the

benefits of visual syntax. Their tests “revealed that the necessity to enter programs by

typing was frustrating for beginning programmers: 65% of users cited the need to type

and 45% cited difficulty with remembering the syntactic details as one of the worst three

things about Alice. For these users, typing was a dominant problem in learning to

program [10].” The Alice developers interpreted these results as justification for

shunning the keyboard in Alice2. There is no data available indicating whether the 35%

of users who did not cite the need to type as one of the worst three things about Alice

would cite the need to drag with a mouse as one of the worst three things about Alice2.

Like Pet Park Blocks, despite the inability to type programs, Alice2 also believes that

some exposure to textual languages is important to ease the transition to them later. The

Alice2 developers have added “the capability to render programs in Java-style syntax

[10].” They intend to study whether using this feature will make it easier for college

students to learn Java, but no results are available at this time [10].

4.4 Tinkertoy

The hybrid programming environment with goals most similar to StarLogo TNG is

Tinkertoy, whose creator wrote, “Although many of the long term benefits of going from

text based systems to systems like Tinkertoy come from the graphic representation, in the

short term, fast interaction is more important [8].” For Tinkertoy, fast interaction is

achieved with a keyboard.

Like the other hybrid environments described above, users can create programs entirely

with blocks, without using a keyboard. After all, Tinkertoy is first and foremost a

graphical representation of Lisp, which originated as a text-only language. On the other

hand, users already familiar with Lisp may prefer to type at least some portions of their

code. Unlike Leogo, which could run a program written entirely in text, Tinkertoy could

23

only convert a chunk of Lisp code into an icon and vice versa. Though the limited textual

representation may sound less powerful at first, it has unique advantages over Leogo.

The interface suggests that the graphical representation is the primary one on which the

user ought to focus, and the textual representation is merely a tool to construct the

graphical representation more quickly.

While Pet Park Blocks and Alice2 developers view their graphical languages as

transitional to ones leading to the use of traditional text languages, Tinkertoy’s developer

viewed the textual language as a facility for creating the more innovative graphical

structures. Though left unimplemented, he even suggested employing keyboard

commands and text editor functionality to improve the efficiency of editing the blocks

directly, much in the way that StarLogo TNG does [8].

5 Keyboard Shortcuts

In light of the relative advantages of graphical programming and text processing, as well

as the various solutions attempted by existing hybrid environments, the premise of this

thesis is that the optimal hybrid environment should not have an underlying textual

language at all. Rather, proven techniques for enhancing text processing should be

applied to block processing, and the primarily graphical programming environment

should support the use of a keyboard for manipulating blocks. This section focuses on

the benefits of keyboard shortcuts and why the use of a keyboard is the primary

advantage of textual languages over existing graphical ones.

5.1 Efficiency

One of the biggest shortcomings of direct manipulation, the hallmark of a GUI, is that it

really is a drag, both literally and figuratively. Users typically do not save time with a

24

mouse. For example, moving one’s hand from the keyboard while typing, doing a visual

search to find the “Bold” button, and moving the mouse across its pad to reach the button

cannot compete with the speed of typing Command-B on the keyboard.1

5.1.1 Flow

A 2004 study on designing interfaces for staying in the “flow” describes being in the flow

as being “fully engaged and in control of an activity, … immersed in that activity to the

exclusion of all else. Furthermore, people regularly describe these experiences as some

of the best of their lives [1].” Programming is one activity on a short list that the author

says is “likely to result in ‘being in the flow [1].’”

The study explains that expert users of a particular programming interface achieve and

sustain flow more easily when they reach the autonomous usage stage:

The final autonomous stage applies to expert users that can execute an

interface element without feedback from the interface. This is commonly

found in GUIs with keyboard shortcuts. An expert user with touch typing

skills might press the ‘ctrl-c’ key combination to execute the Copy

command without waiting for or receiving feedback from the interface [1].

The author goes on to describe that some feedback such as an animated response from the

GUI is sometimes more helpful to sustaining flow than no feedback, but emphasizes that

the key point is that the user executes the interface element quickly and easily from the

keyboard [1].

The author stresses that when users are no longer learning the interface, when they

become experts who crave flow, it is essential for the interface to satisfy that craving. “In

general, balancing the needs of novices and experts remains a daunting problem. But, it

is crucial to support experts – something that is often overlooked, or left just to shortcut

1 The Command key, or “Apple” key, is the rough equivalent of the Control key on a
Windows or Linux PC. Similarly, Apple’s Option key is the rough equivalent of Alt.

25

key accelerators. Many computer users become experts at specific programs over time,

and providing ways for them to be extremely efficient must not be ignored [1].” We

believe that this point is particularly relevant for StarLogo TNG. Unlike some of the

other hybrid systems that are treated as transitional learning tools, StarLogo TNG is

meant to support expert users to design increasingly complex models as they master the

unique system.

Finally, it is insufficient to sprinkle keyboard shortcuts onto a GUI ad-hoc. The keyboard

manipulations must be memorable, intuitive, and convenient. If the typical expert user

can execute an interface element with a mouse more quickly than he can remember the

equivalent keyboard control, then the keyboard control becomes useless. The author

explains that “users have extremely limited short term memory. Any interface elements

that strain users’ memory are problematic because, again, the user’s flow will be

interrupted [1].”

5.1.2 Speed

In addition to helping users stay in the flow, keyboard shortcuts are fast. I postulated at

the beginning of this section that dragging a mouse to a button is slower than invoking a

keyboard shortcut, but you do not have to take my word for it. A 2005 study measured

the relative speeds of different methods for executing interface elements, and the results

are consistent with the theory: “These findings confirm that the keyboard shortcut

method is substantially faster than the icon methods and that the icon method is

substantially faster than the menu method. [15]”

Nevertheless, the authors are careful to point out that keyboard commands are not a

panacea for controlling software. They recognize that pointing and clicking convey some

interaction more effectively than an equivalent keyboard command. For example,

“selecting a range of cells using keyboard commands can be very difficult … and the use

26

of a mouse is certainly more efficient [15].” An efficient user will strike an effective

balance between keyboard and mouse usage to maximize his productivity, and the best

GUIs will accommodate both input modes appropriately.

5.2 Expectations

5.2.1 User Expectations

Concurring with the recommendations of the flow study, the speed study notes that a

well-designed interface “should be (a) easy for novices to learn, (b) efficient for experts

to use, and (c) provide the means for users to make the transition from the easy-to-learn

but inefficient methods of novices to the more difficult-to-learn and efficient methods of

experts [15].” In fact, users expect good software to conform to this standard. Most new

users have neither the time nor the patience to read a manual to learn the system. They

expect to be able to jump right in, starting with the basics and incrementally learning new

features. If the user never discovers or is never taught a particular feature, that feature is

more likely to remain dormant than looked up in a manual.

On the other hand, some new users are power users. These novices are users who crave

flow and efficiency so badly that they will thoroughly explore a new piece of software

and its documentation to find flow enablers. For example, some derivatives of the

Mozilla web browser have “a hidden ‘incremental search’ feature that allows users to

search within a page and follow links, all from the keyboard. This is an advanced and

‘scary’ feature to some – but many of us that have put the energy into learning it have

found that it has dramatically improved our web browsing efficiency [1].” Unfortunately,

the users who enable features such as Mozilla’s Find-As-You-Type feature are likely to

be in the minority.

27

5.2.2 Developer Expectations

Since a developer has expert knowledge about the software he develops, he is in the best

position to become a power user, employing advanced features that he may have

implemented himself. For this reason, developers must constantly remind themselves

that they are not typical users and must work hard to support typical users, from novice to

expert and everything in between.

To this end, developers labor to support the transition to keyboard shortcuts and advanced

features. Frequently used techniques include “Did You Know…” documentation

snippets that appear when the program loads and showing the equivalent keyboard menu

accelerators next to menu items. There is also substantial incentive for developers to

encourage the transition to advanced features; the more efficiently a person can use a

piece of software, the more the user will enjoy the software and want to continue using it

and purchase newer versions.

Unfortunately, the study found “that although the keyboard shortcut method is the most

efficient, it is not frequently employed. It is particularly notable that even highly

experienced users rarely employ keyboard shortcuts… Therefore, even though the

graphical user interface appears to support the transition from less efficient to more

efficient methods, most users fail to make the transition [15].”

5.3 Learnability

Understanding the learnability of keyboard shortcuts is critical to making sense of why

even many highly experienced, expert users do not use them to improve their efficiency

and sustain their flow.

28

5.3.1 Visibility

In order for a user working alone to discover a new feature, the feature must be visible.

Of course, there is a continuum of visibility. The least visible feature might be described

in obtuse language deep within a disorganized thousand-page manual. Nevertheless, it is

still there, leaving the possibility open for some intrepid user to stumble upon it. A more

visible feature might be one that requires the user to explore a preferences dialog box and

experiment with different settings. At the other end of the spectrum, popups that “show

the corresponding keyboard shortcut when users position the mouse over an icon on an

icon toolbar” make those shortcuts extremely visible [15]. Toolbar icons are arguably the

most visible, because the user can always see them, and their position and behavior are

fixed and memorable.

In one respect, the keyboard shortcuts displayed alongside menu items or in popups

above toolbar icons are positioned appropriately because they are visible to the user when

the user is preparing to execute that interface element, and there is a clear association

between the shortcut and the element it invokes. In another respect, they could also be

considered the worst place to display the shortcuts to the user. When the user is finally

presented with the keyboard shortcut, he has already invested the time to move the mouse

over the toolbar or scan through a long list of menu items. By the time the user sees the

shortcut, it is no longer faster than clicking the mouse button to finish executing the

interface element. If the user is not motivated to rehearse the keyboard shortcut after

seeing it, he will probably not remember the shortcut the next time he wants to perform

the same action. Again, the user will have to use the mouse to find the menu or icon, and

the cycle repeats itself.

29

5.3.2 Social Factors

The speed study concluded, “People often adopt inefficient methods either because they

do not know about efficient methods or else choose not to use/learn them. We suspect

that both factors contributed to the relative lack of use of keyboard shortcuts [15].” For

all the good that visibility does, it is insufficient to encourage people to use the keyboard.

Another study suggests that the best way to help people transition to using keyboard

shortcuts is through social interaction [19].

Among those surveyed who were identified as non-keyboard shortcut users, the results

show “that the most endorsed statement was ‘I would start using keyboard shortcuts if I

had someone to train me to use them.’ While the least endorsed statement was ‘I would

start using KBS if I thought they would save me time [19].’” Other questions revealed

that most people learned to use keyboard shortcuts in social settings, “such as working

with and watching other people who used KBS [19].” The survey results led the

researchers to conclude, “An optimal training environment for the instruction of the

efficient use of computer applications may be to have a group of co-workers in an

interactive training setting. If the co-workers are trained together, they may then be able

to act as support for each other when they return to work and implement what they have

learned [19].”

Unfortunately, both providing and attending software training sessions is time consuming

and expensive. For most users and most software products, the idea of getting a large

group of new users to learn together is logistically impossible. Thankfully, however, the

opposite is true of many educational software products such as StarLogo TNG. Designed

for use in a classroom of new student users, with the promise of curriculum to help

instructors prepare training sessions and tutorials for their students, educational software

is ideally suited for hooking students on efficient, advanced features. Just as in a

workplace environment, once a student discovers a feature with a high “cool” factor, the

use of that feature will spread like wildfire through the classroom. There is incentive for

30

the student who found it to share the knowledge because it gives the student an

opportunity to show off the student’s technical skills, and there is an incentive for the

student’s classmates to adopt the knowledge so that they, too, can advance their own

technical skills. Ultimately, keyboard shortcuts get widespread use once all the cool kids

are doing it.

6 StarLogo TNG

Since StarLogo TNG is a rich graphical programming environment with no underlying

textual language and limited prior use of the keyboard, it was the ideal vehicle for me to

apply my theory that the well-designed application of keyboard input could multiply its

usefulness to advanced users by many times. The following section introduces StarLogo

TNG, starting with its history and goals and concluding with an in-depth look at its

graphical programming language, StarLogoBlocks.

6.1 History

6.1.1 StarLogo

Before StarLogo “The Next Generation,” there were several versions of StarLogo that

preceded it. StarLogo began as a textual dialect of Logo implemented to run on a parallel

processor computer. As technology evolved, MacStarLogo simulated the parallelism of

the original StarLogo on an Apple Macintosh personal computer. Later, with the advent

of Java, StarLogo 2 was created to provide a more versatile, cross-platform edition of

StarLogo (Figure 1). StarLogo 2.2 is the most recent stable edition of StarLogo and may

be downloaded for free from the official web site [12].

Unlike many derivatives of Logo, which are neither computationally intensive nor

suitable for modeling complexity, StarLogo presents unique challenges to the developers.

31

According to the StarLogo 2 lead designers, “Building an agent-based modeling

environment like StarLogo is not a trivial task. It involves balancing the pedagogical

needs of students with the efficiency requirements of running thousands of agents at the

same time [4].” In between attending workshops to train secondary school educators to

incorporate StarLogo into their classrooms, they regularly receive questions, comments,

and criticism from graduate students and scientific researchers.

Figure 1: StarLogo 2.2 - Textual code and 2D rendering of agent-based model

At least in the classroom, StarLogo has proven to support the catalytic effect of peers

supporting each other’s use of the program through social interaction. The following

story exemplifies this phenomenon:

One boy was fiddling with the slider that controlled the numbers of turtles

that were on the screen, which by default, ranged from 1 to 50. At some

point, he double-clicked on the slider to see what it would do. He was

then presented with a dialog box that controlled the minimum and

maximum values for that slider. Being a fifth grade boy, he immediately

replaced the seemingly small value of 50 turtles with a new maximum of

32

1,000 turtles. He tried out the new value and quickly proclaimed his

finding as “cool” since the new patterns were much different than the old

ones with 50 turtles… While this innovation was interesting, it might

have taken quite some time for others in the room to make similar changes

if each one of them had to independently discover the same mechanism.

But the accessibility of StarLogo, and the social atmosphere that it

facilitates in the classroom permits and encourages the sharing of

information. Within minutes of the boy’s discovery of the way to change

the slider, nearly half the class had changed their sliders in a similar way

[4].

This evidence makes it likely that introducing keyboard usage to StarLogo TNG will

enjoy the same benefits when it makes it way into more classrooms, replacing StarLogo 2

as the current version.

6.1.2 LogoBlocks

The other ancestor of StarLogo TNG is LogoBlocks, the graphical programming

environment designed to make it easier to create programs for the Programmable Brick

[2]. The Programmable Brick ran on a language called BrickLogo also derived from

Logo, albeit far simpler than StarLogo, as it did not support procedures or some of the

other advanced programming constructs described earlier. Begel’s implementation of

LogoBlocks sported many innovations in the field of graphical programming

environments, and a number of graphical languages besides StarLogoBlocks found

inspiration in LogoBlocks, including Bongo, Flogo, Mindstorms, Pet Park Blocks, and

Tangible Programming Bricks.

33

6.1.3 StarLogo TNG

Initial design and development work began on StarLogo TNG in 2002 within the MIT

Teacher Education Program. I joined the development team as an undergraduate

researcher in the fall of 2002. StarLogo TNG would be a complete rewrite of StarLogo

with an eye towards high-performance graphics and a rich, immersive programming and

modeling environment (Figure 2). My initial work focused on the new StarLogo virtual

machine, this time written in native C code instead of Java. Later, I shifted focus to

enhancing the Java-based user interface and developing the block language, joining

several other undergraduate researchers. Other students were responsible for crafting the

three-dimensional, OpenGL renderer now known as Spaceland.

Figure 2: StarLogo TNG - Graphical language and 3D renderer

34

6.2 Goals

Integrating StarLogoBlocks with a new three-dimensional model renderer, StarLogo

TNG espouses the following goals [13]:

• Lower the barrier to entry for programming by making programming easier.

• Entice more young people into programming through tools that facilitate making

games.

• Create compelling 3D worlds that encompass rich games and simulations.

To elaborate, StarLogo TNG represents a shift away from pure modeling software to a

programming environment that makes modeling video games, complex systems in their

own right, as easy as modeling biological systems. Appealing to the tastes of students

who grew up with Sony PlayStations and Nintendo machines, “We believe that

programming should be reintroduced to students, and that this can be done by focusing

on video game construction, a compelling subject area for many students [5].”

To satisfy the first goal of making programming easier, the StarLogo language has been

overhauled to enrich and simplify the set of primitive commands available to the

programmer, as well as to push the graphical programming environment farther than any

that has come before.

6.3 Users

StarLogo TNG’s target audience is as diverse as its predecessor, StarLogo 2. Students,

teachers, and researchers alike will soon use the faster and more capable StarLogo TNG

to study and create models. Furthermore, some of the users will be new to StarLogo and

programming altogether, while others will have expert experience with the textual

language and 2D paradigm of StarLogo 2.

35

6.3.1 Students

StarLogo TNG is designed first and foremost for secondary students, many of whom

have never programmed before but would benefit greatly from exposure to the field of

programming. For previous versions of StarLogo 2, students were more frequently

consumers of models rather than creators. “While many teachers we work with are

successful at developing their own models and using them in the classroom, we have had

relatively less success getting teachers to facilitate model construction with their students

[14].” The textual language presented a learning curve that was too steep for most

students to overcome.

6.3.2 Teachers

Teachers serve as the facilitators, mentors, trainers, co-debuggers, and co-modelers for

their students. Since StarLogo TNG is meant to be useful in science classes and not just

programming classes, we have to account for the fact that secondary science teachers

often do not have formal training as computer programmers either. Therefore, StarLogo

TNG must provide an easy programming environment for them as well. So far, we have

observed success for both students and their teachers. “Using StarLogo TNG, students

and teachers can rapidly develop and understand new programs and create their own 3D

world in which to run them [14].”

6.3.3 Researchers

Third, though we will continue to support researchers who prefer the familiar StarLogo 2,

which is undergoing preparation to be re-released as an open source project, our

expectation is that many researchers will prefer the dynamic, rich, intuitive, and fast

environment afforded by StarLogo TNG. Granted, complexity researchers may not be

36

interested in integrating a joystick-controlled avatar to make games, but they will find a

wealth of tools available to them to create scientific models.

6.3.4 StarLogo 2 Users

Finally, StarLogo TNG must be able to support users who transition from StarLogo 2.

All of them will appreciate the familiar commands from StarLogo that both versions have

in common. Some users will love the new graphical programming environment, while

others will not like the dramatic change, at least at first. Spaceland can be configured to

give a two-dimensional, top-down view similar to what StarLogo 2 users are accustomed

to, and many of the StarLogo 2 sample projects have been ported to StarLogo TNG,

along with enhancements that highlight many of the great new features of the

environment.

6.4 Spaceland

As the graphical renderer for StarLogo TNG, Spaceland provides the computationally

intensive three-dimensional eye candy that contemporary students have come to demand

from software intended to be visually appealing. The StarLogo agents live and interact in

this world, which can be customized to resemble anything from an enchanted forest to a

tropical fish tank (Figure 3).

37

Figure 3: Rich 3D environments in StarLogo TNG [10]

6.5 StarLogoBlocks

6.5.1 Overview

Like other graphical programming environments described so far, StarLogoBlocks uses

puzzle piece-like blocks to depict individual commands and the visual syntax they require

(Figure 4). Thanks to the power of visual syntax, users can only create syntactically

correct programs.

38

Figure 4: Overview of StarLogoBlocks

Unlike some graphical programming languages, such as Tinkertoy in which some iconic

forms represent arbitrarily large sequences of code, “StarLogoBlocks is an instruction-

flow language, where each step in the control flow of the program is represented by a

block [5].” Users build programs by dragging blocks into the programming workspace

from a block factory organized by categories and color-coded in a way reminiscent of

syntax highlighting in textual IDEs (Figure 5).

39

Figure 5: Properties are magenta, and commands are colored by category.

Command blocks link together in a sequence from top to bottom. When a command

requires some input, the block has labeled sockets, and the shape of the socket dictates

the type of value that may be legally inserted. If the command reports a value, the shape

of the plug on the left side of the block dictates the type of the returned value that may be

inserted into other commands (Figure 6). Blocks such as “If” and “Repeat” that alter the

linear control flow of the block code have special stretching sockets that accept sub-lists

of commands (Figure 7). Stacks of blocks may be topped with a procedure declaration

block, which allows block stacks to be called and reused elsewhere, as well as allowing

for recursion, whereby procedures call themselves (Figure 8).

40

Figure 6: Triangular port shape only accepts number blocks.

Figure 7: The "If" block stretches to accommodate the blocks inside.

Figure 8: User-defined parameterized procedure and dynamically generated call block

41

6.5.2 Managing Complexity

Despite its roots in LogoBlocks, StarLogoBlocks presented much greater design

challenges “due to the relative complexity of the StarLogo environment. LogoBlocks

programs draw from a language of dozens of commands, are typically only 10-20 lines

long, have a maximum of two variables, no procedure arguments or return values, and no

breeds. StarLogo programs draw from a language with hundreds of commands and can

often be a hundred lines or more long… Driven by this challenge, we created a richer

blocks environment with new features specifically designed to manage the complexity

and size of StarLogo code [5].”

Block Editing

StarLogoBlocks supports many advanced block-editing techniques. Some were adapted

from functionality common to textual IDEs, while others take advantage of the unique

properties of graphical languages:

• Undo:

Undo and Redo history give users a chance to fix mistakes or revert to a

previous state quickly.

• Block Families:

Block Families define groups of related commands such as forward/backward,

right/left, and blue/red/white/green/yellow/etc., and blocks that are members

of a Block Family have a combo box around the command label that allows

the user to swap in a related command from the same Family without having

to drag out a new block, disconnect the old one, and drop the new one in

(Figure 8).

• Insertion:

If the programmer forgets a command in a stack of blocks, instead of going

through the trouble of disconnecting the blocks, adding the missing block, and

reconnecting them, the insertion feature allows the programmer to insert a

42

new command in place, saving a lot of time-consuming clicking-and-

dragging.

• Dynamic Renaming:

Similar to Find-and-Replace and other refactoring features common in text

editors, if the programmer renames any user-named block such as a

procedure, variable, or breed, all of the dependent blocks such as call blocks

and variable getters automatically rename themselves to reflect the new name

in the declaration.

• Blockdoc Tool Tips:

When the user moves the mouse over a block, either in the factory or the

workspace, a tool tip popup appears with “Blockdoc,” or Block

Documentation, for that block (Figure 10).

Figure 9: Easy substitution for blocks with a family

Figure 10: Blockdoc tool tips help users remember what each block does.

43

Collapsible Blocks

A common complaint about graphical programming languages is that they take up too

much space on the screen. The extra space is mostly taken up by the plug and socket

shapes that describe the visual syntax, eliminating the need to type symbols such as

square brackets and parentheses. Additionally, when blocks stretch to accommodate

other blocks, the resulting block can be very large. However, the space taken up by a

stretched block is similar to the indentation levels of textual languages to indicate nested

regions of control flow. The difference here is that the stretched blocks delineate code

regions more easily than white space.

Nevertheless, it is still true that there is only room for so many blocks on the screen, just

as there is only room for so much text on a page. Just as textual IDEs allow code regions

such as procedure definitions to be collapsed to reduce the amount of space they take up

and eliminate unnecessary distraction from surrounding code that the user wants to focus

on, StarLogoBlocks also supports “collapsible” procedures. With a click, procedures

collapse or expand to hide or reveal their contents, reducing the number of visible blocks

on the screen at any given time (Figure 11).

Figure 11: Procedures collapse to utilize space more efficiently.

Animation

“One of the most important innovations is to incorporate dynamic animated responses to

user actions. We use this animation to indicate what kinds of user gestures are proper

and improper while the user is performing them [5].” For example, as a user drags a

44

large stack of blocks toward the command list of an “If” block, the “If” block stretches to

accommodate the stack. The animation, which occurs as the user drags the stack towards

the “If” block, serves three purposes:

• The real-time feedback confirms to the user that his action will be permitted.

• The stretched block avoids layout issues problematic for other graphical

programming languages. LogoBlocks [2] and Tangible Programming Bricks [17]

required extra “padding blocks” to prevent blocks from overlapping in unreadable

or physically impossible ways. Tinkertoy rendered icons in a large, fanned-out

shape connected with tube-like wires that quickly became hard to process for

large programs [8].

• The dynamism looks cool, making the environment more visually appealing and

fun for the user, young students in particular.

StarLogoBlocks uses animation to provide feedback for other language features as well.

For example, “When a user picks up a number block to insert into a list of values (which

in Logo may contain values of any type), all block sockets in the list will morph from an

amorphous ‘polymorphic’ shape into a triangular shape of a number, to indicate that a

number block may be placed in that socket. We plan to continue adding new kinds of

animations to help prevent users from making programming errors in the system [4].”

Figure 12 shows the equality test block. Since you can test Boolean, numbers, or strings

for equality, the block has polymorphic ports that change depending on what type of

value the user picks up and tries to insert.

45

Figure 12: The equality block morphs to contain Boolean, number, and string values.

Organization and Navigation

In order to help the user keep the dozens or hundreds of blocks comprising a program

organized, StarLogoBlocks provides several innovative features for promoting block

organization and facilitating navigating through the workspace:

• Pages:

The workspace is visually divided into several resizable logical divisions

called pages. There is a page for each StarLogo “breed” of agents, a page for

global variables and procedures, a page for blocks concerning individual

“patches” in the Spaceland terrain, and a page for runtime blocks that describe

the user interface for the model. Each page has a drawer that contains blocks

specific to the Page to avoid cluttering the standard block factory (Figure 13).

Pages are similar to the tabs in a textual IDE to switch among multiple open

files from a single project.

• Zoom:

With the zoom slider, the user can adjust his perspective of the entire block

workspace easily “to look closely at a procedure they are writing, or expand

their view to see an overall picture of the project (Figure 14 and Figure 15)

[5].”

46

• Minimap:

The “Minimap” is a miniature representation of the entire workspace that is

analogous to the outline view provided by textual IDEs (Figure 16). Users

can jump to any region of the workspace by clicking on it in the Minimap.

Additionally, users may drop blocks onto a point in the Minimap to quickly

move blocks anywhere within the workspace.

Figure 13: The Breed Bar with the "Turtles" drawer open

Figure 14: Zoom in to focus on a particular stack of blocks.

47

Figure 15: Zoom out to get an overview of a project.

Figure 16: The Minimap provides easy navigation of the block workspace.

6.5.3 Reactions

Preliminary user testing and a public beta release available for download from the web

site have given us an opportunity to get feedback about the leap to a graphical

programming environment in StarLogo TNG [13]. In particular, since “StarLogo’s

complex text-based language has always skewed it towards high school students and

older,” we wanted to know whether younger students could easily pick up StarLogo

programming in block form [5].

48

Among students and teachers in particular, the reaction has been quite positive. “This

particular case was with two tenth grade girls (Alice and Beth) who had never

programmed before [5]:”

They strongly preferred the StarLogoBlocks programming paradigm to the

text based paradigm of the existing StarLogo. Specifically, they pointed

out the way in which you could follow the flow of programs visually, and

that you didn’t need to worry about syntax.

Alice: It is easier to see the commands too because instead of typing in

random things that you don’t what they really mean this is like a puzzle

piece and you can kind of put it together.

Beth: You can tell if you are doing it right if the puzzle pieces fit too.

Because before I was like questioning myself if I was doing it right like

bracket or space.

Although the students in the classroom were instantly engaged with constructing

programs out of the lively blocks, StarLogoBlocks was not love at first sight for

everyone. One review written by an adult expert on programming languages said, “I

suspect that this representation of statements as Lego-like pieces with coded connections

will work very nicely for children. I can also tell you that programming by dragging

blocks from palettes to a design screen with a mouse can turn into a real pain in the

shoulder for an adult of a certain age [9].” Another adult user familiar with StarLogo 2

said, “I still think the requirement to build TNG programs graphically, rather than

supporting the option of writing (and printing) program code as text, is a mistake;

nonetheless, TNG is showing a lot of promise… I don't consider TNG a letdown -

though I did, for a while (mostly because of the inability to write models as text) [6].”

49

Although we have no intention of supporting the ability to print or read block code as

text, my hope is that the inclusion of more keyboard shortcuts and the Typeblocking

feature will assuage their desire to use a keyboard to type the block code.

7 The Mythical Algebra Block

The Myth of the Algebra Block relates the story of how our team tried to handle the

consequences of barring a textual representation of the block code from StarLogo TNG.

7.1 Algebraic Expressions

Prior to releasing the first public beta of StarLogo TNG, we spent a great deal of time

playing and working with StarLogoBlocks constructing our own models and sample

projects. We really liked it, and we felt very little remorse about excluding a textual

language from our design. Private user testing helped confirm our beliefs, as “nearly

everyone who has seen the blocks has commented on how much easier it is to see the

flow of the programs, and that it relieves the stress of having to remember all of the

syntax [5].”

Nevertheless, as the designers revealed in their introductory paper, “We have, however,

been asked if it will be possible to ‘drop down’ to the text level after setting things up.

Our answer is ‘no’. It is our goal to make it possible to construct sophisticated programs

using this paradigm, and we are not treating the blocks as a starting place. Algebraic

expressions have been problematic, in that it takes several clicks and drags to write

expressions. As a result, we have revised the layout of algebraic expressions to appear

less procedural, and will eventually add an algebra-specific mode that will allow basic

mathematical expressions to be entered by keyboard and laid out automatically in blocks

[5].”

50

Here, we have conceded the point that algebraic expressions in particular have been

problematic because we perceive that it is too much work to click and drag blocks to

form mathematical expressions. This point may seem odd, given that one could argue

constructing any code requires too much clicking and dragging, as some users have

noted. So the first question is, why do we make a special distinction for algebraic

expressions? The answer to which is discussed in the next section. The second question

is, what is this “algebra-specific mode,” and how will it work? The answer is found in

the following section within the Myth of the Algebra Block.

7.2 Calculator Syndrome

While experienced programmers may feel frustrated having to click and drag any code at

all, most of our novice student users like directly manipulating the blocks with a mouse.

However, the one exception, that nearly all users find frustrating, is the composition of

algebraic expressions, and I attribute that response to something I call the “Calculator

Syndrome.”

Even novice students who have never programmed before are very familiar with

calculators. Whether it is a basic four-function calculator or a TI-89 programmable

graphing calculator, everyone is comfortable with typing out number and operator keys to

computer an arithmetic expression. The overwhelming feeling of a blank page does not

apply to arithmetic, because the possibilities of input are already limited to ten digits and

a few operators. Users do not need to have the blocks or the syntax related to arithmetic

expressions laid out for them in a palette.

For most expert calculator users (i.e. nearly everyone), arithmetic blocks feel like an

abacus, slow and cumbersome. In blocks, “2 + 12” equals three clicks, three drags, and

three keystrokes. First the user clicks on the “Math category.” Then the user drags out

51

the “1” number block, clicks on the block and types “2.” Then the user drags out the “+”

block and connects it to the “2” block. Then the user drags out another “1” block,

connects it to the right side of the “+” block, clicks on the block and types “12.” Whew,

and that was just a simple expression with only one operator. Optimally, users would

prefer a mode in which “2 + 12” equals four keystrokes, the same number as button

presses on a calculator.

7.3 The Myth of the Algebra Block

Accepting the dilemma of the Calculator Syndrome, we were face with the challenge of

providing the ability to type arithmetic expressions without supporting an underlying

textual language. The first idea was to provide an algebra block, which would allow the

user to type out an arithmetic expression on it. Thus, instead of three blocks “2,” “+,”

and “12” all connected, only one block would read “2 + 12.” Unfortunately, the algebra

block posed a lot of problems:

• Inconsistent:

Upon seeing the algebra block, some users would be quick to ask why it is all

right to allow typing arithmetic expressions without allowing users to type

code too. Why not have a “command block” that allowed you to write

familiar StarLogo text such as “fd 10 rt 90?”

• Error Prone:

What happens if users type invalid expressions such as “2 + + 2” or “(3 x 5))

+ 6?” One could argue that users comfortable enough with math to use the

algebra block instead of the standard number blocks are unlikely to make

errors such as those, or that they should accept the consequences of syntax

errors. Nevertheless, we did not want to open the door to allowing

syntactically incorrect expressions. Furthermore, if the algebra block was

meant to be fully-featured, then it would be necessary to support other

functions that exist as blocks such as absolute value, random, and max, as well

52

as supporting typing the names of variables, which were allowed to contain

spaces and symbols such as arithmetic expressions if the user wanted them to.

• Incompatible:

Finally, and perhaps most importantly, this design for the algebra block is

incompatible with the existing math blocks. There was no clearly good way

to convert an algebra block to math blocks reliably or vice versa. Therefore,

the presence of an algebra block in a model may make the model more

difficult to use by a novice, and the presence of math blocks may make the

model too frustrating to edit for an expert.

Realizing that allowing users to write textual code, even limited to math on a single

block, was a potential disaster for users and a slippery slope for the design. At this point,

I suggested an algebra block that does not contain any text. Rather, it enabled a mode

such that when it was active, if a user typed the number “3,” then a block with the

number “3” would appear connected to the algebra block. The user could continue

typing an arithmetic expression, watching as the math blocks formed before his eyes.

This solution allowed users to type arithmetic expressions as they wanted without

succumbing to incorporating textual expressions into the environment. Furthermore, it

was completely compatible with math blocks, because the result of typing into an algebra

block was the formation of a complete stack of interconnected math blocks, and the

visual syntax on the math blocks would protect the user from errors.

Eventually, I came to the realization that this principle of typing out blocks could be

applied to any block, not just math blocks, and the design for Typeblocking, as well as

the premise of this thesis, was born. Consequently, the fabled algebra block was never

implemented, consigned to the dustbin of ideas. Although Typeblocking was not ready

for the release of Preview 2, it is slated for inclusion in Preview 3, which is due to be

released early this summer.

53

8 Typeblocking

Typeblocking, as opposed to typewriting, refers to the concept of using the keyboard to

construct block code instead of written text. In order for this feature to be useful and feel

intuitive, I designed a number of features inspired by the metaphor of a textual IDE.

8.1 Block Cursor

In text editors, the user knows where the next typed character will appear on the screen

because a blinking cursor points out the location. When the user types a letter, the cursor

conveniently and automatically moves to the next logical position for a character. At the

end of a line, the cursor wraps to the next. Deleting a character causes the cursor to move

back, and the arrow keys allow the user to move the cursor to any position within the

page to perform an insert or overwrite operation.

For Typeblocking to work, the user needs to know where the next block is going to

appear, so I created a block cursor. The block cursor is a sort of focus manager. Clicking

on a block gives the block focus, and blue highlighting that indicates focus represents the

cursor. When a particular block has focus, the next block typed will get connected to the

starting block, and then the focus shifts to the new block, effectively moving the cursor to

the next logical position in the block stack. The user can quickly undo a typed block by

pressing the “delete” key, and the user can move the cursor around the stack of blocks

with the arrow keys.2

If the user wants to start typing a new stack of blocks, he can simply click on any empty

region of the workspace, and the cursor jumps to that point such that any block may be

typed and will appear at that point in the workspace without being connected to anything.

2 The “delete” key on an Apple keyboard is the equivalent of “backspace” for Windows
and Linux PCs.

54

If a new block expects a new value or name when it is typed, such as a number block,

string block, or procedure or variable declaration, the block automatically enters text edit

mode when it appears. If the user wants to change the name later, the “enter” key toggles

editing text when the block cursor is hovering over an editable block. Alternatively, if

the block with focus is not editable but belongs to a Block Family instead, then pressing

“enter” causes the drop-down combo box to open, and the user can select a new member

of the Block Family with the arrow keys.

8.2 Workspace Navigation

8.2.1 Search

The ability to search is an indispensable feature of even the simplest text editor, allowing

us to find any text in an arbitrarily long document instantly without having to scan the

text ourselves. Most graphical programming languages are simple enough that search

functionality would not be necessary. However, StarLogoBlocks has many commands in

over a dozen categories, and it may be hard for users to find a block without having to

spend time searching through each category. Furthermore, StarLogo TNG projects may

contain dozens or hundreds of blocks littered throughout the workspace, and it may be

useful to find instances of particular blocks without having to perform a visual scan of the

workspace manually.

For these reasons, I added an incremental search bar to the StarLogoBlocks window. As

the user types part of the name of a block into the search bar, categories containing

matching blocks light up with yellow text, and every instance of the block on the

workspace gets highlighted on both the main workspace and the Minimap, allowing users

to identify the locations of each copy of the block quickly (Figure 17). Users can also

jump to the search bar with the keyboard shortcut “Command-F,” a common shortcut for

search that stands for “Find.”

55

Figure 17: Search reveals blocks and categories that match the query.

In addition to the search bar, I added other keyboard shortcuts to navigate the workspace

based on the context of existing block code. When any block has focus, pressing

“Command-R” or choosing “Find Related Blocks” from the “Edit” menu performs a

search for related blocks. For example, when a variable getter or a procedure call block

has focus, pressing “Command-R” highlights the variable or procedure declaration block

associated with the starting block, along with other instances of the call block or variable

setters and getters. This feature is analogous to the Find Declaration feature common in

textual IDEs, and it is particularly handy if the user would like to rename a variable but

cannot find the declaration block where renaming is permitted. Similarly, this feature

also incorporates the Call Hierarchy feature from textual IDEs. When the block cursor is

hovering over a variable or procedure declaration, pressing “Command-R” highlights all

56

of the variable getters and setters or procedure call blocks associated with the declaration

on the workspace, allowing the user to find all references to a particular variable or

procedure more easily.

After performing a search, either by manually entering a query or by using the “Find

Related Blocks” feature, users can press “Command-G” and “Command-Shift-G” to

jump to the next or previous block in the search results respectively. The new block

receives focus from the Block Cursor, and the view of the workspace animates smoothly

to center the block on the screen to help the user follow the transition.

8.2.2 Zoom

To control the level of zoom within StarLogoBlocks, I borrowed the keyboard shortcut

scheme used in many web browsers and Mozilla Firefox in particular. “Command-

(plus)” zooms in one notch, “Command-(minus)” zooms out one notch, and “Command-

0” returns the workspace to the default level of zoom.

8.3 Context Awareness

One of the requirements of Typeblocking is that it must preserve the visual syntax of the

blocks and produce error-free code. Just as a user cannot drop a Boolean block where a

number block belongs, the user should not be able to type “true” for the “true” block

where a number belongs. In order to achieve this goal, Typeblocking must be aware of

its context. When the block cursor is on a “forward” block, there are only two available

sockets. The number socket to the right of the block accepts numbers, and the command

socket underneath the block accepts other commands. Thus, if the user types a number,

the number block should appear connected to the number socket. If the user types a

command, the command should appear connected below the “forward” block. Finally, if

57

the user types a block that is neither a number nor a command, then no block should

appear.

If a socket is already filled with a block, then it first tries an insert operation as in the case

of a command socket. If an insert would be syntactically incorrect, such as trying to

insert a number next to an existing number block in a number socket, then the existing

block is overwritten. Though overwrite could potentially destroy some of the user’s data,

it is easily undone with the undo command.

Some blocks such as “Scatter PC” accept multiple number blocks, such that if a “Scatter

PC” block has focus, and the user types a number, the socket where the number block

should appear is ambiguous (Figure 18). For this case, I chose a simple, intuitive

heuristic to determine where the block should appear. The number block fills the first

available empty socket reading from top to bottom. If all of the number sockets are full,

then it will overwrite the top number block. If the user needs to change a different

number, then he can use the arrow keys to move the cursor to that number block and

press “delete” to delete it or “enter” to edit it.

Figure 18: Scatter PC accepts multiple blocks of the same type.

58

8.4 Auto-Completion

The best textual IDEs implement some form of auto-completion. Combining context

awareness with knowledge about the structure of the programming language in use as

well as the existing code already written, the IDE will provide a popup box containing a

list of valid completions based on where in the code the user is typing and what

characters the user has typed so far. As the user continues to spell out the code, possibly

using the list box as a reference or reminder of what to type, the list shortens dynamically

to include only valid completions after typing (or lengthens after deleting) each character.

At any time, the programmer may use the arrow keys to select an item from the list and

press the “tab” key or “enter” key to have the editor automatically complete the code

selected.

For Typeblocking to be truly useful, users should get the same reminders of valid blocks

that they would get if they were perusing the block factory or writing code in a textual

IDE. So, when the user begins typing the name of the block, a list appears near where the

block will appear that shows all of the valid completions given the position of the cursor,

the known StarLogo commands, and the user-defined names of procedures and variables

already created.

8.5 Animation

Finally, Typeblocking incorporates animated feedback to help the user understand what is

happening as he types out blocks. In text editors, animation is less important because the

sudden appearance of a single character that does not affect the layout of the characters

around it is not jarring to the user, whereas animating the appearance of the character

would probably cause a distraction.

59

StarLogoBlocks is a different story altogether. Blocks can be very large and take up a

significant amount of space on the workspace. Furthermore, the size of the surrounding

blocks may change when larger blocks are connected to them. If the new block suddenly

snapped into place, the lack of animation could be confusing, and the confusion unto

itself is a distraction. These are the instances where careful use of animation contributes

to sustaining flow: “Another approach that can potentially be used to reduce users’ sense

of interruption is to use animation between screen states. While animation in general can

be used in ways that are very disruptive, we have found that animation can be helpful if

used to help users understand how the interface changes [1].” Specifically, “The

potential for this kind of animated transition is that it can reduce the cognitive overhead

of understanding of the relationship between two screen states, thus enabling uses to stay

focused on the task [1].”

I had several potential designs for animating the appearance of a new block. The first

took advantage of existing transparency features of the block graphics. By gradually

increasing the alpha channel of the block’s visual representation, the block would appear

to fade into view, changing quickly from something ethereal to a more solid block. The

second idea utilized the vector graphics used for the blocks that allow them to be zoomed

easily without distortion. I imagined that the block would at first appear very small and

quickly scale up to match the size of the surrounding blocks. Another idea was to have

the blocks quickly fly in from the side of the screen, coming to a stop when they arrived

at their final destination. The block would appear near the factory and move, dragged by

an invisible force, until it snapped into place where it belonged.

Ultimately, I chose the fly-in approach for a couple reasons. First, it was most consistent

with the other mode for creating blocks—namely, dragging. If a block flew out from its

starting position in the block factory to arrive at its final position on the workspace, the

animation would look as though StarLogoBlocks responded to the user’s key press by

dragging the block out of the factory for the user. Second, it seemed to have the coolest

60

effect. Realizing that the best way to encourage a user to adopt a particular feature is to

make it seem cool, the visual effect of blocks flying onto the workspace as the user types

seemed to be the most visually appealing.

In order to ensure the animation always takes the same amount of time regardless of the

speed of the user’s computer, I used path and pacing functions in conjunction with a

thread-safe timer to send updates to the GUI’s render queue [18]. For the path function, I

chose a simple linear transformation that renders the block along a straight-line path from

the starting position to the ending position. The pacing function, given the current time

and the total amount of time allocated to the animation, determines how far along the

path the block should be rendered at each point in time. I chose a sigmoid, slow-in/slow-

out pacing function that gives the block the appearance of revving up as it leaves the

factory and slowing down as it reaches its final position. For each frame, the following

pseudo-code computes the block’s next position:

// Apply a sigmoid pacing transformation:
s = (atan(current_time * PI / TOTAL_TIME - PI/2) + 1) / 2
// Apply a linear path transformation:
next_x = (1-s) * initial_x + s * final_x;
next_y = (1-s) * initial_y + s * final_y;

Unfortunately, introducing animation comes at a cost. According to the flow study, “The

tradeoff is that animations fundamentally require time. So a question is whether the time

spent on such animations is well spent [1].” We believe that the time is indeed well

spent, but it remains to be seen whether our users will appreciate the effect when it is

introduced in Preview 3.

8.6 Typing Modes

A common type of error for users is called a “mode error.” Mode errors result when the

same action produces different effects under different circumstances, and the user either

61

momentarily forgets which circumstances he is in, or the interface presents an ambiguous

state that makes it unclear which circumstances apply.

For example, consider the shape of a typical text editor cursor. The cursor is a straight

blinking bar for normal text, but when the user activates italics mode, the cursor appears

slanted, just like italicized text. However, when the user enables bold mode, the cursor

does not become bold. It looks exactly the way it does when bold style is not enabled.

Usually, the easiest way for a user to determine which mode is active is to type a

character and see whether it comes out bold. If the interface provided a clear and obvious

indicator of which mode the user is in, such as by making the cursor appear bold, then the

user could avoid many such mode errors.

StarLogoBlocks has the same potential problem, because keyboard input can mean

several different things to StarLogo TNG. In one mode, the keyboard keys control the

camera in Spaceland. The arrow keys rotate and translate the scene, and several other

keys represent shortcuts to toggle various views and modes in Spaceland. A second

mode already exists for StarLogo TNG, which allows models to detect and respond to

keyboard input, such that pressing any letter, number, arrow key, or spacebar could affect

the running model. Even with just two modes, many users have expressed confusion

trying to understand how to differentiate and toggle between the two modes [16].

Now, Typeblocking introduces a third mode for keyboard input to StarLogo TNG. The

keyboard shortcuts for searching and zooming, for example, do not causes conflicts

because none of the Spaceland shortcuts overlap, and StarLogo TNG currently does not

support detecting and responding to Command, Option, or Shift key presses within

models. However, the ability to type blocks by spelling out their labels could easily lead

to conflicts with both model keyboard input mode and camera control mode. Thus, it

becomes even more important to make it clear which mode is enabled and when.

62

There are two kinds of modes: permanent and spring-loaded [18]. A spring-loaded mode

is a transient mode typically enabled by holding down a key or mouse button. For

example, typing a letter key in a text editor normally results in a lowercase letter getting

printed to the screen; however, when the user holds down the “Shift” key, the CAPS

mode is spring-loaded, such that keys typed while “Shift” is held down results in capital

letters getting displayed. Toggling CAPS mode with the “Shift” key is different from

toggling the mode with the “caps lock” key, which permanently changes the mode until

the key is pressed again. Spring-loaded modes are ideal because they require a more

conscious effort on the part of the user to enable them, which makes them less likely to

lead to mode errors, whereas the set-and-forget nature of the “caps lock” key makes

mode errors more likely.

Unfortunately, none of the modes described above would be suitable as spring-loaded

modes. There are many use cases where it is convenient to be able to enter many key

commands in rapid succession for controlling models, the camera, or blocks, and it would

be inconvenient to have to hold down a modifier such as “Shift” the entire time. Since

each mode is a permanent mode, there are two ways the interface can improve their

usability. First, the modes should be mutually exclusive. It is rare that a user would

benefit from being able to use the keyboard to type blocks, move the camera, and control

a model all at the same time. Second, the modes should be clearly visible and easily

toggled via toolbar toggle buttons, checkmark menu items, and keyboard shortcuts. I

added the keyboard shortcut “Command-K” cycles through each of the three modes.

9 Future Work

With Typeblocking and other keyboard shortcuts slated for inclusion in public beta

Preview 3, the next step is to gather user feedback on the usefulness of these features and

iterate on the design. In addition to improving upon the features already implemented,

these features lay the groundwork for other potential improvements to StarLogoBlocks.

63

For example, it might be useful to allow users to define custom keyboard shortcuts and

macros.

9.1 Alternative Input Modalities

This thesis focused on keyboard input to facilitate fast code entry and efficient use for

expert users in a way that does not alienate novice users, but there are many other input

modalities besides mice and keyboards that are worth exploring. A few of them are

described in this section.

9.1.1 Speech Recognition

As technology improves, software solutions for speech recognition are also improving at

a steady pace. For writing text, products such as IBM ViaVoice and Dragon Naturally

Speaking provide usable speech recognition for composing arbitrary text. Additionally,

many companies employ increasingly intelligent voice response systems that utilize

speaker-independent voice recognition for a limited but robust grammar to give callers

more control over their interactive sessions. Voice recognition also enables hands-free use

of cell phones and other portable devices.

Graphical programming environments such as StarLogoBlocks may be ideal for coding

with speech recognition because the relatively simple languages result in relatively simple

grammars for the speech recognition engine to process a user’s utterances. Begel’s Ph.D.

thesis explored the use of speech recognition to program in textual languages, and I think

there is a great opportunity for one of the lead designers of StarLogo to apply his results

to graphical programming environments and StarLogoBlocks in particular [3].

64

9.1.2 Gesture Recognition

Another class of input is known as gesture recognition, and it comes in several flavors.

The simplest and most common variety is responding to touch-screen input. As Tablet

PCs and Ultra-Mobile PCs (UMPCs) become more widespread, users may find that a

stylus or finger is a much more comfortable and natural tool for composing block code

than either a mouse or keyboard.

Another form of gesture recognition that takes place on a touch-screen or with a mouse is

the interpretation of symbols traced out with a pointing device. For example, tracing a

square on the screen in a counter-clockwise motion is a gesture shortcut to trigger the

Undo operation, whereas tracing a square in a clockwise motion would trigger the Redo

operation. On touch-screens in particular, gestures may be faster to execute than a menu

item or pressing buttons in an on-screen keyboard.

A specialized form of touch-screen gesture recognition is handwriting recognition, where

the gestures are meant to resemble natural handwriting that trigger the equivalent key

press for the letter drawn. Graphical programming languages could be “Writeblocked,”

causing blocks to appear as a result of spelling out the labels of the blocks with gestures.

Taken to the extreme, some immersive systems such as the upcoming Nintendo Wii

utilize a three-dimensional motion-sensing device to provide input to the system. A

clever designer may be able to dream up interesting UI interactions for block

programming using a similar device.

9.2 Accessibility

As a corollary to exploring alternative input modalities, graphical programming

environments could benefit from the application of techniques to make the software

65

accessible to users with sensory or motor impairments. Commercial operating systems

have built in support for enabling accessibility features in textual applications. Users

with motor impairments can slow down the keyboard repeat rate, decrease the threshold

for detecting a double click, enable “caps lock” style modes for other modifier keys that

are typically spring-loaded, and more. For users with hearing impairments, users can turn

up the volume or enable screen flashes to replace the system alert sound. Vision

impaired users can enable automatic zooming of whatever is under the mouse pointer,

and they can employ text-to-speech (TTS) screen readers to help them understand what is

displayed on the screen. Finally, sufferers of repetitive stress injuries (RSIs) benefit

greatly from speech recognition technology supplanting their use of the keyboard.

9.3 Collaborative Programming

Now that most computers, especially classroom workstations, enjoy a fast connection to

the Internet or a Local Area Network (LAN), there are more opportunities to use software

supporting collaborative writing and collaborative programming. However, to my

knowledge, there are no existing collaborative graphical programming environments,

which could have as much potential as written ones, allowing pairs of students to work

together on the same project from two different computers, supporting each other and

helping each other learn without one of them having to take a backseat to the controls.

One interesting twist to collaborative programming as it applies to educational software is

that it might need to incorporate more protections against a student who may lack the

maturity to respect the work of his partner and cooperate effectively.

10 Conclusion

Fundamentally, there is no single environment—textual or graphical or something in

between—that will satisfy every user. Nevertheless, I have proposed a compromise that

66

has the potential to satisfy most novices and experts alike with a graphical programming

language that adapts as many advanced features from mature textual IDEs as possible and

supports a mode for creating graphical code using the keyboard. Unfortunately, textual

languages have other benefits besides keyboard entry and fancy search features.

Ultimately, block code is not a perfect substitute for text, and it does not help users who

will always prefer to read, print, or share their programs as text.

In spite of the disadvantages of my solution, given the relative merits of textual and

graphical languages, the evidence I have presented mostly favors graphical programming

languages for educational environments. Since StarLogo TNG is primarily educational

software, I believe that the exclusion of a textual language in favor of a robust graphical

language is beneficial for the students. My proposal strives to unify the mouse and

keyboard for graphical programming, performing text processing without the text. And if

I am correct that the features I have described make StarLogo TNG more enjoyable for

some users without detracting from the educational experience of those who appreciate

the block programming experience, then I consider this endeavor to be a success.

67

References

1. B. Bederson, “Interfaces for Staying in the Flow,” Ubiquity, 5(27), 2004.

2. A. Begel, “LogoBlocks: A Graphical Programming Language for Interacting with the

World,” advanced undergraduate project, Media Laboratory, Massachusetts Inst. of
Technology, 1996.

3. A. Begel, “Spoken Language Support for Software Development,”doctoral

dissertation, Graduate Division, Univ. of California, Berkeley, 2005.

4. A. Begel and E. Klopfer, “StarLogo: A Programmable Complex Systems Modeling

Environment for Students and Teachers,” Artificial Life Models in Software, A.
Adammatzky and M. Komosinski, eds., Springer-Verlag: 187-209, 2005.

5. A. Begel and E. Klopfer, “StarLogo TNG: An Introduction to Game Development,”

Journal of E-Learning, in press, 2005.

6. N. Bennett, “New Mexico Supercomputing Challenge,” Jan. 2006; https://mode.lanl.

k12.nm.us/forum/viewtopic.php?p=93.

7. V. Colella, E. Klopfer, and M. Resnick, Adventures in Modeling: Exploring Complex,

Dynamic Systems with StarLogo, Teachers College Press, 2001.

8. M. Edel, “The Tinkertoy Graphical Programming Environment,” IEEE Transactions

on Software Engineering, 14(8): 1110-1115, 1988.

9. M. Heller, “StarLogo TNG,” Byte.com, 6 Mar. 2006; http://www.byte.com/

documents/s=9957/byt1141336941474/0306_mh.htm.

10. C. Kelleher, D. Cosgrove, C. Forlines, J. Pratt, and R. Pausch, Alice2: Programming

without Syntax Errors, Proc. 15th ACM Symp. User Interface Software and
Technology (UIST 02), ACM Press, 2002.

11. C. Kelleher, R. Pausch, “Lowering the Barriers to Programming: A Taxonomy of

Programming Environments and Languages for Novice Programmers,” ACM
Computing Surveys, 37(2): 83-137, 2005.

12. E. Klopfer, “StarLogo on the Web,” May 2006; http://education.mit.edu/starlogo/.

13. E. Klopfer, “StarLogo TNG: Welcome to the Next Generation,” May 2006;

http://education.mit.edu/starlogo-tng/.

68

14. E. Klopfer and S. Yoon, “Developing Games and Simulations for Today and

Tomorrow’s Tech Savvy Youth,” TechTrends, 49(3): 33-41, 2005.

15. D. Lane, H. Napier, S. Peres, and A. Sándor, “Hidden Costs of Graphical User

Interfaces: Failure to Make the Transition from Menus and Icon Toolbars to
Keyboard Shortcuts,” International Journal of Human-Computer Interaction, 18(2):
133-144, 2005.

16. C. McCaffrey, “StarLogo TNG – Free Agent,” May 2006; http://education.mit.edu/

starlogo-tng/blog/.

17. T. McNerney, “Tangible Programming Bricks: An approach to making programming

accessible to everyone,”master’s thesis, School of Architecture and Planning,
Massachusetts Inst. of Technology, 2000.

18. R. Miller, “6.831 User Interface Design and Implementation,” Dec. 2005;

http://groups.csail.mit.edu/uid/6.831/.

19. S. Peres, F. Tamborello, M. Fleetwood, P. Chung, D. Paige-Smith, “Keyboard

Shortcut Usage: The Roles of Social Factors and Computer Experience,” Human
Factors and Ergonomics Society 48th Annual Meeting, 48: 803-807, 2004.

20. K. Wang, C. McCaffrey, D. Wendel, and E. Klopfer, “3D Game Design with

Programming Blocks in StarLogo TNG,” 7th International Conference of the
Learning Sciences (ICLS 06), in press, 2006.

