
Gradual Awareness Notification for the Desktop

Environment

by

Thomas Blake Wilson

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 26, 2006

c© Thomas Blake Wilson, MMVI. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2006

Certified by. .
Robert C. Miller

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

3

Gradual Awareness Notification for the Desktop

Environment

by

Thomas Blake Wilson

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

This thesis develops and puts forth the principles of gradual awareness notification. It
distinguishes the concepts of hard and soft notification, and defines situations where
gradual awareness techniques can be of the most benefit. Furthermore, it applies
gradual awareness principles to the desktop environment to produce slow-growth no-
tification, a visual notification system relying on slowly growing windows. It describes
the design principles behind gradual awareness notification, and presents a prototype
implementation of slow-growth notification called the Slow-Growth Library, or SGL.
Finally, it presents user study results which indicate that slow-growth notification
can achieve significant benefits over traditional popup notification systems without
needing to be informed of the user’s current task. The study demonstrates that slow-
growth notifications were up to 39% less disruptive than popups, and up to 33%
subjectively less annoying.

Thesis Supervisor: Robert C. Miller
Title: Associate Professor

4

5

Acknowledgments

First, I would like to thank Professor Rob Miller for his patience and insightful advice.

The many conversations over the past year and a half were integral to establishing,

presenting, and polishing the ideas found in this thesis, in addition to being exciting

and intellectually stimulating. Without his assistance and guidance, this thesis would

never have come into being.

I would also like to thank the members of the User Interface Design group at MIT.

Their support, both in the form of being test users and in their valuable feedback

and advice, played a crucial role in the process of developing this thesis.

Additionally, Radhika Jagannathan has been a source of constant comfort and

friendship during the often trying journey of writing this thesis. Her patience in

listening to my frustrations and rantings was unparalleled, and greatly appreciated.

Finally, I would like to thank my parents for their constant support and encour-

agement throughout my time at MIT, both as an undergraduate and this past year.

Without them, I never would have made it through my undergraduate career, let

alone finished this thesis. Thank you so much for everything.

6

Contents

1 Introduction 13

1.1 Contributions . 17

1.2 Overview . 17

2 Related Work 19

2.1 Interruptability . 20

2.1.1 Costs of Interruption . 20

2.1.2 Mitigation . 21

2.1.3 Isolation . 22

2.1.4 Notification . 23

2.2 Vision and Cognition . 25

3 Taxonomy of Notification 27

3.1 Synchronous . 27

3.2 Asynchronous . 30

3.2.1 Status . 30

3.2.2 Alerts . 31

3.3 Context Sensitivity . 33

4 User Interface 35

4.1 Design Motivation . 35

4.2 Features . 36

7

8 CONTENTS

4.2.1 Subtlety . 36

4.2.2 Informativeness . 38

4.2.3 Efficiency . 42

5 Implementation 45

5.1 Overview . 45

5.2 SlowGrowth . 46

5.2.1 Sliding Window . 47

5.3 NotifyImage . 49

5.3.1 Key-Framing in SGL . 50

6 Evaluation 53

6.1 Lab Study . 53

6.1.1 Design . 54

6.1.2 Results . 57

6.2 Field Study . 68

6.2.1 Design . 68

6.2.2 Results . 69

7 Conclusion 75

7.1 Contributions . 75

7.2 Future Work . 77

7.2.1 Slow-growth Implementation 77

7.2.2 Gradual Awareness Investigation 78

A SGL API 81

B Sample Data and File Formats 99

C Post-test Questionnaire 103

List of Figures

1-1 An instant message window interrupting a primary task 14

1-2 A network status notification . 14

1-3 An incoming email notification . 14

1-4 A slow-growth window in action . 16

3-1 Notification taxonomy . 28

3-2 Firefox’s default multiple tabs warning notification 29

3-3 Word’s unsaved document warning notification 29

3-4 A typically intrusive task completion notification 31

4-1 A slowly growing window . 38

4-2 Continuous visual zooming . 39

4-3 Discontinuous semantic zooming . 40

4-4 Continuous semantic zooming . 41

5-1 A visualization of the sliding window effect used in SGL 48

6-1 The lab study test application, as it appears on start up 55

6-2 Mean response times for popup and aggregate slow-growth 59

6-3 Mean response times including the differing growth rates 59

6-4 Mean resume times for popup and aggregate slow-growth 61

6-5 Mean resume times including differing growth rates 62

6-6 Interruption points . 65

9

10 LIST OF FIGURES

6-7 Mean page completion times for popup and aggregate slow-growth . . 66

6-8 Subjective responses . 67

6-9 Average response times for each different display mode. CS is con-

tinuous semantic, DS is discontinuous semantic, and CV is continuous

visual. 70

6-10 Average window for each different display mode 71

6-11 Average response times for each different growth rate 71

6-12 Average window for each different growth rate 72

List of Tables

6.1 A summary of user characteristics . 54

6.2 Occurrences of each type of notification 58

6.3 Mean resume times in milliseconds with standard deviations (including

outliers, and with outliers removed) 61

6.4 Reference text characteristics (means per page of text) 64

6.5 Number of interruptions at each possible interruption point 64

6.6 Occurrences of each notification type (growth rate and display mode)

in the field study data . 69

11

12 LIST OF TABLES

Chapter 1

Introduction

As users grow more and more dependent on computing systems, the demands on a

user’s attention grow dramatically. In fact, user attention may be rapidly becoming

the scarcest resource in a computing environment [7]. Many applications seek to notify

a user in the course of their daily tasks. Email clients, instant messaging systems,

background system tasks, firewalls, and virus scanners are just some of the programs

that might need to inform a user. Figures 1-1, 1-2, and 1-3 illustrate a sample of

the range of notifications that may appear, both centrally and peripherally. When

the number of applications clamoring for attention is small, the task of managing all

of their interruptions is not particularly onerous. However, when large numbers of

applications demand attention within a short time span, the user can rapidly become

overwhelmed.

In attempting to understand and improve notification, this thesis defines the terms

hard and soft notification. Current desktop notifications tend to be hard, meaning

that they interrupt the user suddenly and without regard to the user’s current task.

This leads to many problems. First of all, much research has shown that interrupting

users at the wrong moment results in a severe loss of productivity. [6] Because hard

notification schemes are usually unaware of the user’s task, they often interrupt at

sub-optimal moments. Some work is being done on notification schemes that attempt

13

14 CHAPTER 1. INTRODUCTION

Intro:annoy1

Figure 1-1: An instant message window interrupting a primary task

Intro:annoy2

Figure 1-2: A network status notification

Intro:annoy3

Figure 1-3: An incoming email notification

15

to make informed choices about interruption timing [18, 19], but these systems are

complex and far from finished. Second, hard notifications tend to increase levels of

user annoyance [5]. The lack of control and proper timing can cause a great deal of

frustration to the user.

Soft notification, in contrast, is a method of notifying users through the use

of gradual changes. Rather than using sudden changes, soft notification gradually

changes information in the periphery of the user’s awareness. Thus, soft notification

may also be referred to as gradual awareness notification. In general, the principle

of soft or gradual awareness notification is to start a signal at an imperceptible level

and gradually increase the intensity of the signal until the user notices. This may

involve any or all of the user’s channels for input (visual, audio, tactile, etc).

As an example, consider a soft notification cell phone. Instead of ringing or vibrat-

ing at full intensity, a “slow phone” could start by vibrating very softly. Gradually, the

intensity of the vibration would increase, up to some maximum level. At some point,

the audio channel could also be employed. The phone would begin ringing softly,

slowly increasing the volume of the ring tone. This alerts the user to the phone’s

attentional demand gradually, without necessarily breaking their concentration. (For

a similar and entertaining line of research, see Marti and Schmandt’s squirrel phone

[21])

Of course, sometimes it is necessary or even desirable for the phone to forcibly

interrupt a user (eg, to remind the user that they’re about to miss their plane, or

sleep through a meeting). In these cases, soft notification is clearly inappropriate.

This thesis presents an application of soft notification to the desktop environment.

In particular, it presents a system of notifications that can be incorporated into

existing or future applications. Since the primary information channel on the desktop

is visual, the technique presented in this thesis focuses on a visual method. This

method is hereby referred to as slow-growth notification, or just slow-growth. Slow-

growth works using windows that start out infinitesimally small. Gradually, these

16 CHAPTER 1. INTRODUCTION

Intro:sg

Figure 1-4: A slow-growth window in action

windows grow into the user’s field of vision.

Slow-growth is interesting because it effectively circumvents the problem of cre-

ating an informed notification system. Rather than attempting to build a cognitive

model of the user’s task, slow-growth notification exploits the user’s own internal

model. As discussed in Chapter 2, a user’s attentional field enlarges at natural task

breaks. This leads to users noticing the slow-growth notification at a moment at

which they are more ready to be interrupted. Thus, all the benefits of an informed

notification scheme can be achieved without the implementation complexity or train-

ing phase associated with informed notification. Note that the goal of slow-growth is

not to mediate notifications for existing applications, but rather to provide a tool to

allow designers to more effectively and considerately notify users.

1.1. CONTRIBUTIONS 17

1.1 Contributions

This thesis seeks to prove the following: Gradual awareness notifications will be

consumed by users at natural task breaks, improving performance and re-

ducing annoyance when compared to traditional hard notification schemes.

In the course of demonstrating the above claim, my thesis makes the following con-

tributions:

• It develops the general principles of soft notification, and presents a workable

conceptual model for gradual awareness notification systems.

• It describes and demonstrates a practical prototype implementation for such

systems, based on slowly growing notification windows which gradually encroach

on a user’s awareness.

• It presents the Slow-Growth Library (SGL), a toolkit for using slow-growth

notifications in applications.

• It presents quantitative data showing the performance benefits of slow-growth

notification as compared to popup-based notifications.

1.2 Overview

Chapter 2 presents an overview of previous work in related fields. Chapter 3 describes

the taxonomy of notifications developed for this thesis, and identifies key categories

for which gradual awareness techniques are ideally suited. It also examines situations

where gradual awareness may not be appropriate. In Chapter 4, I describe the user

interface and methods of interaction for the Slow-Growth prototype. This chapter also

identifies the crucial challenges in designing a gradual awareness notification scheme,

and proposes a solution. Chapter 5 examines in-depth the actual implementation

of the Slow-Growth prototype system, and describes the design trade-offs that were

18 CHAPTER 1. INTRODUCTION

considered during the development process. Chapter 6 presents the findings from the

user tests I conducted. The results of both a field study and a lab study are described

here. Finally, Chapter 7 restates the contributions of this thesis, draws implications

from the results presented in the rest of the document, and proposes directions for

future work in this area.

Chapter 2

Related Work

This section presents an overview of research in the fields of interruptability and

vision/cognition. Interruptability is generally the problem of determining when and

how to present interruptions. The problems of interruptability most relevant to this

work include understanding the costs of interruption, mitigating those costs, isolating

reasonable interruption moments, and deciding how to effectively display information

to the user. Vision and cognition are concerned with understanding how events are

processed by the human optical system, and how these stimuli are propagated to

upper levels of the mind. In particular, vision and cognition research illustrates an

interesting difference between what we see and what we notice.

Much of the previous work in this space has focused on techniques for mediating

interruptions from many applications via generalized interruption managers. This

thesis focuses on a slightly different approach by giving designers tools to improve

the effectiveness of notifications in their own applications. However, it draws on

techniques developed in previous research, and thus it is instructive to examine prior

work on this topic.

19

20 CHAPTER 2. RELATED WORK

2.1 Interruptability

2.1.1 Costs of Interruption

An interruption can be defined as an event which requires a user to refocus their

attention away from their primary task. Interruptions are often annoyances which can

adversely affect a user’s experience. However, sometimes the information contained in

an interruption is important enough to the user that the annoyance can be justified.

In attempting to enhance a user’s experience, it is useful to have a notion of what

the cost of interrupting a user might be.

The costs of interruption are well-studied. Horvitz and Apacible present a useful

study of previous work, along with techniques for measuring and predicting interrup-

tion costs [16]. They use predictive models built up over time to estimate expected

interruption costs. Bailey, Konstan, and Carlis directly measure some of these costs

[4, 5]. Their studies show that interruptions have a negative effect on both task per-

formance and a user’s emotional state. Task performance was significantly slowed

when tasks were interrupted. Additionally, users reported feeling significantly higher

levels of annoyance and anxiety when their primary tasks where interrupted. Re-

search also indicates that these effects are dependant upon the user’s mental load at

the time of interruption [5].

Bailey and Konstan present a study of the impact interruption can have on user

performance and satisfaction [7]. Their results indicate that when “peripheral tasks

interrupt the execution of primary tasks, users require from 3% to 27% more time to

complete the tasks, commit twice the number of errors across tasks, experience from

31% to 106% more annoyance, and experience twice the increase in anxiety than when

those same peripheral tasks are presented at the boundary between primary tasks.”

Additionally, the natures of the primary task and the interruption both influence

the disruptiveness of the interruption. For example, Maglio showed that continuously

scrolling displays can be considered more disruptive than discrete displays when the

2.1. INTERRUPTABILITY 21

primary task is a continuous word editing task [20]. Czerwinski, Cutrell, and Horvitz

investigated the particular interruption of instant messaging (IM) windows [12]. They

demonstrate that sudden popup notifications (like the type used in most IM systems)

are particularly damaging and disruptive to fast, stimulus-driven tasks.

Finally, other work suggests that the effectiveness and disruptiveness of inter-

ruptions depends highly on the modality of the interruption. Most information in

the computer desktop space is conveyed by visual means, with occasional auditory

cues. This includes information from both primary and peripheral tasks. However, as

demonstrated by Bodnar, Corbett, and Nekrasovski, there are certainly other modal-

ities that can be exploited [10]. They were able to show that the olfactory channel

is less effective at notifying users, but produces significantly less disruption. It is

interesting to consider the possible notifications that might be designed using other

modalities, such as olfactory or tactile.

2.1.2 Mitigation

Given the potentially high costs of interruption, it is desirable to understand how

to mitigate the impact of an interruption. There has been an increasing amount of

research in this area, and several basic techniques have been developed.

One simple technique for mitigating interruption costs is called bounded deferral.

Bounded deferral is the policy of delaying notifications for some maximum time bound

if the user is busy when the notification arrives. The idea is that for most tasks, users

will become free with high probability in some time bound that can be learned [2].

The bounded deferral manager that Achlioptas and Horvitz describe uses a prediction

function to estimate the “business” of the user, and delays notifications until the user

becomes less busy (according to the predictor), or some maximum time bound is

reached.

The bounded deferral technique is interesting, but its effectiveness depends on

the validity of the predictor function. Constructing good predictors may require

22 CHAPTER 2. RELATED WORK

knowledge of the user’s task, or it may require a training phase to collect information

and learn patterns. These factors necessarily make the system described in [2] a

system which places an additional burden on the user, making it less appealing for

widespread adoption.

Another interesting system making use of inference models and predictors is

attention-sensitive alerting [17]. An interesting notion put forth in this work is the

idea of balancing the interruption cost with the content of the notification. In par-

ticular, they recognize that a user may be more willing to pay a higher interruption

cost to receive a critical notification than they would for a trivial one. Again, though,

they make use of inferred models which require training.

The most recent technique for mitigating the costs of interruption is based on the

work of Bailey and Iqbal [6]. Their results indicate that the cost of an interruption

is intimately tied to the mental workload of the user. Their work concludes that in-

terruption costs can be mitigated effectively by interrupting users at moments of low

mental workload. This paper also presents their finding that mental workload is min-

imized precisely at “subtask boundaries” [6]. Similar work is presented by Adamczyk

and Bailey, which demonstrates further that interruptions at subtask boundaries are

significantly less disruptive [3]. This is the principle that motivates this thesis. Slow-

growth notification attempts to exploit moments of low mental workload to deliver

notifications while minimizing disruptiveness.

2.1.3 Isolation

The problem with the mental workload strategy is that isolating low workload mo-

ments is, in and of itself, a difficult task. In general, the problem of isolating ideal

interruption moments is a challenging one. Several systems have been proposed to

solve this challenge.

BusyBody [18] attempts to determine ideal moments for interruption by building

up task models from training data. The system requires a training phase, during

2.1. INTERRUPTABILITY 23

which users are periodically asked to assess their levels of interruptability. This data

is combined with a logged stream of desktop events to produce Bayesian nets for

estimating ideal interruption times. Once again, though, this system is heavyweight

in that it requires a training phase, which places a significant burden on the user.

Another system called MeWS-IT [19] exploits the mental workload principle de-

scribed in the previous subsection. The approach in MeWS-IT is two-fold. First, it

attempts to build task models for common tasks offline, using a system called the Task

Model Builder. This uses representative user interactions to attempt to model com-

mon tasks. These models are then fed in to an Interruption Manager, which attempts

to understand where the user is in the model at any given moment. Interruptions

are then delayed until boundaries in the precomputed task model. This approach

clearly has great promise, but its effectiveness is intricately tied to the validity of the

precomputed task models. This may require building up an unmanageably large set

of task models in order to be generally applicable.

Yet another class of system is in development. These systems attempt to use

physical sensors to determine the user’s availability. Several implementations of such

systems have been described [9, 14]. These systems have certain advantages over pure

desktop solutions. They are able to capture a more complete picture of user avail-

ability, as opposed to interruptability. Sensor-based systems can capture physical,

real-world events, such as conversations, phone calls, or the user’s physical absence.

These indicators can used to more accurately determine when to interrupt the user.

Unfortunately, these systems place a significant additional burden on the user, as

they require additional hardware sensors. This makes them impractical for wide scale

deployment.

2.1.4 Notification

Finally, one last problem in the field of interruptability research is the issue of noti-

fication, or how to actually convey the desired information to the user in an efficient

24 CHAPTER 2. RELATED WORK

manner while minimizing disruption.

McCrickard and Chewar put forward the principle of attention-utility tradeoff:

“The success of a notification system hinges on accurately supporting attention allo-

cation between tasks, while simultaneously enabling utility through access to addi-

tional information” [22]. The concept is a useful one to consider when attempting to

design notifications. In order to preserve the user’s attentional focus, it is desirable

for notifications to be minimally disruptive. However, in order to actually provide

utility to the user, the notification must contain sufficient information to allow the

user to act on it appropriately.

Extending this work, McCrickard, Chewar, Somervell, and Ndiwalana present

the IRC framework for evaluating notification systems [23]. The three criteria they

present are interruption, reaction, and comprehension. These three factors provide a

logical, descriptive way to categorize and evaluate notification systems. Interruption

is defined as an event requiring the transition of attentional focus away from the

primary task, and has been covered extensively in this section. Reaction is taken to

mean the accurate and timely response to the stimuli of the notification. Finally,

comprehension is defined as the user’s ability to remember the information for later

use. This framework allows meaningful discussion of the various goals of notification

systems. In particular, slow-growth notifications trade reaction speed for minimizing

interruption. For further discussion of this topic, see Chapter 3.

Another particular area of notification systems are peripheral display systems.

These systems attempt to provide information in a format that be easily absorbed

in a glance. The fundamental principle of peripheral displays is that they sit in the

user’s peripheral vision, and can be checked quickly and easily. Examples of such

displays include things like stock tickers, headline banners, clocks, battery indicators,

etc. Other systems are more complicated peripheral systems that strive to keep the

user informed of more complicated events [13, 26]. Maglio and Campbell analyze

the impact of different designs on the effectiveness of peripheral displays [20]. Their

2.2. VISION AND COGNITION 25

results indicate that it is possible, by careful design, to reduce the disruptiveness of

a display without reducing its effectiveness.

2.2 Vision and Cognition

Vision and cognition research has interesting impacts for the problem of user notifica-

tion. These two fields study what we see and what we notice, respectively. Although

these two concepts might seem identical, they are in fact very different.

Chun and Wolfe describe how the brain responds to visual stimuli [11]. “At any

given time, the environment presents far more perceptual information than can be

effectively processed. Visual attention allows people to select the information that

is most relevant to ongoing behavior.” Effectively, the brain is doing filtering to

determine which pieces of the myriad incoming visual stimuli we actually process and

can respond to. Chun and Wolfe also describe the effect of cognitive “tunnel vision.”

Under heavy mental workload, a user’s effective field of vision is decreased to the

point where all they can perceive is a small area of focus directly related to their

task. Once their mental workload decreases, their field of effective vision broadens

again.

This interesting bit of neuroscience leads to some interesting phenomena such as

change blindness, where users simply don’t notice gradual changes in the environ-

ment. Simons and Chabris demonstrate change blindness convincingly [25]. Change

blindness occurs because of visual attention filtering and cognitive tunnel vision. In

Simon and Chabris’ study, users were asked to watch a video and keep count of the

number of times a ball is passed. This task required a high degree of focus and placed

users under heavy cognitive load. Users were so focused on their task that most failed

to notice changes in the environment, including an actor dressed as a gorilla passing

through the frame.

Gradual awareness notification seeks to utilize this feature of human visual process-

26 CHAPTER 2. RELATED WORK

ing. By only making gradual changes in the environment, gradual awareness notifica-

tions avoid impinging on the central areas of the user’s task. Thus, the notifications

are not noticed until the user’s mental workload decreases, allowing their field of

effective vision to expand.

Chapter 3

Taxonomy of Notification

Notifications are used for a wide variety of purposes in modern technology. Different

systems inform the user in different ways, according to the context in which they

operate and the information they wish to communicate. When considering how to

notify a user, the designer must take these factors into account. Different types of

notifications are appropriate in different situations. Before attempting to analyze the

benefits of gradual awareness notifications, it is useful to consider which circumstances

are most appropriate for this form of notification. Figure 3-1 presents a taxonomy

tree for different classes of notification. This section attempts to define these major

classes of notification, and evaluate the applicability of gradual awareness techniques

to these domains.

3.1 Synchronous

Synchronous notifications occur in direct response to a user action. As an example,

consider the default behavior of the Firefox browser. When a user attempts to close a

Firefox window containing multiple tabs, the browser displays a warning box asking

if the user wants to continue. Figure 3-2 shows this behavior. Another example is a

common and useful feature in word processors. If the user tries to close the window

27

28 CHAPTER 3. TAXONOMY OF NOTIFICATION

Notifications

Synchronous
Unsaved document

Warning notification

Asynchronous

Alerts

Immediate
Fire alarm

Critical battery

Status
Task complete

New email

Future
Appointment

Low battery

Soft Hard

Figure 3-1: Notification taxonomy

without saving the current document, most word processors will display a warning

asking if the user wishes to save before closing. Figure 3-3 illustrates this behavior.

The user has taken an action, and as a direct and immediate result, the applica-

tion wants to convey information back to the user. In this case, a gradual awareness

notification technique is not only inappropriate, it may be actively harmful. Use of

a popup window or other such “hard” notification is desirable. In order to maintain

perceptual fusion of the action and the notification, the delay between the two events

should not exceed 100ms. With gradual awareness techniques, this is not likely to

occur. Note that the timing of the notification is critical here. Because the notifi-

cation occurs very shortly after the action, the user is unlikely to have moved on to

another task, and thus hard notification avoids the traditional costs of uninformed

interruption.

As an additional subtlety, any notification generated by the user’s primary task

should be treated as a synchronous notification. As long as the notification is coming

from the user’s primary task, minimizing response time becomes more important

than minimizing disruptiveness. After all, it is not disruptive if the notification is

3.1. SYNCHRONOUS 29

Tax:ffox

Figure 3-2: Firefox’s default multiple tabs warning notification
Tax:word

Figure 3-3: Word’s unsaved document warning notification

30 CHAPTER 3. TAXONOMY OF NOTIFICATION

part of the primary task. For example, if a user is attempting to load a webpage

and the page cannot be found, it would be desirable to use a hard notification to

alert the user quickly. If, however, the user has moved on to perform another task,

a soft notification would be more appropriate so as not to interrupt the user’s new

task. Notice that this applies to the user’s primary task, which is not necessarily the

system’s foreground task.

3.2 Asynchronous

Asynchronous notifications do not occur in direct response to user action. Instead,

they are triggered by external causes. These causes may be predictable (such as

a scheduled appointment) or not (such as an incoming email). In this case, the

notification comes as a result of user action performed at a prior time, or as a result

of some change in the state of the system. In either case, the notification is perceived

to be a separate event from the cause of the notification. This is the domain in which

gradual awareness notification can be of most value.

Asynchronous notifications can be further divided into status and alert domains.

3.2.1 Status

Status notifications convey information about changing state. In general, this cate-

gory contains all notifications that reflect changes in information that the user cares

about. Examples of this type of notification include new email announcements, “task

complete” notifications for long-running tasks, or buddy list changes in programs such

as AIM. These notifications occur at times which may be difficult or impossible to

predict, which means that users are frequently in middle of another task when they

occur. Figure 3-4 shows an example of a task completion notification interrupting

the user’s current task.

This is a domain where gradual awareness techniques can be of great value. Be-

3.2. ASYNCHRONOUS 31

Figure 3-4: A typically intrusive task completion notification

cause the user may be in the middle of another task, interrupting them at the wrong

moment may be very costly, as described in Chapter 2. Using a gradual awareness

notification in this case causes the user to notice the notification at a more optimal

moment with high probability, avoiding the cost of an ill-timed interruption without

requiring any knowledge of what the user’s task is. Because the user was not expect-

ing the notification to come at any particular time, the cost of noticing it slightly

later is likely to be small, as argued by Achlioptas and Horvitz [2]. This class of

notifications is a perfect example of when it may be desirable to slow reaction time

in order to reduce the cost of the interruption.

3.2.2 Alerts

Notifications which have time-sensitive information are categorized as alerts. Failure

to consume the alert within a given time bound may be costly. Examples of alert

notifications include battery warnings, calendar appointments, and clock alarms. In

these applications, the time at which the notification is delivered is a vital part of the

effectiveness of the application. For example, imagine a computerized fire alarm. No

matter what else the user is doing, the fire alarm requires immediate action on the

32 CHAPTER 3. TAXONOMY OF NOTIFICATION

user’s part. It may not be appropriate for the designer of a fire alarm system to use

gradual awareness notifications.

Alerts can be further subdivided into future and immediate alerts.

Future

Future alerts have deadlines that can be predicted in advance. For example, in

a scheduling application, a user may wish to display a reminder when a meeting

approaches. It does the user no good if they don’t notice the reminder until after

the meeting has started. But the application knows exactly when that is, and thus

can predict when the user must notice the notification. Good examples of future

notifications include scheduling notifications, clock alarms and battery life warnings.

Because the user may be doing some important task when the notification needs

to be delivered, it is desirable to attempt to minimize the interruption cost of the

future notification. However, the notification must be presented before the deadline

so that the user can take whatever action is required by the notification. In order to

balance these concerns, these notifications can take advantage of gradual awareness

notification. By varying parameters of the notification itself (such as the initial deliv-

ery time and the rate of change), the designer can ensure that the notification reaches

its maximum visibility at the deadline for the event. In SGL, this means varying the

growth rate of the window such that the notification window reaches its maximum

size at the deadline. Either the user will hit a natural task break before the dead-

line and notice the notification, or the deadline will arrive, causing the notification

to reach maximum visibility, which should hopefully be sufficient to bring it to the

user’s attention.

Immediate

Immediate alerts are a different type of alert. These alerts occur at less predictable

moments, and require immediate action. Examples include fire alarms, critical battery

3.3. CONTEXT SENSITIVITY 33

warnings1, uninterrupted power supply (UPS) warnings, and many more. Immediate

alerts require action by a deadline which is not known ahead of time. This lack of

knowledge means that immediate alerts occur very close in time to their deadlines.

Thus, the speed of the user’s reaction is essential to the effectiveness of the notifica-

tion. Since gradual awareness techniques minimize interruption cost by reducing the

speed of a user’s reaction, these techniques are most likely not appropriate for use in

immediate notifications.

3.3 Context Sensitivity

Although this chapter has presented a classification scheme for notifications, it is

important to realize that the appropriate classification for any given notification is

intimately dependent on its context. Many different factors influence what techniques

are most appropriate to use for any given notification. For example, as mentioned in

Section 3.1, whether a particular notification is coming from the user’s primary task

or from a peripheral task influences whether the notification should be hard or soft.

Classification becomes particularly difficult when considering the alert category:

notifications may graduate from being future alerts to becoming immediate alerts

as the situation changes. For example, when the battery is low but not critical, a

battery notification may be appropriately classified as a future alert. However, when

the battery reaches a critical level, it may be more appropriate to consider it an

immediate alert. This is further complicated by the fact that factors beyond the

application’s scope may influence when the notification needs to promote from future

to immediate. In the battery example, if a large number of actions need to be taken

before the system can be safely shut down, the application needs to promote the

1Notice that battery warnings can be considered either future or immediate alerts, depending on
the nature of the event. A warning such as “5 minutes of battery power remaining” is most likely
a future alert, as the action time is some point in the future. However, a notification like “Critical
battery level. Switch to AC power immediately” is more accurately considered an immediate alert.
See Section 3.3 for more detailed analysis.

34 CHAPTER 3. TAXONOMY OF NOTIFICATION

alert much earlier than the time of the battery’s death. Another example would be

in a scheduling application. A meeting reminder may become an immediate alert 5

minutes before it starts if the location is close by. However, if the user needs to drive

across town, the notification needs to become an immediate alert much earlier.

In addition to context, the content of the notification has a direct effect on how

to classify it. For example, consider a telephone call. If the content of the phone

call is extremely urgent, the phone may wish to interrupt the user’s primary task.

If, however, the content is less important than the primary task, a softer notification

would be appropriate.

As these complications indicate, automatically classifying notifications is extremely

difficult, and far beyond the scope of this thesis. The techniques developed in this

thesis are not attempting to classify notifications, but rather to provide a tool for

developers to use, and to help them understand when to employ it. With proper task

analysis and user studies, developers should be able to determine when it is appro-

priate for them to use hard notifications, and when the user would be better served

by soft notifications.

Chapter 4

User Interface

For this thesis, the principle of gradual awareness notification was applied to the desk-

top computing environment, specifically the visual channel, to create a slow-growth

notification toolkit called the Slow-Growth Library (SGL). This section discusses the

user interface design for the SGL toolkit. It analyzes the important features of the

user interface, and discusses trade-offs and previous design iterations that led to the

current design.

4.1 Design Motivation

The original impetus for developing the technique of slow-growth notification arose

from a desire to produce a less intrusive notification technique. As an example,

consider a cocktail party. In order to gain someone’s attention, a person could shout

their name across the room, or grab their arm. However, this is disrespectful to the

people the recipient is conversing with. It forces the recipient to abruptly interrupt

their primary conversation to pay attention to the interloper. A more respectful

action would be to request their attention by waving or making eye contact. Once

the recipient acknowledges the request, they can finish or suspend their conversation

gracefully, and smoothly pick up the new task with ease.

35

36 CHAPTER 4. USER INTERFACE

This contrast between a demand and a request is the fundamental design prin-

ciple for the user interface in SGL. Current notification techniques tend to be hard,

which makes them very intrusive for the user. These hard notifications constitute an

attentional demand : pay attention to me now. Just as in a real life conversation,

demanding a user’s attention is highly insensitive to the user, and can create a great

deal of annoyance.

A more appropriate paradigm for notification seems to be that of an attentional

request : pay attention to me when you’re ready to. Rather than demanding that the

user shift focus from their primary task to deal with a notification, slow-growth notifi-

cation attempts to request focus using gradual awareness. As explained in Chapter 2,

the user will notice the request at a natural task break, allowing them to respond

appropriately.

4.2 Features

In order for an attentional request to be functional, there are three characteristics it

must possess. First, it must be subtle. Second, it must be informative. And finally,

it must be efficient to interact with. These three principles form the basis for the

user interface design used in the SGL toolkit. The following subsections define each

principle in more detail, and discuss how they are manifested in the user interface

design for SGL.

4.2.1 Subtlety

A demand can afford to be loud or obnoxious in order to attract the user’s attention

as quickly as possible. However, that very act of forcing the user to transfer their

attentional focus creates a distracting situation and incurs all of the costs mentioned

in Chapter 2. Therefore, it is important that a request remain subtle in order to

minimize the impact on the user. In this context, subtle is taken to mean quiet or

4.2. FEATURES 37

gradual change. In a notification system, subtlety can be achieved by using gradual

awareness: start by making a soft demand on the attentional channel (e.g., changing

few pixels or using a low volume sound) and gradually increase the intensity.

A popup notification creates an attentional demand by changing many pixels at

once. This sudden flash of change swiftly attracts the user’s focus, interrupting them

from the primary task. Similarly, a visual popup may be accompanied by a hard

audio notification such as a chime or beep. These hard notifications force the user to

drop their current task and attend to the source of the demand.

SGL achieves subtlety by using slowly growing windows. When an application

triggers a slow-growth notification, a 1 pixel square window appears in the corner

of the screen. The corner is used for several reasons. First of all, the corner is at

the periphery of the user’s view, and thus notifications here are less likely to inter-

rupt the user’s primary task. Secondly, the Fitts’ Law target size for mouse-based

interaction presented by a corner notification is effectively infinite in extent, which

makes interaction more efficient. Finally, a particular peculiarity of the prototype

implementation constrains the SGL prototype to the corners of the screen, as dis-

cussed in Section 5.2.1. This window gradually begins to grow towards the center

of the screen at a developer-specified growth rate. Figure 4-1 shows a sample of an

SGL notification as it grows. The number of pixels changing at any one time is much

lower than in the case of a popup notification. Thus, the slow-growth notification is

less likely to attract the user’s attention if they are currently in the middle of a task.

When the user reaches a task boundary, however, their field of attention widens, and

they can notice the attentional request.

Clearly, the window’s rate of growth plays an important role in how subtle the

notification is. A popup window effectively has an infinite growth rate, which makes

it highly distracting. However, a window which has a zero growth rate is unlikely to

be noticed, and thus unlikely to serve the primary function of a notification. There

is a tradeoff here, with some balance to be struck between response time and disrup-

38 CHAPTER 4. USER INTERFACE

Ui:sg

Figure 4-1: A slowly growing window

tiveness. SGL allows developers to set a growth rate which is appropriate for their

application’s needs.

Different growth rates may be appropriate for different contexts. Notifications

which need to be noticed earlier may want to use higher growth rates, while notifi-

cations which can afford to be noticed later can get away with using slower growth

rates. Using the taxonomy from Chapter 3, alerts with imminent deadlines may wish

to use higher growth rates, while status notifications can use lower. In the experi-

ments performed for this thesis, three different growth rates were used: 10, 5, and 1

pixels per second. For more details, see Chapter 6.

4.2.2 Informativeness

An attentional request should also be informative. The goal of an attentional request

is to convey as much information as needed to the user in as efficient a manner

as possible. Ideally, the user can learn all the information they need simply by

glancing at the notification. Popup notifications have an advantage in this respect:

because the size of the notification is known ahead of time, a designer can carefully

construct the notification to ensure maximum informativeness. However, with slow-

growth notification, an interesting challenge arises. Because the notification’s display

area continually changes in size, the amount of space a designer has to convey their

message is continuously changing. The challenge is to design the notification such

that it conveys as much information as possible in a usable fashion regardless of the

4.2. FEATURES 39

Ui:cvz

Figure 4-2: Continuous visual zooming

notification’s size when the user notices it. In designing SGL, three different display

modalities were created to solve this problem.

The first and simplest approach is called continuous visual zooming. In this tech-

nique, the designer simply creates the notification as it will appear when it reaches

full size. The notification is then scaled to match the current size of the slow-growth

window. Figure 4-2 illustrates this behavior.

Continuous visual zooming is appealing because it is simple. It is conceptually

clear to understand, and it requires no additional work on the part of the interface

designer. Continuous visual zooming is most useful when the notification design only

contains elements that are clear even at small sizes (e.g., icons). The problem occurs

when elements of the notification are hard to make out at small sizes. For example,

continuous visual zooming is not particularly useful for notifications containing large

areas of text. At small sizes, the text becomes unreadable, and thus useless to the

user.

In order to solve this problem, the next approach implemented was called discon-

tinuous semantic zooming. The concept of semantic zooming is to actually render the

display differently at various sizes, and display different information at each size. [8]

A good example of semantic zooming is the behavior of applications such as Google

Maps. [15] At the high level, only major roads are shown. As the user zooms in on the

location, minor roads and other geographical features suddenly appear in the display.

The technique is referred to as discontinuous because the transitions between states

occur suddenly and discretely. In the Google Maps application, the zoom bar is a

40 CHAPTER 4. USER INTERFACE

Ui:dsz

Figure 4-3: Discontinuous semantic zooming

series of discrete steps, rather than a continuous slider. This concept can be applied

to slow-growth notifications, as shown in Figure 4-3.

The designer can design a notification for each of several different size levels (e.g.,

small, medium and large). For example, consider applying the discontinuous semantic

zooming technique to a notification for an incoming email. The smallest size might

simply display an icon indicating that the notification relates to the email client.

Once the notification reaches a larger size, the designer might choose to display text

indicating who sent the email. As the notification continues to grow, eventually it

will reach a size where the designer is free to display more detailed information about

the notification, such as the subject line and the time stamp.

Discontinuous semantic zooming may enhance the clarity of the notification at

smaller sizes over continuous visual zooming. Because each level of the notification

is designed for a specific size, the user is better able to gain information from the

notification at small sizes. However, discontinuous semantic zooming is not perfect.

First of all, it requires designers to create multiple versions of each notification they

wish to use in their application (one for each size level desired). It is also less subtle,

and may cause additional distraction for the user. Since changes in the body of the

notification occur at discrete intervals, this may cause more pixels to change suddenly

than would occur in continuous visual zooming. This “flashing” may prove disruptive

to the user, interrupting them in the middle of a task.

The final technique developed for SGL is the most complicated. Continuous se-

mantic zooming is a combination of the previous two techniques. It takes the basic

4.2. FEATURES 41

Ui:csz

Figure 4-4: Continuous semantic zooming

approach of discontinuous semantic zooming, but rather than changing the content

of the notification immediately at discrete steps, it uses a key-framing system to

continuously animate between states. The designer specifies what the notification

should look like at specific sizes along its continuum of growth designated as key

frames. The system then smoothly interpolates between key frames to display the

notification. Figure 4-4 demonstrates this technique in action.

Continuous semantic zooming allows designers to specify what the notification

should look like at specific sizes, thus maintaining the clarity of discontinuous seman-

tic zooming. It also uses interpolation to smoothly animate between states, elimi-

nating the sudden jerks from the discontinuous technique. This allows it to maintain

the same smoothness as the continuous visual zooming technique. Thus, continu-

ous semantic zooming combines the benefits of both of the previous techniques to

produce an highly informative and non-disruptive display. The trade-off, however,

is an increase in complexity for the designer. In order to effectively use continuous

semantic zooming, the designer must put additional effort into designing the inter-

mediate states of the notifications (i.e., the key frames) as well as designing the final

notification.

Recognizing that each technique may be appropriate for different purposes, SGL

includes support for all three of these information display modalities. If the notifica-

tion is simple and easy to understand even at small sizes, the designer may wish to

use the simplest technique of continuous visual zooming. If the notification requires

42 CHAPTER 4. USER INTERFACE

different designs for different sizes, but the changes between size levels are small, the

designer can use discontinuous semantic zooming without significantly increasing the

distraction of the notification. Finally, if the designer wishes to create a smooth and

non-flashing display, they can use the more advanced technique of continuous seman-

tic zooming. In this way, SGL supports creating notifications that are as useful as

possible to the user regardless of size in addition to providing flexibility for developers

with differing needs.

4.2.3 Efficiency

The final characteristic of an attentional request is that it should be efficient to

interact with. If the process of interacting with the notification takes a great deal

of effort or focus, the user’s ability to resume their primary task afterwards will be

impaired. As an example, consider the action of a timekeeper at a presentation. When

the presenter runs low on time, the timekeeper might wave at the presenter. Once the

presenter notices the timekeeper, he can acknowledge the timekeeper in an efficient

manner by nodding or waving briefly. This allows the presenter to respond to the

notification without diverting much attention from their primary task of presenting.

Thus, efficient interaction is vital to the success of SGL as an attentional request.

The ultimate in efficient interaction would be to incorporate some form of eye-

tracking. Once the user’s eyes focus on the notification, the system knows the user

has seen it. When the user’s eyes subsequently leave the window, the system could

reasonably infer that the user is done with the notification, and could dismiss it

automatically. Unfortunately, eye-tracking requires specialized hardware which is not

currently widely available or used, limiting the usefulness of this technique.

Another technique that was considered for SGL is that of gesture based input.

Continuing the cocktail party example, one might acknowledge an attentional request

by waving at the requester, indicating that the request has been noticed. Using

Rubine’s work on gesture recognition [24], a system for recognizing mouse gestures

4.2. FEATURES 43

was constructed and added into the slow-growth prototype.

Unfortunately, there are some problems with adapting Rubine’s algorithms to

this problem. Firstly, the algorithms developed for gesture recognition assume a

known start and ending point. In this domain, however, the start and end points

of the gesture are unknown, since all the notification can capture is a continuous

log of mouse movements. The biggest difficulty with gesture based input, however,

is the problem of designing a gesture. In order to avoid accidentally triggering the

gesture recognition with the user’s normal mouse movements, a good gesture must be

unambiguous. However, in order to be useful, a good gesture should also be simple

and memorable. Designing gestures that meet both of these criteria is extremely

challenging, and would have required too much time to implement. Note that this

may be an interesting extension to the system for future versions.

The final interaction scheme developed for use in SGL is a form of point-and-click

interface. When the user notices a slow-growth window, they may move their mouse

over the window. This causes the notification to immediately expand to its maximum

size. Thus, if the user notices the notification while it is still small, they are not forced

to wait for it to grow to learn whatever information the notification provides. The

user can then choose to dismiss the notification by clicking on it with the mouse, or

they may choose to simply move the mouse out of the notification. This causes the

notification to resume its previous size and growth.

At first glance, it may seem strange to ask the user to click on the notification

to dismiss it, rather than simply interpreting moving the mouse out of the bounds

of the window as a dismissal. However, because the notifications start out extremely

small, it is quite possible that the user may place their mouse over the notification

without realizing it was there. In this case, the user most likely wants to be able to

continue their task without dealing with the notification. Thus, since the intention of

moving the mouse out of the bounds of the notification can be ambiguous, the appli-

cation makes a safe choice by doing nothing. This reduces the risk of unintentionally

44 CHAPTER 4. USER INTERFACE

dismissing windows, which may be costly for the user.

This interaction system allows the user to quickly and easily learn what informa-

tion is conveyed in the notification, and to dismiss it simply once they have consumed

the information. Notice that slow-growth windows can be dismissed by clicking any-

where within the extent of the window, as opposed to forcing the user to hunt for a

specific target. This makes it much simpler and quicker for the user to dismiss noti-

fications they no longer need. Of course, developers can freely place clickable targets

within the notification in order to support additional functionality.

Chapter 5

Implementation

This chapter describes the details of the implementation of the SGL toolkit. It also

discusses how developers can incorporate slow-growth notifications into their appli-

cations, and describes the particular mechanics of the system.

5.1 Overview

SGL is implemented entirely in Java, and is packaged as a JAR file. This allows other

developers to add slow-growth notification to their applications simply and cleanly by

importing the JAR file. Note that SGL provides a toolkit for developers to build less

disruptive applications, as opposed to mediating interruptions from external sources.

Because of this flexibility, it is simple for developers to use slow-growth notifications

in conjunction with other notification techniques.

This section describes some of the key implementation details of the SGL toolkit.

It explains how the system works, and examines interesting details of the architecture.

The SGL system is divided into two major components: the SlowGrowth container,

and a custom component called the NotifyImage. SlowGrowth is the wrapper around

the control functionality of the system, while NotifyImage handles the details of

displaying the notification’s content.

45

46 CHAPTER 5. IMPLEMENTATION

5.2 SlowGrowth

The SlowGrowth component is the control wrapper for the system: it functions as a

container for the NotifyImage, and handles all the spatial details of the notification’s

presentation, such as size and position. It also handles all of the user interaction with

the notification framework (ie, the mouse-over interaction and dismissal). Finally,

this component provides the entry point for developers to interact with the SGL

system.

The SlowGrowth class is implemented as an extension of a undecorated JDialog.

Thus, the standard desktop title bar does not appear on SGL notifications. This frees

up screen space for the actual content of the notification. Also, since the standard title

bar has its own minimum size, its absence means that slow-growth windows can start

out much smaller. Additionally, this design allows SGL windows to appear without

creating an icon on the task bar, which helps to minimize the total amount of change

on the screen that slow-growth windows cause. The sudden appearance of a task bar

icon would, in effect, create a hard notification, disrupting users. Finally, this design

for the SlowGrowth component means that SGL windows can appear without stealing

focus from currently active applications. This is a crucial point in the usability of

SGL. If slow-growth notifications stole the application focus when they appeared,

this would seriously damage the user’s ability to continue work on their primary task

while the window grows. Stealing focus would create annoyance, frustration, and

confusion, especially if the user could not see the slow-growth window.

To configure the display of the notification, a developer must access the NotifyIm-

age component contained within the SlowGrowth instance. See Section 5.3 for more

details on the NotifyImage component. The SlowGrowth container affects the control

parameters of the notification. These include the growth rate (how fast the window

grows), the starting location (where the initial window appears), and the initial and

maximum sizes for the notification. In order to adjust these parameters, the SGL API

supports standard accessors and mutators for each parameter, allowing developers to

5.2. SLOWGROWTH 47

modify notifications as appropriate for their applications.

Once a SlowGrowth instance has been configured, the developer simply invokes

the start method of the SlowGrowth component. This will cause the notification to

appear at its previously specified initial size, and to start growing at the given growth

rate. If the user interacts with the window, the notification will behave as described in

Chapter 4. Additionally, the developer has two options for programmatically causing

the notification to disappear. The reset method of the SlowGrowth component

causes the notification to return to its initial size and resume growing. The stop

method causes the notification to disappear, behaving as if it were dismissed by

the user. This allows developers to dismiss or reset notifications that are no longer

relevant to the application’s behavior.

Appendix A provides a more detailed look at the API developed for SGL.

5.2.1 Sliding Window

One of the major challenges in implementing the SGL prototype was preventing flicker

or flashing in the notifications as they scale. The original version of SGL featured

a simple design for the notification itself: the SlowGrowth component started out

as a JDialog of zero extent, and resized itself each time in order to produce the

growth of the notification window. Unfortunately, the behavior of the repainting

system in Java caused undesirable effects. Whenever the window resized, a visible

“flash” would appear in the notification: the entire notification would briefly flash

white before repainting with the correct content. This flash violated the principle of

subtlety, as it caused a large amount of change on the screen. This tended to attract

the user’s attention, thus destroying the effectiveness of the slow-growth notification.

To solve this problem, a novel scheme was developed. This system is called the

sliding window technique, and it solves the problem by moving the SlowGrowth com-

ponent rather than resizing it. Figure 5-1 illustrates how the sliding window technique

works. The SlowGrowth component remains at a fixed size and moves inward from

48 CHAPTER 5. IMPLEMENTATION

Impl:sliding

Figure 5-1: A visualization of the sliding window effect used in SGL

the corner of the screen. The NotifyImage component is placed within the bounds

of the SlowGrowth component, and as the SlowGrowth container moves inward, the

NotifyImage moves outward and/or is resized.1 The net effect of this combination of

motion and resizing the NotifyImage is that the SlowGrowth component is entirely

invisible to the user, allowing only the NotifyImage to be displayed. This is because

as the SlowGrowth component encroaches on the screen, the NotifyImage is moved

and resized such that it covers exactly that portion of the SlowGrowth component

which is inside the bounds of the user’s screen.

The SlowGrowth component is initialized to the maximum size, and its location

is set to a specified point called the hidden point. The hidden point defaults to

(-600,-600), which ensures that the SlowGrowth component is located entirely off

of the visible screen. Developers are able to set the value of the hidden point so that

it is appropriate for their own applications.

When the SlowGrowth component is instantiated, an array of starting locations is

specified. Each starting location includes the following information: a start point for

the SlowGrowth component (relative to the top left corner of the screen), a start point

for the NotifyImage (relative to the top left corner of the SlowGrowth component),

an inward vector specifying the direction of motion for the SlowGrowth component,

1Notice that if the SlowGrowth component is in the bottom right corner of the screen, the
NotifyImage simply needs to resize and not move. This occurs because the NotifyImage initially
appears in the top left corner of the SlowGrowth component, which is the corner that is moving
inward. Thus, the NotifyImage remains stationary and simply resizes. In all other corners, though,
the NotifyImage both resizes and moves.

5.3. NOTIFYIMAGE 49

and an outward vector specifying the direction of motion for the NotifyImage compo-

nent. These parameters are currently hard-coded, allowing slow-growth notifications

to appear solely at the corners of the screen. This restriction is unfortunate, and

further work may be able to do away with it.

One problem with the sliding window system used in SGL is that it may interact

poorly with multiple monitor environments. Because the SlowGrowth component is

always full size, in multiple monitor environments the unused portions of the Slow-

Growth component may be visible. Clearly, this is less than ideal. Future work is

needed to examine ways to improve the sliding window technique, or eliminate it

completely and replace it with other methods to achieve the same purpose.

5.3 NotifyImage

The NotifyImage component is responsible for handling the display of the notifica-

tion’s content. This component is what the user actually sees when they notice an

SGL notification. A NotifyImage contains the components designed by the developer,

and paints them to the screen in whichever of the three display modalities from Chap-

ter 4 is selected. Every time the NotifyImage is painted, it defines a variable scale,

which is defined to be the ratio of the NotifyImage’s current width to its maximum

width. (Note that currently SGL only supports square notifications. Thus basing the

scale factor on the width is completely arbitrary, and would function equally well us-

ing height.) The canvas of the NotifyImage is then scaled symmetrically by this scale

factor using the Java Graphics2D class. This scaling of the display surface allows

developer to design notifications as if they were going to be displayed at full size, and

ignore the subtleties caused by changing sizes. The scale method of Graphics2D

automatically handles scaling the image appropriately to map from the original size

to the new scaled version.

This basic scaling method is sufficient for the basic continuous visual zooming.

50 CHAPTER 5. IMPLEMENTATION

Supporting discontinuous semantic requires a very simple modification, however. In

discontinuous semantic zooming, the notification may change dramatically at each

distinct size. Thus, instead of storing one component, the NotifyImage is capable of

storing an array of components, one for each of the size thresholds specified by the

developer. Then, on every repaint, the current size of the notification is compared

against the size thresholds specified by the developer. Once the appropriate threshold

is determined, the NotifyImage selects that particular component from its array, and

paints it onto the scaled graphics canvas.

This captures two of the three desired display modalities. Implementing continu-

ous semantic zooming, however, requires significantly more complexity. Somehow, the

NotifyImage needs to encapsulate information about the display of the notification

at each particular state, and smoothly animate the transitions between states. To

achieve this, SGL implements a key-framing system, where each key frame describes

the state of the NotifyImage at particular instant in time.

5.3.1 Key-Framing in SGL

Key-framing is a well known concept from the field of computer animation. The idea

in animation is to capture the state of the model in certain critical positions, known as

key frames. When the animation is rendered, the computer interpolates the positions

of the model in between the key frames such that the end result looks like a smooth

motion. Applying this concept to SGL, the NotifyImage stores a series of key frames

which capture the state of the notification.

Key frames are indexed by a single variable called index, which is always between

0.0 and 1.0, inclusive. This value represents the window’s current size as a percent-

age of the maximum size. Every continuous semantic NotifyImage is required to

have at least two key frames (indexed 0.0 and 1.0), representing the initial and final

states of the notification. Aside from the index, each key frame contains an array

of CompParam structures. These structures combine a JComponent with parameter

5.3. NOTIFYIMAGE 51

information representing its state. These five parameters (x, y, w, h, and a) allow

the developer to specify the component’s position within the NotifyImage (x and y

represent this position in pixels relative to the top left corner of the NotifyImage), its

dimensions (w and h are passed in as scale factors of the component’s natural size),

and its alpha value (a is a double ranging from 0.0 to 1.0, specifying the opacity of

the component). Thus, developers can create continuous semantic notifications that

feature various components moving around, resizing, and fading in or out.

On every repaint, the NotifyImage computes the scale variable as described pre-

viously. This scale factor can be compared to the index of the key frames stored

within the NotifyImage. If the NotifyImage is at its maximum size, the data from the

key frame with index 1.0 is drawn directly to the canvas with no further modification.

If the NotifyImage is at some other size, it uses the scale factor to determine which

two key frames it is between. The frame with the lower index is called current while

the higher indexed frame is called next. The NotifyImage then defines a parameter α,

where α represents the amount of progress the NotifyImage has made from current

to next. As an example, if the current key frame has an index of 0.5, the next frame

has an index of 1.0, and scale is currently 0.75, the value of the α parameter is 0.5,

since the NotifyImage is halfway between the two key frames.

Once the value of α has been determined, the NotifyImage computes blended

parameters for each component in the notification. In order to correctly update

the parameters such that a smooth interpolation between key frame states can be

achieved, the blended parameters are computed using the following formula:

new.val = (1.0 - α) * current.val + α * next.val

This blending function assigns higher weight to the current frame if the current

size is closer to its index, and higher weight to the next frame as scale approaches

next.index. Because the function is continuous, the resulting interpolation produces

52 CHAPTER 5. IMPLEMENTATION

a smooth animation when played back at speed. Thus, this key-framing system allows

SGL to support the continuous semantic display modality.

The way components are described in the key-framing system is slightly different

from the continuous visual and discontinuous semantic cases. In those cases, the

developer designs the entire notification ahead of time, and passes it to the Notify-

Image as a single component (or, in the case of discontinuous semantic, an array of

components with one component for each desired size). In the key-framing system,

each key frame describes the position of each individual component within the noti-

fication. Thus, in using the key-framing system, the notification is constructed piece

by piece from specified components, while in the other display modes the notification

is constructed ahead of time and simply displayed.

Chapter 6

Evaluation

The previous chapters have described the motivation for developing slow-growth no-

tification and the actual details of a prototype system called SGL. This chapter dis-

cusses the evaluation of the SGL system. In order to determine the effectiveness of

slow-growth notifications as compared to popup notifications, two user studies were

conducted, a lab study and a field study. The following sections describe the studies

and present the results.

6.1 Lab Study

The hypothesis for the lab study was as follows: slow-growth notifications will inter-

rupt users at natural task breaks more frequently than popups will, leading to improved

performance. In order to evaluate the hypothesis, 7 users were recruited by advertis-

ing on campus. These users were all MIT students of varying ages and gender, all of

whom spend significant time using computers on a daily basis. Table 6.1 summarizes

the characteristics of the users.

53

54 CHAPTER 6. EVALUATION

Table 6.1: A summary of user characteristics
Parameter User Characteristics

Age ave = 22.4, min = 18, max = 27
Gender male = 4, female = 3

6.1.1 Design

To evaluate the effectiveness of slow-growth notifications, users were asked to perform

a foreground task while being periodically interrupted by both slow-growth and popup

notifications. The interruptions occurred at random intervals. The task chosen for

this lab study was the task of typing text. This task was chosen for several reasons.

Firstly, every user in the study population was familiar with the task of typing, and

spent several hours a day performing it. Secondly, typing features easily identifiable

sub-task boundaries between words, sentences, and paragraphs. These factors made

typing text the ideal task for the purposes of this lab study.

In order to conduct the lab study, a custom application was constructed using

the SGL toolkit. The bulk of the application consisted of two panels. The left panel

was pre-populated with text, while the right panel was left blank initially. The left

panel was referred to as the reference panel, and the right was called the user panel.

The text in the reference panel consisted of 4 paragraphs of five sentences each.

The sentences were randomly selected from a corpus consisting of the 720 so-called

“Harvard Sentences” [1]. These sentences were originally designed to test voice quality

in telecommunications. The reason they were chosen for this experiment is that all of

the sentences are very similar in terms of several important metrics, such as number

of words, number of characters per word, average word difficulty, and reading ease.

This means that randomly combining sentences from this corpus produces reference

text of consistent length and difficulty, and allows large quantities of such reference

text to be generated simply. Using randomly generated reference text is preferable

to using known passages of text, as it avoids any possible distortion of the data by

users with prior knowledge of the texts. Since the reference text is being randomly

6.1. LAB STUDY 55

Eval:lab

Figure 6-1: The lab study test application, as it appears on start up

generated, it is highly unlikely that users will have any prior knowledge of the text

they are to transcribe. This means that they must read it for the first time while

performing the study, which increases the cognitive load of the task.

Figure 6-1 shows what the application looked like on initial start up. This is what

was presented to the users. All trials were conducted on the same computer (a laptop

with a 13.3”, 1280x800 screen) in the same physical location to minimize situational

variance between trials.

Users were presented with the application and asked to transcribe the text from

the left panel into the right as quickly and accurately as possible. When they finished

one page, they were told to press the “Next” button on top of the application to

proceed to the next page. Users were asked to complete as many pages of text as

they could in 15 minutes. They were then given a short break to rest, and asked to

complete another 15 minutes worth of work. The two data sets differed only in which

type of notification would be used to interrupt the user: popup or slow-growth. For

each of the two 15 minute data sets, the first page of data collected was thrown out.

56 CHAPTER 6. EVALUATION

This allowed users to become accustomed to each type of notification, and avoided

the possibility of learning effects influencing the data.

During the process of transcribing the reference text, users were randomly inter-

rupted with either popup or slow-growth notifications. Within each 15 minute set,

only one type of notification (popup or slow-growth) was used. The order in which

users saw these notifications was balanced, such that four users saw slow-growth for

their first set and three saw popup for their first set. The slow-growth notifications

also used varying growth rates, randomly choosing either 1, 5, or 10 pixels per sec-

ond. All notifications would randomly appear at one of the four corners of the screen.

Users were instructed to dismiss the notification by pressing the F2 key as soon as

they noticed the window. A keyboard dismissal method was chosen over the mouse-

based dismissal described in Chapter 4 in order to reduce homing lag. Since the task

for this lab study was primarily keyboard based, asking the user to swith devices to

use the mouse would have added an additional lag into the data. This would have

made analyzing the cost of interruption more difficult.

The content of the notifications was always the same image, and users were in-

structed to ignore the content as it was not relevant to their task. This allowed the

experiment to measure the base cost of the interruption itself by isolating the cost of

the interruption from the cost of dealing with the actual content of the notification.

For each notification that the user dismissed, several statistics were recorded, in-

cluding the response time, resume time, interruption point, page completion time,

location on the screen (i.e., which corner the window appeared in), growth rate (for

slow-growth notifications), type (popup or slow-growth), and final window size. Sam-

ples of the data collected and the format used are provided in Appendix B.

The response time was measured as the time difference in milliseconds between

when the notification first appeared on screen and when the user pressed the F2 key

to dismiss the notification. This measurement indicates how long it took for the user

to notice the window.

6.1. LAB STUDY 57

Resume time was measured as the time difference in milliseconds between when

the user pressed the F2 key and when they pressed any other key, resuming the typing

task. The resume time is perhaps the most effective direct measure of interruption

cost, since it measures how long it took for the user to find their previous place and

continue with their task after being interrupted.

The interruption point was measured by recording the text the user had success-

fully transcribed when they dismissed the notification, and comparing the user’s text

to the reference text. For the task of transcribing text, four possible interruption

points were identified. A notification could interrupt a user in the middle of a word,

at the end of a word, at the end of a sentence, or at the end of a paragraph. Interrup-

tion in the middle of a word represents an interruption in the middle of a task, while

interruption at any of the other three represents interruption at a task break. With

respect to the task of typing text, there appear to be three identifiable subtasks: typ-

ing a word, typing a sentence, and typing a paragraph. Interruptions in the middle

of a word are clearly in the middle of at least one of these subtasks, while interrup-

tions at the ends of words, sentences, or paragraphs are at the boundaries of at least

one of these subtasks. Thus, this statistic provided a useful measure for testing the

hypothesis that slow-growth notifications would interrupt at task boundaries more

frequently than popup notifications.

Finally, after the users completed the two 15 minute sets, they were given a

subjective post-test questionnaire. This post-test interview sought to learn the user’s

subjective opinions on the differences between popup and slow-growth notification.

Users were asked to rate the annoyance of both methods on a scale of 1 through 5, as

well as rating how easily they were able to resume their task after being interrupted.

6.1.2 Results

After all users had completed their data sets, the results were collected and analyzed.

In particular, there were five measurements that were most of interest in attempting

58 CHAPTER 6. EVALUATION

Table 6.2: Occurrences of each type of notification
Popup Slow-Growth Slow1 Slow5 Slow10
151 135 33 59 43

to study the benefits of slow-growth notification. These five measurements included

the response time, the resume time, the interruption points, the page completion

time, and the subjective responses collected from the users. The results and analysis

for each of these measurements are presented in more detail in the subsections that

follow. Note that in the graphs that follow, the three different growth rates of slow-

growth tested may be presented individually, as well as in aggregate form. Therefore,

the label Slow-Growth denotes the combined data, while the labels Slow10, Slow5,

and Slow1 refer to slow-growth notifications with growth rates of 10, 5, or 1 pixel

per second, respectively. Table 6.2 shows how many of each type of notification were

observed.

Response Time

The response time was measured as the time in milliseconds between the initial ap-

pearance of the notification and the user’s dismissal by pressing F2. Since users were

instructed to dismiss windows as soon as they noticed them, this provides a reason-

able measure of how long it took users to notice the different classes of notification.

Figure 6-2 shows the mean response time for slow-growth and popup notifications,

and Figure 6-3 includes the mean response times for the three different growth rates

of slow-growth.

The data here is interesting, but hardly surprising. Since the popup notifications

appear instantly and change a large number of pixels, it should be expected that

users would notice these notifications very rapidly (µ = 1613 ms). And similarly,

since the slow-growth notifications appear slowly, it is unsurprising that users took

significantly longer to notice these windows (µ = 18191 ms). Specifically, when the

differing growth rates are considered individually, Slow10 took the least time to notice,

6.1. LAB STUDY 59
Res:rep-time

Mean Response Times

0

5000

10000

15000

20000

25000

Popup Slow-Growth

T
im

e
 (

m
s
)

Figure 6-2: Mean response times for popup and aggregate slow-growth
Res:rep-time-all

Mean Response Times

0

10000

20000

30000

40000

50000

60000

Popup Slow-Growth Slow 10 Slow 5 Slow 1

Notification Type

A
v
e
ra

g
e
 t

im
e
 (

in
 m

s
)

Figure 6-3: Mean response times including the differing growth rates

60 CHAPTER 6. EVALUATION

with Slow5 following, and Slow1 taking far and away the longest time to notice.

There is one particularly interesting characteristic of the data from the different

growth rates. The data appears to indicate that each of these windows are noticed

at different sizes (69, 59, and 44 pixels for Slow10, Slow5, and Slow1 respectively).

However, it must be noted that these results were obtained by measuring the time

delay between initial response and user action. Thus, these response times include

any user processing delay, since there is some delay between noticing the window and

acting to dismiss it. Since the three different classes were growing at different rates,

assuming a constant reaction time of ρ seconds would reduce the actual window sizes

at the moment of user attentional shift by of ρ, 5ρ, and 10ρ seconds for Slow1, Slow5,

and Slow10 respectively. Therefore, it seems likely that all three types of notification

were probably noticed at roughly the same window size. An eye-tracking system or

similar solution would be needed to investigate this effect more precisely.

Resume Time

The resume time was measured as the delay between when the user pressed F2 to

dismiss the notification and the next key press they enter. Because users were asked

to complete their task as quickly as possible, this measurement provides a reasonable

estimate of the amount of time it took for users to find their place and resume typing.

When the data was analyzed, there were 6 samples (2 slow-growth and 4 popup)

out of 286 whose resume time was greater than 3 standard deviations away from the

mean. These were considered outliers, and thus were removed from the rest of the

analysis. Table 6.3 presents the data with and without the outliers to show the effect

of removing these 6 samples. Figure 6-4 shows the mean resume time for both popup

and slow-growth, and Figure 6-5 includes the mean resume times for each individual

growth rate.

This set of data indicates several interesting results. Firstly, it indicates that users

interrupted by slow-growth notifications required significantly less time to resume

6.1. LAB STUDY 61

Table 6.3: Mean resume times in milliseconds with standard deviations (including
outliers, and with outliers removed)

Outliers Included Outliers Removed
µ σ µ σ

Popup 1009 769 906 406
Slow-Growth 588 435 555 345

Slow10 534 358 534 358
Slow5 528 302 528 302
Slow1 767 646 638 397

Res:res-time

Mean Resume Times

0

100

200

300

400

500

600

700

800

900

1000

Popup Slow-Growth

T
im

e
 (

m
s
)

Figure 6-4: Mean resume times for popup and aggregate slow-growth

62 CHAPTER 6. EVALUATION

Res:res-time-all

Mean Resume Times

0

200

400

600

800

1000

Popup Slow-Growth Slow 10 Slow 5 Slow 1

Notification Type

A
v
e
ra

g
e
 t

im
e
 (

in
 m

s
)

Figure 6-5: Mean resume times including differing growth rates

their tasks than users interrupted by popup notifications. As shown in Figure 6-4,

the slow-growth notifications had approximately 39% lower resume times (555 ms

as compared to 909 ms). This appears to satisfy the hypothesis that slow-growth

notifications are significantly less disruptive than popup notifications to the user’s

ability to perform their primary task. (two-tailed t-test, t284 = 7.746, p < 10−12)

Another interesting result is revealed by Figure 6-5. This graph shows the mean

resume times for each individual growth rate. It was expected that the disruptiveness

of a slow-growth window would be proportionate to its growth rate, with faster grow-

ing windows being more disruptive. However, the data appears to indicate otherwise.

Given that the mean resume times for Slow10 and Slow5 are almost identical (534 ms

and 528 ms, respectively), and that both are lower than the mean resume time for

Slow1 (638 ms), it appears that the growth rate had little effect on the disruptive-

ness of the notification. A single-factor ANOVA test found no statistically significant

difference. (F (2, 130) = 1.179, p = 0.311)

There are several reasons this might be so. First of all, the fact that the mean

resume time for Slow1 appears higher than the mean resume time of the other growth

rates may be a misleading data point. This is most likely due to the higher variance

6.1. LAB STUDY 63

in the Slow1 sample. The Slow1 sample contained only 31 samples, as opposed to 59

for Slow5 and 43 for Slow10. With more samples, the mean resume time for the Slow1

growth rate may be revealed to be lower. Another reason the data may not show a

significant decrease in resume time across different growth rates may have to do with

the design of the experiment, rather than a property of slow-growth notifications. For

this experiment, the given task was transcribing text. In the model of this task, task

breaks occur frequently. This means that there are plenty of moments for the user’s

attentional focus to widen and take in the notification. If task breaks were further

apart, it is possible that the faster growing windows would disrupt users in the middle

of tasks more frequently than the slower growing ones, leading to a difference in resume

time. Additionally, transcribing text does not impose a particularly high cognitive

load on the user. Thus, the user may be more able to resume their task quickly after

a disruption than during a task involving a heavy cognitive load (i.e., video editing).

Future experiments may help clarify this question.

Interruption Point

The interruption point was measured by comparing the reference text to the text

the user had entered before they dismissed the notification. This measurement helps

prove the central hypothesis of this thesis, that slow-growth notifications will be more

successful at interrupting the user at task breaks than popup notifications.

First, the average distribution of possible interruption points was computed for

each set of data, slow-growth and popup. The average number of characters, words,

sentences, and paragraphs per page of data for each set was recorded. Table 6.4

presents this data. Using these numbers, the expected probabilities of interruption at

each particular interruption point (mid-word, end of word, end of sentence, and end

of paragraph) were computed. These probabilities represent what the data should

look like if interruptions were truly random, based on the distribution of possible

interruption points.

64 CHAPTER 6. EVALUATION

Table 6.4: Reference text characteristics (means per page of text)
Characters Words Sentences Paragraphs

Slow-Growth 809 159 20 4
Popup 816 160 20 4

Table 6.5: Number of interruptions at each possible interruption point
Mid Word End Word End Sent. End Para.

Slow-Growth 24 90 16 5
Popup 90 52 7 2

The actual data collected from the users is presented in Table 6.5. The actual

percentages of the interruptions that occurred at each possible interruption point were

then computed. Finally, these percentages were compared against the percentages

expected if interruptions occurred randomly. Figure 6-6 shows this comparison.

The results here are encouraging. If interruptions were actually handled randomly,

they would occur during the middle of a word most of the time. This is visible in

the popup interruptions: nearly 60% of them occurred in the middle of a word. In

contrast, slow-growth notifications only interrupted users in the middle of a word 18%

of the time. This means that 82% of the time, slow-growth notifications interrupted

the user at a natural task break, as compared to only 40% for popup notifications.

The data clearly indicates that slow-growth notifications tend to be noticed at task

breaks, as opposed to popup notifications, which are noticed almost randomly.

Note that even though the timing of the popup notifications was in fact random,

there is still a difference between the distribution of popup interruptions and the

expected random distribution. This is most likely due to an effect known as chunking :

users tend to process tasks in conceptual chunks. In this case, this means that the

user has already begun typing the word, and their fingers may well finish the word

before responding to the interruption. Since the interruption points collected in this

experiment measure what the user typed at the time they responded, this means

that even though the popup appeared in the middle of the word, the data counted

6.1. LAB STUDY 65

Interruption Point

0

10

20

30

40

50

60

70

80

90

Mid Word End Word End Sentence End Paragraph

Location

P
e

rc
e

n
t Slow-Growth

Popup

Random

Figure 6-6: Interruption points

as an end of word interruption since the user was able to finish it before responding.

However, this is acceptable, since it tends to bias results away from the hypothesis.

Given this data, it appears that the hypothesis is largely correct, and that slow-

growth notifications are able to interrupt at task breaks more often than popups,

even without knowing any information about the user’s task.

Page Completion Time

The page completion time was measured as the time delay in milliseconds from when

the user pressed the “Start” button and began transcribing the text to when they

pressed the “Next” button, indicating page completion. Figure 6-7 shows the results.

Notice that the average page completion time for pages with slow-growth notifi-

cation was 166,469 ms, compared to 175,328 ms for popup notification pages. This

represents a savings of 9 seconds over the course of 3 minutes, or approximately 5%.

66 CHAPTER 6. EVALUATION

Res:page-time

Mean Page Completion Time

150000

155000

160000

165000

170000

175000

180000

185000

Slow-Growth Popup

Figure 6-7: Mean page completion times for popup and aggregate slow-growth

While not a huge amount of improvement, this is still a promising figure. However,

because the sample size is small, this result is not statistically significant. (two-tailed

t-test, t58 = 1.075, p = 0.29)

Despite the marked improvements in resume time discussed above, slow-growth

notification did not seem to make a significant difference in the overall task completion

time. This is most likely because, even with popup notifications, the total task

completion time is dominated by the time to actually perform the task, as opposed

to the time to respond to the interruptions. Thus, the effect of using slow-growth

notifications is swamped by the actual task itself. Future experiments may serve to

amplify and clarify the exact extent of the time savings slow-growth notification can

provide.

Subjective Responses

After a user completed their two 15 minute data sets, they were given a subjective

post-test questionnaire. A copy of this questionnaire is provided in Appendix C. This

post-test asked users to rate the annoyance of both popup and slow-growth notifica-

6.1. LAB STUDY 67

Res:subjective

Subjective Responses

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Annoyance Difficulty

Popup

Slow-Growth

Figure 6-8: Subjective responses

tions on a scale of 1 through 5, with 1 being no annoyance and 5 being extremely

annoying. They were also asked to rate, on a scale of 1 through 5, how difficult

it was to resume their task after being interrupted by both popup and slow-growth

notifications, with 1 being easy and 5 being hard. While the previous measurements

have provided objective data showing the benefits of slow-growth notification, this

measurement makes it possible to assess the subjective effects of notification type.

Figure 6-8 illustrates the findings from the subjective questionnaire.

These results appear to confirm the hypothesis that slow-growth notifications are

both less annoying and less disruptive than popup notifications. The data indicates

that users found slow-growth notifications less annoying by approximately 33% (two-

tailed t-test, t12 = 2.64, p = 0.022), and found it easier to resume their task by about

47%. (two-tailed t-test, t12 = 3.93, p = 0.002) As indicated by two-tailed t-tests,

these results are statistically significant. Thus, the subjective results confirm that

using slow-growth notifications may substantially improve the user experience and

reduce user frustration.

68 CHAPTER 6. EVALUATION

6.2 Field Study

In order to evaluate the effectiveness of slow-growth notification under real world

conditions, an informal field study was conducted. The users for this study consisted

of five volunteer members of the User Interface Design group at MIT. Users were

asked to run the field study application for one week, at which point their data was

collected and analyzed. The following sections describe the design and results of this

field study.

6.2.1 Design

For the field study, a small application was constructed. The application runs in

the background, and randomly displays slow-growth notifications at approximately

8.5 minute intervals. Users were instructed to click on the notifications as soon as

they noticed the window in order to dismiss them. Statistics were recorded after the

user dismissed the notification. In particular, the field study was concerned with the

response time and the average size of the notification when it was dismissed.

It was observed that all of the samples which attained maximum size had signifi-

cantly higher response times than would be expected. Since the notifications stopped

growing when they reached maximum size, there is a simple explanation for these

higher response times. These samples appear to indicate that the notification ap-

peared just as the user physically left their computer for an extended time, or as they

hibernated their laptop. In other words, the notification would sit on screen without

a user to actually observe it. When the user returned to their computer, they would

then be able to dismiss the window. However, this does not accurately reflect when

the user would have noticed the window under normal circumstances. Thus, all sam-

ples which attained maximum size were discarded as being irrelevant to the purpose

of the study.

While the lab study used only continuous semantic notifications, the field study at-

6.2. FIELD STUDY 69

Table 6.6: Occurrences of each notification type (growth rate and display mode) in
the field study data

Total Slow1 Slow5 Slow10 CV DS CS
535 188 183 164 181 191 163

tempted to study any performance differences between all three of the display modali-

ties supported (continuous visual, discontinuous semantic, and continuous semantic).

Additionally, the field study sought to investigate any performance difference between

the three different growth rates tested in the lab study (1, 5, and 10 pixels per sec-

ond). The field study was primarily concerned with the impact these two factors

had how quickly users noticed the notification. Therefore, the notifications in the

field study used one of the three display modalities chosen randomly, and one of the

three growth rates used in the lab study. The figures that follow use CV to refer

to continuous visual zooming, DS for discontinuous semantic zooming, and CS for

continuous semantic zooming. Table 6.6 shows the number of occurrences for each

growth rate and each display mode.

6.2.2 Results

The results from the field study were collected, and the average response time and

average window sizes were recorded for each of the different display modalities sup-

ported. The hypothesis for this statistic was that continuous semantic zooming would

be the least distracting, followed by continuous visual zooming, with discontinuous

semantic zooming being the most distracting. Thus, the expectation was that con-

tinuous semantic zooming would have the highest response time and largest average

window sizes and discontinuous semantic zooming would have the lowest. Figure 6-9

shows the average response time for each display mode, and Figure 6-10 shows the

average notification size.

It is interesting that there does not appear to be a significant difference in ei-

ther statistic across the three display modes. Neither the response times (single-

70 CHAPTER 6. EVALUATION

Mean Response Time

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

CS DS CV

Display Mode

A
v
e
ra

g
e
 t

im
e
 (

in
 m

s
)

Figure 6-9: Average response times for each different display mode. CS is continuous
semantic, DS is discontinuous semantic, and CV is continuous visual.

factor ANOVA, F (2, 532) = 1.10, p = 0.334) nor the notification sizes (single-factor

ANOVA, F (2, 532) = 0.525, p = 0.592) showed any significant difference across dis-

play modalities. This indicates that the display modality did not appear to impact

how disruptive the notification was to the user.

The other factor that the field study examined was the effect of differing growth

rates. Using the same growth rates as in the lab study, the field study application

displayed notifications that grew at either 1, 5, or 10 pixels per second. The hypothesis

for this statistic was that a slower growth rate would be less disruptive than faster

growth rates. Thus, the expectation was that Slow1 would have the highest response

time and window size, with Slow10 having the lowest. Figure 6-11 shows the average

response time for each of the different growth rates tested in the field study, and

Figure 6-12 shows the average notification sizes

Comparing these results to the results presented in Figure 6-3 is interesting. Look-

ing at the response times, Slow1 clearly had the largest response time. However,

examining the average window sizes reveals something unexpected: Slow1 had the

6.2. FIELD STUDY 71

Average Window Size

74

76

78

80

82

84

86

88

90

92

94

CS DS CV

Display Mode

W
in

d
o

w
 s

iz
e
 (

in
 p

ix
e
ls

)

Figure 6-10: Average window for each different display mode

Mean Response Time

0

10000

20000

30000

40000

50000

60000

70000

80000

Slow1 Slow5 Slow10

Growth Rate

A
v
e
ra

g
e
 t

im
e
 (

in
 m

s
)

Figure 6-11: Average response times for each different growth rate

72 CHAPTER 6. EVALUATION

Average Window Size

0

20

40

60

80

100

120

Slow1 Slow5 Slow10

Growth Rate

W
in

d
o

w
 s

iz
e
 (

in
 p

ix
e
ls

)

Figure 6-12: Average window for each different growth rate

smallest window size out of the three, while Slow5 and Slow10 had similar sizes. As

mentioned previously, it seems likely that the windows were probably noticed at sim-

ilar sizes, and that the data is confounded by a reaction delay: the measurement for

response time used in this study includes the user’s time to act on the notification in

addition to their time to notice it. In addition to the delay introduced by the physical

act of moving the mouse over to the corner, there’s an additional cognitive processing

delay. Even once the user has seen the window, there is some processing that must

be done before they fully realize what action they have to take. In order to really

gain a useful understanding of this statistic, these confounders must be removed. Ex-

periments with eye tracking systems or with richer user interaction logs might help

to clarify these results.

These results appear to indicate that the size of the notification is a better predic-

tor for how soon it will be noticed than the amount of motion the content of the win-

dow undergoes. This is an interesting result, and may be worth further investigation.

There are several intriguing experiments suggested by this result. For example, if size

is truly the most important predictor, perhaps comparing slow-growth notifications

6.2. FIELD STUDY 73

to popups of varying size would yield useful results. Similarly, testing the different

display modalities against windows with much more content motion (e.g., animations,

rapid flashing, or other sudden changes) could reveal interesting information. Other

suggestions for future work along these lines are discussed in Section 7.2.2.

74 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

This thesis set out to establish the principle of gradual awareness notification, and

to prove the following hypothesis: Gradual awareness notifications will be con-

sumed by users at natural task breaks, improving performance and reduc-

ing annoyance when compared to traditional hard notification schemes. In

the course of examining this hypothesis, it has made several useful contributions to the

understanding of notification. These contributions are discussed in detail below. The

results presented in this thesis clearly indicate that gradual awareness notification is

an interesting concept that merits additional study. The remaining section discusses

future directions to carry this work in, and attempts to identify areas needing further

investigation.

7.1 Contributions

This thesis has presented the concept of gradual awareness notification, and attempted

to outline the general characteristics of such a notification system. The gradual

awareness principle, where notifications begin as unnoticeable signals and gradually

intensify, was laid forth. The principles presented here represent an alternate con-

ceptualization of notification: this thesis presents notifications as attentional requests

75

76 CHAPTER 7. CONCLUSION

rather than attentional demands. As more and more systems begin to require atten-

tion from users, it is essential that the model of notification shift from demand to

request. Otherwise, users run the risk of severe information overload and collapse

under the burden of competing attentional demands.

Along with introducing the principles of gradual awareness notification, this the-

sis attempted to place gradual awareness notification in its appropriate context by

presenting a taxonomy of notification. Using this classification, it defined the types

of problems and situations that can benefit most from gradual awareness techniques

(status notifications and future alerts), as well as identifying areas where gradual

awareness may not be the appropriate tactic (synchronous notifications and immedi-

ate alerts).

In addition to defining the underlying principle of gradual awareness notification,

this thesis presented several design principles which are essential to the successful de-

ployment of gradual awareness systems. First, gradual awareness notifications should

be subtle, so as to avoid interrupting primary tasks at inopportune moments. Sec-

ond, gradual awareness notifications should be informative, so that users can glean

as much information as possible from short periods of attention. And third, gradual

awareness notifications should be efficient to interact with, so that users can return

to their primary tasks with a minimum of disruption.

Additionally, this thesis has also presented the implementation of a specific grad-

ual awareness notification scheme for the desktop environment which relies on slowly

growing windows. This method was referred to as slow-growth notification, and im-

plemented in a particular toolkit called the Slow-Growth Library (SGL). The specific

design of the SGL toolkit was presented, discussing design choices necessary to adhere

to the design principles laid out above. The implementation details of SGL, including

the innovative sliding window system, were presented to illustrate the challenges of

implementing a gradual awareness system.

Finally, this thesis presented quantitative data demonstrating the benefits of slow-

7.2. FUTURE WORK 77

growth notification over traditional popup-based notification systems by conducting

a user study. The results were overwhelmingly positive. Slow-growth notifications ap-

peared to be approximately 39% less disruptive than popup notifications, as measured

by the difference in resume times. Subjectively, users found slow-growth notifications

47% less difficult to resume after, and 33% less annoying than popups. In addition,

the user study confirmed the hypothesis by showing the slow-growth notification did

a significantly better job of interrupting users at boundaries than popup notification:

roughly 82% of the slow-growth notifications occurred at task boundaries, as opposed

to only 40% for popups.

This thesis has demonstrated that slow-growth notification can be an effective tool

for increasing user productivity and decreasing annoyance levels. Most importantly,

it has shown that these improvements in notification performance can be achieved

without complicated prediction functions or prior knowledge of the user’s task. By

exploiting the user’s own cognitive task model, slow-growth notification can achieve

these significant performance benefits in a simple, flexible, and extensible manner.

7.2 Future Work

There are two major paths to take with this work in the future. Firstly, the particular

implementation of the SGL and slow-growth notification could be improved in several

ways. Secondly, the general principles of gradual awareness notification merit further

investigation. The following sections cover each of these directions.

7.2.1 Slow-growth Implementation

The first major improvement that could be made to the implementation of the SGL

system would be to allow notifications to appear at non-corner locations. Since the

current system relies on the sliding window system, slow-growth notifications are cur-

rently restricted only to the corners of the screen. Future work to improve and extend

78 CHAPTER 7. CONCLUSION

the sliding window system could remove this restriction. Additionally, the sliding win-

dow system was mainly a work-around for specific details of a Java implementation.

With further work, a better method of implementing slow-growth windows may be

found, eliminating the need for the sliding window system altogether.

Additional interface refinements to the SGL toolkit are another area where future

work may be of use. Experimenting with different growth rates may reveal more

optimal speeds. A particularly interesting idea is the concept of adaptive growth

rates, where the window grows faster or slower depending on the changing urgency

of its information. For example, as a deadline for a meeting approaches, the notifi-

cation could begin to grow faster, hopefully making itself more noticeable. This area

could provide for even more effective notifications, and may be a promising feature in

the future. Another interesting improvement in the future would be to incorporate

a gesture based interaction scheme. With further work, the SGL toolkit could be

adapted to include a gesture based input scheme. This would make the interaction

with slow-growth notifications even more efficient than the current interface.

Finally, it would be instructive to incorporate the SGL toolkit into a real applica-

tion and measure the effects of slow-growth notifications in a real-world setting with

actual users. Currently, work is underway to incorporate SGL into an AIM client, but

as of this moment, no application actually uses slow-growth notifications. This would

provide a richer set of data for analyzing the impacts of slow-growth notification on

user performance and annoyance levels.

7.2.2 Gradual Awareness Investigation

The results presented in this thesis indicate that gradual awareness notification is an

interesting topic, and worthy of future exploration. One particular area of gradual

awareness notification that seems particularly worthy of further investigation is the

growth rate. The results indicated that growth rates had little impact on the resume

time. However, as noted in Chapter 6, there are many possible explanations for this.

7.2. FUTURE WORK 79

It would be useful and interesting to investigate these explanations. Experiments

with a wider variety of growth rates or different tasks with longer subtasks or higher

cognitive loads may reveal interesting interactions between the growth rate of slow-

growth notifications and their effectiveness as notifications.

The results from both the field and the lab study produced interesting results con-

cerning the response time for notifications. While the results seemed to indicate that

Slow1 windows were noticed sooner than Slow10 windows, this may be accounted for

by the user’s reaction time delay, as discussed in the previous chapter. Future ex-

periments are needed in order to determine whether the results collected for response

times are valid, or whether some interesting property of slow-growth notification is

obscured within them. There remains the interesting question of whether the size of

the window or the amount of motion it undergoes is a better indication of how soon

it will be noticed. In other words, are faster-growing windows more or less distract-

ing than slower windows? Additionally, there remains the question of whether the

amount of change in the contents of the notification (ie, how much the notification

window flashes) has an impact on the disruptiveness of the notification or not. Future

experiments could help clarify this by comparing the current prototype with windows

that undergo much greater change per unit time. This question of whether notifica-

tions with a higher “optical flux” correspond to a less subtle attentional request is

interesting, and certainly worthy of further study.

Additionally, the results presented in this thesis have focused exclusively on slow-

growth notifications, an application of gradual awareness notification in the visual

channel. However, the gradual awareness principle can apply to other input channels

as well, such as the audio or tactile channels. Future investigation into gradual

awareness systems for these channels may yield interesting or useful results. For

example, imagine constructing a chair that used gradually increasing vibrations to

alert users to incoming email. Such a system may have many practical advantages,

since the user does not need to be looking at the screen to receive the notification.

80 CHAPTER 7. CONCLUSION

In particular, the construction of multi-channel gradual awareness systems is an

interesting idea. The effects of interruption on an input channel which is different from

the one being used for the primary task has not been particularly well studied. The

interaction between different input channels may provide opportunities to design even

less disruptive notification systems than slow-growth. As an example, consider the

hypothetical “slow phone” described in Chapter 1, which uses both tactile and audio

channels to notify the user of incoming calls. Such applications remain a fascinating

area for future experiments.

Appendix A

SGL API

This appendix documents the API for the SGL prototype, using the standard Javadoc

format.

81

82 APPENDIX A. SGL API

SlowGrowth file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

1 of 5 5/21/2006 12:49 PM

Package Class Use Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

src

Class SlowGrowth

java.lang.Object

 src.SlowGrowth

public class SlowGrowth

extends java.lang.Object

SlowGrowth represents the container for a slow-growth notification. This class is the wrapper around the

NotifyImage, and handles all of the interaction. In order to use a slow-growth notification, first instantiate an

instance of this class. Then configure the parameters as appropriate, and invoke the start() method.

Field Summary
 boolean

popup

 popup indicates whether the windows should instantaneously appear, or grow in.

Constructor Summary

SlowGrowth()

 Constructs a SlowGrowth notification in default state.

Method Summary
 int

getGrowthDelay()

 java.awt.Dimension
getInitialSize()

 java.awt.Dimension
getMaxSize()

NotifyImage
getNI()

 int
getStartLocation()

static void
main(java.lang.String[] args)

 void reset(int delay)

 reset() causes the notification to return to its initial size and to resume growth as

83

SlowGrowth file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

2 of 5 5/21/2006 12:49 PM

normal.

 void
setGrowthDelay(int d)

 Sets the growth delay of the current slow-growth notification.

 void
setInitialSize(java.awt.Dimension i)

 Sets the initial size that this notification will appear at.

 void
setMaxSize(java.awt.Dimension m)

 Sets the maximum size of this notification.

 void
setNI(NotifyImage nin)

 Use this method to set a new NotifyImage.

 void
setStartLocation(int s)

 Specifies a new starting location for this notification.

 void
start()

 start() causes a SlowGrowth window to immediately display and start growing.

 void
stop()

 stop() causes a SlowGrowth window to stop growing and reset itself to the

hidden point.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

popup

public boolean popup

popup indicates whether the windows should instantaneously appear, or grow in. Set popup to true to

cause the windows to popup instantly.

Constructor Detail

SlowGrowth

public SlowGrowth()

Constructs a SlowGrowth notification in default state. Default state consists of the following: 200ms

growth delay, 200x200 max size, starting location top left corner, this.ni set to CONT_VISUAL with

no contents.

Method Detail

start

84 APPENDIX A. SGL API

SlowGrowth file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

3 of 5 5/21/2006 12:49 PM

public void start()

start() causes a SlowGrowth window to immediately display and start growing.

stop

public void stop()

stop() causes a SlowGrowth window to stop growing and reset itself to the hidden point. Use stop when

the notification is no longer needed.

main

public static void main(java.lang.String[] args)

setGrowthDelay

public void setGrowthDelay(int d)

Sets the growth delay of the current slow-growth notification. GROWTH_DELAY corresponds to how

long the program should delay between resizing the notification in milliseconds. Thus, a growth delay

of 1000 equates to a growth rate of 1 pixel per second. Higher growth delay equals slower notification

growth.

Parameters:

d - - The desired growth rate

getGrowthDelay

public int getGrowthDelay()

Returns:

- The growth delay in milliseconds

setMaxSize

public void setMaxSize(java.awt.Dimension m)

Sets the maximum size of this notification. MAX_SIZE indicates how large the notification should be

at its maximum extent.

Parameters:

m - - The desired new maximum size

getMaxSize

85

SlowGrowth file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

4 of 5 5/21/2006 12:49 PM

public java.awt.Dimension getMaxSize()

Returns:

- The maximum possible size of this notification

setInitialSize

public void setInitialSize(java.awt.Dimension i)

Sets the initial size that this notification will appear at. The default is initial size 0.

Parameters:

i - - The new initial size

getInitialSize

public java.awt.Dimension getInitialSize()

Returns:

- The initial size of this notification

setStartLocation

public void setStartLocation(int s)

Specifies a new starting location for this notification. startLocation indicates which corner the

notification will appear in. 0 represents the top left corner, 1 is the top right, 2 is the bottom right, and 3

means the bottom left. Currently, only these four starting locations are supported.

Parameters:

s - - The new starting location for this notification

getStartLocation

public int getStartLocation()

Returns:

- The starting location of this notification, represented as an integer from 0 to 3.

setNI

public void setNI(NotifyImage nin)

Use this method to set a new NotifyImage.

Parameters:

nin - - The new NotifyImage desired

86 APPENDIX A. SGL API

SlowGrowth file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

5 of 5 5/21/2006 12:49 PM

getNI

public NotifyImage getNI()

Returns:

- The NotifyImage of this notification

reset

public void reset(int delay)

reset() causes the notification to return to its initial size and to resume growth as normal. Use this when

the notification needs to be reset but not dismissed.

Package Class Use Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

87

NotifyImage file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

1 of 6 5/21/2006 12:50 PM

Package Class Use Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

src

Class NotifyImage

java.lang.Object

 java.awt.Component

 java.awt.Container

 javax.swing.JComponent

 src.NotifyImage

All Implemented Interfaces:

java.awt.image.ImageObserver, java.awt.MenuContainer, java.io.Serializable

public class NotifyImage

extends javax.swing.JComponent

NotifyImage handles displaying the actual content of the notification. The parameters here control how the

notification is displayed, and what the actual content displayed at each tick is.

See Also:

Serialized Form

Nested Class Summary
static class

NotifyImage.NoteMode

 NoteModes represent the different display modalities allowed in the system.

Nested classes/interfaces inherited from class javax.swing.JComponent

javax.swing.JComponent.AccessibleJComponent

Field Summary
 java.awt.Dimension

max

Fields inherited from class javax.swing.JComponent

TOOL_TIP_TEXT_KEY, UNDEFINED_CONDITION, WHEN_ANCESTOR_OF_FOCUSED_COMPONENT,

WHEN_FOCUSED, WHEN_IN_FOCUSED_WINDOW

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

88 APPENDIX A. SGL API

NotifyImage file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

2 of 6 5/21/2006 12:50 PM

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

NotifyImage(java.awt.Dimension maxSize)

 Constructs a CONT_SEMANT NotifyImage with the specified max size and no contents.

NotifyImage(javax.swing.JComponent[] c, int[] s, java.awt.Dimension maxSize)

 Constructs a DISCONT_SEMANT NotifyImage using the specified components and size cutoffs.

NotifyImage(javax.swing.JComponent j, java.awt.Dimension maxSize)

 Constructs a CONT_VISUAL NotifyImage using the specified Component.

Method Summary
 void

addKeyFrame(KeyFrame k)

 Adds a new KeyFrame to the NotifyImage.

NotifyImage.NoteMode
getMode()

 Returns the mode of this NotifyImage.

 java.lang.String
getModeString()

 Returns the mode of this NotifyImage as a String.

 int[]
getSizes()

 Returns the cutoff sizes for this NotifyImage.

 void
paintComponent(java.awt.Graphics g)

 void
setMode(NotifyImage.NoteMode m)

 Specifies the display mode for this NotifyImage.

 void
setSizes(int[] s)

 Sets the cutoff sizes for DISCONT_SEMANT mode.

Methods inherited from class javax.swing.JComponent

addAncestorListener, addNotify, addVetoableChangeListener, computeVisibleRect, contains,

createToolTip, disable, enable, firePropertyChange, firePropertyChange,

firePropertyChange, getAccessibleContext, getActionForKeyStroke, getActionMap,

getAlignmentX, getAlignmentY, getAncestorListeners, getAutoscrolls, getBorder,

getBounds, getClientProperty, getComponentPopupMenu, getConditionForKeyStroke,

getDebugGraphicsOptions, getDefaultLocale, getFontMetrics, getGraphics, getHeight,

getInheritsPopupMenu, getInputMap, getInputMap, getInputVerifier, getInsets, getInsets,

getListeners, getLocation, getMaximumSize, getMinimumSize, getNextFocusableComponent,

getPopupLocation, getPreferredSize, getRegisteredKeyStrokes, getRootPane, getSize,

getToolTipLocation, getToolTipText, getToolTipText, getTopLevelAncestor,

getTransferHandler, getUIClassID, getVerifyInputWhenFocusTarget,

getVetoableChangeListeners, getVisibleRect, getWidth, getX, getY, grabFocus,

isDoubleBuffered, isLightweightComponent, isManagingFocus, isOpaque,

isOptimizedDrawingEnabled, isPaintingTile, isRequestFocusEnabled, isValidateRoot, paint,

paintImmediately, paintImmediately, print, printAll, putClientProperty,

registerKeyboardAction, registerKeyboardAction, removeAncestorListener, removeNotify,

removeVetoableChangeListener, repaint, repaint, requestDefaultFocus, requestFocus,

requestFocus, requestFocusInWindow, resetKeyboardActions, reshape, revalidate,

scrollRectToVisible, setActionMap, setAlignmentX, setAlignmentY, setAutoscrolls,

setBackground, setBorder, setComponentPopupMenu, setDebugGraphicsOptions,

89

NotifyImage file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

3 of 6 5/21/2006 12:50 PM

setDefaultLocale, setDoubleBuffered, setEnabled, setFocusTraversalKeys, setFont,

setForeground, setInheritsPopupMenu, setInputMap, setInputVerifier, setMaximumSize,

setMinimumSize, setNextFocusableComponent, setOpaque, setPreferredSize,

setRequestFocusEnabled, setToolTipText, setTransferHandler,

setVerifyInputWhenFocusTarget, setVisible, unregisterKeyboardAction, update, updateUI

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addPropertyChangeListener,

addPropertyChangeListener, applyComponentOrientation, areFocusTraversalKeysSet,

countComponents, deliverEvent, doLayout, findComponentAt, findComponentAt, getComponent,

getComponentAt, getComponentAt, getComponentCount, getComponents, getComponentZOrder,

getContainerListeners, getFocusTraversalKeys, getFocusTraversalPolicy, getLayout,

getMousePosition, insets, invalidate, isAncestorOf, isFocusCycleRoot, isFocusCycleRoot,

isFocusTraversalPolicyProvider, isFocusTraversalPolicySet, layout, list, list, locate,

minimumSize, paintComponents, preferredSize, printComponents, remove, remove, removeAll,

removeContainerListener, setComponentZOrder, setFocusCycleRoot, setFocusTraversalPolicy,

setFocusTraversalPolicyProvider, setLayout, transferFocusBackward,

transferFocusDownCycle, validate

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,

addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage, checkImage, contains,

createImage, createImage, createVolatileImage, createVolatileImage, dispatchEvent,

enable, enableInputMethods, firePropertyChange, firePropertyChange, firePropertyChange,

firePropertyChange, firePropertyChange, getBackground, getBounds, getColorModel,

getComponentListeners, getComponentOrientation, getCursor, getDropTarget,

getFocusCycleRootAncestor, getFocusListeners, getFocusTraversalKeysEnabled, getFont,

getForeground, getGraphicsConfiguration, getHierarchyBoundsListeners,

getHierarchyListeners, getIgnoreRepaint, getInputContext, getInputMethodListeners,

getInputMethodRequests, getKeyListeners, getLocale, getLocation, getLocationOnScreen,

getMouseListeners, getMouseMotionListeners, getMousePosition, getMouseWheelListeners,

getName, getParent, getPeer, getPropertyChangeListeners, getPropertyChangeListeners,

getSize, getToolkit, getTreeLock, gotFocus, handleEvent, hasFocus, hide, imageUpdate,

inside, isBackgroundSet, isCursorSet, isDisplayable, isEnabled, isFocusable,

isFocusOwner, isFocusTraversable, isFontSet, isForegroundSet, isLightweight,

isMaximumSizeSet, isMinimumSizeSet, isPreferredSizeSet, isShowing, isValid, isVisible,

keyDown, keyUp, list, list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter,

mouseExit, mouseMove, mouseUp, move, nextFocus, paintAll, postEvent, prepareImage,

prepareImage, remove, removeComponentListener, removeFocusListener,

removeHierarchyBoundsListener, removeHierarchyListener, removeInputMethodListener,

removeKeyListener, removeMouseListener, removeMouseMotionListener,

removeMouseWheelListener, removePropertyChangeListener, removePropertyChangeListener,

repaint, repaint, repaint, resize, resize, setBounds, setBounds,

setComponentOrientation, setCursor, setDropTarget, setFocusable,

setFocusTraversalKeysEnabled, setIgnoreRepaint, setLocale, setLocation, setLocation,

setName, setSize, setSize, show, show, size, toString, transferFocus,

transferFocusUpCycle

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

max

public java.awt.Dimension max

90 APPENDIX A. SGL API

NotifyImage file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

4 of 6 5/21/2006 12:50 PM

Constructor Detail

NotifyImage

public NotifyImage(java.awt.Dimension maxSize)

Constructs a CONT_SEMANT NotifyImage with the specified max size and no contents. In order for

this to work, key frames must be provided subsequently.

Parameters:

maxSize - - the maximum notification size

NotifyImage

public NotifyImage(javax.swing.JComponent j,

 java.awt.Dimension maxSize)

Constructs a CONT_VISUAL NotifyImage using the specified Component.

Parameters:

j - - JComponent to be displayed

maxSize - - Maximum notification size

NotifyImage

public NotifyImage(javax.swing.JComponent[] c,

 int[] s,

 java.awt.Dimension maxSize)

Constructs a DISCONT_SEMANT NotifyImage using the specified components and size cutoffs. Note

that comps.size must be equal to sizes.size + 1.

Parameters:

c - - the JComponents to display

s - - The size thresholds

maxSize - - The maximum notification sizes

Method Detail

addKeyFrame

public void addKeyFrame(KeyFrame k)

Adds a new KeyFrame to the NotifyImage. KeyFrames are always stored in sorted order.

Parameters:

k - - new KeyFrame

91

NotifyImage file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

5 of 6 5/21/2006 12:50 PM

setSizes

public void setSizes(int[] s)

Sets the cutoff sizes for DISCONT_SEMANT mode. The first value is the size at which the displayed

component will switch from the first component of comps to second, and so forth.

Parameters:

s -

getSizes

public int[] getSizes()

Returns the cutoff sizes for this NotifyImage.

Returns:

an array representing cutoff sizes

setMode

public void setMode(NotifyImage.NoteMode m)

Specifies the display mode for this NotifyImage.

Parameters:

m - - The desired NoteMode (CONT_VISUAL, DISCONT_SEMANT, or CONT_SEMANT)

getMode

public NotifyImage.NoteMode getMode()

Returns the mode of this NotifyImage.

Returns:

mode

getModeString

public java.lang.String getModeString()

Returns the mode of this NotifyImage as a String. Useful for testing and debugging.

Returns:

String mode

paintComponent

92 APPENDIX A. SGL API

NotifyImage file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

6 of 6 5/21/2006 12:50 PM

public void paintComponent(java.awt.Graphics g)

Overrides:

paintComponent in class javax.swing.JComponent

Package Class Use Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

93

KeyFrame file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

1 of 2 5/21/2006 12:51 PM

Package Class Use Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

src

Class KeyFrame

java.lang.Object

 src.KeyFrame

public class KeyFrame

extends java.lang.Object

A KeyFrame represents the state of the notification at a specified percentage of full size. Thus, a KeyFrame

contains the following: An index, representing the percentage of full size described by this frame. A list of

CompParams, each representing the state of a given component in this frame. Notes and limitations of

KeyFrames: 1) The NotifyImage must always contain at least two KeyFrames: one for 0.0 and one for 1.0. 2)

Each KeyFrame should contain all components that will be shown in the final frame. To hide these

components, set the alpha to 0.0 3) All components should appear in the same order in each key frame.

Field Summary
 java.util.ArrayList<CompParam>

comps

 double
index

Constructor Summary

KeyFrame(double i)

 Constructs a new KeyFrame with the specified index i

Method Summary
 void

add(CompParam cp)

 Adds a CompParam to this KeyFrame.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

index

94 APPENDIX A. SGL API

KeyFrame file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

2 of 2 5/21/2006 12:51 PM

public double index

comps

public java.util.ArrayList<CompParam> comps

Constructor Detail

KeyFrame

public KeyFrame(double i)

Constructs a new KeyFrame with the specified index i

Parameters:

i - - the KeyFrame's index (must be between 0.0 and 1.0)

Method Detail

add

public void add(CompParam cp)

Adds a CompParam to this KeyFrame.

Parameters:

cp - - the CompParam to add.

Package Class Use Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

95

CompParam file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

1 of 4 5/21/2006 12:51 PM

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

src

Class CompParam

java.lang.Object

 src.CompParam

public class CompParam

extends java.lang.Object

A CompParam represents the state of a particular component at a particular instant in time. It contains the

component itself, a value for opacity, a size, and a position. CompParams are used inside of KeyFrames.

Field Summary
 double

alpha

 double
h

 javax.swing.JComponent
label

 double
w

 double
x

 double
y

Constructor Summary

CompParam(CompParam cp)

 Constructs a copy of the given CompParam

CompParam(javax.swing.ImageIcon i)

 Constructs a new CompParam with a JLabel containing the specified ImageIcon.

CompParam(javax.swing.JComponent j)

 Constructs a new CompParam with the given JComponent.

CompParam(java.lang.String s)

 Constructs a new CompParam with a JLabel containing the specified String.

CompParam(java.net.URL u)

 Constructs a new CompParam with a JLabel with an image from the specified URL.

96 APPENDIX A. SGL API

CompParam file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

2 of 4 5/21/2006 12:51 PM

Method Summary
 java.lang.Object

clone()

 void
setParams(double a, double x, double y, double w, double h)

 Sets the parameters of the CompParam

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

label

public javax.swing.JComponent label

alpha

public double alpha

x

public double x

y

public double y

w

public double w

h

public double h

Constructor Detail

CompParam

public CompParam(java.lang.String s)

97

CompParam file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

3 of 4 5/21/2006 12:51 PM

Constructs a new CompParam with a JLabel containing the specified String. Uses the default

parameters of 0.0,0,0,1,1

Parameters:

s - - the text to be displayed.

CompParam

public CompParam(javax.swing.ImageIcon i)

Constructs a new CompParam with a JLabel containing the specified ImageIcon. Uses the default

parameters of 0.0,0,0,1,1

Parameters:

i - - the ImageIcon to display

CompParam

public CompParam(java.net.URL u)

Constructs a new CompParam with a JLabel with an image from the specified URL. Uses the default

parameters of 0.0,0,0,1,1

Parameters:

u - - the URL of the image to load

CompParam

public CompParam(javax.swing.JComponent j)

Constructs a new CompParam with the given JComponent. Uses the default parameters of 0.0,0,0,1,1

Parameters:

j - - the desired JComponent

CompParam

public CompParam(CompParam cp)

Constructs a copy of the given CompParam

Parameters:

cp - - the CompParam to be copied

Method Detail

setParams

98 APPENDIX A. SGL API

CompParam file:///c:/Documents%20and%20Settings/Tom%20Wilson/workspace/SG...

4 of 4 5/21/2006 12:51 PM

public void setParams(double a,

 double x,

 double y,

 double w,

 double h)

Sets the parameters of the CompParam

Parameters:

a - - the desired alpha

x - - the desired x position

y - - the desired y position

w - - how much to scale the width of the component

h - - how much to scale the height of the component

clone

public java.lang.Object clone()

Overrides:

clone in class java.lang.Object

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Appendix B

Sample Data and File Formats

This appendix contains samples of the data files recorded during the user study.

There were two file formats used. First is the individual file, which represents the

data recorded for one particular interruption. The second format is the page-level file,

which represents the data recorded for all of the interruptions in a page. In particular,

the page-level file is used to record the resume time of the notification.

99

100 APPENDIX B. SAMPLE DATA AND FILE FORMATS

<slowgrowth version='6'>

 <rectangle x='-141' y='-141' w='59' h='59'/>

 <screen sw='1280' sh='800'/>

 <time t='6828'/>

 <mode m='continuous semantic'/>

 <popup p='slow'/>

 <growth g='100'/>

 <reference_text>

The urge to write short stories is rare. A rag will soak up

spilled water. A steep trail is painful for our feet. Five

years he lived with a shaggy dog. He takes the oath of

office each March.

A sullen smile gets few friends. The harder he tried the

less he got done. Choose between the high road and the low.

Just hoist it up and take it away. He wrote his last novel

there at the inn.

Their eyelids droop for want of sleep. The vamp of the shoe

had a gold buckle. At that high level the air is pure. The

jacket hung on the back of the wide chair. A Tusk is used

to make costly gifts.

Shape the clay gently into block form. The sofa cushion is

red and of light weight. A gem in the rough needs work to

polish. Watch the log float in the wide river. The pipe

began to rust while new.

 </reference_text>

 <user_text>

The urge to write short stories is rare. A rag will soak up

spilled water. A steep trail is painful to our feet. Five

years he lived with a shaggy dog. He takes the oath of

office each March.

A sullen smile gets few friends. The harder he tried the

less he got done. Choose between the high road and the low.

Just hoist it up and take it away.

 </user_text>

</slowgrowth>

101

<typetester>

<page p='2' pop='slow'/>

<time t='157985'/>

<notification n='-384802578'>

<type t='slow'/>

<resume_time r='219'/>

<growth g='1000'/>

</notification>

<notification n='-1150380687'>

<type t='slow'/>

<resume_time r='172'/>

<growth g='100'/>

</notification>

<notification n='1580379828'>

<type t='slow'/>

<resume_time r='125'/>

<growth g='100'/>

</notification>

<notification n='572480934'>

<type t='slow'/>

<resume_time r='78'/>

<growth g='200'/>

</notification>

<reference_text>

The urge to write short stories is rare. A rag will soak up spilled

water. A steep trail is painful for our feet. Five years he lived

with a shaggy dog. He takes the oath of office each March.

A sullen smile gets few friends. The harder he tried the less he got

done. Choose between the high road and the low. Just hoist it up and

take it away. He wrote his last novel there at the inn.

Their eyelids droop for want of sleep. The vamp of the shoe had a

gold buckle. At that high level the air is pure. The jacket hung on

the back of the wide chair. A Tusk is used to make costly gifts.

Shape the clay gently into block form. The sofa cushion is red and

of light weight. A gem in the rough needs work to polish. Watch the

log float in the wide river. The pipe began to rust while new.

</reference_text>

<user_text>

The urge to write short stories is rare. A rag will soak up spilled

water. A steep trail is painful to our feet. Five years he lived

with a shaggy dog. He takes the oath of office each March.

A sullen smile gets few friends. The harder he tried the less he got

done. Choose between the high road and the low. Just hoist it up and

take it away. He wrote his last novel there at the inn.

Their eyelids droop for want of sleep. The vamp of the shoe had a

gold buckle. At that high level the air is pure. The jacket hung on

the back of the wide chair. A Tusk is used to make costly gifts.

Shape the clay gently into block form. The sofa cushion is red and

of light weight. A gem in the rough needs work to polish. Watch the

log float in the wide river. The pipe began to rust while new.

</user_text>

<text_stats words='161' chars='783'/>

</typetester>

102 APPENDIX B. SAMPLE DATA AND FILE FORMATS

Appendix C

Post-test Questionnaire

This appendix contains the post-test questionnaire that was given to all participants

in the study.

103

104 APPENDIX C. POST-TEST QUESTIONNAIRE

POST-TEST QUESTIONNAIRE User ID_____

1. Circle the number that best represents how annoying you found each kind of

notification:

 Not annoying Somewhat annoying Very annoying

Instant popups 1 2 3 4 5

Growing popups 1 2 3 4 5

2. Circle the number that best represents how hard it was to find your place in the text

after being interrupted by each kind of notification:

 Not hard Somewhat hard Very hard

Instant popups 1 2 3 4 5

Growing popups 1 2 3 4 5

3. Circle the number that best represents how much you agree with the following

statement: “I found myself scanning the corners of the screen looking for

notifications”:

 Strongly disagree Neutral Strongly agree

1 2 3 4 5

4. To the best of your recollection, how many interruptions per page (on average) did

you see during each part of the study?

 Average number of notifications per page

Instant popups ________

Growing popups ________

Bibliography

[1] Ieee recommended practice for speech quality measurements. IEEE Transactions

on Audio and Electroacoustics, AU-17(3):225–246, September 1969.

[2] Dimitris Achlioptas and Eric Horvitz. Principles of bounded deferral for balanc-

ing information awareness with interruption. Technical Report MSR-TR-2005-

87, Microsoft Research (MSR), July 2005.

[3] Piotr D. Adamczyk and Brian P. Bailey. If not now, when?: the effects of

interruption at different moments within task execution. In CHI ’04: Proceedings

of the SIGCHI conference on Human factors in computing systems, pages 271–

278, New York, NY, USA, 2004. ACM Press.

[4] B. Bailey, J. Konstan, and J. Carlis. Measuring the effects of interruptions on

task performance in the user interface. In IEEE Conference on Systems, Man,

and Cybernetics 2000, pages 757–762. IEEE, 2000.

[5] B. Bailey, J. Konstan, and J. Carlis. The effects of interruptions on task perfor-

mance, annoyance, and anxiety in the user interface. In Proceedings of INTER-

ACT, 2001.

[6] Brian P. Bailey and Shamsi T. Iqbal. Leveraging changes in mental workload

during task execution to mitigate effects of interruption. Technical report, Uni-

versity of Illinois at Urbana-Champaign, August 2005.

105

106 BIBLIOGRAPHY

[7] Brian P. Bailey and Joseph A. Konstan. On the need for attention-aware systems:

Measuring effects of interruption on task performance error rate and affective

state. Computers in Human Behavior, 22(4):685–708, July 2006.

[8] Benjamin B. Bederson and James D. Hollan. Pad++: a zooming graphical

interface for exploring alternate interface physics. In UIST ’94: Proceedings of

the 7th annual ACM symposium on User interface software and technology, pages

17–26, New York, NY, USA, 1994. ACM Press.

[9] James “Bo” Begole, Nicholas E. Matsakis, and John C. Tang. Lilsys: Sensing

unavailability. In CSCW ’04: Proceedings of the 2004 ACM conference on Com-

puter supported cooperative work, pages 511–514, New York, NY, USA, 2004.

ACM Press.

[10] Adam Bodnar, Richard Corbett, and Dmitry Nekrasovski. Aroma: ambient

awareness through olfaction in a messaging application. In ICMI ’04: Proceedings

of the 6th international conference on Multimodal interfaces, pages 183–190, New

York, NY, USA, 2004. ACM Press.

[11] Marvin M. Chun and Jeremy M. Wolfe. Visual attention. In E. B. Goldstein,

editor, Blackwell’s Handbook of Perception, chapter 9, pages 272–310. Blackwell,

Oxford, UK, July 2001.

[12] Mary Czerwinski, Edward Cutrell, and Eric Horvitz. Instant messaging and

interruption: Influence of task type on performance. In Proceedings of OZCHI

2000, pages 356–361, 2000.

[13] Anton N. Dragunov, Thomas G. Dietterich, Kevin Johnsrude, Matthew

McLaughlin, Lida Li, and Jonathan L. Herlocker. Tasktracer: a desktop en-

vironment to support multi-tasking knowledge workers. In IUI ’05: Proceedings

of the 10th international conference on Intelligent user interfaces, pages 75–82,

New York, NY, USA, 2005. ACM Press.

BIBLIOGRAPHY 107

[14] James Fogarty, Scott E. Hudson, and Jennifer Lai. Examining the robustness of

sensor-based statistical models of human interruptibility. In CHI ’04: Proceedings

of the SIGCHI conference on Human factors in computing systems, pages 207–

214, New York, NY, USA, 2004. ACM Press.

[15] http://maps.google.com.

[16] Eric Horvitz and Johnson Apacible. Learning and reasoning about interruption.

In ICMI ’03: Proceedings of the 5th international conference on Multimodal in-

terfaces, pages 20–27, New York, NY, USA, 2003. ACM Press.

[17] Eric Horvitz, Andy Jacobs, and David Hovel. Attention-sensitive alerting. In

UAI, pages 305–313, 1999.

[18] Eric Horvitz, Paul Koch, and Johnson Apacible. Busybody: creating and fielding

personalized models of the cost of interruption. In CSCW ’04: Proceedings of the

2004 ACM conference on Computer supported cooperative work, pages 507–510,

New York, NY, USA, 2004. ACM Press.

[19] Shamsi T. Iqbal. Mews-it: A mental workload based system for interruption

timing. In UIST Doctoral Symposium 2005.

[20] Paul P. Maglio and Christopher S. Campbell. Tradeoffs in displaying peripheral

information. In CHI ’00: Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 241–248, New York, NY, USA, 2000. ACM

Press.

[21] Stefan Marti and Chris Schmandt. Physical embodiments for mobile commu-

nication agents. In UIST ’05: Proceedings of the 18th annual ACM symposium

on User interface software and technology, pages 231–240, New York, NY, USA,

2005. ACM Press.

108 BIBLIOGRAPHY

[22] D. Scott McCrickard and C. M. Chewar. Attuning notification design to user

goals and attention costs. Commun. ACM, 46(3):67–72, 2003.

[23] D. Scott McCrickard, C. M. Chewar, Jacob P. Somervell, and Ali Ndiwalana. A

model for notification systems evaluation - assessing user goals for multitasking

activity. ACM Trans. Comput.-Hum. Interact., 10(4):312–338, 2003.

[24] Dean Rubine. Specifying gestures by example. In SIGGRAPH ’91: Proceedings

of the 18th annual conference on Computer graphics and interactive techniques,

pages 329–337, New York, NY, USA, 1991. ACM Press.

[25] D. J. Simons and C. F. Chabris. Gorillas in our midst: Sustained inattentional

blindness for dynamic events. Perception, 28(9):1059–1074, 1999.

[26] Maarten van Dantzich, Daniel Robbins, Eric Horvitz, and Mary Czerwinski.

Scope: Providing awareness of multiple notifications at a glance. In Advanced

Visual Interfaces 2002, May 2002.

