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Abstract

Tracking the Brownian motion of colloids was first used about a hundred years ago to demonstrate
the molecular nature of matter. Today’s colloidal scientists perform particle tracking experiments
to assess the structural and mechanical properties of complex materials at a micron length scale.
Indeed, the dynamics of micron sized probe particles embedded in a material can be related to the
local mechanical response of the system. This probing technique, called microrheology, has received
much interest in the last few decades due to the importance of a materials local properties in its
function and its macro-scale characteristics. These new assessments are especially relevant in soft
matter sciences such as biophysics.

Video microscopy particle tracking is an easy technique to implement experimentally. Movies
of the fluctuating particles in a sample are recorded and analyzed off-line using custom algorithms.
For this reason, it is widely used in studies of soft matter properties and in fluid dynamics. How-
ever, behind this apparent simplicity lie a number of subtle limitations that can alter significantly
the validity of the measurements. The focus of the parts of this thesis is an exhaustive character-
ization of the errors incurred in the standard video microscopy particle tracking setup. Detailed
understanding of these errors led to new methods to circumvent some of the intrinsic limitations.

The trajectories extracted from particle tracking are used to compute the mean-squared dis-
placement that characterizes the dynamics of the probe particles. This measurement suffers from
two kinds of limitations: the finite spatial resolution in the particle localization and statistical
uncertainties. The source of localization errors was separated into two separate contributions. A
“static error” arises in the position measurements of immobilized particles. A “dynamic error”
comes from the particle motion during the finite exposure time that is required for visualization.
We calculated the propagation of these errors on the mean-squared displacement and examined the
impact of our analysis on theoretical model fluids used in biorheology. These theoretical predictions
were verified for purely viscous fluids using simulations and a multiple particle tracking technique
performed with video microscopy. We showed that the static contribution could be confidently
corrected in dynamics studies by using static experiments performed at a similar noise-to-signal
ratio. This groundwork allowed us to achieve higher resolution in the mean-squared displacement,
and thus to increase the accuracy of microrheology studies.

When using video microscopy, tracking of a particle is possible only for the given duration
when it travels within a finite volume of observation. Because the Brownian motion is stochastic, a
statistical study is required to characterize this trajectory duration. We showed that the effect of a
finite imaging volume leads to a peculiar sampling of material local properties. By thoroughly mod-



eling the sampling design, we derived estimators for the mean and variance of particle’s dynamics
that are independent, under well-defined conditions, of the peculiar statistics of the measurement
output. These estimators serve to quantify a material heterogeneity.

Having gained a full characterization of the technique, we applied video multiple particle track-
ing to study a complex time-evolving system of self-assembling peptides. This material undergoes
a transition from a purely viscous solution to an elastic hydrogel through the molecular assembly
of the peptides into a fibrous network. We used the oligo-peptide KFE8 as a model self-assembling
peptide and assessed the dependency of the gelation kinetics with the pH of the solution. We were
able to develop a theoretical model for this dependency by using the Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory for the interaction between the peptides.

Thesis Supervisor: Patrick S. Doyle
Title: Doherty Associate Professor of Chemical Engineering



Acknowledgments
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CHAPTER 1

Introduction

Colloidal suspensions exhibit formidable properties, and colloid science originated from stunning
discoveries concerning the behavior of the suspended particles. The fact that thermal fluctuations
are observable at the length scale of colloidal particles both provided with the primordial key to
the establishment of statistical thermodynamics, but also justifies the actual importance of current
studies in modern soft-matter science such as biophysics. At colloidal length scales structures
are formed and functions exist under the influence of thermal energy and other comparably weak
forces [1, 2]. Particle sizes in colloidal systems typically range from several nanometers to tenth
of microns [2]. These length scales are large enough for straightforward observation with today’s
optical microscope, but they are also small enough to see their motion affected by molecular scale
events. Specifically, thermal motion of colloidal particles is detectable on a wide range of time
scales, and essentially reveals the inner molecular structure of the fluid.

1.1 Historical Introduction

These fundamental concepts are behind the motivations that drove scientists to elaborate techniques
to measure the colloidal motion in the last century. In this section, I give a brief historical account
of the very first measurements of Brownian motions tracking, which was made by Jean Perrin to
confirm the molecular view of matter. I will also expose some technological challenges that were
encountered in these first attempts to contrast with the current state of the art in microparticles
tracking techniques presented in the next section. An interesting paper relating the history of
Brownian motion and containing all the references to the classic original articles (not all referenced
here) can be found in [3].



14 1.2. Micro Probes Tracking Techniques, Today’s State of the Art

The molecular nature of matter is of no doubt today, but it was demonstrated irrefutably only
a century ago by the experiments of Jean Perrin. After the initial discovery of the irregular motion
of pollen grains suspended in water by Robert Brown (who originally presumed a living cause for
the motion), the so-called Brownian motion appeared as the best candidate to experimentally check
the discontinuity of matter hypothesis. Indeed between 1905 and 1908, parallel and complementary
theoretical treatments made by Albert Einstein, Marian von Schmoluchowski and Paul Langevin
were explaining the Brownian motion in terms of molecular impulses applied to the colloid by the
surrounding matter.

Jean Perrin used the Brownian motion of granules to assess the molecular nature of the sur-
rounding fluid, whereas the present work is intended to use the same thermal fluctuation of particles
to measure “micromechanics” (hence a somewhat continuous property, at least on microns scale
volume) and “microstructure” (hence an arrangement of matter components with microns length).
However this study shares the underlying idea of relating some averaged measure of a Brownian
trajectory to assess the structure of matter. Section 1.3 exposes the mathematical form of this
statement.

In 1908, Victor Henri pioneered the use of a film camera, just invented a decade before, con-
nected to a microscope. He attempted to perform Brownian motion measurements using this
microcinematography technique that is truly the legitimate ancestor of video microscopy. For some
reason that still remain unclear even now, Henri did not find quantitative agreement with Einstein’s
formula for the diffusion coefficient.

Perrin’s experiments however justified the theory and were truly a technical tour de force. Con-
firmation of Einstein’s theory required great precision in measurement of the size of the particles,
control of their size distribution, high precision in measurement of the particle’s displacements,
and finally a high level of statistical accuracy. Jean Perrin had to develop numerous methods to
attain maximum precision in all these aspects. To perform his tracking, Perrin and his student
were plotting consecutive positions of individual granules on a grid at intervals of 30 seconds [4].
A total of about 500 displacements were gathered in each of his tedious experiments.

1.2 Micro Probes Tracking Techniques, Today’s State of the Art

The use of video microscopy to track single micron-sized colloids and individual molecules has
attracted great interest in recent years. Because of its numerous advantages and great flexibility,
video microscopy has become the primary choice in many diverse tracking experiments encom-
passing numerous applications. In biophysical studies, it has been used to observe molecular level
motion of kinesin on microtubules and of myosin on actin [5, 6], to investigate the infection pathway
of viruses [7], and to study the mobility of proteins in cell membranes (see [8] for a review). Rheol-
ogists have tracked the thermal motion of Brownian particles to derive local rheological properties
[9, 10] and to resolve microheterogeneities [11, 12] of complex fluids. The later class of application
will be the subject of this study, and is introduced in detail in the next section 1.3 of this chapter.
Colloidal scientists have pioneered the use of video microscopy in particle tracking experiments to
study phase transitions [13] and to elucidate pair interaction potentials [14].

The standard setup for particle tracking video microscopy is presented in the next chapter.
But briefly, it includes a CCD camera attached to a microscope that acquires images of fluorescent
molecules or spherical particles. Typically hundred of particle can be tracked simultaneously,
ensuring a high level of statistical accuracy. This setup gives access to a wide range of time scales,
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from high speed video-rate to unbounded long time-lapse acquisitions, that are particularly suitable
for studying biological phenomena. Subpixel spatial resolution is obtained by locating the particle
at the extrapolated center of its diffraction image when it covers several pixels [15]. At usual
magnifications of hundreds of nanometers per pixels, spatial resolutions of tens of nanometers is
commonly achieved [16, 15]. These values are well below the optical resolution of about 250 nm
[17].

Tracking particles with even higher precision has also been shown to be feasible with the use of
more complex setups. Among the video-based techniques, low-light-level CCD detectors operated
in photon-counting mode are used to increase signal [18, 19] in single molecule tracking. For
such studies, background noise and signal levels (number of detected photons) are the limiting
factors [20]. Improved observation techniques (such as internal reflection, near-field illumination,
multiphoton or confocal microscopy) have been used to reduce the background fluorescence signal.
Furthermore, elaborate extrapolation algorithms have been employed to refine particle positioning
[15]. Under optimized conditions, spatial resolution as low as a few nanometers has been achieved
[5]. However, in addition to their inherent complexity, these techniques are not well suited for
studying large length scale dynamics, as they probe a reduced volume of sample [18].

Furthermore, subnanometer resolution can be achieved using laser interferometry [21] or laser
deflection particle tracking [22, 23]. However these methods can not easily be extended to track
several particles at the same time, unlike video microscopy.

1.3 Quantitative Studies

In this section we explain how quantitative studies can be performed from the probes’ trajectories
extracted by the techniques exposed above. Essentially, the amplitude of the particles motion
depends on the mechanical properties of the surrounding environment. This property is often
assess in terms of rheometric measurements. Thus we start this section by putting particle tracking
microrheology in perspective with classical rheology, to encompass several advantages of the micron
scale approach.

1.3.1 From Rheology to Microrheology

Rheology is the study of the deformation and flow of a material in response to an applied stress.
Simple solids store energy and provide an elastic response, whereas simple liquids dissipate energy
through viscous flow. For more complex viscoelastic materials, rheological measurements reveal
both the solid- and fluid-like responses which generally depend on the time scale at which the
sample is excited [24]. Traditionally, rheological measurements are performed on several milliliters
of material in a mechanical rheometer (e.g. a cone-and-plate geometry rheometer) by applying a
small amplitude oscillatory shear strain γ(t) = γ0 sin(ωt) and measuring the resultant shear stress
σ(t). In the viscoelastic linear regime (or regime of small amplitude straining, typically γ0 � 1),
the shear stress is proportional to the amplitude of the applied strain γ0 and is itself sinusoidally
varying in time. It can be represented as:

σ(t) = γ0

[
G′(ω) sin(ωt) +G′′(ω) cos(ωt)

]
. (1.1)

In the above equation, the term proportional to G′(ω) is in phase with the strain, while the term
containing G′′(ω) is in phase with the rate of strain γ̇(t) = dγ/dt. G′(ω) is called the storage
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modulus and represents storage of elastic energy, and G′′(ω) is called the loss modulus and rep-
resents the viscous dissipation of that energy. The complex shear modulus G∗(ω) is defined by
G∗(ω) = G′(ω)+ iG′′(ω) [24, 25]. Rheology measurements such as these have given valuable insight
into structural rearrangements and mechanical response of a wide range of materials. They are
particularly valuable in characterizing soft materials or complex fluids. However, conventional me-
chanical techniques are not always well-suited for all systems. Typically, milliliter sample volumes
are required, precluding the study of rare or precious materials, including many biological samples.
Moreover, conventional rheometers provide a measurement of the averaged bulk response, and do
not allow for local measurements in inhomogeneous systems.

To address this issues, a new class of measurement techniques has emerged. These have come
to be called microrheology methods, and probe the material response on micrometer length scales,
using microliter sample volumes [22, 26]. Among the methods currently available to perform such
measurements, we focus here on the most popular one: particle tracking microrheology. This
methods typically use embedded micron-sized mechanical probes to locally deform the medium,
and information is extracted from their motion. Techniques using small particles tracking fall into
two classes: those involving active manipulation of probe particles within the sample, and those
employing passive observation of thermal fluctuations of such probe particles. In either case, the
probes used are typically spherical beads of between a fraction of micrometer to several micrometers
in diameter and measurements are made from their trajectories. Before tackling the quantitative
studies that are made in particle tracking microrheology, we outline below the specific advantages
and features of such measurements [27, 28, 26], based on considerations about the length scale,
time scale and energy/force scale at which they operate:

• Probing at micrometer length scales allows the characterization of local viscoelasticity. This is
particularly important in heterogeneous systems where viscoelasticity varies from location to
location in the sample [29]. Also, changing the size of the probes permits the characterization
of the hierarchical structures often encountered in complex fluids at various length scales of
observation [30].

• The required amount of sample is significantly reduced. This causes a reduction in cost and
an increase in flexibility, as pointed out in the next point.

• Patricle tracking microrheology measurements are usually rapid, enabling for example de-
tailed phase diagrams to be quickly established [31]. Equally, chemistry and other conditions
(temperature,...) are quickly equilibrated in the small sample volume, and specific designs
allows the monitoring of transient rheological changes in the sample [32].

• Since the probe has low inertia it is possible to perform high frequency measurements of the
material response. This requires however adapted detection techniques, such as laser tracking
discussed in the previous section.

• In passive measurements relying only on the probe thermal motion, the excitation energy is on
the order of kBT , inducing forces of typically a few piconewton. This allows the study of soft
fragile structure such as intracellular cells properties without disrupting their components.
Moreover, it is possible to be certain that measurements are in the linear rheological regime
(see next point).
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• Many microrheology measurements have been reported to show good agreements with bulk
rheology values. Many questions remain opened on how the sample chemistry and hetero-
geneity relate to this agreement [9, 22, 33]. But in general, a required condition is that the
relative size of the probes must be bigger to any structural length scale (e.g. mesh size) of the
complex material in order to treat the medium as a continuum around the embedded probe
(see the following discussion).

In the next section, we derive the relation between probes trajectory and material property, by
using a continuum theory. Indeed, when the embedded particles are much larger than any structural
size of the material, particle motions measure the macroscopic stress relaxation. Smaller particles
measure the local mechanical response and also probe the effect of steric hindrances caused by the
microstructure (see Figure 1.1).

A B C

Fig. 1.1: Schematic of a probe particle of radius a embedded in a network of mesh
size ξ. In A) 2a � ξ, the probe is measuring bulk response; B) 2a ≈ ξ, the probe
motion is highly coupled with the gel fluctuations; C) 2a � ξ, the probe is exploring
individual pore structure.

1.3.2 Quantitative Passive Microrheology

This research focuses on a particular passive particle tracking microrheology technique which is
described in detail in chapter 2. The passive measurements use only the thermal energy kBT to
deform the medium, allowing the study of very fragile structures, but consequently, the material
must be sufficiently soft to allow detectable motion of particles [34, 35]. Also, the intrinsic stochastic
nature of thermal energy requires the measurement to collect a large amount of data in order
to build a consistent statistic. The dynamics of particle motions are then revealed in the time
dependent position correlation function of individual tracer particles [9], through either the power
spectral density S∗x = 〈|x∗|(ω)〉, but more commonly through the mean-squared displacement, that
is defined as:

〈∆x2(τ)〉 =
〈[

x(t+ τ)− x(t)
]2〉

, (1.2)
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Here x(t) is the d-dimensional particle position at time t, x∗(ω) is its Fourier transform at the
frequency ω, τ is called the lag time and the brackets 〈. . . 〉 indicate an ensemble/time average.
Such definitions are made possible thanks to some physically meaningful assumption on the process
x(t), the main one being stationarity which can be justified by the thermal equilibrium assumption.
When the bead evolves in a continuum, the generalized Stokes-Einstein relation relates the mean-
squared displacement to the complex shear modulus [9, 36, 37]. In the Laplace1 frequency space,
it is written:

G̃(s) =
s

6πa

[
2dkBT

s2〈∆x̃2(s)〉
−ms

]
(1.3)

where m and a are the spherical particle’s mass and radius, kB is the Boltzmann’s constant and
T the absolute temperature. In the next section, we will recall some limitations of applying this
equation to colloidal dynamics. Within a valid frequency range, the inertial effect of the probe
particle, ms in the above equation, can be neglected, and we obtain:

G∗(ω) = G̃(iω) =
dkBT

3πa(iω)〈∆x̃2(iω)〉
. (1.4)

This equation represents a generalization of the Stokes-Einstein equation in the Fourier domain
consistent with the convention of standard rheology. For example, we can easily get the behavior
of 〈∆x2(τ)〉 in a pure Voigt viscoelastic fluid model, for which G∗(ω) = G+ iωη. We find

〈∆x2(τ)〉 =
dkBT

3πaG

(
1− e−Gτ/η

)
, (1.5)

from which we can restore the diffusive linear scaling 〈∆x2(τ)〉 = 2dDτ in a viscous liquid by
setting G = 0. We introduced here the diffusion coefficient D through the famous Stokes-Einstein
relation:

D =
kBT

6πaη
. (1.6)

Unlike in simple fluids, the residual mean-squared displacement of the tracers in a complex
material may scale differently with τ , and we can write 〈∆x2(τ)〉 ∼ τα(τ). The coefficient α is
called the diffusive exponent. The particles may exhibit subdiffusive motion (0 < α < 1) or become
locally constrained (α = 0, see for example the elastic limit τ � η/G in relation (1.5)). It is
important to note that, as an expression of the second law of thermodynamics, it is expected to
have α ≤ 1 for all passive measurements in any material at equilibrium, independently of any time
or length scale involved. In particular, this remark is valid even if the continuum assumption does
not hold when the particle is too small. However, in that case, we understand that the probe is for
instance likely to explore different microenvironment over the course of its trajectory (see Figure
1.1). This effect constitutes on obvious example in which the generalized Stokes-Einstein relation
(1.3) can not be valid. We discuss the limits of the quantitative microrheology in the next section.

Beside the assumption of the continuum, which gives constraints on length scales, recent the-

1 The Laplace Transform is defined as:

Lt

ˆ
g(t)

˜
= g̃(s) ≡

Z +∞

0

g(t)e−stdt .
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oretical work has shown that the generalized Stokes-Einstein relation (1.3) holds only within a
certain frequency range ωB < ω < ω∗ [38]. The lower limit gives the decay time ω−1

B of the medium
compression mode at the length scale of the bead, and the upper limit ω∗ exists due to the on-
set of inertial effects of the material at the length scale of the bead. For typical soft materials
and micron-size beads, there is a wide frequency range 1Hz < ω < 1 MHz where the generalized
Stokes-Einstein relation is valid [34, 38, 39].

1.4 Motivations and Objectives

From the first colloidal particle tedious tracking experiments performed by Jean Perrin, to the ac-
tual performances of modern particles tracking techniques, gains in precision, temporal resolution
and statistical accuracy have been colossal. Also the range of application has been much broaden,
and the simple study of diffusion in purely homogeneous viscous fluid has given place to assessment
in depth of more complex heterogeneous systems such as biological material. The importance of
probing these system at the mesoscopic length scale is indisputable today, and video multiple parti-
cle tracking is one natural choice through its flexibility and availability. However, even though video
microscopy particle tracking has seen a justified growing popularity in recent years, few character-
ization of the standard setup have been made. More strikingly, some fundamental limitations have
not been pointed out. This work is intended to expose and understand some critical characteristics
of the technique, but also to propose new methods and analysis scheme to take full benefit of the
great quantity of information accessible with this type of measurement.

The advantages of this technique are illustrated in the assessment of an important class of
biomaterials called self-assembling peptides. These systems have a considerable potential for a
number of applications, including scaffolding for tissue repair and tissue engineering, drug delivery
of molecular medicine, as well as biological surface engineering. One attracting characteristic of
self-assembling peptides is that they undergo a solution/gel transition with time and/or by varying
their chemical composition (pH, salt concentration,...). The experimental characterization of this
transition is extremely challenging with conventional methods due to the high sensitivity and the
fragility of the system. The microrheology technique exposed here is well-suited to study a give
new physical insights in the self-assembly process.

The main objectives of this work are summarized below.

• Study of the limitations of video multiple particle tracking

• Optimize the technique and elaborate possible correction methods for these limitations

• Develop new analysis approach to fully exploit measurements output

• Assess the sol-gel transition of self-assembling peptides

1.5 Overview

This thesis is organized as follow. In chapter 2, we expose in detail the experimental technique of
multiple particle tracking that is used and studied throughout the rest of the text. In particular,
we end this chapter by pointing out two important characteristics and limitations of this technique,
namely the spatial resolution (that will be studied in the following two chapter), and the statistical
design of the measurements (that will be covered by a subsequent chapter).
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Chapter 3 describes the localization errors arising when performing colloidal particle tracking.
A general model for the errors is developed by separating their origin into two sources: the detector
noise induces “static error” and the acquisition time leads to “dynamic error” in a particle tracking
experiment. This model is experimentally verified for video microscopy particle tracking.

Chapter 4 is mainly theoretical and exposes the influence of the dynamic errors on the measured
mean-squared displacement of probes moving in various model fluids. We show in particular that
important misinterpretation can arise in microrheological measurement where the elastic modulus
is calculated.

Chapter 5 presents an important study of the statistical design of the measurement output
from video microscopy particle tracking. Since the particles in the sample can be detected only
when they are traveling in a finite imaging volume, the extracted trajectories, and thus quantitative
assessments that are made from these trajectories, have peculiar statistical properties that depend
on the volume of observation. We present in this chapter a detailed mathematical route to account
and characterize this effect.

At this point we can note that the localization errors exposed in chapter 3 and 4 occur in
general at high frequencies of the measurements, whereas the statistical uncertainty presented in
chapter 5 are mainly affecting low frequencies accuracy. Thus, in these 3 chpaters, we provide a
characterization of the technique over the entire spectrum of measurements.

Finally, after having gained a full characterization of the technique and developed tools to correct
some limitation and to extract new information, we applied multiple particle tracking to study a
complex time-evolving system called self-assembling peptides, that forms a hydrogel biomaterial
through a solution/gel transition. In particular, we present in chapter 6 the analysis of the kinetics
of gelation of this system.



CHAPTER 2

Experimental Methods for
Multiple Particle Tracking

This chapter explains in thorough detail the experimental technique that is used and studied in
this project. Multiple particle tracking technique is performed by combining video microscopy and
image processing to obtain time-resolved and simultaneous measurement of individual colloidal par-
ticles’ trajectories. This chapter has been purposely written as a concise manual on the technique,
from sample preparation to basic data analysis. But it is also intended to point out important char-
acteristics and limitations, namely spatial resolution and statistical design of the measurements,
that will be studied in depth in subsequent chapters.

Thus we first expose the experimental protocol that is consistently followed to prepare the
probed material sample throughout the rest of the work presented in this manuscript, and we
explain the details of the fluorescent microscopy movie acquisition. Next we briefly expose the
main concepts of the image processing algorithm developed by Crocker and Grier [16] to extract
colloidal trajectories from movies of the particles’ motion. Finally in the last two sections we identify
two significant limitations: the spatial resolution of the tracking and the statistical peculiar design
of the output data.
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2.1 Experimental Protocol

2.1.1 Sample Preparation

Fluorescent particles

The choice of the particles that will serve as probes is critical and must be made carefully. In this
study, only fluorescent particles have been used to perform multiple particle tracking measurements.
It is possible to track un-died particle in a bright field montage [28]. However, the diffraction figure
of a submicron spherical particle obtained in bright field is peculiar: it is a roughly uniform black
spot on a white background when the particle is on one side of the focal plane of the microscope
objective, but becomes a black ring with a white halo when the probes travels to the other side
of the focal plane. This introduces several limitations to the tracking algorithms when the movies
are processed (see the following sections) and we limited our choice to fluorescence. Fluorescent
microspheres are commercially available from several vendors: Polysciences (Warrington, PA),
Invitrogen’s Molecular Probes (Eugene, OR) or Bangs Laboratories (Fishers, IN) for example. The
fluorescent microspheres are usually made of polystyrene at a density of 1.05 g.mL−1 that can be
eventually matched by addition of heavy water D2O in the suspension if the system’s chemistry
allows. These microspheres are proposed with a wide variety of dyes, sizes, and surface chemistry.

Common dyes include Yellow-Green fluorescence that is maximally excited at 441 nm and emits
at a maximum wavelength of 486 nm (matches fluorescein filter sets), or Yellow-Orange that has
fluorescence spectra at 529/546 nm excitation/emission maxima (matches rhodamine filters). Pho-
tobleaching of the dye embedded in the microspheres can be detected for the small trackable beads
(about 100 nm, see later in this section), and it is preferable to deoxygenate the particles suspension
by bubbling argon through the sample before injecting it into the observation chamber (see next
section).

The sizes offered typically range from 0.02 to 10µm, with usually coefficient of variation (CV)
ranging from 20% for the smallest size to less than 5% for particles bigger than 0.2µm (for certain
vendors, the coefficient of variation increases to 10% for particles bigger than 6µm). In microrheol-
ogy and microstructure characterization, the size of the probe particle is the length scale at which
the material is probed. Thus a high level of monodispersity (CV less than 5%) is essential. The
range of actually used particle size is also limited by other factors related to the technique. On the
lower size end, the fluorescent particles must emit sufficient photons and their diffraction image
must be sufficiently wide so that they form on screen a measurable brightness two-dimensional
profile. This limit of detection will be covered more in details in subsequent sections, but to fix the
idea, for the industrial grade charge-coupled device camera used in our setup with higher magnifi-
cation, we find that the minimum trackable particle size is about 100 nm. On the other end of the
size range, the detection of small displacement is limited by the spatial resolution of the tracking
technique (thoroughly characterized in the next chapter). As explained in chapter 1, the dynamics
of Brownian probes, and hence the typical displacement amplitude, depend on their radius, on the
time scale of observation and on the mechanical nature of the probed material (see the generalized
Stokes-Einstein relation 1.3 derived in chapter 1). Hence, bigger probes will exhibit slower dynamics
and for a given time scale of observation, will undergo smaller displacements. As a rule of thumb,
we can use kBT/(3πaG) ≥ ε2 to find the maximum particle radius a trackable in a medium with
elastic modulus G at a given time scale of observation. Here ε is the typical spatial resolution of
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the tracking where kB is the Boltzmann’s constant and T is the absolute temperature. We get:

amax ≤
kBT

3πε2G
(2.1)

which typically gives amax = 0.3µm at T = 25◦C for G = 1 Pa and ε = 10 nm. To this subtile
trade-off between several imbricated experimental parameters, we must also recall at this point that
the generalized Stokes-Einstein relation derived in the previous chapter (and used above to derive
the rule of thumb Eq. 2.1) is valid only if the particle is moving in a continuum. This means that
any structural changes in the material must occur at length scale much smaller than the probes
diameter (see figure 1.1). Whether or not this relation can be applied depends on the size of the
probes, which in turn must be chosen accordingly. Consequently, the physical interpretation of the
results must be made carefully. Hence, these are general considerations of high importance when
choosing the probes particle size for material property measurements using particle tracking.

The surface chemistry of the probes is an equally important experimental parameter, and it has
been the subject of several studies in the very recent years [40, 41, 42]. Polystyrene plain particles
are naturally uncharged and hydrophobic, but all vendors commercialize modified particles with a
variety of surface functionalization. Most common functions includes carboxylate modification for
which the particle surface is decorated with carboxyl groups COOH, resulting in hydrophilic and
negatively charged probes at pH greater than about 4 (and uncharged below). Solution of such
beads are very stable and often used for microrheology experiments. Amine-modified probes are
hydrophilic particles with positively charged amine groups NH2 relatively stable for pH below 9 at
which the surface charge is not neutralized. The choice of probes surface chemistry depends on the
material under study, but usually chemically inert particles with the least possible influence on the
material properties are sought. It is also possible to use other functionalization such as a coating
of the probes with Bovine Serum Albumin (BSA) protein, or decorate the particle with a layer of
short polyethylen glycol (PEG) for steric hindrance [40, 41, 43].

Ideally, the particle should be uniformly dispersed in the material to be probed. Depending
on the interactions between the materials and the probes, but also the interparticle interactions,
beads can form aggregates. It is usually possible to distinguish aggregates of two or more beads
from isolated particles and to discard them from the tracking. But for small particles, this becomes
challenging and the monodispersity requirement can be violated. For all experiments, beads bulk
solutions and, when possible, their suspension in the material of interest, will be thoroughly son-
icated. We will be careful however to not overheat the solutions. Also, the concentration Cb of
beads in the sample should be small enough to not alter significantly the property of the sample.
In general, only a low volume fraction φ < 0.1% of beads are dispersed in the sample.

Chamber of Observation

The sample is injected into a custom made chamber for observation with the video microscopy
setup described in the next section. The chamber must be a perfectly sealed closed volume, as
any leak induces a drain and/or evaporation that can produce unwanted convection motions of the
particles. Also, when injecting the sample into the chamber, air bubbles needs to be avoided for
similar reasons. To make the chambers of observation, we put two 1 cm-wide stripes of parafilm
on a microscope slide (typically 24 × 60 mm, No. 11

2 thickness - that is 0.16 to 0.19 mm thick),
parallel and apart from each other by approximately 5 mm. A square coverslip (18 × 18 mm, No.
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1 thickness or 0.13 to 0.17 mm) is then deposit to bridge both parafilm stripes, as described in the
figure 2.1. The parafilm is briefly melted while moderate pressure is applied on the top coverslip for
efficient sealing. We then obtain a channel open at both end, that is 5 mm wide and approximately
150µm high.

The slides are preconditioned the following way for cleaning: we thoroughly wipe the slides
with a detergent solution (Micro-90) to remove the oil used for their packaging; the slides are rinse
with water and then put in a bath of NaOH (1M) for at least 20 mn; after another rinsing with
water, the slides are hold in boiling water for 5 to 10 mn. They are finally dried under argon. This
cleaning protocol tends to turn the slides hydrophilic which facilitates the filling of the chamber
by capillary forces without the formation of bubbles. Both end of the cell are sealed using vacuum
grease shortly after injection of the sample in order to prevent drying and convective flow. We
found that these chambers remain hermetically sealed for at least five days.

Top view

∼ 5 mm

Parafilm spacers

Microscope coverslip

∼ 150 µm

Microscope slide

Side view

Fig. 2.1: Custom made microscope observation chamber for multiple particle tracking
experiments. A standard glass microscope slide holds the chamber made by adding a
cover slip separated by two parafilm spacers. The resulting chamber is approximately
5 mm wide and 150µm high.

There are other techniques to build observation chambers, and some more sophisticated design
have been developed using dialysis membrane to easily change the chemical composition of the
material [32]. Also, Ibidi (Integrated BioDiagnostics GmbH, München, Germany) recently started
commercializing plastic micro-slides for cell observation, that contains chambers which dimensions
are similar to what is made here.

2.1.2 The Video Microscopy Setup

The fluorescent video microscopy setup in our laboratory consists of an inverted microscope (Zeiss
Axiovert 200, Jena, Germany), to which an excitation Hg-lamp light source is attached to illuminate



2.1. Experimental Protocol 25

the observed sample through the objective. The light beam passes through an excitation filter that
transmits only a certain range of wavelengths. Within this range, the illumination is then almost
entirely reflected by a dichroic filter towards the sample, through the objective, to excite the
fluorescent probes. The latter emits a signal that returns through the objective to the dichroic
filter, the latter being designed as nearly transparent at the emission wavelength. A final emission
filter is placed on the optical train before the visualization ports of the microscope to block any stray
transmitted excitation light. In almost all experiments, we used yellow-green fluorescent particles
with a filter set (excitation, dichroic and emission) that matches fluorescein fluorescent spectrum
(Omega Optical, Brattleboro, VT).

CCD

observation chamber

objective

inverted
microscope

digital video
recorder (optional)

acquisition computer
and analysis software

Fig. 2.2: Schematic of the video microscopy setup for multiple particle tracking. The
sample is observed through a fluorescent inverted microscope equipped with a CCD
camera. The camera is connected to a digital video recorder and movies are acquired
and analyzed by a computer supplied with a frame grabber.

An industrial grade charge-coupled device (CCD) camera (Hitachi KP-M1A, Woodbury, NY)
with variable electronic shutter speed ranging from 1/60 s to 1/10000 s, set to frame integration
mode is attached to the side port of the microscope. The analog output of the camera is connected to
a frame grabber PCI board (Scion LG-3, Frederick, MD) that digitized the video signal and is ran by
a Power PC G4 computer (Apple Computer, Cupertino, CA). The analog-to-digital electronic chain
provides an 8-bit dynamic range (that is a range from 0 to 255 analog-to-digital units or “ADU”)
output that is visualized and recorded using the software NIH Image at a maximum video rate
of 30 fps. Image of 640 × 480 pixels are successively captures for a movie length ranging typically
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from 1000 to 5000 frames, the latter duration being limited by the software’s allowed memory.
The movies are saved as an uncompressed three-dimensional tiff stack of images. These type of
file are directly readable by the image processing software Interactive Data Language (Research
Systems, Boulder, CO). An optional step consisting in recording the movies on tape is possible
before digitization. However in general we avoided this step because the DV recording format used
in our laboratory is a compressed numerical format that introduces a loss of information. The
figure 2.2 gives an overview of the video microscopy setup.

We used several microscope objectives in the experiments. The most relevant parameters in-
volved in multiple particle tracking experiments are given in table 2.1 for every objectives we used.
Another important parameter not appearing on this table is the depth of tracking, that is the
spatial interval in the direction perpendicular to the field of view and within which the particles
are actually trackable. In most common multiple tracking experiments, measured trajectories are
the two dimensional projection in the (x, y) field of view plane of the three dimensional probes mo-
tion. Tracking in the third dimension z can be performed using the z-dependent diffraction figure
[44], but requires a new toolset of algorithms that have not been used here. Moreover, such three
dimensional tracking is in general more constraining in terms of the experimental parameters. The
resulting volume of observation in the sample is defined by the field of view in the (x, y) directions,
and the depth of tracking in the z direction. The latter dimension depends on the depth of field
of the objective, but also on the parameters used in the tracking algorithms. We will study this
important quantity in details in subsequent sections of this chapter. The volume of observation is
always chosen at least 50µm away from the wall within the chamber of observation to minimize
the unwanted effect of particle-wall hydrodynamics interactions on the probes motion.

The image processing step described in the next section uses brightness variations information
from the movie to extract particle trajectories. A typically good, trackable image, should consist of
white spots on a black background. The acquisition signal should cover the maximum dynamical
range of the camera (darkest background and brightest particle’s spot) without saturating the
signal. In particular, the microscope aperture diaphragm can be adjusted or neutral density filter
can be used to avoid camera signal saturation. Better, the camera electronic shutter can be shorten
to reduce dynamic error in case of too bright signals.

Finally, it is important to point out a characteristic feature of the standard video signal. The
horizontal scan for the video acquisition is such that a single frame is actually made of two interlaced
fields, each of them containing either all the odd or all the even rows (hereafter defined as the x, or
horizontal, direction) of the CCD matrix. These two fields are exposed 1/60 s apart, such that an
object moving in the direction of the CCD rows will be captured at two different positions in each
field. This has important implications in terms of the dynamic errors presented in the following two
chapters, and the usual procedure is to de-interlace the tracking by analyzing each field individually.
A temporal resolution of 60Hz is thus achieved, but at the cost of a loss in the spatial resolution of
the particle localization on each field. Indeed, each particle image contains only half the number of
pixel after de-interlacing, which degrades the brightness weighted centroid estimation used in the
algorithm (see next section). This effect is particularly significant in the direction perpendicular
to the interlacing (that is the y direction, or vertical direction) for which the image is shrunk by
a factor 2. Very often in the following studies we analyzed particle motion only in the horizontal
direction.
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Objectives N.A. Magnification Field of View Depth of Field
20× air 0.5 0.642µm.pxl−1 411× 308µm 15.3µm
40× air 0.75 0.329µm.pxl−1 211× 158µm 5.2µm

63× water im. 1.2 0.210µm.pxl−1 143× 101µm 2.1µm
100× oil im. 1.4 0.132µm.pxl−1 84× 63µm 1.2µm

Table 2.1: The different objectives and the corresponding parameters relevant in
multiple particle tracking experiments. The magnifications are specific of the setup
found in our lab, and depends in general on the microscope optics and CCD chip pixel
size of the camera. The field of view is calculated based on 640× 480 pixels frame size.
The depth of field is calculated using an equation provided by the lens manufacturer
(Zeiss): DOF(µm) = 103/(7 × M × N.A.) + 0.5/(2 × N.A.2), with M the objective
magnification (20 for the 20×, 40 for the 40×,...).

2.2 The Tracking Algorithms

The next step in the multiple particle tracking technique is to extract a list of probe trajectories
from the movie of particle motions acquired with the video microscope. The image processing
algorithms we used in this study were originally developed by Crocker and Grier [16]. The generic
algorithms were written in IDL language (Research Systems, Boulder, CO) which handles efficiently
manipulation of large arrays as a dedicated image processing language. Indeed, raw uncompressed
movies from video microscopy measurements ends up being relatively big files. For example, a full
camera field 640×480 pxl movie of 1000 frames, at 8-bit grayscale resolution (256 levels, from black
to white), holds for 293MB of hard drive space. Also, the software routines have been made available
online at http://www.physics.emory.edu/∼weeks/idl/ (they have been recently translated into a
MatLab version), a website maintained by Eric Weeks. We recall briefly in this section the image
processing principles underlying the tracking. Specifically, there are 3 steps to transform a movie
into a list of probe trajectories: removing unwanted noise and background signal in each frame
(image restoration), locating the particle images in each frames pixel array (feature location), and
finally connecting successive positions into trajectories (labeling positions). A detailed description
can be found in the original paper [16] and we will recall in this section only the main concepts of
the algorithms.

2.2.1 Images Filtering

The filtering step of the raw image is made thanks to a linear band-pass spatial filter. The typical
images obtain in colloidal video microscopy are composed of white circular spots distributed on a
black background. The video images are affected by a noise from a variety of origins, discussed in
detail in the appendix. Subtracting off the background is made by building a background image
resulting from the convolution of the original image with a constant kernel of size 2w1 + 1, where
w1 is a larger than the typical radius in pixels of a single particle brightness profile on the array,

http://www.physics.emory.edu/~weeks/idl/
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but smaller than the typical interparticle distance (w1 is typically a particle image diameter). If
the original array is described by Ai,j the brightness value for the pixel indexed by (i, j) on the
CCD matrix (say i is in the subscript in the x direction and j in the y direction), we obtain the
background image by using the convolution:

Bi,j = (2w1 + 1)−2
∑

|m|≤w1

∑
|n|≤w1

Ai+m,j+m (2.2)

which corresponds to keeping the long spatial wavelength (low-pass filter in the spatial frequency
space with a cutoff at (2w1 + 1)−1). Another random noise with small correlation length of about
1 pxl comes from digitization and camera noise, and is filtered by smoothing the original image with
a narrow Gaussian kernel, with again a support square mask of size 2w1 + 1 � 1. The resulting
Gaussian smoothed image is calculated by:

Gi,j =
[∑

|m|≤w1
e−m

2/4
]−2 ∑

|m|≤w1

∑
|n|≤w1

Ai+m,j+m × e−(m2+n2)/4 (2.3)

which is again a low-pass filter in the spatial frequency domain, the cutoff being this time 1 pxl−1.
The difference between the noise-reduced image G and the background image B is an estimate of
the ideal image Â:

Â = G−B = A ∗K (2.4)

where the convolution kernel is given by:

Km,n =
[∑

|m|≤w1
e−m

2/4
]−2 × e−(m2+n2)/4 − (2w1 + 1)−2 for |m|, |n| ≤ w1 (2.5)

and Km,n = 0 otherwise. The image resulting from this difference is a low intensity background
with sharp circular spot corresponding to the original particle images. The choice of a support of
size w1 for the Gaussian filtering allows the calculation of a single convolution step of the image
with the kernel K. The result is also usually a higher precision data arrays, if the original 8-bit
image has been accordingly converted.

2.2.2 Locating Features

Candidate features are located at the pixel exhibiting the local brightest signal within a distance
w2. These local brightness maxima are identified using a non-linear morphological operation called
gray-scale dilatation, with a disk of radius w2 as the structural element. This operation sets the
value of an image pixel, say Ai,j to the maximum brightness value within a distance w2 of the pixel
coordinate (i, j). A pixel in the original image with same value as in the dilatation-transformed
image is then a candidate feature location. This locally brightest pixel, say at coordinates (i, j), is
presumably near the particle image true center. Resolution in locating this center can be gained
by using the corresponding local brightness profile. A brightness-weighted centroid is calculated in
a circular region centered in (i, j) and of radius w2 such that

x = i+ µ−1
0

∑
m2+n2≤w2

m×Ai+m,j+n and y = j + µ−1
0

∑
m2+n2≤w2

n×Ai+m,j+n (2.6)

are the corrected positions of the brightness center obtained at a subpixel resolution, where µ0 =∑
m2+n2≤w2

Ai+m,j+n is the integrated brightness of the corresponding spot. The radius w2 of the
mask is usually chosen slightly larger than the particle image radius to include eventual tails of
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the profile. For each image, this calculation is repeated for all local maxima found by the previous
dilatation transform. Ideally, each of these pre-located particle candidates correspond to a given
brightness profile. Moments of each brightness local distribution are also calculated to characterize
its shape. For example:

µ2 =
∑

m2+n2≤w2

(m2 + n2)×Ai+m,j+n (2.7)

can be used to evaluate the characteristic squared size of the brightness spot. Also, the original
algorithms include the calculation of the eccentricity e of the brightness spot (from 0 to a perfectly
circular profile to 1 for an elongated profile in a given direction).

 
 
 
 
 A B C D

Fig. 2.3: Successive steps of feature location in the tracking algorithms. A) is a typical
raw frame from a fluorescent colloidal video microscopy movie. B) is the result of the
image restoration from the raw frame. C) illustrates how circular masks are centered
on the local brightness maximum and used to clip the individual spot to calculate
brightness integrated parameter, such as the center position of the intensity profile
or its squared radius of gyration. D) shows the resulting subpixel resolution feature
localizations

This feature location routine turns out to be very sensitive and will report many possible
locations, including from false particle identification. The parameter space (µ0, µ2, e) is used to
characterize the shape of the brightness profile of the found features. Reported in this characteristic
space, true particles images will fall into a definite region whereas spurious identification (e.g.
colloidal aggregates, noise and imperfections in the optical system) will lie outside this region. The
measured cluster of point obtained in this space can be clipped to the specified region to remove
false particle identification and to retain only valid data for the next step of the tracking. This
clipping is particularly important in terms of spatial resolution and statistical characteristic of the
output data. We allocated the next part of this chapter (section 2.3) to enter into greater details
of this critical tracking step.

2.2.3 Building Trajectories

Once particles were located in every frame of the movie, found locations must be linked into
trajectories. In other words, a given location in a given frame (i.e. at a given time) is assigned a
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label and the same label must be assigned to the found position corresponding to the same detected
particle in the next frame (that is, a priori among all candidate locations found in this frame).
In practice, this is done by setting a cutoff w3 in the maximum possible displacement between
successive frame. Hence, the next position is found in a vicinity of a characteristic length scale w3

around the current position. This is repeated for all located feature in all frame. The histogram of
all displacements between successive frames is then plotted to check if w3 is an appropriate cutoff
on the distribution, namely to verify that w3 does not clip a non-negligible number of event in
the histogram. Naturally, the typical distance a particle moves between successive frames must be
significantly smaller than the typical inter-particle separation in order to build valid trajectories.
This is generally the case at the low volume fraction of probes used in the sample.

The resulting output of the tracking routines is a list of x and y positions, the time t and
particle identities number. Typically, millions of positions are assigned to thousands of particle
trajectories. As discussed earlier in the text, the particles are effectively detectable when they are
traveling in a given volume of observation. This volume is defined by the video microscope field of
view (an (x, y) plane of size xb and yb) and in the z direction by the depth of tracking zb. This
depth of tracking depends on the optics (depth of field of the objective). But it also depends on the
pre-processing step of clipping the cluster of points in the parameter space (µ0, µ2, e) into a target
valid region. We will explain this important parameter in the next section. For now, let us notice
that particles can move in and out of the volume of trackable observation. When a particle moves
out of sight and comes back, a new trajectory is started (a new label is assigned to the particle). A
memory option in the tracking algorithm can be used to allow gap in trajectories when a feature
is not found for a limited small number of frame. But in general, trajectories will have different
duration. We will point out in the following sections how this observation is of high importance for
studying heterogeneous systems.

2.3 False Data Removal

As explained in the previous section, the tracking algorithms developed by Crocker and Grier [16]
locate images of particles on each frame (or field) of a movie. Each image is usually a bright (or
white) spot on a black background. The algorithm places a mask on each spot over which signal
(difference of the absolute brightness and the background level, obtained after filtering) is integrated
to return the signal weighted location of the center of the particle image, but also the radius of
gyration µ1/2

2 , the signal total mass (integrated signal) µ0 and the eccentricity e of the spot image (0
for a circle and approximately 1 for an elongated spot). After such measurements are performed on
each frame, a post-processing of the raw data is applied to all found features by selecting a correct
range for (µ1/2

2 , µ0, e) to avoid the detection of spurious particles (such as aggregates of particles).
As the particle travels in the volume of observation Vb = xbybzb and visit different altitudes z,
the total mass and the radius of gyration of its image greatly vary (see figure 2.4) whereas the
eccentricity has been found to remain essentially unchanged (data not shown in this section). This
geometrical change is a consequence of diffraction, and has been used to perform three dimensional
tracking [44, 16]. We perform here a precise characterization of the variations µ0(z) and µ2(z)1/2

that helps understanding how to perform the post-processing clipping in the (µ1/2
2 , µ0) space. We

conclude by a determination of zb.
In order to experimentally evaluate the variation of µ0(z) and µ2(z)1/2 as a function of z, we
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Fig. 2.4: Schematic for the experiments used to assess the variation of µ0(z) and
µ2(z)1/2 with the altitude z. Probes are fixed in agarose and their tracking is performed
while the objective is translated. A particle is tracked as long as it remains in the
depth of filed of the moving objective. When seen at different altitudes in the volume
of observation, the particle’s brightness passes through a maximum, set to z = 0 for
each particle in order to perform averages over several tracks. In the bottom plots we
present examples of such variations for two particles (red and blue curves) for which
we have matched the altitude of maximum brightness. The radius of gyration (right
plot) shows also significant variations with z.

immobilized the probes in an agarose gel of concentration 1% w/v loaded in a microscope chamber
for observation. The agarose (Seakem LE; BMA, Rockland, ME) was dissolved in boiling water, and
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0.925µm diameter beads were added during the cooling, when the temperature reached 80◦C. After
a short vortexing, the chamber of observation was loaded with the warm solution. We verified that
at this concentration of agarose, particles motions are well below the tracking limit of detection.
Also, note that agarose has the same refractive index as water [45]. By attaching the microscope
focusing knob to a motor, the 40× (see table 2.1) objective lens was translated in the z direction at
a constant velocity vz = 15± 0.5µm.s−1, while a movie of the focusing/defocusing of the dispersed
particles was acquired. The tracking algorithms were applied on these movies at times when the
volume of observation is between 30 and 70µm above the bottom of the chamber. On this range,
we visually checked the validity of the found features by overlaying the located particles with the
original microscope images. Obvious false hits were manually removed when needed. For each
trajectory, the signal integrated brightness µ0(t = z/vz) passes through a maximum value when
plotted versus time. The altitude of maximum mass µmax

0 (calculated from the time of maximum
mass) is obtained when the corresponding particle crosses the plan of focus of the objective, and
is set to 0 for all tracked particles as shown in figure 2.4. All curves µ0(z), µ2(z)1/2 and e(z) then
overlap to within 10% of the ensemble mean, even if the post processing visual selection was in
general significantly less restrictive. We show in figure 2.5 the resulting averaged curve (red line) in
the (µ0, µ

1/2
2 ) parameter space, and the corresponding typical particle images obtained at various

altitude z in the volume of observation (the mapping in the (µ0, µ
1/2
2 ) space obtained from this

particular particle is shown by the blue curve).
When clipping the cluster of points obtained in the (µ0, µ

1/2
2 ) parameter space, it is preferable to

provide a cutoff region such that the resulting tracking achieves highest resolution in the localization
of the particles (see chapter 3). To determine the clipping region, we first set a value zb of depth
of tracking that is the width of an interval of altitude z out of which the found features are
discarded. Namely, two altitudes z1 and z2 are chosen with z2 − z1 = zb, and correspond to two
points (µ0, µ

1/2
2 )1 and (µ0, µ

1/2
2 )2 in the clipping parameter space (µ0, µ

1/2
2 ). Choosing particles for

which z ∈ [z1, z2] means discarding all features above the line connecting the points (µ0, µ
1/2
2 )1

and (µ0, µ
1/2
2 )2 (see figure 2.5). From the tracking performed with the remaining selected feature,

we can calculate the resulting spatial resolution ε by evaluating the one-dimensional mean-squared
displacement of the fixed particle, 〈∆x2〉 = 2ε2 (see chapter 3 for a full description of this method).
For a given zb, the set of points (µ0, µ

1/2
2 )1 and (µ0, µ

1/2
2 )2 such that the corresponding altitudes

verify z2 − z1 = zb is not unique. Among the different possible resulting clipping lines, we choose
the one that minimizes ε. For this experiment using 0.925µm diameter beads observed through
the 40× objective, this method to obtain the cutoff region has been applied to obtain clipping lines
corresponding to the parameter zb = 6, 8, 10 and 12µm (see figure 2.5). We report in table 2.2 the
corresponding minimum values of ε. In this table, this method to obtain zb and ε is labeled (1)
and the corresponding estimates are written z

(1)
b and ε(1) respectively. Notably, we observe that

the spatial resolution increases with an increasing depth of tracking.
To compare these results with a more typical experiment, we performed the tracking 0.925µm

diameter polystyrene beads dispersed in a 1 : 1 solution of H2O/D2O (polystyrene density matching)
at a volume fraction φ = 2.6 × 10−3%. The tracking parameters were identical to those used in
the agarose experiment described above. Specifically, we used the 40× objective and the volume of
observation was 50µm above the bottom of the chamber. The clipping region was chosen identical
to what precedes in the agarose experiment for the different values of zb investigated here. We
repeated this experiments 20 times and combine the results into one tracking array. We plot on
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Fig. 2.5: Cluster of located features in the (µ0, µ
1/2
2 ) space used for post-processing

false particle removal. The red line correspond to the average trajectory in this pa-
rameter space as the probe travels the z direction in the volume of observation. The
blue line is a single typical trajectory of the same event, and to the 4 dots labeled A,
B, C and D along this line correspond the 4 particle images on the right hand side
(image A is obtain when the particle is at the top edge of the volume of observation,
and D is when the particle is at the bottom). The grey dots are the events for a typical
tracking experiment for particles freely moving in water. The dashed lines corresponds
to different clipping regions (only points below each line is kept) for false data removal,
corresponding to the different values of zb indicated on each line.

figure 2.5 the cloud of points obtained for this dynamic experiment in a viscous fluid, and observe
very good agreement with the averaged red curve obtained with the static experiment in agarose.
We can use the knowledge of the concentration of beads to obtain a quantitative agreement in the
determination of zb. The total instantaneous number Nb(t) of tracked particles (over the 20 movies)
calculated for each frame is a fluctuating variable with mean 〈Nb〉 = 337 and standard deviation
(〈N2

b〉 − 〈Nb〉2)1/2 = 17.5 (that is, 5% of the mean). We then use 〈Nb〉 = 20 × Cbxbybzb where
Cb = φ/[π(2a)3/6] is the concentration of beads. With xb = 202µm and yb = 149.4µm known
from the magnification, we calculate a value z(2)

b = 〈Nb〉/(20 × Cbxbyb) for each clipping input
parameter zb defined in the previous method (1). We report these values in table 2.2 and observe
a good agreement with the previous estimation. Note that this method (2), does not depend on
the particular dynamics of the particles, but as opposed to the previous method (1), it depends
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z
(1)
b (µm) z

(2)
b (µm) z

(3)
b (µm) ε(1) (nm) ε(2) (nm)

6± 1 6.0± 0.5 5.2± 0.4 9± 1 12± 7
8± 0.9 8.2± 0.5 6.7± 0.5 10± 1 14± 5
10± 0.9 10.7± 0.5 8.3± 0.8 11± 1 13± 5
12± 0.8 12.9± 0.5 9.5± 1 12± 1 15± 4

Table 2.2: Values of the depth of tracking zb and of the spatial resolution ε as de-
termined by different methods. The value z(1)

b of zb is the parameter that defines the
clipping region, and the corresponding ε(1) is the minimum spatial resolution calculated
from the fixed particles remaining after clipping (see text and figure 2.5). We used the
density of particles to determine z(2)

b from experiments in a viscous fluid. In these
dynamic experiments, the spatial resolution ε(2) is determined from the mean-squared
displacement intercept. The column z

(3)
b are values obtained by matching the distri-

bution of simulated trajectory durations with the corresponding distributions obtained
from the particle tracking experiments in the viscous fluid (see section 2.4).

on the concentration Cb of the particles. Thus these two estimations of zb are from two entirely
independent methods. Also, using the study presented in chapter 3 we can calculate the spatial
resolution from the intercept of the mean-squared displacement of the particle in the viscous fluid.
These estimates ε(2) are also presented in table 2.2 but are affected by a large uncertainty due to
statistical limitations. However, they are in the right order of magnitude as compared to the static
evaluation ε(1).

The variations of µ0(z) and µ
1/2
2 (z) naturally depends on the optics, such that a different ob-

jective and different sizes of beads will give different results. Also, if the volume of observation is
chosen deeper in the sample chamber, the background level is higher because of the reflected fluo-
rescence of the layer of beads lying below the observed volume is greater in the inverted microscope
geometry. This can also affect the variations of µ0(z) and µ

1/2
2 (z). However, the global shape of

the corresponding line (µ0(z), µ
1/2
2 (z)) usually follows similar trends: an asymmetric drop of radius

and maximum of total mass at the focal plane is essentially always observed, such that a “ring” of
points similar to the one shown in figure 2.5 is obtained.

To conclude this section, we need to question the performance of this technique. The temporal
resolution is mainly fixed by the frame rate of the camera, since the positions of the moving probes
are evidently sampled only when a particle’s image is captured on a video frame. The accuracy at
which the particle is located in this image is however unanswered in this chapter. Since the position
is calculated from the entire intensity profile of the particle image, through the brightness weighted
centroid calculation given by equation 2.6, it is reasonable to wonder how the z-dependent shape
of this profile affect the spatial resolution of the feature location. This important point will be
thoroughly discussed in the next chapter.
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2.4 Tracking Output Statistical Design

As pointed out in the previous section, the particles are trackable only when they travel in a given
volume of observation Vb = xbybzb. This limitation, which is more stringent in the z direction along
which the dimension of Vb is significantly smaller, is responsible for a peculiar statistical effect in the
microscopy particle tracking technique. Individual trajectories of the probes are random processes,
and when a statistical study is performed from the trajectory list output of the measurements,
durations of the individual tracks must be carefully taken into account. For example, consider a
heterogeneous system in which some particles travel throughout a porous structure, but in which
a subpopulation of particles are tightly trapped in smaller pores (such behavior has been recently
observed in actin gels [46]). Due to the finite volume of observation, the trajectories of the freely
moving particles will be in general shorter and in higher proportion than the trajectories of the
trapped probes that will remain in the volume of observation throughout the entire acquisition.
This is particularly dramatic since a particle that leaves the observable space and comes back will
be measured as two or more unconnected trajectories.
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Fig. 2.6: Probability density function of trajectory durations from a 0.925µm diam-
eter particles tracking measurement in a 1 : 1 solution of H2O/D2O. The squares are
experimental results obtained after using clipping region with depth of tracking pa-
rameter zb = 6 (red), 8 (green), 10 (blue) and 12µm (black), whereas the respectively
colored solid lines were obtained using the simulation method described in chapter 5
with corresponding values of zb given in table 2.2. The scaling shown is ∝ T−3/2,
typical of one-dimensional first passage time distribution [47].

To illustrate this peculiar statistics, we plot in figure 2.6 the probability density function of
trajectory durations from the particle tracking measurement of the aqueous system described in
the previous section with the various clipping parameters zb. The material in which the particles are
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moving is homogeneous, however the duration distribution shows that short tracks are highly more
likely to be observed. The power-law scaling observed at short duration is typical of first-passage
time distribution [47], since these short trajectories are mainly coming from particle entering and
leaving the volume of observation by the same constant-z edge. This distribution depends mainly
on zb and on the dynamics of the particles, hence on the local mechanical property of the material
they are probing. This fundamental problem, particularly challenging in heterogeneous system,
will be treated in depth in chapter 5.

For completeness, we used the simulation method developed in chapter 5, that takes the finite
imaging volume into account, to calculate the probability density function of trajectory durations
in a similar viscous homogeneous material. We plot in figure 2.6 the results of these simulations
performed with the values z(3)

b of zb that matches the best the experimental results obtained with
the different clipping regions described in the previous section. The values of zb obtain by this
method (3) are reported in table 2.2. We observe that they are of the same order of magnitude as
the ones estimated with particles fixed in agarose, although they are consistently smaller. This is
likely to missing positions when building trajectories. Missed features in a single frame can come
from several reasons: for example, if two particles are overlapping in the imaging volume, than
the resulting spot want be circular or brighter, and will be discarded during the false data removal
step; also, noise can bring a particle image out of the selection domain of valid data. Because of
a missed position, a trajectory that was supposedly long is cut into two shorter trajectory. The
distribution of trajectory durations presented in figure 2.6 is thus biased in both the short and long
duration domain. This would result in an apparent smaller zb, as observed in our results.

2.5 Conclusions

In this chapter we have unveiled the multiple particle tracking technique by adopting a very practical
perspective. When the sample preparation, the observation methods and the tracking processing
follow well established protocols, we have pointed out that two important problems arise. On one
hand, the spatial resolution of the technique has not been characterized, and its consequences on
the actual processed data (calculation of the mean-squared displacement for example) has not been
quantified. On the other hand, an apparent peculiar limitation on the statistics of the stochastic
output needs to be assessed. We will devote the next three chapters to bring some understanding to
these problems, and we will see that they can have dramatic effects on the physical interpretation
of the measurement.



CHAPTER 3

Errors in Particle Tracking
Experiments

In the previous chapter we have presented the technique of video microscopy particle tracking.
We have mentioned that the performance of this technique, in particular the spatial resolution of
the tracking, needs to be clearly assessed. Naturally, any tracking technique has a finite spatial
resolution. In this chapter we study the localization inaccuracies, not only their origin in the
detection methods, but also their consequences on the measurements. This chapter was reproduced
in part with permission from Savin, T. and Doyle, P. S., Biophys. J., 88, 623-638 (2005), copyright
2005 by the Biophysical Society.

3.1 Introduction

Among the applications of particle tracking, investigation of local mechanical properties of a
medium, using the particle as a local probe, is frequently performed. In these studies, averaged
quantities such as the mean-squared displacement or the power spectral density of the position [34]
are calculated to quantify the particle’s dynamics. Thus, a large amount of data must be acquired
to ensure high statistical accuracy and to this regard, video microscopy is both widely available and
allows the acquisition of a large amount of data in minutes leading to a great statistical accuracy.

However, a study by [48] recently showed that the limited spatial resolution of standard video
microscopy particle tracking leads to errors that can significantly alter the physical interpretations.
Thus, a compromise arises in the choice of the tracking technique between: on one hand, video
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microscopy with great flexibility and high statistical accuracy but a low spatial resolution that
limits the validity of microrheological measurements, and on the other hand, enhanced tracking
techniques with a high spatial resolution but a limited extensibility to multiple particle tracking.
The spatial resolution of particle tracking video microscopy has been thoroughly, both qualitatively
and quantitatively, studied by observing immobilized particles [15, 20]. In the present study we
refer to this contribution of the spatial resolution as the “static error” in particle localization.
Due to the finite video frame acquisition time (also called exposure or shutter time), another sort
of localization error arises when moving particles are observed. This contribution to the spatial
resolution depends on the dynamics of the imaged particles and thus will be referred as “dynamic
errors” in the text. To our knowledge, no quantitative studies have been performed on the effect
of these dynamic errors on the mean-squared displacement or the power spectral density of the
position. However, both types of error should be considered when calculating these two averaged
quantities. We present methods to efficiently quantify the influence of these two types of errors
on the estimation of the mean-squared displacement. We provide precise ways to correct for the
static errors and derive expressions for the dynamic errors of several model fluids. Therefore, we
show that accurate values of the mean-squared displacement can be obtained using standard video
microscopy.

The balance of this chapter is organized as follows. We first present a generalized theoretical
model to quantify the sources of error in particle tracking experiments, without restriction to video-
based detection. We focus on the propagation of these errors on the mean-squared displacement
and on the power spectral density. We then verify the model on purely viscous fluids using both
simulation and experimental methods, and extend our theoretical prediction to other model fluids.
Finally, we discuss the results, particularly in terms of rheological properties, to illustrate how these
errors can mislead physical interpretations. Descriptions of correction methods are also presented.

3.2 Theory

In this section, we develop a model to calculate how the errors in the estimated particle posi-
tion propagate on the power spectral density and the mean-squared displacement. To consider all
sources of localization error, we separate the static contribution from the dynamic contribution.
The so-called “static error” arises from noise inherent to any particle tracking experiment [49].
The “dynamic error” comes from the acquisition time (or shutter time) required for position mea-
surements. In the calculations that follow, we perform averages on infinitely populated statistical
ensembles and thus do not consider the inherent inaccuracy associated with the sample statistics of
finite-sized ensembles. This is a good approximation in most particle tracking techniques adapted
to studying local rheology as these setups are designed to acquire a large amount of data (at least
104 data points in most cases). A thorough statistical study of multiple particle tracking specific
outputs is presented in Chapter 5. In this chapter, 〈...〉 designates time averages for single particle
tracking, while for multiple particle tracking, it designates a population and/or time average. Fur-
thermore, the following models are general and do not require any assumptions about the dynamics
of the tracked particles. For instance, results are equally valid for thermally fluctuating or actively
manipulated (e.g., using optical tweezers) particles.
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3.2.1 Static Error

We consider a setup that exhibits an intrinsic error in the determination of a particle’s position
as a result of the underlying noise in the measurements [49]. Systematic errors such as calibration
inaccuracy or position- and time-independent offset are not considered here. The origin of the noise
depends on the tracking setup, but without loss of generality, we assume that the true position x(t)
of the particle at time t is estimated by x̂(t) with the following relation:

x̂(t) = x(t) + χ(t) , (3.1)

where χ is a stationary random offset with zero mean 〈χ(t)〉 = 0 and constant variance 〈χ2(t)〉 = ε2

that defines the spatial resolution ε of the setup. The error χ is also assumed to be independent of
the position such that 〈x(t)χ(t′)〉 = 0 for any (t, t′). The autocorrelation function of the position
Cx(τ) = 〈x(t+ τ)x(t)〉 − 〈x(t)〉2 (where τ is the lag time), is modified to

Cx̂(τ) = Cx(τ) + Cχ(τ) (3.2)

when the static errors in the measurement are taken into account. In Eq. 3.2, Cχ(τ) is the autocor-
relation function of the error. In the frequency domain, the power spectral density of the position
becomes

〈|x̂∗|2(ω)〉 = 〈|x∗|2(ω)〉+ 〈|χ∗|2(ω)〉 , (3.3)

as obtained by taking the Fourier transform on both sides of Eq. 3.2 and using the Wiener-Khinchin
Theorem [50]. When the mean-squared displacement 〈∆x2(τ)〉 =

〈(
x(t + τ) − x(t)

)2〉 is to be
calculated, we use the relation

〈∆x2(τ)〉 = 2Cx(0)− 2Cx(τ) (3.4)

to find
〈∆x̂2(τ)〉 = 〈∆x2(τ)〉+ 2ε2 − 2Cχ(τ) , (3.5)

where we have used the definition of the spatial resolution Cχ(0) = ε2.

3.2.2 Dynamic Error

For all experimental setups, a single measurement requires a given acquisition time σ during which
the particle is continually moving. Thus, the position that is acquired at time t contains the history
of the successive positions occupied by the particle during the time interval [t − σ, t]. We model
this dynamic error by calculating the measured position as the average x(t, σ) of all the positions
the particle takes while the shutter is open [51]:

x(t, σ) =
1
σ

∫ σ

0
x(t− ξ)dξ . (3.6)

Note that by performing an average over the time σ, any dynamics involving variation of x(t) over
a characteristic time τR < σ can not be resolved. This has important ramifications as shown in
several examples given in the next chapter. In the frequency domain, Eq. 3.6 becomes x∗(ω, σ) =
H∗
σ(ω)× x∗(ω) with H∗

σ(ω) = (1− e−iωσ)/(iωσ), so that the power spectral density of the position
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is [50]:

〈|x∗|2(ω, σ)〉 = |H∗
σ(ω)|2 × 〈|x∗|2(ω)〉 with |H∗

σ(ω)|2 =
sin2(ωσ/2)
(ωσ/2)2

. (3.7)

In the time domain, Eq. 3.7 is written Cx(τ) = [hσ ∗ Cx](τ) where hσ(τ) is the inverse Fourier
transform of |H∗

σ(ω)|2 (that is hσ(τ) = (σ − |τ |)/σ2 for |τ | ≤ σ and hσ(τ) = 0 elsewhere) and
[hσ ∗ Cx] designates the convolution of hσ and Cx. We can then calculate the mean-squared
displacement using Eq. 3.4:

〈∆x2(τ, σ)〉 = [hσ ∗ 〈∆x2〉](τ)− [hσ ∗ 〈∆x2〉](0) (3.8)

with

hσ(τ) =

{
(σ − |τ |)/σ2 for |τ | ≤ σ,
0 elsewhere.

(3.9)

This relation is linear, but as opposed to the propagation formula for the power spectrum density
(Eq. 3.7), it is rather difficult to invert. After simplifying, Eq. 3.8 can be written for τ ≥ σ:

〈∆x2(τ, σ)〉 =
1
σ2

∫ σ

0

[
〈∆x2(τ + ξ)〉+ 〈∆x2(τ − ξ)〉 − 2〈∆x2(ξ)〉

]
(σ − ξ)dξ . (3.10)

We present in Chapter 4 relevant examples for model fluids that give specific insight on how the
mean-squared displacement depends on this dynamic error. In the next chapter, we will also propose
an alternative derivation of Eq. 3.8 in the time space rather than in the Fourier space as it is done
here. After combining the contributions from the two errors, we obtain〈∣∣x̂∗∣∣2(ω, σ)

〉
= |H∗

σ(ω)|2 × 〈|x∗|2(ω)〉+ 〈|χ∗|2(ω, σ)〉 (3.11)

for the measured power spectrum density, and〈
∆x̂

2
(τ, σ)

〉
= [hσ ∗ 〈∆x2〉](τ)− [hσ ∗ 〈∆x2〉](0) + 2ε2 − 2Cχ(τ, σ) (3.12)

for the measured mean-squared displacement, where we have written the measured static error:

〈|χ∗|2(ω, σ)〉 = |H∗
σ(ω)|2 × 〈|χ∗|2(ω)〉 , (3.13)

Cχ(τ, σ) = [hσ ∗ Cχ](τ) and Cχ(0, σ) = ε2 . (3.14)

Note that the ideal static localization errors 〈|χ∗|2(ω)〉 and 2ε2−2Cχ(τ) considered at first in Eq. 3.3
and 3.5 are also transformed by the dynamic error during the course of the demonstration. It is the
resulting quantities 〈|χ∗|2(ω, σ)〉 and 2ε2 − 2Cχ(τ, σ) that are actually measured for immobilized
particles, since any experimental measurement has a finite σ. This effect is usually implicitly
considered in all models that relate the spatial resolution to the number of detected photons or
the signal level (such as the one presented in the Appendix A). The former quantities are indeed
themselves connected to the exposure time σ through the emission rate of the light source, which
is detector independent. Additionally, we could have considered the dynamic errors first and then
start from x̂(t) = x(t) + χ(t) to obtain the same results as Eq. 3.11 and 3.12. In the rest of the
article, 〈|χ∗|2(ω, σ)〉 and 2ε2 − 2Cχ(τ, σ) will be referred as “static” errors.
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3.2.3 Applications

The static localization errors are easily corrected in Eq. 3.11 and 3.12. However, in order to
successfully replace the value of 〈|χ∗|2(ω, σ)〉 or 2ε2 − 2Cχ(τ, σ) in a dynamic experiment by the
one measured in a static study, one must ensure that the experimental conditions in both cases are
identical. In particular, noise and signal quality must be reproduced, as χ(t) commonly depends on
these parameters in the experimental data. To illustrate the importance of the dynamic errors, one
can calculate the value of |H∗

σ(ω)|2 at the Nyquist frequency ω = π/σ (since the acquisition rate is
less or equal than 1/σ). We find |H∗

σ(π/σ)|2 = 0.4, meaning that the apparent (measured) power
spectral density is only 40% of its true value. In general, both the static and dynamic localization
errors will have greater effect at high frequencies. As pointed out earlier, high frequency corrections
can be applied on

〈∣∣x̂∗∣∣2(ω, σ)
〉

as the inversion of Eq. 3.7 to calculate 〈|x∗|2(ω)〉 is straightforward.
Moreover, low frequency statistical inaccuracy of the microrheology techniques, not taken into
account in the derivation, will limit the applicability of the propagation formulas Eq. 3.11 and 3.12.

In the present study, we used video microscopy to perform multiple particle tracking. In this
setup, the noise primarily comes from background signal (that includes for example out of focus
particles or autofluorescence of the rest of the sample), the photon shot noise, the CCD noise
(readout noise and pattern noise, the dark current noise being usually negligible at video rate) and
digitization noise in the frame grabber. Measurements of the noise in the electronic chain (CCD
and frame grabber) is given in Appendix A.1. The tracking measurements are based on a centroid
localization algorithm performed on images of particles (see Chapter 2). In this procedure, the
spatial resolution can be related to the tracking parameters used for data processing and to the
noise-to-signal ratio of the raw measurement. In particular, the spatial error will follow the same
temporal distribution as the pixel intensity noise in the movie. From the noise characterization
shown in Appendix A, the spatial error can thus be considered temporally white up to at least the
frame rate frequency as well as independent of the shutter time at constant brightness. Then we
can write Cχ(τ, σ) = 0 for τ ≥ σ. Plugging this expression and 〈∆x2(τ)〉 = 2D|τ | into Eq. 3.12, we
find the apparent mean-squared displacement of a particle in a Newtonian fluid (see Eq. 3.25) for
τ ≥ σ:

〈∆x̂2
(τ, σ)〉 = 2D

(
τ − σ/3

)
+ 2ε2 . (3.15)

The self-diffusion coefficient for a spherical particle is calculated from D = kBT/(6πaη), where kB

is the Boltzmann’s constant, T the absolute temperature, η the viscosity of the fluid and a the
particle radius. This model is verified in subsequent sections of the chapter through simulations
and experiments.

Finally, a tracking setup may suffer from another sort of error called bias. It is defined as an
inaccuracy in locating the particle that depends on the position [15]. In that case, χ depends on
x and the correlation term 〈x(t)χ(t′)〉 can be non-zero, so that our theoretical predictions do not
apply. For example, localization errors from pixelization are position depedent, as shown later in
this chapter. However, we also demonstrate that these bias errors are small at typical noise-to-signal
ratios encountered in our tracking technique, in accordance with the results of [15].

3.3 Specific Methods

In this section, we describe some specific method used for the study presented in this chapter.
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3.3.1 Experiments

We used the multiple particle tracking technique that has been described in detail in Chapter 2.
Here, 2a = 0.925µm fluorescent beads (Polysciences, Warrington, PA) were dispersed in the sample
at low volume fraction, φ < 0.1%. The samples were prepared following procedures described
in section 2.1.1, and imaged using the fluorescent video microscopy setup given in section 2.1.2.
We used a 63× water-immersion objective (NA=1.2) leading to an on-screen magnification of
210 nm/pxl. The focal plane was chosen near the center of the chamber (at least 40µm away from
the microscope slides) to minimize the effect of bead-surface hydrodynamic interactions on the
observed dynamics. Movies were digitized at 8-bit dynamic range (that is a range from 0 to 255
analog-to-digital units or “ADU”), and recorded using the software NIH Image. The movies were
analyzed off-line using the programs explained in section 2.2. Since a single video frame consists
of two interlaced fields (each of them containing either the odd or the even rows of the CCD
matrix) that are exposed 1/60 s apart, 60 Hz temporal resolution is achieved by analyzing each field
independently. However, resolution is lost in the direction perpendicular to the interlacing [16].
Thus, in our study we analyzed particle motion in the horizontal direction (hereafter defined to be
the x direction). Estimation of the spatial resolution in this direction is discussed throughout this
chapter.

It is important to note here that the study of de-interlaced movie is required in order to study
the effect of a finite shutter time. Indeed, the exposure time is related to the acquisition of each
field individually, such that to obtain a full frame, the shutter is actually opened twice. If the full
frame was analyzed to extract positions of the features, these position would actually be an average
of the position extracted from each field individually, and thus the effective shutter time would be
1/60 s.

To verify the models we present here, we needed to evaluate average quantities on sufficiently
populated ensembles to minimize the inaccuracy inherent to finite sample statistics. Details about
this limitation are exposed in chapter 5. But briefly, to calculate the mean-squared displacement at a
given lag time τ , an ensemble of displacements is built by subdividing each trajectory into fragments
of length τ . Thus a particle labeled i tracked over a length Ti leads to a sample containing ∼ Ti/τ
trajectory steps in the statistical ensemble. Consequently, higher statistical accuracy is achieved
at short lag times. In all the following, we chose the maximum lag times such that at least 5× 104

data points were used to compute the mean-squared displacement. This leads to a relative error
estimated by (5× 104)−1/2 ∼ 0.5 % that we verified to be well below any other sources of error.

3.3.2 Simulations

Static measurements

We first created an ensemble of 1000 images containing static Gaussian spots following the bright-
ness distribution given by Eq. A.10 in Appendix A.2. The particles were randomly placed in the
initial image and their positions did not change throughout the length of the movie. Signal inde-
pendent Gaussian noise was generated and added to each frame. Such an additive model is justified
for the video microscopy method used here, as shown in the Appendix A. The apparent radius was
varied around the typical values observed for the particles imaged in the experiments: from 4 pxl
to 5 pxl. We have investigated different noise-to-signal ratios by changing both the level of the
signal and the level of the noise. The multiple particle tracking algorithms have been applied to
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Fig. 3.1: Sample particle images created during the simulations and extracted from
a typical static experiment. Corresponding brightness profiles along the white dashed
line are displayed under each image, as well as the corresponding Gaussian function
(solid line). The apparent radius in all images is â = 4.5 pxl. (A), (B) and (C) are
simulated Gaussian spots with the same signal levels but different noise levels. The
resulting noise-to-signal ratios are respectively N/S = 0.1, N/S = 0.05 and N/S = 0.
(D) Typical experimental profile of an in-focus particle image. The noise-to-signal
ratio is N/S = 0.01 as extracted from our procedure. The profile differs slightly from
a Gaussian function (solid line) and the image of the particle presents sharper edges
than the theoretical Gaussian profile displayed in (C).

these movies after de-interlacing the fields (see the previous section), and the spatial resolution
was measured from the mean-squared displacement 〈∆x̂2〉 = 2ε2 computed in the x direction of
the interlacing. Fig. 3.1, A-C show typical particle images created for these movies at different
noise-to-signal ratios, compared to an experimental image (Fig. 3.1D) of a particle obtained using
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the static measurement described later.

Dynamic measurements

A Brownian dynamics simulation was developed to create bead trajectories. An explicit first-order
algorithm [52] was used to advance the position of a particle at time t, r(t):

r(t+ ∆t) = r(t) + ∆r . (3.16)

The displacement ∆r was chosen from a Gaussian distribution satisfying

〈∆r〉 = 0 and 〈∆r∆r〉 = 2D∆t δ , (3.17)

where ∆t is the time step and δ is the unit second-order tensor. Each trajectory was 106 time steps
long and was then transformed in the following manner:

r(t) =
1
n

n−1∑
i=0

r(t− i∆t) , (3.18)

where σ = n∆t defines the shutter time. We chose D = 0.5µm2/s, varied n between 10 and 100,
and set the time step to ∆t = 1/6000 s which is 1/100 the value of the frame-rate (1/60 s). Thus,
the shutter time varied between 1/60 and 1/600 s and we spanned a range of Dσ that is comparable
to that found in the experiments. Also, we verified that our results did not appreciably change
for smaller values of the time step ∆t. On the resulting walks, a Gaussian distributed random
offset with different standard deviations ε ranging from 0.01 to 0.05µm was added to each position.
Fig. 3.2 illustrates the different stages of the simulation. Results were generated from an ensemble
of 100 trajectories.

3.3.3 N/S Ratio Extraction

Extracting the statistics of noise present in typical images produced by video microscopy particle
tracking experiments is a challenging task. As explained in Appendix A.1, noise in the images is
the result of several independent contributions, and its smallest correlation length is ln = 1 pxl.
However, the signal’s spatial frequency domain also includes the frequency 1 pxl−1, as the edges of
the particle images are sharp. Thus, performing high-pass linear filtering using spatial operators
(convolution) or frequency operators (Fourier transformation) that select only the noise frequency
in the image will not provide a true estimate of the noise. Non-linear filters (like the median
operator) and morphological grayscale operators (for example, the opening operator) are often
used to reduce the noise in an image [53]. However, they possess the property of retaining the
extreme brightness values of the raw image in the filtered result. Furthermore, an image obtained
by subtracting the pixel values of the filtered image from the raw image contains black spots (zero
brightness) where the particles are located. Thus, the brightness distribution of the noise isolated
in this image includes an over-populated peak at 0 ADU, and the noise level is underestimated.

This suggests that the noise can not be evaluated at the particle positions, but only in the
region of the raw image that is around the particles. We explain later some limitations of our
method following from this observation. To isolate this region of interest, we used similar methods



3.3. Specific Methods 45

A B

C D

Fig. 3.2: Illustration of the dynamic simulation process to create trajectories of a
Brownian particle which are sampled with a finite shutter time. First, a trajectory
with a large number of time steps is created (A). In the second image, positions every
50 time steps are retained (B). In the third image, a position is recalculated by aver-
aging the position of the particle at the previous 20 time steps (C). Finally, Gaussian
random noise is added in each position (D). Gray trajectories are displayed to compare
successive steps of calculation.

encountered in the tracking algorithms. We calculated two filtered images out of the raw data
array: a noise-reduced image G, obtained after convolution with a Gaussian kernel of half width
ln = 1pxl, and a background image B, obtained by convolving the raw image with a constant
kernel of size 2w + 1 (w is the typical radius of the mask used for centroid computation, see [16]
and the Appendix A for more details). We used the criteria G − B ≥ 1 ADU (or equivalently
G−B ≥ 0.5 if the images G and B are higher precision data arrays) to define the signal region that
is complementary to the region of interest in the whole image (see Fig. 3.3B). As this criteria is very
efficient in discriminating signal from sharp-edged spots (compare Fig. 3.3A and Fig. 3.3B), it does
not select the whole signal arising from a larger object with smooth edges. This effect is illustrated
in Fig. 3.4. To solve this issue, we then applied a binary dilation morphological operation on the
resulting image with a 2w diameter disk as the structuring element. This has the effect to extend
the area of influence of each of the spot revealed by the previous criteria (compare Fig. 3.3B and
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A

B

C

Fig. 3.3: Principle for the extraction of the noise-to-signal ratio N/S from a single
movie frame. (A) A raw image taken out of a typical experimental movie for dynamic
measurements. For clarity, intensity has been scaled to lie in the whole range from 0
to 255 ADU. (B) Regions of signal (white regions) selected based on the criteria that
in these regions the noise-reduced image exceed the background image by 1 ADU or
more (see text). (C) Result of the binary dilation operation applied on the previous
image. This operation is required as the previous signal extraction does not include
large images of out of focus particles (see Fig. 3.4). The black area is the region of
interest that will be used to calculate the noise.
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Fig. 3.3C). This last operation potentially eliminates several valid data points, but it significantly
prevents the noise distribution from being biased by unwanted high brightness values that might
be found near the particle images. Fig. 3.3 illustrates the different steps of our method, applied on
a typical dynamic image. The noise is then the standard deviation of the brightness values of the
raw image mapped to the region of interest.

Extraction of the signal is more straightforward. Only images of particles that participate in
the statistical study are considered. The signal is then well defined by the difference between the
local maximum brightness value of the spot and the average brightness value around the spot.

This method has been successfully verified on the simulated images and on the static experiments
presented in the next section to an accuracy of 96%. However, this method has several limitations.
For example, the concentration of particles can not be too high because the region of interest for the
noise extraction will not be found. Another important limitation is the assumption that the noise
is spatially uniform. This is required to have a noise level in the region around the particles (where
the noise is extracted by our procedure) that is identical to the one found where the particles are
located (which influences the particle position estimation). By construction, this is the case for the
simulations. In real images, non-uniformity of noise can be caused by its signal dependency (as
it is the case for the shot noise contribution for example). We show however in the Appendix A
that this has a negligible effect. Other sources of non-uniformity include uneven illumination in
the field of view or autofluorescence of the rest of the sample. Thus the background noise can
have a wide range of spatial frequencies. We explain in the Appendix A that even background
noise with a large correlation length has negligible influence in our setup. In addition, for dynamic
experiments the computation of noise on a single frame can be biased by background fluorescence
coming from particles that are out of focus and do not influence the estimation of positions for
detected particles. An average over all frames takes advantage of the background fluorescence time
fluctuations to accurately determine the noise involved in the particle localization. However, if the
medium is too stiff or viscous, large motions of the particles are suppressed over the time scale of a
movie. Thus, this eventual bias in the noise is constant throughout the entire length of the movie
and the noise is not accurately estimated.

3.4 Results

3.4.1 Estimation of ε Using Fixed Beads

To experimentally estimate ε, we fixed the fluorescent probes on a glass microscope slide, recorded
movies containing 1000 frames of the immobilized beads with different shutter times, and performed
the multiple particle tracking algorithm on the deinterlaced movies. We retained only the x position
for each particle, and discriminated isolated particles from aggregates of several particles. We were
able to vary the noise-to-signal ratio by changing the intensity of the excitation light source using
neutral density filters. By varying the plane of observation, the particle images were captured in
and out of focus to provide images that are similar to those actually observed in dynamic studies.
Apparent radius and signal level were also varied in this manner. The noise-to-signal ratio was
extracted from each frame using the procedure described in the previous section, and the overall
ratio was estimated by averaging over the entire movie. The resulting estimate of noise-to-signal
ratio compared well with measurements performed on manually extracted background regions in
several frames.
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Fig. 3.4: The use of the binary dilation operation for signal area selection. (A) are
model particle images: a hat-like spot on the left and a Gaussian spot on the right,
both with comparable apparent radius. In (B), (C) and (D), gray lines are brightness
profiles along the white dashed line seen in (A). (B) Brightness profile of the results of
the background filter (solid line) and the noise-reduction filter (dashed-dotted line). (C)
The solid line represents the signal selection using the criteria that the noise-reduced
image exceed the background image by 1 ADU or more; this criteria is efficient for
hat-like profile whereas the Gaussian profile is not fully selected. (D) Selected signal
after applying the binary dilation operation on the previous selection; both profiles are
now fully included in this selection.

We successfully compared the standard deviation ε =
(〈
x̂

2〉− 〈
x̂
〉2)1/2 that defines the spatial

resolution ε calculated from the individual trajectories with the value calculated from the mean-
squared displacement ε =

(〈
∆x̂

2〉
/2

)1/2 at short lag time τ , for which statistical accuracy is best
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(see section 3.3). Fig. 3.5A shows the experimental variation of ε with N/S, as compared to
the theoretical predictions given by Eq. A.16 and Eq. A.21 obtained using respectively Gaussian
and hat-like spots for the particle images (cf. Fig. 3.4A). We found good agreement between the
theory applied on Gaussian spots (Eq. A.16) and the experimental data. The scatter of the points
around the linear fit (solid line in Fig. 3.5) comes from different apparent radii encountered in the
experiment. Fig. 3.5B compares the results of the simulation with the theoretical slopes. Since the
Gaussian form was chosen for the spot in the simulations, the slight difference of the results with
theory comes only from the pixelization of the images that is taken into account in the simulations.
However in the experiments, the pixelization is also inherent and the linear fit mainly exhibits
values of ε smaller than found in the simulations: ε = 268.5×N/S + 1.3 nm for the experimental
data (solid line in Fig. 3.5) as compared to ε = 314.5×N/S+0.2 nm on average for the simulation
(not shown in Fig. 3.5). This difference arises from the true experimental shape of the spot seen in
Fig. 3.1D, which has sharper edges than the Gaussian form. Thus we found that the experimental
behavior slightly deviates from the Gaussian behavior toward the hat-spot behavior.

Another effect of pixelization is to create a constant offset ∆x̂off between the position estimated
in the odd and even field for a single immobile particle. We show in Fig. 3.6A an experimental
observation of this constant shift. As a result, the trajectory x̂(t) of a single particle exhibits a 30 Hz
periodic signal with amplitude ∆x̂off . The resulting mean-squared displacement averaged over an
ensemble of fixed beads also oscillates between 2ε2 and 〈∆x̂2

off〉 + 2ε2, so that our estimation of ε
is biased. Furthermore, one can not expect to see ε vanishing as N/S approaches 0. From our
experiments at low noise-to-signal ratio, we measured

(
〈∆x̂2

off〉
)1/2 ∼ 〈|∆x̂off |〉 ∼ 1 nm. The causes

of such an offset can be multiple: different noise and/or signal in the even and odd field coming
from the acquisition, spatial distortion, etc... We investigated one cause that is closely related
to image pixelization. As illustrated in Fig. 3.6B, this offset depends on the position (δx, δy) of
the real profile center inside a single pixel (see Fig. 3.6B for precise definition of δx and δy). We
calculated the distribution of the values taken by ∆x̂off as both δx and δy uniformly spans the
range [−0.5, 0.5[ pxl, by using our simulation technique with Gaussian spots and N/S = 0. We
found that

(
〈∆x̂2

off〉
)1/2 ∼ 〈|∆x̂off |〉 ∼ 0.5 nm and is fairly independent of the apparent radius of

the particle in the range â equals 4 to 5 pxl.

Finally, we used the static simulations to evaluate the bias error described in the Theory section.
In each frame we compared the true position of each particle (an input in our simulation) with the
corresponding value found by the tracking algorithm. After time-averaging over all frames, we found
the bias

〈
x̂−x

〉
= b(x) to be a 1 pxl periodic function of the x position of the bead, fairly independent

of the noise-to-signal ratio for N/S < 0.1 and of the apparent radius for 4 < â < 5 pxl, comparable
to results obtained by [15]. In Fig. 3.6C, we show the measured bias b(δx) on both fields, odd and
even, and for δx in the range [−0.5, 0.5[ pxl and δy = 0 (the shape is not appreciably modified for
other values of δy). Also, when averaged over all particles, 〈b2〉1/2 ∼ 〈|b|〉 ∼ 10−2 pxl ∼ 2 nm. As
opposed to the field offset described in the previous paragraph, the bias is not a component of the
mean-squared displacement for the static experiments, as it adds a time independent offset to each
immobile particle position. In dynamic experiments, it will have negligible influence since 〈b(x)2〉 <
4 nm2 is much smaller than a typical value of 100 nm2 for ε2 (see next section). Additionally, the
cross correlation of x(t) and b(x(t)) needs to be evaluated (see the Theory section 3.2 of this chapter)
and is negligible in many circumstances as shown in the next section.
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Fig. 3.5: Evolution of the spatial resolution ε with the noise-to-signal ratio N/S.
For all three plots, the dashed lines and the dashed-dotted lines are theoretical slopes
calculated from Eq. A.16 and Eq. A.21 respectively, with w = 7 pxl and â evenly
incremented from 4 to 5 pxl (the slopes increase as â decreases). The solid line is the
linear fit to the experimental static measurements: ε = 268.5 × N/S + 1.3 nm . (A)
Experimental evaluation of ε at different N/S using fixed beads (squares). Apparent
radius â extracted from particle images ranged from 4.09 to 4.96 pxl. The non-zero
y-intercept in the linear fit comes from the constant offset between positions calculated
from odd and even field images (see text and Fig. 3.6). (B) Result of the simulations
(open circles) for w = 7 pxl and â ranging from 4 to 5 pxl. We verify the linear
behavior of ε versus N/S, with increasing slopes as â decreases. However, because the
pixelization is inherent in the simulations, there are systematic deviations from the
corresponding theoretical slopes computed using Eq. A.16 with same â (dashed lines).
(C) Data extracted from the same set of dynamic experiments shown in Fig. 3.7, using
values of ε as calculated by Eq. 3.21 (symbols are the same as in Fig. 3.7).
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Fig. 3.6: Illustration of the position offset and bias measured from the two different
camera fields. (A) Experimental position measurements of a single particle fixed to
a slide at low noise-to-signal ratio (N/S = 0.005). The dots are results of 1000 mea-
surements, and present two distinctly different positions extracted from the two fields.
The offset in the y direction perpendicular to the interlacing is significant. The offset
∆x̂off is calculated by differencing the averaged position estimated in each field (the
two solid lines). (B) Schematic of a model to explain the observed offset. On the left,
the center of a Gaussian spot is positioned at (δx, δy) of a pixel corner. On the right,
the resulting positions estimated from the odd and the even field of the same image
are shifted (the magnitude of ∆x̂off has been increased for clarity). (C) Measurement
of the bias as a function of the position of the particle from a pixel corner at low N/S.
The different symbols correspond to the two different fields, such that the difference of
the two plots corresponds to ∆x̂off .

3.4.2 Dynamic Error

To verify Eq. 3.15, we applied multiple particle tracking on water and on solutions of glycerol at
concentrations 20%, 40%, 55% and 82% volume fraction. The expected viscosities for these five
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Newtonian solutions at room temperature (T = 23◦C) are approximately 1, 2, 5, 10, and 100 mPa×
s respectively, weakly modified by the addition of particles at low volume fraction. We recorded
movies of the fluorescent beads for a length of 5000 frames at 30 Hz (2 min 45 s), that is 10000 fields
at 60 Hz. Four shutter times were used for acquisition: σ = 1/60, 1/125, 1/250 and 1/500 s. These
long movies provided enough statistics to accurately estimate the mean-squared displacement at
small lag time, and the intercept 〈∆x̂2

(0, σ)〉 and the slope 2D were evaluated by linear fit of
the mean-squared displacement for lag times ranging from 1/60 s to 0.1 s (i.e., using the first six
experimental points). We verified that at these lag times, at least 5 × 104 trajectory steps were
used to compute the mean-squared displacement (see the Specific Methods section 3.3).

Fig. 3.7, A and B shows the variation of the intercept with the scaled shutter time Dσ for
both these experiments and the simulations described earlier. According to relation Eq. 3.15, the
theoretical model predicts

〈∆x̂2
(0, σ)〉 = −2/3× (Dσ) + 2ε2 . (3.19)

This formula was verified by our experiments and simulations. For the simulations, we found the
slope of -2/3 and the intercepts of the lines compared well with 2ε2, where ε is the spatial resolution
we input into the simulation. For the experimental data, we also found a slope of -2/3 and extracted
a constant intercept of 2× 10−4 µm2 leading to an average spatial resolution ε = 10nm. We show
in Fig. 3.7C the error in the measured mean-squared displacement intercept as compared to the
theoretical behavior expected for ε = 10nm. For both simulations and experiments, we computed
this error in the following way:

relative error =
∣∣∣∣〈∆x̂2

(0, σ)〉 − (2× 10−4 − 2Dσ/3)
(2× 10−4 − 2Dσ/3)

∣∣∣∣ , (3.20)

where both 〈∆x̂2
(0, σ)〉 and Dσ are expressed in µm2. When 2Dσ/3 ∼ 2 × 10−4 µm2, the values

of 〈∆x̂2
(0, σ)〉 are small and the corresponding relative error can reach large values. This explains

the peak observed in Fig. 3.7C at Dσ ∼ 3 × 10−4 µm2. For other values of Dσ, the relative error
is approximatively 2% or less and 10% or less for simulations and experiments respectively.

Our results were aligned on a unique master line of slope -2/3 and intercept 2ε2 only if ε was
kept identical from one tracking experiment to the other. As suggested by our static study, we had
to verify that the noise-to-signal ratio was kept identical from one movie to another. This is an
experimental challenge because the noise-to-signal ratio can not be evaluated a priori. Since the
illumination collected by the CCD decreases as the shutter time is reduced, identical signal was
recovered by raising the intensity of the excitation light source. However, we had no control over
the resulting noise. Thus, to validate our measurements, we computed the exact spatial resolution
ε using the inverted formula

ε =
(
〈∆x̂2

(0, σ)〉/2 +Dσ/3
)1/2

, (3.21)

and we extracted the noise-to-signal ratio using the procedure explained earlier. The resulting
points compare well with the static study, as shown on Fig. 3.5C. However several data points
present significant deviation from the averaged static measurements. The noise-to-signal ratio of
two points extracted from experiments made with 82% glycerol (filled circles) are over-estimated.
In the movies corresponding to these two data points, the background fluorescence is not uniform,
and the noise level calculated by our algorithm deviates from the actual noise influencing the
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Fig. 3.7: Dependence of the mean-squared displacement intercept 〈∆x̂2
(0, σ)〉 on the

scaled shutter time Dσ. Both 〈∆x̂2
(0, σ)〉 and D are evaluated from a linear fit at small

lag time. The filled symbols are from experimental results and the open circles are from
simulations. For all experiments, the noise-to-signal ratio was kept constant, except for
the inverted triangles which are extracted from a set of experiments in 20% glycerol with
σ = 1/125 s that have been performed with different noise-to-signal ratio (the dotted
lines in (A) and (B) indicates the averaged Dσ for this set of experiments). (A) Linear-
linear plot. The dashed lines represent slopes of -2/3 with intercept 2ε2 (the value of ε
is indicated in nanometers on the right hand side of each line). The simulation results
lie on the lines with corresponding input values of ε (see text), and the experimental
points obtained at identical noise-to-signal ratio (see Fig. 3.5) are in accordance with an
intercept of 2× 10−4 µm2 (ε = 10 nm). The set of experiments performed at fixed Dσ
but with different N/S lie on lines with different intercepts corresponding to different
values of ε. (B) Linear-log plot to expand the region at small scaled shutter time Dσ.
(C) Relative error to the theoretical trend 2× 10−4 − 2Dσ/3 µm2, as calculated using
Eq. 3.20. The peak in the error corresponds to the regime where 2Dσ/3 ∼ 2×10−4 µm2

(see text).
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particle centroid positioning. This bias constantly effects the noise estimation because the highly
viscous medium eliminates relevant variations of the background fluorescence over the duration
of the movie. Thus, the noise-to-signal ratio resulting from a time average over the whole movie
is inaccurate. This limitation of our N/S extraction procedure was pointed out earlier. Also,
two points exhibits larger values of ε than expected. They correspond to the larger values of Dσ
encountered in our set of experiments: in water (diamond) and in 20% glycerol (triangle) with
σ = 1/60 s. However, as seen in Fig. 3.7C, the corresponding relative error, more relevant because
given in terms of mean-squared displacement, does not exceed 10%.

To complete the experimental verification of Eq. 3.19, we performed an additional set of experi-
ments in which Dσ was kept constant, but the noise-to-signal ratio was varied. Beads were tracked
in 20% glycerol solution and movies were acquired at σ = 1/125 s, giving Dσ ∼ 2× 10−3 µm2. The
results are shown in Fig. 3.5 and Fig. 3.7 by the inverted triangles. For N/S evenly incremented
from 0.03 to 0.1, identical Dσ were extracted (see the dotted line in Fig. 3.7A), and the exact
spatial resolution calculated using Eq. 3.21 is in good agreement with the static experiments (cf.
Fig. 3.5C).

Finally, we investigated the influence of bias on the mean-squared displacement. We used the
Brownian dynamics simulations to create 1 dimensional trajectories x(t), and added a position
dependent localization error χ(t) = b(x(t)) at each time step. The bias is well modeled by b(x) =
0.02×sin(2πx) where both b and x are expressed in pixels (see Fig. 3.6C). The bias is negligible when
particle motions amplitude (Dttot)1/2 (where ttot is the duration of tracking) is large as compared
to the bias period of 1 pxl. We observe that for 1µm diameter beads tracked for 3 min, the bias
remains negligible for solutions up to 1000 times more viscous than pure water when only time
average on a single particle is performed, but to much higher values when a population average is
performed on several particle trajectories.

3.5 Further Theoretical Results

In this section we use Eq. 3.10 to calculate the dynamic error for three standard model fluids. The
Voigt and Maxwell fluids are the simplest viscoelastic model fluids that are commonly used to model
the mechanical response of biological materials [54, 55]. A third model in which the mean-squared
displacement exhibits a power-law dependency with the lag time is also investigated. This model
is relevant to microrheological studies, where data is often locally fit to a power-law in order to
easily extract viscoelastic properties [37]. This last model is also known as the structural damping
model, recently used to fit the mechanical response of living cells [56].

In the next chapter we will expose an extended study of the effect of dynamic errors on model
fluids and gain a deeper understanding of this peculiar effect.

3.5.1 Voigt Fluid

We first examine the Voigt model [54] for which the complex shear modulus frequency spectrum
is of the form G∗(ω) = G(1 + iωτR), where τR is the fluid’s relaxation time. In such a medium,
the mean-squared displacement of an inertialess bead is that of a particle attached to a damped
oscillator:

〈∆x2(τ)〉 = ∆x2
0

(
1− e−τ/τR

)
with ∆x2

0 =
2kBT

6πaG
. (3.22)
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Using Eq. 3.10, we then calculate

〈∆x2(τ, σ)〉 = ∆x2
0

[
e−σ/τR − 1 + (σ/τR)

(σ/τR)2/2
− e−τ/τR

cosh(σ/τR)− 1
(σ/τR)2/2

]
, (3.23)

for which we verify
〈∆x2(τ, 0)〉 = 〈∆x2(τ)〉 . (3.24)

The viscous limit is obtained for τ/τR � 1 (since σ < τ , we have also σ/τR � 1):

〈∆x2(τ, σ)〉 = 2D
(
τ − σ/3

)
, (3.25)

where D = kBT/(6πaη) is the bead self-diffusion coefficient and η is the viscosity of the fluid
(η = GτR in the Voigt model). Equation 3.25 was found by [19] and is experimentally verified in
our study. The elastic limit is obtained when τ/τR � 1 for which

〈∆x2(τ, σ)〉 = ∆x2
0

e−σ/τR − 1 + (σ/τR)
(σ/τR)2/2

. (3.26)

Furthermore, if σ/τR � 1, as is the case for a purely elastic solid (τR = 0), we find that ∆x2(τ, σ) =
0. As previously mentioned, dynamics occurring at time scales smaller than σ can not be resolved.
This is a fundamental problem encountered when studying Maxwell fluids, as outlined in the next
section.

3.5.2 Maxwell Fluid

For the Maxwell fluid model [54], G∗(ω) = GiωτR/(1 + iωτR), and the mean-squared displacement
of an inertialess embedded bead is [57]

〈∆x2(τ)〉 = ∆x2
0

(
1 + τ/τR

)
with ∆x2

0 =
2kBT

6πaG
, (3.27)

for which we calculate:

〈∆x2(τ, σ)〉 =
∆x2

0

τR

(
τ − σ/3

)
. (3.28)

This result is identical to that found for a purely viscous fluid (Eq. 3.25). The plateau region
observed in Eq. 3.27 for τ < τR corresponds to a frictionless bead in a harmonic potential. Since
we also neglect inertia in this model, it is a peculiar limit where the particle can sample all possible
positions infinitely fast. Thus, after position averaging over any finite time scale, the particle is
apparently immobile and the resulting mean-squared displacement is zero. Consequently, the elastic
contribution in Eq. 3.27 is unobservable. This limit is exposed in detail in chapter 4.

3.5.3 Power-Law Mean-Squared Displacement

The propagation of the dynamic error can be applied to a regime in which the mean-squared
displacement follows a power-law:

〈∆x2(τ)〉 = Aτα , (3.29)
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or in a dimensionless form with x̃2 = x2/(Aσα) and τ̃ = τ/σ:

〈∆x̃2(τ̃)〉 = τ̃α . (3.30)

We find

〈∆x̃2(τ̃)〉 =
(τ̃ + 1)2+α + (τ̃ − 1)2+α − 2τ̃2+α − 2

(1 + α)(2 + α)
. (3.31)

In Fig. 3.8A we compare the true mean-squared displacement 〈∆x̃2(τ̃)〉 with the one that includes
our model dynamic error 〈∆x̃2(τ̃)〉. We see that the amplitude of the Brownian fluctuation is
decreased by this error (lower apparent mean-squared dispacement). At the smallest lag time
τ̃ = 1, we calculate the apparent diffusive coefficient as a function of the true α:

α(τ̃ = 1) =
d
(
log〈∆x̃2(τ̃)〉

)
d
(
log τ̃

) ∣∣∣∣∣
τ̃=1

= 1 +
α

2
> 1 , (3.32)

which means that apparent superdiffusion will always be induced by the dynamic error. This can
lead to significant misinterpretation of experimental data (see the Discussion section 3.6).

To establish a criterion to neglect dynamic error, we evaluate the minimum dimensionless lag
time τ̃99% such that, for τ̃ > τ̃99%, we have 〈∆x̃2(τ̃)〉/〈∆x̃2(τ̃)〉 = 99% at least. In Fig. 3.8B,
we computed τ̃99% for α ranging in ]0, 1]. We see that as the material gets stiffer (that is, as α
decreases), the criteria τ̃ � 1 is not sufficient to avoid large dynamic error.

3.6 Discussion

We have classified the sources of spatial errors of particle tracking into two separate classes: static
and dynamic. We have been able to precisely quantify each contribution for the particular case of
Brownian particles moving in purely viscous fluids. Theoretical models for the errors were developed
and validated using both simulations and experiments. The magnitudes of the static and dynamic
errors were varied by respectively changing the noise-to-signal ratio and the shutter time of the
measurements. In the Newtonian fluids we studied with video microscopy, both dependencies are
linear. We found that the contributions from the two errors have antagonistic effects, and in some
cases comparable values.

One parameter frequently used to characterize thermal motion is the diffusive exponent α(τ)
introduced in the previous section, and defined as:

α(τ) =
d
(
log〈∆x2(τ)〉

)
d
(
log τ

) . (3.33)

When directly computed from the estimate of mean-squared displacement of probes in a purely
viscous fluid, one finds the apparent diffusive exponent:

α̂(τ) =
[
1 + ε2/(Dτ)− σ/(3τ)

]−1
. (3.34)

Thus α̂ < 1 if ε2/D > σ/3, and an apparent subdiffusion is observed. On the other hand, α̂ > 1 if
ε2/D < σ/3 and the particles exhibit an apparent superdiffusion in a purely viscous fluid. Fig. 3.9A
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Fig. 3.8: Effect of the dynamic error on particles that exhibit a power-law mean-
squared displacement. (A) Comparison of 〈∆x̃2

(τ̃)〉 (solid lines) with the true 〈∆x̃2(τ̃)〉
(dashed lines) for different values of α. Short lag time behavior is always superdiffusive.
(B) Minimum lag time required to consider that the dynamic error has negligible ef-
fect. To solve 〈∆x̃2

(τ̃99%)〉 = 0.99〈∆x̃2(τ̃99%)〉, we use a globally-convergent Newton’s
method that becomes inefficient for α < 0.35.

illustrates these two artifacts by showing experimentally measured mean-squared displacements in
the two different regimes. Note that the results for 82% glycerol (filled circles) exhibit oscillations
at short lag times. In this viscous fluid, particle displacements from one frame to the next are
much smaller than 1 pxl. Thus, the offset between the position estimated in the odd and even field,
as described in the previous section, becomes relevant. Furthermore, computation of the diffusive
exponent from the mean-squared displacement is altered by these oscillations.

More striking are the errors arising in the rheological properties of the medium computed from
the mean-squared displacement of the embedded particles. Using the generalized Stokes-Einstein
equation, the complex shear modulus frequency spectrum G∗(ω) = G′(ω)+iG′′(ω) can be evaluated
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by [37]:

G∗(ω) ≈ kBT

3πa
exp

[
iπα

(
1/ω

)
/2

]〈
∆x2

(
1/ω

)〉
Γ
[
1 + α

(
1/ω

)] , (3.35)

where Γ designates the gamma function. If α < 1, the material exhibits a storage modulus G′(ω) 6=
0. Thus when calculated from 〈∆x̂2

(τ, σ)〉 in the regime where α̂ < 1, the shear modulus of glycerol
has an apparent elastic component. We illustrate this effect in Fig. 3.9B. Furthermore, Fig. 3.9A
shows a third regime where the two sources of error compensate: ε2/D ∼ σ/3. These results
suggest that more subtile mistakes can be made when interpreting the microrheology of complex
fluids. Because dynamic error attenuates high-frequency elasticity, they can mask true subdiffusive
behavior at short lag times and lead to an apparent diffusive mean-squared displacement. Several
physical interpretations can arise from the observation of the mean-squared displacement, and it is
thus essential to quantify the sources of errors to avoid any mistakes in one’s line of reasoning.

Once the errors are quantified, corrections can be confidently made. The static error can be
evaluated by fixing the particles on a substrate, and by performing measurements in similar noise
and signal conditions as the rest of the experiments. The trivial subtraction of the measured
static mean-squared displacement is validated, but not sufficient to recover the true mean-squared
displacement. Further theoretical studies must be done to find ways to correct for the dynamic error.
As stated earlier, corrections for this type of errors can be applied on the power spectral density
of the position by using Eq. 3.7, and additionally on the mean-squared displacement if an analytic
model describing its variation is available. However, this dynamic contribution can be reduced by
ensuring σ/τ � 1. Nevertheless, this criteria must be carefully verified for stiffer materials, as
explained in earlier sections. As the exposure time is reduced, the collected illumination decreases,
and thus the noise-to-signal ratio increases. Thus a compromise between reducing the dynamic
error or the static error follows if non-averaged quantities are extracted. On the other hand, if
the interest is focused on averaged properties, the shutter time should be decreased and correction
for the static error should be performed. In this study, noise-to-signal ratios as high as 0.1 were
examined. As N/S = 1 represents a fundamental limit, further studies should be performed in the
range of N/S between 0.1 and 1 encountered in single molecule tracking. On the other hand, noise-
to-signal ratio lower than 0.03 are difficult to achieve with standard video microscopy setup used
for dynamic experiments at small shutter time. Thus, the spatial resolution in the tracks can not
be lower than 10 nm (∼ 5× 10−2 pxl), in accordance with results obtained in similar conditions by
other groups [16, 15]. Also, we predict that the resolution of the mean-squared displacement can be
reduced to values between 1 nm2 and 10 nm2 after corrections, limited only by statistics, accuracy
in the estimation of ε and/or the position offset inherent to pixelization that were described earlier.
However, further analysis should be performed to accurately evaluate this effective resolution, as
the present study is limited to purely viscous fluids, for which the corrections are straightforward
to apply.

We have used a video microscopy multiple particle tracking technique to perform the experi-
ments. The methods employed here for noise measurements, as well as the relation between noise
and spatial resolution are specific to this technique. However, static and dynamic errors from noise
and finite exposure time are actually intrinsic to any particle tracking setup without restriction to
the video microscopy based method. Also, the propagation formulas are valid for any dynamics,
and should be considered even in active microrheology methods. For example, the spring constant
of the trap created by optical tweezers is sometimes computed from the equilibrium mean-squared
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Fig. 3.9: Demonstration of how the errors in the mean-squared displacement can lead
to spurious rheological properties. On both plots, solid lines are data computed from
linear fit extracted from the mean-squared displacement at small lag times, and dashed
lines are data obtained after applying corrections explained in the Discussion section.
(A) Mean-squared displacements from three experiments. For an experiment in water
with σ = 1/60 s and 2Dσ/3 > 2ε2, an apparent superdiffusion can be observed. In 82%
glycerol with σ = 1/500 s and 2Dσ/3 < 2ε2, the mean-squared displacement exhibits
apparent subdiffusion. The errors compensate one another, 2Dσ/3 ∼ 2ε2, in 55%
glycerol with σ = 1/250 s. (B) Elastic and viscous moduli computed from the mean-
squared displacement using the generalized Stokes-Einstein relation (Eq. 3.35). The
apparent subdiffusion observed in 82% glycerol with σ = 1/500 s leads to an apparent
elastic behavior at high frequencies. The scatter in the experimental data comes from
the inaccurate estimation of the diffusive exponent from the measured mean-squared
displacement with a numerical differentiation using 3-point Lagrangian interpolation.

displacement of the trapped bead [58], and can be biased by these errors. Moreover, [59] already
suggested that the amplitude of Brownian fluctuations can be underestimated when video detection
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is used in optical tweezers experiments.

3.7 Conclusions

To conclude, we demonstrated that dynamic and static errors can cause great deviations in the
experimental results obtained using particle tracking techniques. We provided procedures to both
quantify and correct these errors. We show that standard video microscopy (using simply industrial
grade cameras) can then be used to perform high resolution microrheology, and thus could become
a primary choice for such experiments. Overall, our study brings to light the fact that great care
must be taken in interpreting data obtained from particle tracking experiments.



CHAPTER 4

Dynamic Errors on Model
Fluids

The role of a finite exposure time σ on measuring rheological properties using microrheology tech-
niques has been presented in the previous chapter. In this chapter, we concentrate on studying the
effect of this dynamic error on fluid models in which an embedded probe particle has a plateau in
its mean-squared displacement. A analysis is performed to compare the resulting experimentally
measured mean-squared displacement of the particle to its expected value in the fluid model. This
chapter was reproduced in part with permission from Savin, T. and Doyle, P. S., Phys. Rev. E,
71, 041106 (2005), copyright 2005 by the American Physical Society.

4.1 Introduction

As explained in previous chapters, passive microrheology uses thermally fluctuating micron-sized
probes to determine local mechanical properties of a host medium [26]. In this class of techniques,
time correlation of the particle position or displacement, through either the power spectral density
S∗x(ω) = 〈|x∗|2(ω)〉 or the mean-squared displacement 〈∆x2(t)〉 = 〈[x(θ + t) − x(θ)]2〉, is often
calculated [34, 9]. Here x(t) is the particle position at time t, x∗(ω) is its Fourier transform at the
frequency ω, and the brackets 〈. . .〉 indicate an ensemble average over a particle population and/or
a time average over θ. Using a generalized Stokes expression for the drag applied on the particle by
the medium (continuum assumption) and the fluctuation-dissipation theorem (thermal equilibrium
assumption), these correlations can then be related to the shear modulus spectrum G∗(ω) of the
material over a large frequency range [34, 37]. This range is limited in the high frequencies by the
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fluid and/or the probe inertial effects (1 to 10 MHz in usual conditions), and in the low frequencies
by the network compressibility (less than 1 Hz) [34, 38, 39]. The Brownian motion of a particle
embedded in a complex fluid thus involves time scales from a variety of dynamical regimes, including
the material viscoelastic relaxation modes.

Several techniques can be used to measure the particles position correlations (see Ref. [28] for
a review). In the previous chapter, we outlined a general classification of the errors arising in these
techniques. On the one hand, the noise in the detection scheme induces an error independent of the
particle dynamics, and thus can be measured with a static particle and corrected on the averaged
time correlations. On the other hand, the sampling method of the particle motions leads to an error
that depends on the particle dynamics, and is challenging to correct. The latter error is referred to
as “dynamic error” in the following study.

This chapter focuses on the role of a finite exposure time and the resulting dynamic-dependent
errors when measuring an elastic modulus using microrheology techniques. The first section shows
the general expression for the apparent mean-squared displacement resulting from the propagation
of these errors on the true mean-squared displacement. The second part explores three model fluids
exhibiting a purely elastic regime, for which the dynamic error can have a dramatic effect. In the
third section we discuss implications of these results on microrheology measurements.

4.2 Dynamic Error

Experimentally, microrheology involves measuring particle displacements using some sort of de-
tector (e.g. CCD for video microscopy or quadrant photodiode for laser deflection tracking). A
single measurement requires a given exposure time σ during which the particle is continually mov-
ing. Thus, the position that is acquired at time t contains the history of the successive positions
occupied by the particle during the time interval [t− σ, t]. We model this dynamic error by calcu-
lating the measured position as the average x(t, σ) of all the positions the particle takes during the
acquisition [51]:

x(t, σ) =
1
σ

∫ σ

0
x(t− ξ)dξ . (4.1)

The finite sampling acts as a moving average low-pass linear filter [50]. To estimate 〈∆x2(t, σ)〉,
we use a method similar to that used in Ref. [60] and we write

x(θ + t, σ)− x(θ, σ) =
1
σ

∫ σ

0
dξ′

∫ θ+t

θ
dt′ v(t′ − ξ′) , (4.2)

where v(t) is the true velocity of the particle. In terms of the velocity auto-correlation function
Cv(|t′′ − t′|) = 〈v(t′) · v(t′′)〉, we find

〈∆x2(t, σ)〉 =
〈[

x(θ + t, σ)− x(θ, σ)
]2〉

=
1
σ2

∫ σ

0
dξ′

∫ σ

0
dξ′′

∫ t

0
dt′

∫ t

0
dt′′Cv

(∣∣(t′ − ξ′)− (t′′ − ξ′′)
∣∣)

=
2
σ2

∫ σ

0
dξ (σ − ξ)

∫ t

0
dθ (t− θ)

[
Cv

(
θ + ξ

)
+ Cv

(
|θ − ξ|

)] (4.3)
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after multiple changes of variable and partial integrations. By comparing this expression to the
similar expression obtained for the true mean-squared displacement [60]:

〈∆x2(t)〉 = 2
∫ t

0
(t− θ)Cv(θ)dθ , (4.4)

we finally find, under the condition t ≥ σ:

〈∆x2(t, σ)〉 =
1
σ2

∫ σ

0

[
〈∆x2(t+ ξ)〉+ 〈∆x2(t− ξ)〉 − 2〈∆x2(ξ)〉

]
(σ − ξ)dξ . (4.5)

This relation is linear, but in general is difficult to invert.
We present in the next section three relevant examples for model viscoelastic fluids in which

Brownian particles exhibit a known mean-squared displacement 〈∆x2(t)〉. These examples give
specific insight into how the resulting measured mean-squared displacement 〈∆x2(t, σ)〉 compares
with the true mean-squared displacement 〈∆x2(t)〉.

4.3 Fluid Models

4.3.1 Power-Law Relaxation Model

We first consider a toy-model where the mean-squared displacement has the following form:

〈∆x2(t)〉
〈∆x2

p〉
=

{
(t/τ)α if t ≤ τ ,
1 if t > τ ,

(4.6)

where 〈∆x2
p〉 is the plateau value and τ is the characteristic time required to reach this plateau.

The fluctuation-dissipation theorem and the generalized Stokes relation gives 〈∆x2
p〉 = kBT/(πaG),

where a is the radius of the spherical particle, G is the elastic modulus of the medium and kBT is the
Boltzmann temperature. The mean-squared displacement described by this model is qualitatively
observed in many systems, though the sharp break introduced at t = τ is not physically realistic.
This model allows us to consider on one hand the characteristic plateau onset time τ , as well as
the nature of the particle dynamics through the exponent α.

For this model, we find that a plateau is reached for t > τ(σ), where τ(σ) = τ + σ is the
apparent relaxation time, and takes the following values:

〈∆x2
p(σ)〉

〈∆x2
p〉

=


1− 2(σ/τ)α

(1 + α)(2 + α)
if σ ≤ τ ,

α

(σ/τ)2

(
2(σ/τ)
1 + α

− 1
2 + α

)
if σ > τ .

(4.7)

One can also calculate the apparent short time power-law α(t = σ, σ) where the local apparent
power-law scaling is defined by

α(t, σ) =
d
(
log〈∆x2(t, σ)〉

)
d
(
log t)

. (4.8)
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Fig. 4.1: Results for the power-law relaxation model. (a) and (b) are the exact mean-
squared displacement (dotted lines) from Eq. (4.6) and its apparent values (solid lines)
obtained from Eq. (4.5) with σ/τ = 0.1, 1 and 10. (c) shows the apparent plateau
values, as given by Eq. (4.7). The filled circles correspond to the three values of σ/τ
used in (a) and (b). (d) is the short time power-law scaling (Eq. (4.8), solid lines) vs.
σ/τ . The dashed-dotted lines are the values for the exact scaling α(t = σ).

We show in Fig. 4.1 the evolution of these quantities as a function of the acquisition time σ.
Effects of the finite sampling become important for σ & τ . The apparent plateau value vanishes
when σ � τ as shown in Fig 4.1(a). More dramatic is the effect of the sampling process on the short
time power-law scaling (Fig. 4.1(d)). In general, the true scaling is not recovered in the apparent
mean-squared displacement when σ . t � τ 1. An exception to this is the ballistic case α = 2
for which measured displacements are independent of σ, as shown by plugging a constant velocity
v(t) = v in Eq. (4.2).

1In Fig 4.1(d), one can not see α(σ, σ) → α as σ → 0. In that limit, both t and σ are tending to 0 together since
we set t = σ. One can show however that α(t, σ) = α(t) +O(σ/t)ν whith ν > 0.
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4.3.2 Voigt Fluid Model

The shear modulus spectrum of the Voigt fluid viscoelastic model is given by

G∗(ω) = G(1 + iωτv) (4.9)

where G is the elastic modulus and τv is the relaxation time. The equation governing the particle
dynamics for this model is then given by

τvτbẍ(t) + τvẋ(t) + x(t) = f(t)/(6πaG) (4.10)

where τb = m/(6πaGτv) is the Brownian time (m being the mass of the particle), and f(t) is the
Brownian force [61]. By taking the Fourier Transform on both sides of Eq. (4.10), we can calculate
the power spectral density of the position by

S∗x(ω) =
〈
|x∗|2(ω)

〉
=

τvkBT/(πaG)
(1 + τ2

+ω
2)(1 + τ2

−ω
2)
, (4.11)

where we have introduced the relaxation times

τ± =
τv
2

(
1±

√
1− 4τb/τv

)
, (4.12)

that can be complex numbers in the under-damped case 4τb > τv. To write Eq. (4.11), we have
also used the fluctuation-dissipation theorem S∗f (ω) = 〈|f∗|2(ω)〉 = 36πaGτvkBT . The inverse
Fourier transform of S∗x(ω) gives the position auto-correlation function Cx(t) and we use the relation
〈∆x2(t)〉 = 2Cx(0)− 2Cx(t) to find:

〈∆x2(t)〉
〈∆x2

p〉
=
τ+

(
1− e−|t|/τ+

)
− τ−

(
1− e−|t|/τ−

)
τ+ − τ−

. (4.13)

For the over-damped regime 4τb/τv � 1, shown in Fig. 4.2(a), a plateau region is obtained for
t� τv. However, for the under-damped limit 4τb/τv � 1, plot in Fig. 4.2(b), the plateau is reached
for t � √

τbτv and the mean-squared displacement exhibits oscillations around the plateau value
with a period of ∼ 2π

√
τbτv.

Using Eq. (4.5), we can calculate the apparent mean-squared displacement 〈∆x2(t, σ)〉 and
obtain the plateau value by letting t� max

(
τv,
√
τbτv

)
:

〈∆x2
p(σ)〉

〈∆x2
p〉

=
τ+ + τ−
σ/2

−
τ3
+

(
1− e−σ/τ+

)
−τ3

−

(
1− e−σ/τ−

)
σ2(τ+ − τ−)/2

. (4.14)

We first consider the over-damped limit. In that case, the characteristic time scale is τv and
Eq. (4.14) simplifies to

〈∆x2
p(σ)〉

〈∆x2
p〉

=
τv
σ/2

− 1− e−σ/τv

(σ/τv)2/2
+O(τb/τv) (4.15)

as obtained by keeping σ/τv finite and τb/τv → 0.
It is interesting to consider the under-damped regime of the Voigt model since we will show it is

similar to the short time behavior of the Maxwell model in the next section. The apparent plateau
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value is obtained by keeping σ/
√
τbτv finite and τv/τb → 0:

〈∆x2
p(σ)〉

〈∆x2
p〉

= sinc2

(
σ

2
√
τbτv

)
+O(τv/τb)1/2 (4.16)

where sinc(x) = sin(x)/x is the sine cardinal function. Note that the same results would have been
obtained if the following approximated mean-squared displacement were plugged into Eq. (4.5):

〈∆x2(t)〉
〈∆x2

p〉
=

{
1− e−t/τv +O(τb/τv) ,
1− cos

(
t/
√
τbτv

)
+O(τv/τb)1/2 ,

(4.17)

by respectively keeping t/τv or t/
√
τbτv finite. In particular, the apparent mean-squared displace-

ment in the inertialess limit τb/τv = 0 is found to be:

〈∆x2(t, σ)〉
〈∆x2

p〉
= εσ

(
1− βσe

−t/τv) , (4.18)

with

εσ =
〈∆x2

p(σ)〉
〈∆x2

p〉
=

τv
σ/2

− 1− e−σ/τv

(σ/τv)2/2
, (4.19)

βσ = 1− sinh(σ/τv)− σ/τv

1− e−σ/τv − σ/τv
. (4.20)

Similar to the power-law relaxation model, the plateau value shown in Fig. 4.2(c) is greatly mod-
ified by the finite sampling for σ greater than the characteristic plateau onset time. In the under-
damped case the plateau is reached through oscillations and its apparent value is non-monotonically
decreasing with increasing acquisition time (cf. the colored line in Fig. 4.2(c)).

4.3.3 Maxwell Fluid Model

In the single relaxation time Maxwell fluid viscoelastic model, the shear modulus spectrum is given
by

G∗(ω) = G
iωτm

1 + iωτm
(4.21)

where G is the elastic modulus and τm is the relaxation time. The equation governing the particle
dynamics for this model is then

τmτbv̈(t) + τbv̇(t) + v(t) = f(t)/(6πaGτm) (4.22)

where v(t) = ẋ(t) is the velocity of the particle [61]. By taking the Fourier Transform on both
sides of Eq. (4.22), we can calculate the power spectral density of the velocity by

S∗v(ω) =
〈
|v∗|2(ω)

〉
=

kBT/(πaGτm)
(1 + τ2

+ω
2)(1 + τ2

−ω
2)

(4.23)
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Fig. 4.2: Results for the Voigt fluid model. (a) and (b) are the exact mean-squared
displacement (dotted lines) from Eq. (4.13) and its apparent value (solid lines) obtained
from Eq. (4.5) with σ/τv = 0.1, 1, 10 in (a), and σ/
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the apparent plateau values, as given by Eq. (4.14). The filled circles on each line
denote the values of σ used in (a) and (b).

where we have introduced the complex relaxation time

τ± =
τb
2

(
1± i

√
4τm/τb − 1

)
(4.24)

and we have used the fluctuation-dissipation theorem S∗f (ω) = 36πaGτmkBT . The inverse Fourier
transform of S∗v(ω) returns the velocity auto-correlation function Cv(t) and the use of Eq. (4.4)
gives finally2:

〈∆x2(t)〉
〈∆x2

p〉
=
|t|
τ+

+
|t|
τ−
−
τ3
+

(
1− e−|t|/τ+

)
−τ3

−

(
1− e−|t|/τ−

)
τ+τ−(τ+ − τ−)

. (4.25)

2Note that the plateau scaled value obtained from Eq. (4.25) is 1− τb/τm.
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We investigate only the physically realistic regime where τm/τb � 1.
For the Maxwell Model, a plateau region is obtained for

√
τbτm < t < τm and its apparent value

is found to be

〈∆x2
p(σ)〉

〈∆x2
p〉

= lim
t/
√
τbτm→∞

[
〈∆x2(t, σ)〉
〈∆x2

p〉
− t

τ+
− t

τ−

]
=
τ5
+

(
1− e−σ/τ+

)
− τ5

−

(
1− e−σ/τ−

)
σ2τ+τ−(τ+ − τ−)/2

− τ+ + τ−
σ/2

−
τ3
+ + τ3

−

στ+τ−/2
− σ

3τ+
− σ

3τ−
.

(4.26)

For 2π
√
τbτm < σ ≤ t, the sampling rate is not high enough to detect the oscillations in the

mean-squared displacement, and we introduce the following approximation3:

〈∆x2(t, σ)〉
〈∆x2

p〉
≈ εσ

(
t

τmεσ
+ 1

)
, (4.27)

with εσ = 〈∆x2
p(σ)〉/〈∆x2

p〉 and obtained by discarding oscillatory terms in 〈∆x2(t, σ)〉. Eq (4.27)
also shows that the apparent Maxwell relaxation time is

τm(σ) = τmεσ . (4.28)

Next, we calculate the limiting behavior of Eq. (4.26) as τb/τm → 0. By keeping σ/
√
τbτm finite,

we obtain:
〈∆x2

p(σ)〉
〈∆x2

p〉
= sinc2

(
σ

2
√
τbτm

)
+O

(
τb/τm

)1/2
, (4.29)

whereas by keeping σ/τm finite, we find4:

〈∆x2
p(σ)〉

〈∆x2
p〉

= − σ

3τm
+O

(
τb/τm

)
. (4.30)

It is interesting to note the close resemblance of Eq. (4.16) to Eq. (4.29). This point will be discussed
in the next section.

The inertialess regime is a peculiar limit where

〈∆x2(t, σ)〉 =
〈∆x2

p〉
τm

(
t− σ/3

)
(4.31)

is similar to the purely viscous model, for which 〈∆x2(t, σ)〉 = 6D
(
t − σ/3

)
where D is the self-

diffusion coefficient of the particle. Note that this result is obtained for any finite value of σ/τm,
so that the Maxwell relaxation time is not measurable even if σ � τm.

3We use 1/τ+ + 1/τ− = 1/τm. Note that this approximation returns the inertialess limit for σ = 0: 〈∆x2(t, σ =
0)〉/〈∆x2

p〉 ≈ t/τm + 1.
4The minus sign in Eq. (4.30) for a mean-squared displacement plateau value indicates an negative intercept at

t = 0 that is actually never reached for t ≥ σ. This peculiarity is due to the notations and denominations used here
but is not a mathematical flaw.
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Fig. 4.3: Results for the Maxwell fluid model, with τm/τb = 1012 (motivation for this
value is given in the Discussion section). (a) gives the true mean-squared displacement
(dotted line) and its apparent value (solid lines) for σ/

√
τbτm = 2, 2π, 10 and 103. The

dotted and thick lines are obtained with Eq. (4.27) whereas the thin curves result from
exact calculations using Eqs. (4.5) and (4.25). (b) shows the apparent plateau values
as given by Eq. (4.26). The filled circles denote the values of σ used in (a).

Figure 4.3 shows the results for the single relaxation time Maxwell model, with τm/τb = 1012

as found in experimental studies (see the Discussion section). Note in Fig. 4.3(a) that the mean-
squared displacement oscillations, with period ∼ 2π

√
τbτm, can not be distinguished for t > σ >

2π
√
τbτm.

4.4 Discussion

Using a relatively simple model for the dynamic error, we can quantify the effect of the acquisition
time on the mean-squared displacement of thermally fluctuating particles in a complex medium.
Moreover, most of the trends of the Voigt and Maxwell models are captured with the simple power-
law relaxation model.

The complex shear modulus spectrum G∗(ω) can be evaluated using the generalized Stokes-
Einstein relation obtained in the inertialess limit [9, 37]:

G̃(s) =
kBT

sπa〈∆x̃2(s)〉
with G∗(ω) = G̃(iω) , (4.32)
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where G̃(s) and 〈∆x̃2(s)〉 are the Laplace transform of the shear modulus and of the mean-squared
displacement, s being the Laplace frequency.

For the Voigt model, we can use the inertialess limit Eq. (4.18) for the mean-squared displace-
ment to find

G∗(ω, σ) =
G

εσ

1 + iωτv
1 + iωτv(1− βσ)

. (4.33)

Using approximation of Eq. (4.27) for the Maxwell model, we find

G∗(ω, σ) =
G

εσ

iωτmεσ
1 + iωτmεσ

. (4.34)

These apparent shear modulus spectrum are compared to the exact expressions Eqs. (4.9) and
(4.21) in Fig. 4.4.

To evaluate the error εσ, one must compare the acquisition time σ to the onset time of the
plateau. In the Maxwell model and the under-damped Voigt model, the ballistic regime observed
before the plateau is extended to an onset time

√
τbτm and

√
τbτv respectively. These time scales

can be understood with a simple picture. In the elastic regime, the particle moves in a harmonic
well U(x) = kx2, with k = 6πaG and where G is the elastic modulus of either the Voigt or the
Maxwell fluid. Since the particle equilibrium energy is kBT , it moves in a range x = ±

√
kBT/k.

The time required to sample this range at the equilibrium velocity
√
kBT/m is then

√
m/k, equal

to respectively
√
τbτv or

√
τbτm in the Voigt or the Maxwell model.

This simple picture of a particle in a harmonic potential well helps to understand the effect of
the sampling and the common trends observed for the apparent plateau values as σ increases. In
a time interval of length τ , the particle has sampled all possible positions in the potential well.
Thus, when averaged over a time interval σ > τ , its apparent position remains constant equal to
the potential center, and the apparent mean-squared displacement tends to 0.

Few microrheology experiments have been performed on single relaxation time fluid models.
In a study by van Zanten and co-workers [57], measurements where performed on CTAB/Kbr
wormlike micelle aqueous solution using diffusing wave spectroscopy with 2a ≈ 1µm diameter
polystyrene beads for probe particles. This technique provides a high temporal resolution of σ ≈
10−6 s limited by the sampling frequency of the multiple-tau digital correlator as used for lag times
larger than ∼ 1µs [62]. Under the conditions they used5, both rheological and microrheological
measurements show a single relaxation time Maxwellian behavior of the solution. From their data
we find σ/

√
τbτm ≈ 10 and τm/τb ≈ 1012. For these values, the use of Eq. (4.26) shows that the

apparent plateau is less than 5% of the true values, which corresponds to a factor of 20 for the
error in the estimated elastic modulus G (see Fig. 4.4). However, the plateau moduli estimated
by van Zanten and co-workers are in good agreement with rheological measurement [57]. Another
plateau onset time τe > σ is involved in the dynamics. They suggest that for t < τe the particle’s
dynamics is driven by the Rouse behavior of the wormlike micelles, that is 〈∆x2(t)〉 ∝ t1/2 [63]. We

5At the concentration used ([CTAB] ≈ 0.3M and [KBr] ≈ 1M) and at T ≈ 35 ◦C, the solution is Maxwellian in
the vicinity of a relaxation time τm ≈ 0.1 s with a high frequency elastic plateau at G ≈ 1000Pa. The Brownian time
can be calculated with τb = 2a2ρ/(9Gτm) ≈ 10−13 s, where ρ ≈ 1000 kg/m3 is the particle density.
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Fig. 4.4: Apparent shear modulus spectrum for the Voigt model (a) and the Maxwell
model (b) obtained from Eqs. (4.33) and (4.34) respectively. The open symbols show
the apparent storage modulus G′ (real part of G∗) and the filled symbols give the loss
modulus G′′ (imaginary part of G∗). Circles are the exact values (from Eqs. (4.9) in
(a) and (4.21) in (b)). The triangles and squares are the apparent values with σ being
respectively equal to the plateau onset time (σ = τv in (a) and σ =

√
τbτm in (b)) and

10 times the plateau onset time (σ = 10τv in (a) and σ = 10
√
τbτm in (b)). We took

τm/τb = 1012 for (b).

can modify our power-law relaxation model to take the Maxwell behavior into account by setting

〈∆x2(t)〉
〈∆x2

p〉
=

{
(t/τe)1/2 if t ≤ τe ,

(t− τe)/τm + 1 if t > τe .
(4.35)

If we take τe/τm = 10−3 and σ/τm = 10−5, we find that the dynamic error diminishes the plateau
value by only 5%.

It is instructive to consider the dynamic error arising in the same experimental system when
studied by the commonly employed technique of video microscopy [28, 39]. Standard video mi-
croscopy uses an industrial grade CCD camera for signal detection with usually σ ≈ 10−3 s. If
the experimental Maxwell model fluid described here was studied with video microscopy (then
σ/τm ≈ 10−2 and σ/τe ≈ 10), we predict that the dynamic error will lead to a great discrepancy
between the microrheology measurements and the bulk rheology (Fig. 4.4). This dramatic com-
parison reinforces the need to understand the dynamic error when performing microrheology using
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different setups.

4.5 Conclusions

We investigated the effect of a finite exposure time on microrheology measurements of fluids in
which an embedded particle’s mean squared displacement displays a plateau above an onset time
τ . Using common viscoelastic models, we find that the sampling rate σ−1 has a great effect on the
measured shear modulus. In particular, the latter exhibits apparent magnitudes that greatly differ
from the expected value when σ is larger then τ and our calculations allow us to quantify these
effects. In general, at frequencies ω . σ−1, extracted scalings and analysis should be performed
with great care.



CHAPTER 5

Statistics of Multiple Particle
Tracking Measurements

In the previous chapter, we have presented an important limitation of the video microscopy particle
tracking technique. We have shown that the detector intrinsic noise and acquisition process induce
errors in the localization of the particles. These errors propagate on the mean-squared displace-
ment, the classical calculation performed for microrheology measurements, and lead to inaccuracies
that are usually greater at short lag times, hence at high frequencies. In chapter 2, we have already
mentioned that another limitation was coming from the finiteness of the volume of observation,
especially in the z direction. This leads to a certain statistical peculiarity, in particular in heteroge-
neous materials, that is discussed in this chapter. Here we will characterize in detail the statistical
uncertainty (mainly a low frequencies issue), and we will demonstrate a valid measure of material
heterogeneity from the output of multiple particle tracking.

5.1 Introduction

The interest in resolving the structure of complex fluids at a micron size length scale has increased
with the advent of soft matter sciences. This interest is justified by the implication of the spatial
micro organization of the components of a complex material in its transport, rheological, optical
properties at equilibrium (see [64] and references therein), as well as in its eventual kinetics of for-
mation [65, 66]. This microscale characterization has also been shown to be particularly important
in biological applications. From inter- and intracellular transport phenomena to molecular motors
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activity, the driving (or resisting) forces occur on micron and submicron length scales, which can
not be inferred from bulk measurements [67, 68]. Also in the biology framework, it has been re-
ported that the fate and behavior of single cells depends on their local level of confinement [69]
or the stiffness of their microenvironment [70]. More strikingly, it has been recently pointed out
that in general, systems with heterogeneous features can lead to apparent peculiar measurements,
themselves leading to incorrect interpretation [71]. Thus, access to some measure of the spatial
distribution of a given material property (pore size, visco-elasticity, charges density ...) provides
a fundamental information for the understanding of a plethora of phenomena involved in complex
fluids science.

Consequently, the range of techniques available to achieve these goals has been broaden over the
last decades. Direct observations of the structural elements and their organization are made possi-
ble thanks to a wide range of microscopy techniques. Light, fluorescence, electron and atomic force
microscopy are able to report a spatial mapping of the complex fluid structure at various length
scales, by usually providing with contrasted two-dimensional pictures. Eventually high order mea-
sure of the spatial distribution of structures can be made by using image postprocessing techniques
from these images [72, 73]. Three dimensional information can be obtained from elaborated ver-
sions of the previous techniques (confocal, differential interference contrast, quick freeze/deep etch
sample preparation for electron microscopy,...). Scattering techniques such as neutron, x-ray and
light scattering however spatially average the structural features in the sample and thus lose some
information on the eventual heterogeneity.

Rheology on a complex fluid is intimately related to its network microstructure [74]. Beside
the morphological measurements described above, inferring structural information from rheological
data is however a complicated inverse problem (see for example [75] for an application of rheological
data to extract information on the network heterogeneity). Direct microrheological mapping of
material has been addressed recently [11, 12]. Microrheology measures the response of a material
to micron-sized probes motions. Under certain conditions, it reports either the local mechanical
property or the microstructure of the material in which the probes are embedded (see chapter 1).
Video multiple particle tracking is a simple and inexpensive microrheology technique that, to date,
provides the highest throughput of spatial microrheological sampling of a material. It is a passive
technique where the thermal fluctuations of hundred of particle dispersed in the material can be
tracked simultaneously (see chapter 2 for a detailed description of the technique). Measurements
are usually fast and the statistical errors are usually considered small because of the large amount
of data collected. The spatial resolution of this technique was discussed in previous chapters, and
the temporal resolution is essentially determined by the video rate. Its simplicity and availability
has made it very popular, and in the last few years, investigation of microenvironment using video
multiple particle tracking has been performed on actin systems, agarose gels, cells, DNA solutions
[76, 10, 77, 78]. In recent studies, it has been used to extract pore sizes distribution in cross-linked
actin networks [79] and to characterize anisotropic gels of aligned DNA [80]. We can also recall at
this point that the materials heterogeneity can be a problem for microrheologists trying to calculate
bulk properties. A recent method that overcomes such problems has recently been introduced using
the cross-correlation of paired probes motion [81, 82].

It remains that a lot of the complex materials investigated with microrheology are known to
be heterogeneous, such that depending on where the probe is located in the sample, its motion
will exhibit different dynamics. In parallel, due to the finite imaging volume, the amount of data
collected from a given particle is limited by the duration of its residence in the volume of observation.
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The complexity comes from the fact that the duration of the measured particle trajectory depends
also on the local material property. For example a heterogeneous system can let some particles
travel throughout a porous structure, but will tightly trap a subpopulation of particles in its smaller
pores (such behavior has been recently observed in actin gels [46]). The trapped particle will be
tracked for the whole acquisition time, whereas free particles will leave the volume of observation
and/or enter -possibly several times- during the same acquisition time. As a result, numerous
short trajectories will be extracted in region of loose meshing where particles are free to move,
whereas only a few long trajectories will be extracted from the signal of trapped particles, even
if the material hypothetically exhibit the same amount of small and large pores. This example
gives an immediate sense of the peculiar statistical sampling of a heterogeneous material using this
technique. This sampling depends on both the size of the imaging volume and the probed material’s
structure.

Ultimately, the distribution of material property needs to be characterized independently of
the measurement technique. The distribution of property can be quantified by its mean, variance,
skewness, kurtosis and other higher order moments or functions of moments such as the non-
gaussian parameters [83]. The latter have already been used to quantify dynamical heterogeneity
in colloidal systems [84, 85]. Through the dynamics of the probes, the material heterogeneity is
indirectly, but almost uniquely, quantified (see subsequent sections). For example, the mean of
the probes individual mean-squared displacements, that is the ensemble averaged mean-squared
displacement, is usually calculated by dividing in time individual trajectories into displacements
and accounting for all displacements the same way, disregarding the trajectory they were extracting
from (a simultaneous time and ensemble average is thus performed). But it has also been calcu-
lated as the center of individual mean-squared displacement distribution obtained from prior time
averaging calculations on the individual trajectories [86]. Similar “naive” calculations based on
time-averaged estimation from each probes trajectory were used in [11, 29] to perform qualitative
analysis that circumvent the statistical limitations described in the previous paragraph. We only
found two methods in the literature. In a first kind of heterogeneity study, bin partitions analysis
based on a percentile calculations is used to increase statistics [65, 78, 77, 43, 66]. This analysis
remains overall a qualitative perspective since it compares results in complex systems with mea-
surement in homogenous glycerol solutions. It has however the advantage of being able to provide
a somewhat quantitative degree of heterogeneity. In a second attempt, hypothesis testing based on
the F -ratio of paired mean-squared displacement were performed to classify particles dynamics into
statistically undistinguishable groups [12]. Although it is not the more convenient way to quantify
the heterogeneity (i.e. with a single number), this classification allowed them to map the locations
of given micro environment in an agarose gel sample. Following this idea, it is actually possible
to test homogeneity of multiple dynamics with a single statistics (see [87] for a review of available
statistical tests), and to eventually conclude on the heterogeneity of a sample.

In this chapter, we develop a way to rigorously calculate the first two moments of the probe
particle dynamics in a heterogeneous system. Using a mathematical formulation for the peculiar
statistical sampling obtained in multiple particle tracking output, we derive estimators of these
two moments (mean and variance) that are independent of the sampling design, up to a certain
fundamental limitation of the technique that we called transparency. In the first part, the theo-
retical approach is exposed and an important factor quantifying the level of transparency of the
technique to certain probes dynamic is introduced. From this, estimators for the two first moments
of individual mean-squared displacements are derived. The last part provides stringent testing of
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these estimators on simulated and experimental systems of increasing complexity, that cover a wide
range of actual scenarios.

5.2 Notations

∆t : sampling time
Tb : duration of the acquisition
nb : duration of the acquisition in ∆t units (i.e. Tb/∆t)
Vb : volume of observation
Cb : density of particle dispersed in the material

Nb(t) : number of particles in Vb at a time t
ti : first time of observation of trajectory i
Ti : duration of the trajectory i
ni : duration of the trajectory i in ∆t units (i.e. Ti/∆t)
τ : lag time
n : lag time in ∆t units (i.e. τ/∆t)

I(n) : set of indices corresponding to trajectories longer than τ (i.e. {i : ni ≥ n})
xi,j : j-th time-ordered observed position on the trajectory i

di,j(n) : j-th time-ordered displacement extracted at time τ from trajectory i
qi(n) : number of overlapping displacements extracted at time τ from trajectory i
qi(n) : number of overlapping displacements extracted at time τ from trajectory i
D(n) : set of overlapping displacements (i.e. D(n) = {{di,j(n)}1≤j≤qi(n)}i∈I(n))
mi(τ) : ensemble mean squared displacement of trajectory i at lag time τ

si : size of the block on trajectory i used to perform block-average transform
dri,j(τ) : j-th time-ordered block-averaged r-th power displacement extracted at time τ from

trajectory i
q
i
(τ): number of block-averaged displacement from trajectory i

Dr(n) : set of block-averaged displacements (i.e. Dr(n) = {{dri,j(n)}1≤j≤q
i
(n)}i∈I(n))

5.3 Theory

5.3.1 Sampling Design of Multiple Particle Tracking

Let ν(ω, r) be the value of a material property ν at the location r ∈ V in the material, evaluated
at the frequency ω. We write Pν(ω)(v) = V −1

∫
V δ[v − ν(ω,ρ)]dρ the probability density function

of this material property in a volume V of medium. A schematic of such a heterogeneous fluid is
pictured in figure 5.1. An indicator of heterogeneity of the material in this volume is then given
by the mean E[ν(ω)] and the moments about the mean of Pν(ω): µr[ν(ω)] = E

[
(ν(ω)− E[ν(ω)])r

]
,

where E[. . . ] designates the expectation value.
In a passive microrheology experiment such as the multiple particle tracking technique described

in chapter 2, a measure of the local material property is made through the thermal motion of a
micron-sized particle embedded in the material. A thermally fluctuating particle following the
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Fig. 5.1: Schematic of an heterogeneous system, as seen through a microscope. Differ-
ent colors in the material correspond to different values of a certain material property
ν. Randomly dispersed particles (green dots) are visible only when moving in a cer-
tain volume of observation (blue dotted frame) whose smallest dimension zb in the z
direction determine the limitations in sampling. The bottom view pictures a typical
snapshot at a time t within the acquisition time interval.

trajectory r(t) exhibits a dynamic that, at a time scale τ = ω−1, can be quantified by the dis-
tribution of the displacements dt(τ) = r(t + τ) − r(t). Usually, a measure of the local material
property is made by calculating the mean-squared displacement mt(τ,ρ) = E[dt(τ)2 | r(t) = ρ] =∫ +∞
−∞ δ2Pdt(τ) | r(t)(δ |ρ)dδ, where the integral runs over all possible displacements. This material

property is defined at a location r(t), within a minimum length scale given by the extend dt(τ) of
the trajectory (i.e. the amplitude of the deformation applied to the material), and over which the
material is assumed homogeneous. From the stationary assumption, this property is independent
of t, and we will write it m(τ,ρ). Hence the distribution that is accessible with the technique
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is Pm(τ) | r(m |ρ) = δ[m − m(τ,ρ)] and the central moments (or moments about the mean) of
P u
m(τ)(m) = V −1

∫
V Pm(τ) | r(m |ρ)dρ, obtained with uniform spatial distribution of positions in the

volume V (Pr(ρ) = V −1), can be used to quantify the heterogeneity of the material through the
probes’ dynamics heterogeneity (we will expose some limitations to this idea in the next sections).
Such moments can be written in terms of the raw moments:

E[m(τ)r] =
∫ +∞

0
mrP u

m(τ)(m)dm = V −1

∫
V

[∫ +∞

−∞
δ2Pd(τ) | r(δ |ρ)dδ

]r
dρ (5.1)

We can note at this point that since the quantity to estimate involves two integrations, there will
be two levels of sampling when performing the experiments. A first level of sampling is obtained
in the spatial integration (outer integral in equation 5.1) since in practice, only a finite number of
locations will be investigated. A second level of sampling needs to be characterized, as the number
of sample displacements obtained per given sample location will be eventually small, and will thus
require a binning of the volume of observation. It is then possible to gather observed displacements
by grouping their corresponding location into spatial bins, and then calculate the inner integral of
equation 5.1 in each bin.

In the multiple particle tracking technique, trajectories of the probes’ Brownian motion are
obtained by processing movies acquired with video microscopy. The sampling of the material is
limited in space by the volume of observation Vb ⊂ V (camera field of view in the plane and tracking
depth in the direction perpendicular to the plane, see section 2.3) which contains Nb(t) probes
particles at a given time t (see figure 5.1). A limitation in time is naturally given by the duration of
acquisition Tb = nb∆t, where ∆t is the time interval between two successive movie frames, and nb+1
is the number of frames. The output of the tracking is a set of N probe trajectories {ri(t)}1≤i≤N ,
each trajectory being sampled every ∆t. We will write R = {{ri,j = ri(j∆t+ti) ∈ Vb}0≤j≤ni}1≤i≤N
the sample of observed positions, where Ti = ni∆t is the duration of the trajectory i and ti is
the time of first observation. Several trajectories can eventually correspond to a single particle
that leaves and comes back in the volume of observation, such that in general, Nb(t) ≤ N and
Ti ≤ Tb. For a lag time τ = n∆t and for trajectories such that Ti ≥ τ (i.e. ni ≥ n), we
can extract qi(n) = ni + 1 − n overlapping (hence a priori non-independent) displacements from
the trajectory i and we obtain the sample D(n) = {{di,j(n) = ri,j+n−1 − ri,j−1}1≤j≤qi(n)}i∈I(n)

of observed displacements, where I(n) = {i : ni ≥ n} is the set of indices corresponding to
trajectories longer than τ . The corresponding set of positions associated with D(n) will be written
R(n) = {{ri,j−1}1≤j≤qi(n)}i∈I(n).

As noted earlier, in order to estimate equation 5.1 the volume Vb must be subdivided into M
cells (or bins) of volume {Vk}1≤k≤M , with Vb =

∑M
k=1 Vk. To each bin corresponds a constant

(assuming homogeneity on the bin size scale) value of the inner integral which we will call mk(τ) =
E[m(τ) |ρ ∈ Vk] = m(τ,ρk), where ρk ∈ Vk is an hypothetical location of Vk. Suppose that it
is possible to determine mk(τ) using an estimator with arbitrary certainty ĝ(Dv

k(n)) such that
E[ĝ(Dv

k(n))] = mk(τ) from any subset Dv
k(n) of D(n) containing only displacements {di,j(n)}

for which corresponding position {ri,j−1} are in Vk. By making such an assumption, we aim at
characterizing the first level of sampling only, discarding the second level which will be discussed
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later in the text. The estimator of the spatial moments of m(τ) are then:

Ê[m(τ)] =
∑M

k=1 πkĝ(D
v
k(n))

µ̂2[m(τ)] =
∑M

k=1 πk
[
ĝ(Dv

k(n))−
∑M

k=1 πkĝ(D
v
k(n))

]2∑M
k=1 πk(1− πk)

(5.2)

where πk = Vk/Vb, as obtained from the usual sample estimator of the weighted mean and variance
with uncorrelated samples. The difficulty is to build the set {Vk}1≤k≤M such that, on the one
hand the statistical accuracy within each cell is high enough (obtained by increasing Vk, which in
turn will decrease M), and on the other hand to have enough bins to calculate moments, and such
that the assumption of uniformity within cluster is valid by sampling the space at a fine enough
scale (large M). In other word, there is a compromise between gaining accuracy in estimating the
inner integral in the equation and accuracy in the outer integral calculation. For generality, it is
convenient to have a formula independent of the choice of {Vk}1≤k≤M . This can be achieved under
some reasonable assumptions. We first assume that each trajectory is entirely contained in one of
the bins {Vk}1≤k≤M . We can then write:

ĝ(Dk(n)) = (
∑

i∈Ik ni)
−1

∑
i∈Ik niĝ(Di(n)) (5.3)

where Di(n) is the subset of D(n) corresponding to trajectory i, and Ik is the set of indices cor-
responding to trajectories contained in Vk. Next we assume (

∑
i∈Ik ni)/Vk = Cbnb is independent

of k, where Cb is the uniform density of particle in the material (recall that
∑

i∈Ik ni is the total
number of observed positions in Vk). We get:

Ê[m(τ)] =
∑N

i=1 piĝ(Di(n))

µ̂2[m(τ)] =
∑N

i=1 pi
[
ĝ(Di(n))−

∑N
i=1 piĝ(Di(n))

]2∑M
k=1 πk(1− πk)

(5.4)

where pi = ni/
∑N

i=1 ni. The denominator of µ̂2[m(τ)] is a correcting factor for the bias, and
approaches 1 for M � 1. At this point it is possible to also characterize the uncertainty of these
estimators due to only the first level of finite spatial sampling. Using again common formula for
the variance of the sample mean and of the sample variance, we have:

µ2[Ê[m(τ)]] = µ2[m(τ)]
∑M

k=1 π
2
k

µ2[µ̂2[m(τ)]] = (µ4[m(τ)]− µ2[m(τ)]2)
∑M

k=1 π
2
k +O

(∑M
k=1 π

2
k

) (5.5)

The calculation of the quantity
∑M

k=1 π
2
k requires the knowledge of the individual volume Vk

for all 1 ≤ k ≤ M . However, at an instant t of the measurement, the number of sample locations
observed in the volume is Nb(t). We can then argue for this calculation that the uncertainty in the
first level of spatial sampling is ∝ E[Nb(t)]−1 = N−1

b . Thus we will write
∑M

k=1 π
2
k ≈ N−1

b when
estimating the above quantities.

As pointed out earlier in the text, only trajectories for which Ti ≥ τ will be counted in the
displacement sample. For a trajectory shorter than τ , the corresponding Di(n) is empty and no
estimator ĝ(Di(n)) can be computed. The duration of a trajectory Ti is in fact an observation of
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another random variable whose distribution depends, among other factors, on the dynamics of the
corresponding particle. Hence, a particle that is likely to travel across the volume of observation
(say its smallest dimension) over a lag time τ will not be tracked for a sufficient time to perform
any computation from its trajectory. The corresponding material in which probes undergo such
dynamics will be transparent to the technique. A possible quantitative indicator of this effect is

θ(n) =

∑
i∈I(n) ni∑N
i=1 ni

. (5.6)

It is the ratio of the number of positions for which a displacement at lag n has been measured over
the total number of observed positions (over which the sum runs in the estimators, equation 5.2,
where such effect has been discarded by the initial assumption). Limiting behaviors of this indicator
are reached when all position are associated with a displacement (θ(n) = 1 and the sampling is
at its best), and when no sample displacements could be calculated (θ(n) = 0 and the material is
totally transparent to the technique). Furthermore, we will show in the following section that this
transparency factor is a good measure to characterize the effect of the volume of observation on
the quality of the estimators subsequently derived.

To conclude this section, we notice that this choice of bins {Vk}1≤k≤M is not unique. For
example, bins of identical shape and size could be chosen to divide Vb independently of the sample
R. Their size and number would then need to be adjusted for each lag time to reach the best
statistical accuracy. The latter might be challenging to evaluate on-the-fly. The bins could also be
construct randomly by Voronoi tessellation from a subset of R. The choice made here, relying on
the assumption that a particle probes a unique material property along its path, is a more natural
procedure in the particle tracking framework.

In the next two sections, we investigate the second level of statistics involved in the evaluation
of ĝ(Di(n)).

5.3.2 Characterization of the Sample of Displacements

For simplicity, we will consider only 1 dimensional random walks in the x direction. The output
of a multiple particle tracking experiment is a list of 1 dimensional overlapping displacements
as defined earlier, D(n) = {{di,j(n) = xi,j+n−1 − xi,j−1}1≤j≤qi(n)}i∈I(n). Here we look at the
characteristics of this sample. If all processes xi,j are assumed stationary with respect to the time
j, as well as independent from one another, then we can immediately write the following second
order characterization:

E
[
di,j(n)

]
= 0

E
[
d2
i,j(n)

]
= mi(n)

E
[
di,j(n)di′,j′(n)

]
/E

[
d2
i,j(n)

]
= δii′ρ

(1)
n,i(j − j′)

(5.7)

where δii′ designates the Kronecker delta and where the correlation coefficient ρ(1)
n,i(h) can be ex-

pressed in terms of the mean-squared displacement mi(n):

ρ
(1)
n,i(h) =

[mi(h+ n)−mi(h)] + [mi(h− n)−mi(h)]
2mi(n)

(5.8)
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Under the assumption that all displacements are Gaussian distributed, this second-order charac-
terization is sufficient to know all other moments of the displacement samples. For example, an
interesting characteristic when calculating power of the mean-squared displacements is the corre-
lation coefficient of the squared displacements:

E
[
d2
i,j(n)d2

i′,j′(n)
]
− E

[
d2
i,j(n)]E

[
d2
i′,j′(n)]

E
[
d4
i,j(n)

]
− E

[
d2
i,j(n)]2

= δii′ρ
(2)
n,i(j − j′) (5.9)

where it can be shown that ρ(2)
n,i(h) = [ρ(1)

n,i(h)]
2. We show typical values of ρ(1)

n (h) in Fig. 5.2 for
various dynamics m(n). We observe that in general the overlapping displacements are correlated up
to a non-universal lag h. More interestingly, we see on this figure that even if the displacements are
not overlapping (h ≥ n), anti-correlation can be observed. To this regard, only the Newtonian dy-
namics (pure diffusion, m ∝ |n| in figure 5.2A) exhibits uncorrelated successive displacements. We
can conclude then that the observations of the squared-displacement will also exhibit correlations
in a non-universal way.

This will present a problem when applying common estimator formulas involving squared sums
of observations. A common way to de-correlate observations is to perform block-average trans-
formation [88]. We define the s-sized block-average of the rth power displacement the following
way:

dri,j(n) =
1
s

s−1∑
l=0

dri,sj−l(n) (5.10)

The characteristic of the these new observations can be also calculated:

E
[
dri,j(n)

]
= E[dri,j(n)]

E
[
dri,j(n)dri′,j′(n)

]
− E

[
dri,j(n)

]
E

[
dri′,j′(n)

]
E

[
dr

2
i,j

(n)
]
− E

[
dri,j(n)

]2 = δii′ρrn,i(j − j′)
(5.11)

where we compute the block averaged transform of the displacement auto-correlation coefficient:

ρrn,i(h) =

∑s−1
k=−(s−1)(1− |k|/s)ρ

(r)
n,i(|h|s+ k)∑s−1

k=−(s−1)(1− |k|/s)ρ
(r)
n,i(k)

(5.12)

We plot in Fig. 5.2 the correlation ρ1n,i
(1) of successive block-averaged displacements as a function

of s and we see that the choice s = n de-correlates successive block-averaged displacements. This
apparent de-correlation is effectively a smoothing of the raw displacements correlation, that can be
observed for higher order correlation coefficient (ρrn(h) is also almost zero for r > 1 and for h ≥ 1,

even though it is not the case for the corresponding ρ
(r)
n (h); data not shown). A more general

definition of the block-averaged r-th power displacement is given by:

dri,j(n) =
1

si(n)

si(n)−1∑
l=0

dri,si(n)j−l (5.13)

where si(n) = n if qi(n) ≥ n, si(n) = qi(n) otherwise. For each trajectory, we obtain q
i
(n) block-
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averaged displacements with q
i
(n) equals the the biggest integer smaller than qi(n)/si(n). It forms

a sample Dr(n) = {{dri,j(n)}1≤j≤q
i
(n)}i∈I(n) of mutually uncorrelated observations. Note that

this choice of si(n) does not lead to a significant loss of statistics as compared with calculation
made with non-overlapping displacements. In the latter, approximately ni/n displacements can be
extracted from trajectory i, comparable to q

i
(n).
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Fig. 5.2: Auto-correlation coefficients of the displacements and of the block-averaged
displacements. Different dynamics m(n) are investigated: (A) is a purely Newtonian
fluid m(n) ∝ |n|, (B) is a Voigt fluid model with relaxation time of 10, m(n) ∝
1 − e−|n|/10, (C) and (D) are 0.7 and 0.3 power law dynamics, m(n) ∝ |n|0.3 and
m(n) ∝ |n|0.7 respectively. The plots on the second row give the displacements’ auto-
correlation coefficient ρ(1)

n (h) as a function of (n, h) for the corresponding dynamics
shown in the first row. The third row of plots show the auto-correlation coefficient of
two successive boxed averaged displacements ρ1n

(1) as a function of (n, s) (see text for
notations).

5.3.3 The Estimators

We define the weighted sample mean:

dp(n) =
∑

i∈I(n)

∑
1≤j≤qi(n)wi(n)dpi,j(n) with wi(n) = [ni/qi(n)]/

∑
i∈I(n) ni (5.14)

over the sample D(n). Similarly, we will write:

dr
p(n) =

∑
i∈I(n)

∑
1≤j≤q

i
(n)wi(n)drpi,j(n) with wi(n) = [ni/qi(n)]/

∑
i∈I(n) ni (5.15)
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over the sample Dr(n). In general, drp(n) 6= drp(n) unless p = 1, where the two terms differ only
by the number of sample displacement lost when taking the integer part of qi(n)/si(n). However
we have E[dr(n)] = E[dr(n)].

We define the estimator M̂1(n) of M1(n) = E[m(n)] by:

M̂1(n) = d2(n) =
∑

i∈I(n)wi(n)
∑

1≤j≤qi(n) d
2
i,j(n) (5.16)

The second level expectation is:

E[M̂1(n) | {Vk}1≤k≤M ] = (
∑

i∈I(n) ni)
−1

∑
i∈I(n) nimi(n) =

∑
i∈I(n) pimi(n) (5.17)

and is unbiased in the first level for θ(n) = 1 (see equation 5.4). If the system is homogenous
however, M̂1(n) is unbiased for any values of θ(n), as it will be shown in the next section.

To calculate the variance of M̂1(n), we note that there are two independent contributions in
the uncertainty of the estimator, each contribution coming from the two different levels of sampling
mentioned earlier in the text. To see this, let us briefly derive a simplified result. We consider
a set of N unbiased estimators {âi}1≤i≤N of a corresponding set of values {αi}1≤i≤N , the latter
forming a sample of independent observations of a random variable α. Similar to the current study,
we have here two levels of statistical uncertainty when estimating some moments of α: one level
is affecting the accuracy of estimating each αi with âi, and the other is coming from the limited
number of observation αi. In the first level, we have E[âi |αi] = αi and we define the variance of
the estimator âi by µ2[âi |αi] = E[â2

i |αi] − E[âi |αi]2 = βi/ni where ni is the number of sample
used to calculate âi. We can calculate the mean and variance of the quantity â = N−1

∑
1≤i≤N âi

that is an estimator of E[α]. We use iterated expectation to write:

E[â] = E
[
E[â | {αi}1≤i≤N ]

]
= E

[
N−1

∑
1≤i≤N αi

]
= E[α] (5.18)

which shows that the estimator is unbiased. The same way, we find:

E
[
E[â2 | {αi}1≤i≤N ]

]
= E

[
N−2

∑
1≤i≤N βi/ni +N−2

(∑
1≤i≤N αi

)2]
= E[β/n]/N + µ2[α]/N + E[α]2

(5.19)

such that finally, the variance of the estimator â,

µ2[â] = µ2[α]/N + E[β/n]/N (5.20)

is the sum of two terms. The first term comes from the level of sampling the random variable α
with the N observations αi and is ∝ N−1, and the second term includes the uncertainties from the
estimation of each αi by âi and is ∝ (Nn)−1, where Nn is the total number of initial observations.
In the current study, the first term corresponds to the expression given given by equation 5.5 for
the first level of spatial sampling. The second term can be calculated by assuming the system
homogeneous (that is taking µ2[α] = 0 in the demonstration presented above), which means that
all initial observation are taken from the same distribution. Note also that from intermediate
calculations in the above demonstration, we get

µ2[â | {αi}1≤i≤N ] = E[â2 | {αi}1≤i≤N ]− E[â | {αi}1≤i≤N ]2 = N−2
∑

1≤i≤N βi/ni (5.21)
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of order (Nn)−1. This result will be useful in the following derivations.

We follow this idea to calculate the variance of M̂1(n). We use the approximation d2(n) ≈ d2(n),
the mean of the sample D2(n) of uncorrelated observations. In that case, it is possible to show
that the variance µ2[M̂1(n)]h obtain when all observations in D2(n) are identically distributed
(assumption of homogeneity), is estimated by:

µ̂2[M̂1(n)]h =

[
d2

2(n)− d2(n)2
]∑

i∈I(n) qi(n)wi(n)2∑
i∈I(n) qi(n)wi(n)[1− wi(n)]

(5.22)

so that the total expression is:

µ̂2[M̂1(n)] =
M̂2(n)
Nb

+ µ̂2[M̂1(n)]h (5.23)

where we have used equation 5.5 with M̂2(n) an estimator of M2(n) = µ2[m(n)].

To calculate M̂2(n), we assume that all displacements are Gaussian distributed. In that case,
we find that:

M̂2(n) = d4(n)/3− M̂1(n)2 (5.24)

is almost unbiased. Indeed, for the first term in M̂2(n), we have

E[d4(n) | {Vk}1≤k≤M ] = 3(
∑

i∈I(n) ni)
−1

∑
i∈I(n) nimi(n)2 (5.25)

since E[d4] = 3E[d2]2 for a zero-mean Gaussian random variable d. The expectation of the second
term can be written:

E[M̂1(n)2 | {Vk}1≤k≤M ] = E[M̂1(n) | {Vk}1≤k≤M ]2 + µ2[M̂1(n) | {Vk}1≤k≤M ] (5.26)

where the second term is of order
∑

i∈I(n) qi(n)wi(n)2 from equation 5.21, that is of the order of the
inverse total number of displacement

∑
i∈I(n) ni in D(n). This second term can thus be neglected,

and we finally get:

E[M̂2(n) | {Vk}1≤k≤M ] =
∑

i∈I(n) pi
[
mi(n)−

∑
i∈I(n) pimi(n)

]2 +O
[(∑

i∈I(n) ni
)−1] (5.27)

which is the estimate given in equation 5.4 for the first level of uncertainty. To estimate µ2[M̂2(n)]
we follow the same line of reasoning as for the variance of M̂1(n). The variance µ2[M̂2(n)]h under
the homogeneity assumption is estimated by:

µ̂2[M̂2]h =
[
d4

2 − d4
2

9
+ 4d2

2(
d2

2 − d2
2)− 4d2

3
(
d2 d4 − d2d4

)](∑
i∈I(n) ni

)−1 +O
[(∑

i∈I(n) ni
)−2]

(5.28)
where have dropped the dependency in n for conciseness. The first level term given by equation 5.5
requires the estimation of µ4[m(n)] (the other term µ2[m(n)] is estimated by M̂2(n)), which is
obtain under the Gaussian assumption:

µ̂4[m] = d8/105− 4d2 d6/15 + 2d2
2
d4 − 3d2

4
+O

[(∑
i∈I(n) ni

)−1] (5.29)
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so that finally:
µ̂2[M̂2] =

(
µ̂4[m]− M̂2

2 )N−1
b + µ̂2[M̂2]h (5.30)

We give in the appendix the IDL procedure that allows us to calculate these statistics.

5.3.4 The Assumptions

We remind here the main assumptions that have been used in order to derive the above formula
for the estimators.

• The probes’ motions are stationary

• Constant number of particles in the box at any given time: Nb(t) = Nb = CbVb

• A single trajectory reports the motion of a probe in a locally homogeneous fluid

• The displacements are Gaussian distributed

• Trajectories are independent

5.4 Specific Methods

5.4.1 Brownian Dynamics Simulations

We used Brownian dynamics simulations to test the validity of the estimator. Simulations are
convenient as they provide both the freedom of design and a well-defined system. The input
parameters are easily changed and well controlled in wide range of values. However we must first
ensure the validity of these range as compared with real experimental design.

Scaling and Range of Parameters

The smallest dimension of the volume of observation given in the z direction is called zb. Its value
depends on the depth of field of the multiple particle tracking technique as well as the tracking
parameters. But typical values range form 1µm to 10µm. The concentration of probes particle is
chosen such that minimal interaction between particles is expected, and given the magnification,
between 10 and 100 particles can be track simultaneously (10 < Nb < 100). The video rate is
usually not greater than 100 Hz, thus the time interval between consecutive frames is ∆t > 0.01 s.
The duration of the movie is limited by the number of frames storable in memory, but typically
Tb = 1000∆t. The smallest viscosity encountered in typical applications is the one of water η =
10−3 Pa · s, and at T = 25◦C with smallest trackable particle radius a = 0.05µm, we get that
ξ = 6πaη > 1 cP ·µm. Throughout the following sections, we will use quantities made dimensionless
with the distance zb and the time ∆t. Hence, in the following we will designate the dimensionless
quantity using .̃ . ., such that for example m̃ = m/z2

b designates the dimensionless mean-squared
displacement. However, to avoid redundancy, the dimensionless lag time and acquisition duration
are written n = τ̃ = τ/∆t and nb = T̃b = Tb/∆t respectively, as already introduced earlier.
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Brownian Dynamics Simulations

A Brownian dynamics simulation was employed to create particle trajectories [52]. An explicit
first-order time-stepping algorithm was used to advance the position rj(t) of a particle j at time t:

rj(t+ δt) = rj(t) + ṙj(t)δt

where δt is the time step and ṙj(t) satisfies the following stochastic differential equation:

ṙj(t) '
1
ξj

Fj(rj(t)) +

√
2kBT

ξjδt
dWj

obtained by assuming the drag on the particle to be Stokesian and by neglecting any other hy-
drodynamic interactions. Also, Fj(r) = −kj [r− cj ] is the Hookean linear force law applied to the
particle by the medium from the fixed center position cj (Fj(r) = 0 when simulating a Newtonian
fluid) and Wj is a Wiener process that satisfies 〈dWj〉 = 0 and 〈dWjdWj〉 = δ where δ is the unit
second-order tensor [52]. The model fluid is then characterized by the properties νj = (ξj , kj), and
dynamics by m(τ) = 2kBT (1− e−kj |τ |/ξj )/kj in each direction. Nb trajectories of duration Tb were
simulated. The effect of the finiteness of the volume of observation is taken into account only in the
z direction of the motion r(t) = (x(t), y(t), z(t)), where only positions verifying 0 ≤ z(t) < zb can
be observed. In practice, the Nb force centers {cj}1≤j≤Nb

are uniformly distributed in an interval
[0, zb] in the z direction. About these centers, Nb initial positions {zj(0)}1≤j≤Nb

are randomly
chosen from the equilibrium distribution, Pzj(0)(z) ∝ e−kj(z−cj)2/(2kBT ). This ensures that the sys-
tem is at thermal equilibrium at t = 0. The trajectories are then simulated starting from these
positions. For each trajectory rj(t), with 1 ≤ j ≤ Nb, the first z position that lies outside the box
interval [0, zb) is translated by a length zb to fall back in the observable interval. Accompanying
this translation, an index of trajectory is incremented and assigned to the fragment of trajectory
starting from this translated point. The process is repeated over time to obtain a fragment of the
original rj(t) divided by this periodic boundary conditions in the z direction. After performing
this transformation to the Nb initially simulated trajectories, all the fragments are re-indexed to
obtain the sample {ri(t)}1≤i≤N of N tracks. By always keeping all successive positions in the vol-
ume of observation, the condition of constant particles density,

∑N
i=1 Ti = NbTb is verified at all

reported time steps. For all sets of simulation, δt = 10−1∆t. We verified that our results did not
appreciably change for smaller values of δt. Allowing the density Nb(t) to fluctuate by observing
only a subvolume [0, z′b] of the initial box [0, zb] is a more detailed model of a real multiple particle
particle tracking experiments. But again by doing so, we could not observe significant change in
the results, whereas the computation time is increased.

In the following, the friction coefficient and spring constant are made dimensionless by using
ξ̃ = ξ/(kBT∆t/z2

b) and k̃ = k/(kBT/z
2
b) respectively. From the previous discussion about the range

of parameters met in experiments, we conclude that typically ξ̃ > 10.

5.4.2 Experiments

Simple bimodal heterogeneous systems were made by creating gel features in the field of view of the
multiple particle tracking technique. We used microscope projection photolithography [89] to create
well-defined region of gels with embedded beads, within a region of purely viscous, unpolymerized
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material equally populated with the probe particles.

Materials

We used a solution of 10% (v/v) poly(ethylene glycol)(700) diacrylate (PEG-DA, Sigma-Aldrich),
0.5% (v/v) solutions of Darocur 1173 (Sigma Aldrich) initiator, 20% (v/v) ethanol (95% grade,
Pharmco) and 20% (v/v) 5×TBE buffer, in which 0.518µm diameter carboxylate modified yellow-
green particles at a volume fraction φ = 2.48 × 10−3% where thoroughly dispersed by 20 minutes
sonication. The sample where injected in a 150µm high chamber sealed with vacuum grease shortly
after (see section 2.1.1 for details).

Photopolymerization and Tracking

Four photomasks with unique pinholes of diameter 470, 700, 800 and 900µm were designed in
Autocad 2005 and printed using a high resolution printe at CAD art Services (Poway, CA). The
masks were then inserted into the field-stop of the microscope. A 100W HBO mercury lamp served
as the source of UV light. A filter set provides wide UV excitation (11000v2: UV, Chroma) was
used to select light of the desired wavelength and a VS25 shutter system (Uniblitz) driven by a
computer controlled VMM-D1 shutter driver provided specified pulses of UV light. The oligomer
solutions mixed with probed particles where exposed for a time of 1.5 s to photopolymerize poles
in the chamber by using the 10× objective. It has been shown that the poles are not cylindrical
because of the shape of the light beam [90]. However they can be considered as straight poles
over a length scale of 60µm around the focus point of the beam. At this altitude in the chamber,
their diameter are respectively 2Rgel = 110 ± 4, 170 ± 2, 200 ± 2 and 230 ± 3µm (this leads to
a magnification of approximately 1/4 from the field-stop plan to the objective focal plane). With
the 20× objective, we recorded the motion of the particles in a volume of observation placed such
within this volumes, the poles are straight cylinders at all altitudes z ∈ Vb. The acquisitions were
made at 10 frames per second (i.e. ∆t = 0.1 s) and for a duration of 2000 frames. We verified
that such exposure time of the solution using the fluorescein matching fluorescent filter does not
induce any photopolymerization. For the common tracking parameters used for the processing of
the movies (in particular the clipping region for false locations removal were identical for all movies,
see section 2.3), we find that we track approximately 250 particles in a field of view of dimensions
300× 300µm, with a standard deviation of less than 5% of this mean 〈Nb〉. We can conclude that
for these experiments, using the 20× objective, we have zb = 8.2 ± 0.4µm. Note that this length
scale is smaller than the length scale of curvature of the poles profile in the z direction, ensuring
that the polymerized structures are seen as straight cylinders in the experiments.

5.5 Results and Discussion

We investigated the quality of the estimator for two different dynamics. The purely diffusive
dynamics in Newtonian liquid allows us to scan the parameter space (n, m̃) using the relation
m̃(n) = 2|n|/ξ̃ for varying ξ̃. In the single relaxation time Voigt fluid, the space (n, m̃) is investi-
gated by changing ξ̃ and k̃ using the following dynamical relation: m̃(n) = 2(1− e−|n|ek/eξ)/k̃. These
two kinds of dynamics do not cover all possible multi-relaxation time viscoelastic dynamics often
encountered in microrheometry measurements on complex systems. However, they are simple mod-
els that are easily implemented with Brownian dynamics simulations, and they exhibit sufficiently
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different dynamical characteristics to capture the effect of probe dynamics on the quality of the
estimators, and more generally on the statistics of the obtained sample.

Before analyzing heterogeneous fluids having these two dynamics, it is instructive to evaluate
and characterize the formula in homogeneous fluids.

5.5.1 Homogeneous Fluids

We performed simulations of homogeneous fluids using {ξ̃r = 10r/2, k̃ = 0}0≤r≤11 to scan the pa-
rameter space (n, m̃) using Newtonian dynamics m̃(n) = 2|n|/ξ̃r with different friction coefficients.
Also, we used {ξ̃r = 10r/2, k̃r = 10r/2/5}0≤r≤11 to sample the parameter space using Voigt dynamics
with a dimensionless relaxation time at nv = 5: m̃(n) = 2(1− e−|n|/5)/k̃r. These parameters allow
us to investigate (n, m̃) around m̃ = 1 where the main effects of the finite volume of observation are
expected to occur. But their range also report mean-squared displacements sufficiently low, m̃� 1,
so that the limit in which the volume of observation is infinite is approached. In the simulation
method, the latter limit has been separately simulated by discarding the last step consisting of the
trajectories subdivision.

For each of the 24 types of fluid (12 Newtonian and 12 Voigt), simulations were repeated 100
times to obtain 100 observations of the various random parameters of interest. These include
the largest lag time nmax for which it is possible to calculate the estimators (chosen such that
there remains at least two indices in the set I(nmax)), the transparency indicator θ(n) and the
estimators M̂1(n) and M̂2(n). From the 100 simulations performed under identical conditions,
these observations are calculated at common values of lag time from one simulation to another, so
that statistics (mean and standard deviation) for each measure are calculated for a given n.

Figure 5.3 gives an overview of the results obtained for homogeneous fluids with Nb = 100
and for two acquisition times, Tb = 1000 and Tb = 100. In particular it shows the mapping of the
transparency factor in the parameter space (n, m̃) for the two kinds of dynamics. In this figure, each
solid black line represents the relation m̃(n) used in the experiments to map the space (m̃(n) ∝ |n|
for A and m̃(n) ∝ 1−e−|n|/5 for B), and their end points (the maximum n at which they are drawn)
is at E[nmax].

First, we see that for mean-squared displacements above the observation limit 1, the trans-
parency vanishes for both kinds of dynamics. This observation is not surprising, as for such values
of mean-squared displacement, the probes are more likely to cross the entire volume of observation
over a time less than the lag time. Hence a particle in the box at a given time t is likely to be
outside the volume of observation at a time t+ τ , and thus its observed trajectory can not be used
to extract a displacement at lag time τ .

More strikingly, we see that the transparency of a material at a lag time n and exhibiting a
mean-squared displacement m̃ with this technique depends on the entire dynamics m̃(n) and not
only on the position (n, m̃) in the parameter space (compare the different mapping of figure 5.3A
and 5.3B). This dependency may seem surprising, in particular for the Voigt fluid for which some
values of (n, m̃) are transparent even though m̃ � 1. To provide some insights into this effect,
we show in figure 5.4 typical trajectory durations ni in a selection {ξ̃r = 10r/2, k̃ = 0}r∈{0,3,6}
of Newtonian dynamics and {ξ̃r = 10r/2, k̃r = 10r/2/5}r∈{0,3,6} of Voigt dynamics, as well as the
resulting variation θ(n) of the transparency factor with the lag time n, for Nb = 100 and nb = 100.
In this figure, the middle plots where obtained by gathering together the trajectories coming from
the same initial simulation (before taking the effect of a finite volume of observation into account).
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Fig. 5.3: Transparency factor θ(n) in the parameter space (n, m̃) scanned by two
different kind of dynamics m̃(n): (A) is a purely Newtonian fluid, for which m̃(n) ∝ |n|,
and (B) is a Voigt fluid with relaxation time 5, that is m̃(n) ∝ 1 − e−|n|/5. For each
fluid type, two acquisition times were simulated, nb = 1000 on the left and nb = 100
on the right. The dashed line represents the observation limit m̃ = 1 due to the volume
of observation. The green points represent the limit above which the relative bias of
M̂1, defined by equation 5.31, is greater than 5%.

Thus in these plots, a line corresponds to one of the Nb simulated particles, and the chopping of this
line occurs at the successive absolute times when the corresponding particle crosses the observation
volume’s z boundaries.

From figure 5.4(A), for which r = 0 to figure 5.4(C) with r = 6, we see in the middle plots
that trajectories are becoming longer, or equivalently, that the particles are leaving the volume of
observation less frequently: from a given position in the volume of observation, slower particles
(lower m̃ at constant n) will not be as likely to reach a given boundary than faster particles (higher
value of m̃ for the same n). Consequently, the transparency factor at a given lag time n will increase
from faster (higher m̃) to slower (lower m̃) dynamics, as seen in figure 5.4, right plots, from (A) to
(C) (top to bottom). Also for each value of r (again r = 0 in (A), r = 3 in (B) and r = 6 in (C)),
since the Voigt dynamics are “slower” than the corresponding Newtonian dynamics, we also verify
that the transparency blue curve (Newtonian) falls below the corresponding red curve (Voigt). The
peculiarity of the transparency factor is however visible by comparing the Newtonian dynamics of
(C), m̃(n) = 2|n|/103 and the Voigt dynamics of (B), m̃(n) = 2(1 − e−|n|/5)/103/2. At a lag time
n = 100, both exhibit similar values of m̃ whereas the corresponding value of the transparency are
remarkably different. Thus the transparency does not depend only on the particular value of m̃,
but rather on the entire dynamics of the probes. The transparency of certain fluids to multiple
particle tracking is an important limitation of the technique. But the dynamic dependency of this
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Fig. 5.4: Trajectory statistics. As shown in the left plot, the parameter space (n, m̃)
is sampled using purely viscous dynamics (in blue throughout the figure) with material
properties {ξ̃r = 10r/2, k̃ = 0}r∈{0,3,6} and Voigt dynamics with relaxation time 5 (in
red throughout the figure), {ξ̃r = 10r/2, k̃r = 10r/2/5}r∈{0,3,6}. In this left plot, the
dashed line represents the observation limit m̃ = 1 due to the volume of observation.
The remaining plots are meant to be read in rows, (A) to (C) from higher to lower
values of m̃ (i.e. from lower to higher values of the index r). The first two columns
represent typical trajectory durations in each kind of fluid: a single dot means that
the particle was observable for only 1 frame, and lines indicates trajectory of at least
∆t long. Each row in these plots refers to the original simulated trajectory that has
been fragmented to take limited observation volume into account (see section 5.4.1).
The last column of plots on the right represent the corresponding variations of the
transparency factor θ(n) as a function of n.

transparency is a particularly strong weakness that prevents some universality in judging a priori
the feasibility of an experiment.

We also reported on figure 5.3 the relative bias of the first estimator M̂1(n), defined as follow:

b[M̂1(n)] = E[M̂1(n)]/M1(n)− 1 (5.31)

where the above expected value is calculated from the 100 experiments repeated for each kind
of fluid. For these homogeneous fluids, a bias of less than 5% is measured for almost the entire
observed parameter space. In particular, it is not affected by the drop in the transparency of the
material. In a wide part where the fluid is almost totally transparent, but where mean-squared
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displacement can be reported, the bias is negligible. This is not surprising for the homogeneous
fluids, as any observed displacement will report a valid measurement of the entire fluid. However,
we will show in the next part how the bias is greatly affected by the non-uniform transparency in
heterogeneous fluids.

We also observe that the estimator M̂2(n) is unbiased for this kind of fluid. We define, for this
section only, the bias of M̂2(n) relative to M2

1 (n) by:

b′[M̂2(n)] = E[M̂2(n)]/M2
1 (n) (5.32)

and we saw that the trends followed by this bias are very similar to the one followed by b[M̂1(n)] (not
reported here), that is that M̂2(n) is unbiased for almost all the observable parameter space (the
ensemble of points (n, m̃) for which θ > 0). Finally, we observe that these qualitative behaviors are
not significantly changed when decreasing Tb from 1000 to 100 (see figure 5.3) or when decreasing
Nb from 100 to 10 (not shown).

5.5.2 Heterogeneous Fluids

We use now the dynamics mentioned in the previous part to build heterogeneous fluids. Rather than
trying to cover a wide variety of heterogeneous fluids, we will use a canonical model of heterogeneity
to point out the influence of a finite volume of observation on measurements. The study of these
simple systems, performed with both simulations and experiments, will be followed by a model
fluid with a more complex heterogeneous nature, which will illustrate the power of the formula.

Bimodal Fluids

A canonical model for an heterogeneous fluid is given by a balanced bimodal system, where the fluid
is composed for half of one kind, and the other half of another kind. More precisely, we define a set of
balanced bimodal Newtonian fluids where half of the volume of observation is occupied with a liquid
of friction ξ̃(1)

r = 10r/2, and the other half exhibits a friction ξ̃(2)
r = 10(r+1)/2, where 0 ≤ r ≤ 10. The

resulting probes dynamics are written m̃(1)
r (n) = 2|n|/ξ̃(1)r and m̃(2)

r (n) = 2|n|/ξ̃(2)r . Similarly, a set
of balanced bimodal Voigt fluids is built from a balanced mixture of {ξ̃(1)

r = 10r/2, k̃(1)
r = 10r/2/5}

on one side, and {ξ̃(2)
r = 10(r+1)/2, k̃

(2)
r = 10(r+1)/2/5} with 0 ≤ r ≤ 10 and will lead to the two

evenly likely dynamics m̃(1)
r (n) = 2(1 − e−|n|/5)/k̃(1)

r and m̃
(2)
r (n) = 2(1 − e−|n|/5)/k̃(2)

r . Referring
to figure 5.3, we see that the described bimodal fluids are made of a balance composite of two
successive dynamics represented by the black lines. The estimators M̂1(n) and M̂2(n) are built to
evaluate:

M̃1(n) =
m̃

(1)
r (n) + m̃

(2)
r (n)

2

M̃2(n) =

[
m̃

(1)
r (n)− m̃

(2)
r (n)

]2

4

(5.33)

in these models.
In the simulation method, these fluids are obtained by simply simulating 50 initial trajectories

in one homogenous component of the fluid, and then 50 trajectories in the other component.
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The effect of the limited volume of observation is taken into account the same way as described in
section 5.4.1. Practically, an experiment in such hypothetical fluid should be simulated by assigning
random initial positions for each trajectory, uniformly distributed among the heterogeneous fluid.
Hence, by exactly splitting the trajectory set in half, we discard in this part the random spatial
sampling. It is aimed at isolating a specifically strong limitation of the method: the effect of
transparency on the bias of the estimators. In the experiments described in the next section, the
spatial sampling is naturally performed.

Referring again to figure 5.3, we observe that in general, along the lines representing the two
dynamics involved in the bimodal fluid, the drop in transparency is reached at different values of n
and m̃. At a given lag time, the dynamics exhibiting higher m̃, that is m̃(1)

r , will eventually become
transparent at smaller lag time, and the tracking technique will then only probe the remaining
observable side of the heterogeneous fluid at larger lag time. Consequently, the estimators of the
mean and variance of the probes’ dynamics will be biased for these large lag times.

To be more quantitative, we want to compare the transparency map as scanned by dynam-
ics in the fluid of type (1), for which the mean-squared displacement is m̃(1)

r (n), with a map of
the estimators bias as scanned by the composite dynamics described by M̃1(n). To perform this
comparison quantitatively, we correlate in figure 5.5 the behavior of the levels at constant value
of transparency, with constant levels of bias of M̂1(n) and M̂2(n) in the (n, m̃) space. The bias is
defined here for both estimators using equation 5.31:

b[M̂i(n)] = E[M̂i(n)]/Mi(n)− 1 for i = 1, 2 (5.34)

Specifically, we used the transparency result obtained in homogenous fluid of kind (1) of the mixture
to read the coordinates (nθ, m̃θ) on the corresponding curve m̃θ = m̃

(1)
r (nθ), that reaches a given

value θ of transparency. Then, at the same lag time nθ, we read the bias of the estimators at the
point (nθ, M̃1(nθ)). Then, by varying r, we obtain a curve of constant transparency (the red solid
lines in figure 5.5 are for θ = 0.5 and are extracted from the contour plots given in figure 5.3) for
the fluid of kind (1), and a corresponding set of bias values (read at the blue squares in the left
plots of figure 5.5) on the corresponding composite dynamics M̂1(n) (blue dashed line). The mean
of this set of bias values for a given transparency is reported in the middle plots of figure 5.5 as a
function of the transparency, the errors bars being given by the standard deviation of the same set.
If these error bars are small, it means that to a given value of transparency of fluid (1) corresponds
a well defined value of bias in the estimator.

To compare with other methods of calculation of the moments of dynamics, we also reported in
figure 5.5 a “naive” calculation of the mean and variance of prior time averaged individual mean-
squared displacements extracted from each trajectories [11, 29, 86]. The latter methods completely
disregard eventual differences in trajectory durations (hence an apparent statistical heterogeneity
in the accuracy of the individual mean-square displacement estimation). For these estimates, we
repeated the study described in the previous paragraph: the results are given by the open symbols
in the middle plots of figure 5.5.

In this figure, we see that as θ increases the bias of each estimator derived in this study vanishes.
This is not the case for the “naive” calculations. Also, we remark that the error bars on each
point are small compared with the ones on the open symbols, indicating that the transparency
defined in the first section of this chapter is well correlated with the bias in the estimators. Note
finally that the variation of the biases with the transparency is fairly independent of the nature of
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Fig. 5.5: Bias as a function of the transparency factor θ. The first row of plots
corresponds to a mapping of the parameter space (n, m̃) using Newtonian dynamics
and the second row is for a Voigt dynamics mapping. On each row, the left plots shows
the relation between the transparency factor (the red line corresponds to a constant
θ = 0.5) of the homogeneous fluid with the bias (the blue thick line is a constant relative
bias of M̂1(n), the latter is plotted with the thin blue line) in an bimodal mixture. The
composite fluid (dashed blue line) is made of a balanced mixture of two successive
dashed red lines. The two right plots in each row shows the bias in M̂1 (square) and
M̂2 (circles) as a function of θ. In blue is the variation of bias versus θ for the bimodal
fluid described in the left plot. In green is the variation of the bias for bimodal fluid
with greater difference in the dynamics. The open symbols of obtained using a naive
approach for the corresponding estimators. Note that the open circles lie above 100%,
outside the range of bias shown here.

the dynamics involved, Newtonian or Voigt. The right green plots in figure 5.5 show the results
corresponding to balanced bimodal fluids with greater differences in the dynamics: ξ̃(1)r = 10r/2

mixed with ξ̃(1)
r = 10r/2+1 for Newtonian dynamics, and {ξ̃(1)r = 10r/2, k̃(1)

r = 10r/2/5} with {ξ̃(1)r =
10r/2+1, k̃

(1)
r = 10r/2+1/5} for the Voigt dynamics. We observe that the same conclusions still hold.

In the remaining, we will use an experimental unbalanced bimodal system and also simulate a
complex and random heterogeneous fluid. To show the strength of the estimators, we will place
the study in conditions where transparency of the fluid has negligible influence.
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Fig. 5.6: Coefficient of variation of the probes dynamics in an heterogeneous un-
balanced bimodal model experimental fluid. The black squares are estimation of
the measure µ2[m̃(n)]/E[m̃(n)]2 using M̂2(n)/M̂1(n)2 for the four bimodal fluids cre-
ated by photopolymerization at n = 10. The four top windows are the corre-
sponding measured trajectories in these model systems. Each image has dimensions
xb = yb = 300µm. The centered circular gelled region, where the particles are trapped,
have radii Rgel = 55, 85, 100 and 115µm respectively from left to right. The solid blue
square was obtain in the homogenous system Rgel = 0. The red line is the theoretical
equation 5.35. The green points are the results of a naive calculation of the coefficient
of variation as explained in the previous section about the simulated bimodal fluids
(see also figure 5.5).

Experimental bimodal fluid

As explained in section 5.4, the experimental bimodal fluid is composed of a region of viscous
uncrosslinked oligomer solution, and a circular region of known radius where the material is a
stiff gels. By performing multiple particle tracking on homogenous system made of each kind, we
observed that the motion of the beads in the gel is below spatial resolution, such that the effective
mean-squared displacement are constant and measured at m = 5 × 10−4 µm2. In the other kind,
particles are freely diffusing and we found a diffusion coefficient D = 0.25± 0.005µm2.s−1. In unit
distance zb = 8.2µm and unit time ∆t = 0.1 s (see section 5.4), we have an unbalanced bimodal
fluid with m̃(1)(n) = 2|n|/103.44 � m̃(2)(n) = 2/105.43. Each fluid is observed with respective
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Fig. 5.7: Estimators M̂1 and M̂2 calculated for a random fluid. The parameter
space (n, m̃) is sampled with purely Voigt dynamics for which the drag coefficient ξ̃
is uniformly distributed between 104 and 105, and the spring constant k̃ is Gamma
distributed with mean 104 and a shape parameter of 2 (ξ̃ and k̃ are statistically inde-
pendent). The resulting probability density of (n, m̃) is given on the left plot, where
the black solid line indicates the mean E[m̃(n)]. The two right plots compares the re-
sults of M̂1 (top) M̂2 (top) obtained by the simulations (symbols) with the theoretical
values M1 and M2 (solid lines).

probability p(1) = 1− p(2) and p(2) = πR2
mask/(xbyb). In that case, we can show that the coefficient

of variation is given by:

µ2[m(τ)]
E[m(τ)]2

=
M̃2(n)

M̃1(n)2
=

p(2)

1− p(2)
+O

[
m̃(2)

m̃(1)

]
(5.35)

We estimate the above coefficient of variation using M̂2(n)/M̂1(n)2. The lag time n is chosen
such that the transparency of fluid (1) is closer to one. From the figure 5.3, we evaluate that
θ significantly drops at about n = 100, in accordance to what we observed in the experiments
on the homogenous fluid of kind (1) (data not shown). So we evaluated in figure 5.6 the ratio
M̂2(n)/M̂1(n)2 at n = 10 to discard any bias from the transparency. At this lag time, we found an
excellent agreement between the estimator of the coefficient of variation and the theoretical value
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given by equation 5.35 for the whole range of reported p(2).

Random Fluid

To conclude the characterization of the estimators, we simulated a random heterogeneous fluid the
following way. Each probe undergoes a purely Voigt dynamic, m̃(n) = 2(1− e−|n|ek/eξ)/k̃, where the
parameters ξ̃ and k̃ are independently distributed according to the following uniform and Gamma
probability density function:

Peξ(x) = (105 − 104)−1 for 104 ≤ x ≤ 105 and 0 otherwise

Pek(x) = 4xe−2x/104
/108 for 0 ≤ x and 0 otherwise

(5.36)

As seen in figure 5.7, we again find good agreement between the estimators M̂1 and M̂2, and
the theoretical result for M̃1 and M̃1 respectively. Small deviations are visible at high lag times
where eventually transparency of the faster dynamics in the fluid, for which the mean-squared
displacement appraches the volume size limit, can alter the bias of the estimators.
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Fig. 5.8: Estimators µ̂2[M̂1] (red squares) and µ̂2[M̂2] (blue squares) calculated for
the random fluid of figure 5.7 and scaled by the squared mean M2

1 = E[m]2 and the
squared variance M2

2 = µ2[m]2 respectively. The solid lines are the correspondingly
scaled estimates of µ2[M̂1] and µ2[M̂2] obtained from repeating the simulation 100
times (that is, calculated directly from the histograms of M̂1 and M̂2 respectively).

For this advanced example, we plot in figure 5.8 the estimators µ̂2[M̂1] (equation 5.23) and
µ̂2[M̂2] (equation 5.30) for the variances M̂1 and M̂2 respectively. In this figure, we also report the
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results for these two estimators with the corresponding estimates of µ2[M̂1] and µ2[M̂2] obtained
from the 100 simulation performed for the same random fluid. We see on this figure a good
agreement between the two estimates, ensuring the validity of the expressions of µ̂2[M̂1] and µ̂2[M̂2]
derived in section 5.3.3. These estimators should be used to indicate error bars on M̂1 and M̂2.
Note finally that such agreement between µ̂2[M̂ ] and µ2[M̂ ] has been observed for all simulation
results reported throughout this chapter.

5.6 Conclusions

We have presented here a study of the sampling design in the output of a multiple particle tracking
experiment. This specific sampling of measured displacements at random locations in a material is
made peculiar because, on one hand the displacements are connected into trajectories, and on the
other hand because the volume of observation is finite. After having modeled the sampling design,
we derived estimators for the mean and variance of the probes dynamics that are independent of
the peculiar statistical characteristics. In particular, we compared the performance of our formula
with other “naive” methods previously employed, and we showed that the precise assessment of
the statistics in the multiple particle tracking output was essential in order to provide accurate
unbiased measurements. Up to a certain extend that we also characterized through a transparency
factor, these estimators can be applied to quantify the heterogeneity of a material, providing with
a novel kind of information on a complex fluid property.





CHAPTER 6

Multiple Particle Tracking
to Monitor the Kinetics of
Peptides Self-Assembly

In the previous chapters we have presented in great detail the multiple particle tracking technique.
In particular, we have shown some intrinsic limitations in the technique, but we have also presented
methods to overcome these limits and to extract efficiently a great amount of information from
the measurements. In this chapter we applied the multiple tracking measurements to a complex
biomaterial called self-assembling peptides. This gelling system is of high importance for biomedical
application, where it currently serves as a medium for 3D cell culture. However, it has not been
fully characterized at the colloid length scale yet. This is due to the many challenges it presents,
one of which is the time-depence of its structural and mechanical state. To this regard, multiple
particle tracking is a well-suited and novel approach to study these self-assembling biomaterials.
In this chapter, we study the kinetics of the gel formation.

6.1 Introduction

6.1.1 Self-Assembling Peptides

General Overview

Molecular self-assembly is, by definition, the spontaneous organization of molecules into well-
defined, ordered and rather stable arrangements through a number of weak non-covalent interactions
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[91]. These interactions typically include hydrogen bonds, ionic bonds and van der Waals’ forces
to assemble these molecules. There are numerous examples of molecular self-assembly in nature (a
non-exhaustive list can be found in [92]) and it has been used as a powerful approach for fabricat-
ing novel biomaterials (see [92, 93] for a review). A new class of peptide-based biological materials
has been discovered a decade ago, from the molecular self-assembly of ionic self-complementary
oligomeric peptides [94]. These peptides are short, simple to design, extremely versatile and easy
to synthesize. Moreover, this class of biological materials has considerable potential for a number
of applications, including scaffolding for tissue repair and tissue engineering [95, 96], drug deliv-
ery of molecular medicine, as well as biological surface engineering. Consequently, a number of
peptide molecular self-assembly systems have been designed and developed (see [97] and references
therein). Among the numerous designs that have been and currently are investigated, a class of
peptide self-assemble into nanoscale fibers [94, 95, 98, 99, 100, 101] and fiber network scaffolds
[102, 95, 103, 96].

Inspired by the repetitive pattern found in the sequence of natural fibrous protein, short pep-
tide have been designed containing two distinct side, one hydrophilic, the other hydrophobic (the
molecule is thus amphiphilic), and forming complementary ionic bond with regular repeats of polar
amino acids on the hydrophilic surface (see figure 6.1 for an example of such β-strand). It has been
shown that these designs tend to form β-sheet structures [94, 104, 99, 98, 105]. One example of
such systems is described in detail in the next section. When dissolved in water, self-assembly of
these peptides occurs to form a network of filaments that macroscopically behaves like a gelatinous
material, even at concentration of peptides as low as 0.5wt%.

KFE8 as Model System

The peptide called KFE8, consisting of two repeats of the sequence FKFE and whose molecular
model is given in Figure 6.1, is one of the shortest peptides that forms a well-defined β-sheet
structure. This design, or very similar ones, has been extensively studied as a model system for
this class of peptide forming fibrous matrices [106, 99, 107, 98, 105, 108]. Besides the use of these
matrices for the biomedical applications mentioned earlier in the text, the fibers share many features
with the amyloid fibrils found in protein conformational diseases. They are thus used as model
systems to study the formation and structure of amyloids [109].

As shown in [98, 105], the self-assembly of KFE8 forms a bilayer of β-sheet tapes, with hydropho-
bic side chains between the tapes, that take the form of left-handed helical ribbons intermediates.
The geometry of the latter, shown on Figure 6.2, was experimentally resolved through the atomic
force and transmission electron micrograph [98] reproduced in figure 6.3.

Several factors promote the self-assembly, although the mechanism by which these peptides
coalesce to form a network is not clearly understood. It is known however that self-assembly of
KFE8 is sensitive to pH and ionic strength of the solution due to ionizable side chains. Caplan et
al. explained this dependence in terms of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory
[99]. They hypothesized that self-assembly of KFE12 (three repeats of FKFE) is promoted by
the hydrophobic effect [1], but hindered by electrostatic repulsion of the charge-like faces of the
molecule. When the molecule carries zero net charge, or when the charges are screened, self-
assembly of fibers occurs extremely rapidly. In order to slow down the process and to observe the
intermediates, the peptide is usually dissolved in deionized micro-filtered water, which gives a pH of
approximately 3 due to residual trifluoroacetic acid (TFA) from peptide synthesis (see [99, 107, 98]
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Fig. 6.1: Molecular model of KFE8. Lysine (K) and glutamic acid (E) are hydrophilic,
while phenylalanine (F) is hydrophobic. The arrow symbolizes the peptide in β-strand
conformation (see Figure 6.2). The N- and C-termini are respectively acetylated and
amidated. The size of one KFE8 molecule is approximately 3.1 nm × 1.2 nm × 0.4 nm
(reproduced from [105]).

Fig. 6.2: Molecular modeling of a left-handed helical ribbons formed by self-assembly
of KFE8. The ribbon is formed of a double helical β-sheet, and hydrophobic side chains
are buried between the two helices. One helical turn is 20 nm and the diameter is 7 nm
(reproduced from [105]).

and later in the text). At this pH, the molecules carry a net positive charge and self-assembly is
slower (the time series of the micrographs shown in figure 6.3 suggest a kinetic of assembly of a few
hours at pH=3.3).
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Fig. 6.3: AFM scans of the intermediate structures in the self-asssembly of KFE8,
taken at different times after preparation of the solution: a) after 8 min (inset is a
TEM micrograph); b) after 35 min; c) 2 h and d) 30 h (reproduced from [98]).

However studies in references [98, 105, 108] were focused on early time intermediate structures.
In particular, molecular dynamics simulations have shown that the hydrophobic contacts precede
the backbone hydrogen bonds growth [108], and have investigated the stability of the helical inter-
mediate supramolecular structures [105]. The studies by Caplan et al. relate the effect of relieving
electrostatic molecular repulsion in the peptide to the late equilibrium states mechanics of the
formed hydrogel [99, 107, 110]. The kinetics of the network formation can be partly resolved us-
ing circular dichroism (CD) spectroscopy [98]. These measurements reported a steady increase in
β-sheet structures and a concurrent decrease in the presence of coils. However, the knowledge of
how these fibers interact (e.g. crosslink or intertwine) and contribute progressively to the forma-
tion of a solid network cannot be assessed with CD spectroscopy. On the other hand, rheological
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characteristics of the material dramatically change during the transition from a viscous, liquid-like
solution to a viscoelastic gel state of the material.

6.1.2 Multiple Particle Tracking in Time-Evolving Systems

Here we use multiple particle tracking microrheology to follow the hydrogel formation of the KFE8
self-assembling peptide system. In chapter 1 we have seen the advantages offered by microrheology
techniques over traditional bulk rheology measurement. For example, the initial state of the evolving
system might contain fragile structures, that will be either disrupt by bulk rheology, or eventually
have effects that fall below the detection limit of the rheometer. To this regard, microrheomoetry
is well suited to report accurate measurements in weak gel, without breaking their structural
components. Another advantage of multiple particle tracking microrheology is that measurements
are fast and the state of the sample, contained in a closed chamber, is not effected by external factor
(e.g. evaporation). This quality is in dramatic contrast with bulk rheology, where measurements
are usually longer, and advanced sample preparation technique had to be elaborated to circumvent
evaporation [99].

Consequently, microrheology has been used to study time-evolving systems such as a gelling
actin network [65, 66], the sol-gel transition of starch [111], solvent-responsive complex fluids [32]
and photopolymerizing photosensitive acrylate resins [112] similar to the one used in chapter 5. In
these gelling systems, great care has to be applied to the system’s chemistry and to the eventual
influence of the probes, through their surface chemistry or simply their fluctuating motion, on
the solid network formation mechanism. In this chapter, we evaluate the influence of the pH of
the solution of peptide KFE8 on the kinetics of self-assembly, by using multiple particle tracking
microrheology.

6.1.3 Overview

The balance of this chapter is organized as follows. The first part explains in detail how the
sampled are prepared in order to obtain consistently reproducible results. The next part validate
the methods of multiple particle tracking to extract a characteristic time of gelation. Next we show
our results on the kinetics dependency on pH, that we interpret in the last section in terms of a
simple DLVO model for the peptides’ interaction.

6.2 Specific Methods

The peptide KFE8, of sequence [COCH3]− FKFEFKFE− [CONH2] was custom-synthesized from
Synpep Corporation (Dublin, CA), and the lyophilized powder was stored at 4◦C. Solutions of
3 mg/ml were obtained by thoroughly mixing the powder with deionized filtered water for 18 min
using cycles of 1min vortexing and 5 min sonicating to obtain a homogeneous solution. Immediately
after mixing, the concentration of powder was reduced to 1mg/ml in a solution of fluorescent par-
ticles. The beads we used were amine-modified 1µm diameter particle (Molecular Probes, Eugene,
OR), and carboxylate-modified with diameters of 0.518 and 0.925µm (Polysciences, Warrington,
PA). The final volume fraction of fluorescent beads was such that φ ≤ 0.05%. Also, this con-
centration of powder was chosen to match other previous studies [98, 105]. Vortexing for 1 min
ensured the beads to be well dispersed in the solution. Finally, NaOH was added at the target
concentration to increase the pH of the solution. When kinetics studies were performed, the initial
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time (tgel = 0) was chosen at the moment of the addition of NaOH, that was followed by a final
step of short vortexing of 30 s. This mixing protocol was carefully followed for all multiple particle
tracking measurement and ensured a great level of reproducibility (see later in the text).

The sample was then rapidly loaded into a chamber for observation (see section 2.1.1) that
was mounted on the microscope to perform immediate measurements. The particles’ motion was
observed with a 40× objective for the 1 and 0.925µm diamter particle, and a 63× water immersion
objective for the 0.518µm particle. Movies of 1000 frames were recorded at a rate of 30 frames
per seconds. The image processing algorithm where applied to the de-interlaced movie to obtain a
temporal resolution of 60 Hz (see chapter 2 for a full description of the multiple particle tracking
technique).

The ensemble averaged mean-squared displacements were calculated from the multiple trajecto-
ries following the formula 5.16 given in chapter 5, and corrections for the static errors were applied
using methods described in chapter 3.

6.3 Results

6.3.1 Peptide Solution Titration

Titration was performed on a sample of KFE8 solution prepared the same way as described above.
However, after reducing the concentration of powder from 3mg/ml to 1mg/ml, small volumes of
NaOH were added to perform the titration, such that the final concentration of powder is not
modified by more than 2%. Moreover, we observed that the pH is independent of the time of
measurement during the self-assembly. Also, we verified that the addition of beads does not affect
the titration result, whether their surface chemistry is amine or carboxylate.

The solid squares in figure 6.4 give the result of the titration of the powder. We observe that
the pH of the solution with no addition of NaOH is very low at 3.2, consistent with other reported
values [98, 99]. This low pH is due to the presence of residual trifluoroacetic acid (TFA) from
peptide synthesis. The pH variation of the solution as the concentration of NaOH resembles a
classic titration curve with a sharp jump of pH at a concentration [NaOH] = 1.4 mM.

We can use a simple titration model to evaluate the concentration of TFA in the original powder.
The dissociation constants for the glutamic acid EH and for the Lysine KH+ present in the peptide
are written:

KE =
[E−][H+]

[EH]
= 10−pKE and KK =

[K][H+]
[KH+]

= 10−pKK (6.1)

where pKE and pKK are the pK values of EH and KH+ respectively. The standard value for these
constant, pKE = 4.3 and pKK = 10.8 [113], are modified by the surrounding peptide chain and the
electrostatic interaction, and we use the “apparent” pK values, pKE = 3.6 and pKK = 11.2 for the
individual titratable groups [114, 105]. The same way, for the trifluoroacetic acid TH we write:

KT =
[T−][H+]

[TH]
= 10−pKT (6.2)

with pKT = 0.52. If we call [KFE8]0 and [T]0 the initial concentration of peptides and TFA in the
powder solution, we write the conservation of species by [E−]+[EH] = [K]+[KH+] = 2[KFE8]0 and
[T−]+[TH] = [T]0. The neutrality of the solution gives [Na+]+[KH+]+[H+] = [E−]+[T−]+[OH−]
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Fig. 6.4: Titration curve of the KFE8 solution at 1mg/ml of powder. The squares are
experimental results, whereas the lines are from the model described by equation 6.3.
The solid line is the best match with the experimental jump in pH, assuming the powder
contains only KFE8 and TFA complexes (that is the purity in peptide is exactly given
by 1162.5/(1162.5 + n × 114)). We find n = 1.95 and p = 84%. The dotted line is
obtained for 70% purity in peptide, and the corresponding number of TFA per peptide
is n = 2.3.

so that finally, the pH variations are described by

[NaOH]0 +
2[KFE8]0

1 + 10pH−pKK
+ 10−pH =

2[KFE8]0
1 + 10pKE−pH

+
[T]0

1 + 10pKT−pH
+ 10pH−14 (6.3)

which can be numerically solved for the pH at each value of [NaOH]0 reached in the titration, and
knowing the initial concentrations [KFE8]0 and [T]0. The molecular weight of the peptide molecule
is 1162.5 g.mol−1 and the one of TFA is 114 g.mol−1. Assuming both species, peptide and TFA,
form a complex during the synthesis, this complex has a mass 1162.5 + n × 114 g.mol−1 where n
is the number of TFA molecule per molecule of peptide. When mixing 1mg of powder in 1 ml of
water, we obtain the concentrations [KFE8]0 = p/1162.5 M and [T]0 = pn/1162.5 M, where p is
a purity level of peptide in the powder which is less than 1162.5/(1162.5 + n × 114). We plot in
figure 6.4 the pH variation from this model by assuming that the non-purity of the powder comes
only from the residual TFA. The best match for the pH jump is obtained when 1.95 molecules of
TFA are attached to each peptide molecule (this leads to a purity of 84%, meaning that 0.84 mg
of actual peptide is found in 1mg of powder). However, the peptides were ordered crude and
purity in that case are usually advertised between 60% and 80% by the fabricant. In addition to
TFA traces, the crude powder is likely to contain solvents, other counter ions and salts from the
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synthesis. In figure 6.4, we also reported the titration curve from our model that best matches the
experimental data with a purity of 70%. This leads to a value of n = 2.3. In both case we see an
excellent agreement between the model and the experimental data. This suggest that the eventual
impurities are inert for the titration, as assumed in our model.

The value of n ≈ 2 is also in agreement with the intuition that there is initially one TFA
anion on each of the two lysine in the peptide [99]. The corresponding concentration of TFA is
then [T]0 ≈ [T−] ≈ 1 mM, in agreement with what was used by Hwang et al. in [105] to develop
their model. In section 6.4, we borrowed their model with the same value for [T]0. We show in
figure 6.10 the surface charge density as a function of the pH, as obtained from the model described
in section 6.4 and observe that the charge vanishes at pH of about 4. In the following experiments,
we will use concentration [NaOH]0 between 0.65 and 1mM to obtain pH between 3.5 and 4.

6.3.2 Kinetics

Resolving Kinetics Using Multiple Particle Tracking

We performed a time series of multiple tracking measurements as the self-assembly was occurring in
the observed sample of KFE8 solution. For each time point during the gelation, we calculated the
ensemble averaged mean-squared displacement 〈∆x2(τ)〉 as a function of the lag time τ to quantify
the dynamics of the embedded Brownian probes. We report the results of this computation in
figure 6.5 corresponding to amine coated beads of 1µm diameter, in a solution of 0.1 wt% (1mg/ml)
KFE8 crude powder at pH=3.5 ([NaOH]0 = 0.65 mM). The times of gelation explored range from
2 min to 48 h. We observe in figure 6.5A that the dynamics of the particles is the one obtain in a
purely viscous fluid (〈∆x2(τ)〉 ∝ τ , as indicated by the solid line in figure 6.5A) at the beginning
of the gelation, when no solid network has been formed in the sample. This initial viscosity can be
evaluated from the slope of 〈∆x2(τ)〉 = 2Dτ with D = kBT/(6πaη), where kB is the Boltzmann’s
constant, T the absolute temperature, η the viscosity of the fluid and a the particle radius. We
find η = 1.9 mPa · s, that is about twice the viscosity of water, at this early time of gelation. As
the gelation occurs, the mean-squared displacement continuously decreases since the motion of the
probes is progressively more constrained by the formation of fibers in their surrounding. At long
time of gelation when the equilibrium state of the peptide system is reached (see later in the text),
the mean-squared displacement is almost a constant plateau indicating that the fluid behaves as
an elastic material at the frequencies presented here, from 0.1 to 10 Hz. At this point, the elastic
modulus G is evaluated using 〈∆x2(τ)〉 = 2kBT/(6πaG). We find G = 1Pa indicating the presence
of a weak gel, similar to what has been found using bulk rheology on similar system at comparable
concentration [102].

To follow the kinetics, it is convenient to represent the evolution of the mean-squared displace-
ment evaluated at a given lag time. In figure 6.5B we plotted the quantity 〈∆x2(τi)〉, evaluated at
three lag times τ1 = 0.1 s, τ2 = 0.5 s and τ3 = 0.5 s, as a function of the time of gelation tgel. Also,
in figure 6.5C we show the variation of the local power-law α(τi) calculated at the same three lag
times as a function of tgel. The local power-law, or diffusive exponent, is defined by:

α(τ) =
d
(
log〈∆x2(τ)〉

)
d
(
log τ

) . (6.4)

We observe on these plots that both the mean-squared displacement and the diffusive exponent
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Fig. 6.5: Ensemble averaged mean-squared displacement 〈∆x2(τ)〉 of probes embedded
in the self-assembling KFE8 system, reported at different time during gelation, from
2 min to 48 h. The concentration of powder is 0.1 wt% and the pH of the solution was
set to 3.5. Particles are 1µm diameter, amine coated, and carry a net positive charge
at this pH. A) are the variation of 〈∆x2(τ)〉 versus τ for different times of gelation tgel,
with diminishing values for increasing tgel. The solid black line indicates the scaling
〈∆x2(τ)〉 ∝ τ . B) is the value 〈∆x2(τi)〉 at three lag times τi = 0.1 (red), 0.5 (blue)
and 1 s (green), versus tgel. The solid symbols are extracted from A (as represented by
the dashed lines of corresponding colors) and the open symbols are a reproducibility
check. C) is the value of the local power-law α(τ) of 〈∆x2(τ)〉 at the same lag times
than B), with the same corresponding color coding. The solid black lines in C) indicate
the limiting values 0 and 1 for α(τ).

stagnate for gelation time greater than 4 h = 240 min, suggesting that the system has reached
an equilibrium state. This characteristic time can be directly related to a characteristic time of
structure formation apparent on the micrographs in figure 6.3. These experiments were performed
at a lower pH ( 3.3), meaning that the gel formation kinetics is expected to be slower (see next
section). However, we can presume from these figures that the gel has reached an equilibrium state
at a time lying between 2 and 30 h.

Also, we observe on the curve presented in figure 6.5C that the local power-law values are
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independent of the lag time at which it is calculated, for any time of gelation. By looking at
the mean-squared displacement in figure 6.5A, we notice indeed that 〈∆x2(τ)〉 exhibit almost a
pure power law dependence with τ over almost the entire range of accessible lag times. As noticed
earlier, this power-law varies from 1 at the beginning of the self-assembly, indicating a purely viscous
behavior, and reaches 0 at the equilibrium state of the gel indicating an purely elastic behavior on
the accessible range of frequencies.

Finally, we validated our experimental protocol by reproducing under identical conditions these
kinetics data in a separate experiment. In figures 6.5B and 6.5C, we have reported the result
of this supplementary measurement with open symbols. We observe a good agreement between
the two results, in terms of both the amplitude of 〈∆x2(τ)〉 and α(τ) at various lag times, but
also in their evolution with tgel. However, we note that the last point of 〈∆x2(τ)〉 at tgel =
1500 min, characterizing the equilibrium state, differs by about 40% between the two experiments,
indicating the sensitivity of this final state of the system to small variations, beyond control, in the
experimental conditions.

Probes’ Surface Chemistry and Size

Ideally, the measurement technique should not interfere with the self-assemby mechanism of gela-
tion. Here, the probes particles could exhibit unwanted interaction with the assembly process.
To characterize the effect of surface chemistry and size of the probe particles, we performed the
experiment described above with another surface coating of the probes and a different size. First,
we applied multiple particle tracking on 0.925µm diameter carboxylate probes in a solution of
KFE8 powder at a concentration 0.1 wt% with a pH set at 3.5 (same as above). At this pH,
carboxilate-modified probes are negatively charged whereas the amine-modified particles are posi-
tively charged. The peptide in solution at this pH being itself positively charged (see figure 6.10),
we evaluate here the influence of an eventual interaction between the bead and the peptide. More-
over, this comparison is performed with similar particle size, so we truly isolate the effect of surface
chemistry.

We present in figure 6.6 the kinetics results using these two different surface chemistries (red
for amine and blue for carboxylate). Note that the mean-squared displacement values reported
in figure 6.6A are scaled by the probes’ radius a. We observe in this plot that the mean-squared
displacement of the carboxylated particles (negatively charged) is in general smaller than the one
exhibited by the amine-coated. This trend is consistent with other microrheological studies compar-
ing the response of probes strongly and weakly attracted to their surrounding network [40, 41, 42].
We can hypothesize for example that the carboxylated beads are attached to the fibers through
electrostatic attraction, connecting meshes and limiting locally the network fluctuations and hence
their own motion. At the beginning of self assembly however, the scaled values are identical in the
absence of a formed network. The amplitude of the difference between the mean-squared displace-
ments obtained with these two chemistry is nevertheless small (the equilibrium values for tgel are
about 50% off, comparable to the discrepancy obtained in the reproducibility test), and the local
power-law are almost identical at all time of gelation.

We also performed a kinetics study using 0.518µm diameter carboxylate modified probes which
results are presented with the green points on figure 6.6. We observed that the scaled mean-
squared displacements for these smaller beads, as well as the local power-law they exhibit, are
collapsing with the ones exhibited by the bigger beads with the same carboxylate surface chemistry
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Fig. 6.6: Scaled mean-squared displacement 〈∆x2(τ)〉 (A) and local power-law α(τ)
(B) for particles embedded in the self-assembling KFE8 system as a function of self-
assembly time tgel. The lag time is τ = 1 s. The points in red correspond to 1µm
diameter amine coated probes, the blue points are for 0.925µm diameter carboxylate
modified probes and the green points are for 0.518µm diameter carboxylate modified
particles. The solid black lines in B) indicates the limiting values 0 and 1 for α(τ)

(blue points). The independence of the quantity a × 〈∆x2(τ)〉 with the probes radius suggests
that the particles are probing a continuum environment at the lengths scale of their diameter (at
least for a > 0.5µm). It is possible to apply the generalized Stokes-Einstein relation 1.4 to perform
rheological measurements. Note that this is not in contradiction with some estimates of the averaged
mesh size of a KFE8 system at similar concentration, calculated from AFM micrographs (see
figure 6.3 for example) or electron micrographs of similar systems at comparable concentrations
[95]. Also the similitude in the dynamics of probes bound and non-bound to the fiber matrix
corroborate with the idea of a continuous network at the length scale of the probe.

We show in figure 6.7 the resulting rheological data obtain from the mean-squared displace-
ments of the 0.925µm diameter carboxylate modified particles. The storage and loss modulus were
calculated using methods described in [37] and recalled by equation 3.35. We observed the quali-
tative behavior described in the previous section, that is the material is almost purely viscous at
the beginning of the self-assembly, and its storage modulus progressively increase to become larger
than the loss modulus, with a cross over at tgel ≈ 1 h, meaning that the material is elastic. At time
tgel > 2 h, the gels rheological properties remain steady.

We finally notice that for this section, all results were only presented at τ = 1 s and ω = 1 Hz.
However, we observe the same collapse of the kinetics data at other lag times, when changing the
probes surface chemistry or diameter (data not shown).
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Fig. 6.7: Evolution of the storage modulus G′(ω) (solid squares) and of the loss mod-
ulus G′′(ω) (open circles) as a function of the self-assembly time for a KFE8 powder
solution with concentration 0.1 wt% and at a pH of 3.5. The values G′(ω) and G′′(ω)
were calculated the ensemble averaged mean-squared displacement of 0.925µm diame-
ter carboxylate modified particles at a frequency ω = 1 Hz. Changing the size and the
surface chemistry of the probes particle does not affect significantly these results.

6.3.3 Gelation Time and Gel Point

In this section we want to quantify the influence of the pH on the kinetics of gelation. Thus we
must define a characteristic time of self-assembly that we can evaluate from the multiple particle
tracking measurement. The critical gel point t0gel of the sol-gel transition of a gelling system is the
first instant at which the connectivity of the network extend over the entire sample. The time at
which G′ and G′′ crosses each other has been suggested to evaluate a characteristic time of gelation
(see in figure 6.7). However in general, this crossover time depends on the frequency of excitation,
preventing the definition of a single material parameter. A preferred way to detect the gel point
is to use the time at which both G′(ω) ∝ ωα0 and G′′(ω) ∝ ωα0 is observed over a wide range
of frequencies [115, 116]. This power-law dependency is presumably related to the fractal scaling
properties of the network clusters.

In our study we have access to a frequency range spanning two decades, 10 Hz < ω < 0.1 Hz, with
a good statistical accuracy (see figure 6.5A). Over this range we observe that the mean-squared
displacement exhibit a power-law behavior 〈∆x2(τ)〉 ∝ τα at all time of gelation. Application
of the generalized Stokes-Einstein relation 1.4 shows that in this case, both G′(ω) ∝ ωα and
G′′(ω) ∝ ωα over the corresponding range of frequencies. It is likely however that the system
exhibit some relaxation dynamics which characteristic times lie outside this range at certain time
of self-assembly, before and/or after the gel point. However, given the frequency window available
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here, the gel point can not be determined using solely the criteria mentioned above. However we
can postulate a characteristic value for α0 to determine the critical gelation time. Using dynamic
scaling based on percolation theory with the Rouse limit of hydrodynamic interactions, ones find
0.5 < α0 < 0.66 [117]. The latter Rouse dynamics model with α0 = 0.5 has been very successful
in describing rheology near the gel point [117, 118, 119, 120]. Such criteria allows the definition of
the gel point (t0gel, G

′
0 = G′′

0) which in that case corresponds to the coordinates of the cross-over for
G′(ω) and G′′(ω) as seen in figure 6.7.
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Fig. 6.8: Gelation kinetics of KFE8 powder solution with concentration 0.1 wt% as a
function of the pH. A) is the local power-law of the mean-squared displacement at a lag
time τ = 1 s, plotted as a function of the gelation time tgel for pH=3.5 (purple), 3.65
(orange), 3.75 (green), 3.85 (red) and 4 (blue). The critical gel point t0gel is uniquely
obtained at α = α0 = 0.5 as represented by the dashed line. B) gives the resulting t0gel
(black squares) and G′

0 = G′′
0 (red circles) as a function of the pH. All the quantities

are evaluated at τ = 1 s and ω = 1 Hz.

In figure 6.8 we present the results for the critical gel point time as a function of the pH for
a KFE8 powder solution with concentration 0.1 wt%. We performed this multiple particle track-
ing measurements using 1µm diameter amine coated probes, and with concentration of [NaOH]0
between 0.65 and 1 mM. The values of t0gel for each pH were extracted from the evolution of the
local power-law α with the gelation process, as presented in figure 6.8A, and using the criteria
α = α0 = 0.5 to define the gel point. We observe that the self-assembly is faster as the pH in-
creases. For an elevation of pH from 3.5 to 4, the gel time is increased by almost two fold, from
∼ 1 min to ∼ 70 min. The two fold amplitude of variation is fairly independent of the choice of α0

for the gel point criteria in the viscoelastic region 0.2 < α0 < 0.8, meaning that another choice of
α0 (say α0 = 0.66) would lead to values of t0gel scaled by a constant factor as compared to the one
in figure 6.8B.
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We also report in figure 6.8B the evolution of the characteristic elastic modulus G′
0 = G′′

0 at the
gel point characterized by cross-over between the elastic and viscous behavior. We observe that,
even though the kinetics is dramatically changed by the raise of pH, the mechanical properties are
not significantly affected by the pH at the gel point. Note that the range of modulus reported on
figure 6.8B, from 10−4 to 1 Pa is the same as the range observed from the beginning to the final
equilibrium state of gelation (see figure 6.7).
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Fig. 6.9: Evolution of the mean-squared displacement’s local power law and magni-
tude as a function of the scaled gelation time. A) are the same results as presented in
figure 6.8A (the same colors are used to distinguish the pH of the experiments), but the
gelation time tgel has been scaled by the gel point time t0gel obtained at the correspond-
ing pH for each curve. B) is the value of the mean-squared displacement as a function
of the gelation time scaled the same way as in A). The inset in B) shows the evolution
of the local power-law versus the magnitude of the mean-squared displacement.All the
quantities presented here are evaluated at τ = 1 s.

This observation suggests that in this range of pH, the self-assembly as probed by particle
tracking undergoes an identical state, independent of the pH, at the gel point. We can extend
this observation by presenting the kinetics measurements scaled by the characteristic gel time t0gel
extracted from figure 6.8. In figure 6.9 we present the evolution of α(1 s) and 〈∆x2(1 s)〉 as a function
of tgel/t

0
gel for each value of pH. We observe a remarkable overlap of the various curve obtained

for these two quantities, α(1 s) and 〈∆x2(1 s)〉. The scatter of the points at late gelation time,
tgel/t

0
gel > 101 is within the reproducibility control presented in figure 6.5 for the equilibrium state.

This time self-similarity strongly suggest that the increase of the pH from 3.5 to 4.0 does not affect
the mechanism followed by the self-assembling peptide to form the hydrogel. This observation will
be the basis of the gelation model presented in the next section. The inset of figure 6.9B resumes
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this self-similarity in the observable parameter space (α, 〈∆x2〉) at a lag time τ = 1 s, but the same
results holds for other lag times investigated in this study (data not shown).

6.4 Discussion

Using the mean-squared displacement measurements from the multiple particle tracking of Brow-
nian probes, we have calculated the ensemble averaged mean-squared displacement of the probes
as an observable quantity to follow the gelation of KFE8 self-assembling peptide system. Using a
rheological criteria to define a characteristic time of gelation, it is possible to evaluate the influence
of pH of the solution on the kinetics of self-assembly of KFE8. This unique new insight should be
brought into context by comparing to the work of Caplan et al. [99] and extending their analysis.

6.4.1 New Insight in the Self-Assembly

In their study of KFE8, or of very similar self-assembling peptides consisting of a few repeat of the
sequence FKFE, Caplan et al. assessed the influence of the pH and salt concentration on the state
of the system [99, 107]. Presumably, this state was an equilibrium or a pseudo-equilibrium state
of the system. Using bulk rheological measurements to classify the self-assembling peptides as a
viscous solution or as an elastic gel, they found the region of pH where the transition sol-gel of the
system occur. They also investigated the influence of salt concentration by measuring the critical
coagulation concentration (CCC) of NaCl, above which the transition sol-gel takes place [121].

Here we perform a thorough characterization of the kinetics of self-assembly. The multiple-
particle tracking microrheology technique provides a 2 min temporal resolution in characterizing
the fluid’s state, limited by the movie acquisition time. The method is non-invasive and weakly
influences the self-assembly process. We have been able to resolve fine variation in the rheological
properties of the weak gel. In particular, we show that a finite time of gelation can be extracted for
a pH at which the peptide is believed to be positively charged. This does not however contradict
the bulk rheology measurements performed by Caplan et al., who assumed a binary state of the
system (solution or gel) limited by the poor detection level offered by the bulk rheology technique,
as well as the experimental challenges encountered when trying to characterize intermediate states.

In a subsequent section we develop a quantitative model of peptide interaction to tentatively
explain the variation of the kinetics of gelation with the pH, as resolved using multiple particle
tracking microrheology. We use a model of interaction given in terms of the Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory, as suggested in a previous study by Caplan et al. [99].

6.4.2 Peptides’ Structure at Early State of Self-Assembly

In section 6.3.2 we calculated the viscosity of the peptide KFE8 solution at the beginning of gelation
for a pH of 3.5. Moreover, we have seen in figure 6.6 that the mean-squared displacements of probes
with sizes and chemistries were overlapping when scaled by the particles’ radius, indicating that
the medium is seen as a continuum at the various length scales investigated. The viscosity has been
found to be twice the viscosity of the aqueous solvent in which the peptide powder is mixed.

From the figure 6.3a and 6.3b, we assume that the earlier state of the peptide mixture is a
monodisperse solution of peptide ribbons that we model as a cylinder with radius R = 4 nm (see
figure 6.2), and which length L can be related to the number n of peptide molecules per ribbons
segment. One turn of the helix contains about 100 KFE8 molecules and is about 20 nm long
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[105]. That is we have L = n× 0.2 nm. The zero-shear reduced viscosity of a dilute monodisperse
dispersion of Brownian rigid cylindrical rods is given by [122]:

η − η0

η0
=

2φλ2

45 lnλ

[
lnλ+ 0.64
lnλ− 1.5

+
1.659
(lnλ)2

]
(6.5)

where η and η0 are the dispersion and solvent viscosity respectively, φ is the volume fraction of
rods and λ = L/R is the cylinder’s aspect ratio. With φ = πR2Lc0, where c0 = n−1× 4× 1023 m−3

is the concentration of rods as obtained with 80% purity of a 0.1wt% KFE8 powder disolved in the
solvent, we get φ = 4 × 10−3. Solving equation 6.5 for n with (η − η0)/η0 = 1, we find n ≈ 2000,
corresponding to earlier ribbons of about 20 helical turns long (i.e. L ≈ 400 nm). Note that we can
count about 10 helical turns per precursor ribbon on the AFM micrograph of figure 6.3a, obtained
with the same concentration of peptides powder, after 8 min of self-assembly (although the peptide
powder mixing protocol was significantly shorter), and at a pH∼3.3 [98].

6.4.3 Derjaguin-Landau-Verwey-Overbeek (DLVO) theory

To model the interaction driving the self-assembly of the peptide KFE8, we must assume a geometry
for the elementary coalescing blocks. In a simplified model, we assume that the β-sheet formed by
the peptides is a semi-infinite block with a given surface s of interaction by which two identical
blocks could eventually connect. This geometry has already been used on the same system by
Hwang et al. [105] to develop their model of peptide surface charge in term of the electrostatic
double layer theory. By looking at the AFM micrographs in figure 6.3, we assume that the early
short β-sheet fibers are somewhat represented by these blocks of material. As this choice might not
be the most advanced, the resulting theory remains however fairly simple, and allows us to calculate
reasonable orders of magnitude for the interaction. Another choice of geometry investigated here
is to model the building blocks as infinitely long cylinder with radius R. The geometry presumably
describes the building blocks more accurately when comparing with AFM micrographs of figure 6.3
obtained at early times of gelation.

Electrostatic Double Layer Model

In the electrostatic double layer model, the charged blocks are bathed in a solution of ions. To
express the electrostatic potential ψ, we write the Poisson-Boltzmann equation [1, 121]:

∇2ψ = −ρ/ε = −ε−1
∑N

i=1 zien
0
i e
−eziψ/(kBT ) (6.6)

where ρ is the charge density in the system (expressed in C · m−3), ε = εrε0 with εr and ε0 the
dielectric constant of water (∼ 80) and the permittivity of vacuum respectively, and ni and zi
are respectively the concentrations (in m−3) and valencies of the n different ions in the solution.
Returning to the model of titration presented in section 6.3.1, we consider the following relevant
concentration in the bulk solution: [Na+], [H+], [T−] and [OH−]. By using the charge neutrality
in the bath, [Na+] + [H+] = [T−] + [OH−], we can rewrite the Poisson-Boltzmann equation:

∇2ψ = 2ε−1e
(
[OH−] + [T−]

)
sinh

[
eψ/(kBT )

]
= 2ε−1ec sinh

[
eψ/(kBT )

]
(6.7)
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as obtained in a symmetrical 1:1 electrolyte with ions concentration c = [OH−] + [T−] (expressed
in m−3). In our case c depends on the pH through c = 10pH−14 + [T−] where [T−] = [T]0

(
1 +

10pKT−pH
)−1 (see section 6.3.1). The equation 6.7 can be written:

∇2ψ̃ = κ2 sinh ψ̃ (6.8)

where ψ̃ = eψ/(kBT ) is the scaled potential and κ =
√

2e2cε−1/(kBT ) is the Debye-Huckel param-
eter.

To calculate the boundary condition ψs of the electrostatic potential at the surface, Hwang et
al. [105] used the chemical equilibrium condition at the surface of the β-sheet [1]. They expressed
the dissociation constant of the glutamic acid EH and of the Lysine KH+ by:

KE =
[E−]s[H+]s

[EH]s
= 10−pKE and KK =

[K]s[H+]s
[KH+]s

= 10−pKK (6.9)

where the subscript s indicates surface concentrations. Comparing to the bulk model presented in
section 6.3.1, we recall here that the surface model presented now is a local model. To this regard,
the pK values corresponding to these surface dissociation constants are now the standard value,
pKE = 4.3 and pKK = 10.8 [113] of the isolated amino acids [114]. Also, the surface concentration
[H+]s is related to the bulk concentration [H+] using the Boltzmann relation expressed at the
surface [H+]s = [H+]e−eψs/(kBT ). The total surface charge density is then calculated the following
way:

σ =
σmax

E [E−]s
[EH]s + [E−]s

+
σmax

K [KH+]s
[KH+]s + [K]s

(6.10)

where −σmax
E = σmax

K = σmax = 0.26 C/m2 are the maximum possible surface charge of the glutamic
acid and lysine calculated from the dimensions of the KFE8 molecule. Namely, there are two
negative groups from the molecules E that are exposed to the side face of the molecule, with area
3.1× 0.4 nm2 (see figure 6.1). Combining the equations 6.9 and 6.10 we can write:

σ̃

σ̃max
= − 10pH−pKE

e−ψ̃s + 10pH−pKE

+
e−ψ̃s

e−ψ̃s + 10pH−pKK

(6.11)

where σ̃ = eσ/(εκkBT ) is the scaled surface charge density. The latter can be related to the
electrostatic potential at the surface by solving equation 6.8. For the planar geometry, we have
[1, 121]:

σ̃ = 2 sinh(ψ̃s/2) (6.12)

whereas for the cylindrical geometry we have [123]:

σ̃ = 2 sinh(ψ̃s/2)
[
1 +

K2
1 (κR)/K2

0 (κR)− 1
cosh2(ψ̃s/4)

]1/2

(6.13)

where Kn is the modified Bessel function of the second kind of order n. For this cylindrical
geometry that represents the initial ribbons represented in figure 6.2, we suppose that the surface
charge is uniformly distributed over the entire cylinder area. In that case 100 molecules constitutes
a cylinder of radius 3.5 nm and of length 20 nm (see figure 6.2) and we find that σmax is reduced
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to 0.26× 100× 0.4× 3.1/(π × 20× 3.5)0.15 C/m2. Note also that equations 6.12 and 6.13 are not
obtained from a linearized Poisson-Boltzmann (obtained for ψ̃ � 1). Although equation 6.13 is
strictly valid for κR� 1, it has been shown that it returns precise results even when κR ∼ 1 [123].
Notably, we will see that these remarks are important for the model used here, as we find that both
ψ̃ > 1 and κR ∼ 1 at the pH investigated.

Equations 6.12 and 6.13, in conjunction with equation 6.11, can be used to calculate σ and ψs
at every pH value for both geometries. The result for the surface charge density as a function of
the pH are given in figure 6.10 with a TFA concentration [T]0 = 10−3M (see section 6.3.1).
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Fig. 6.10: Surface charge density σ of the peptides for [T]0 = 10−3M as a function of
the pH of the bath solution for both plane and cylindrical geometries. The red curves
describe the plane geometry with σmax = 0.26 C/m2 whereas the blue curves describe
a cylindrical geometry with radius R = 3.5 nm and σmax = 0.15 C/m2 (see text). The
solid lines represent the surface charge density σ/σmax and the dashed lines are for
the surface potential ψ̃s = eψs/(kBT ). The window of pH observed in this study is
3.5 < pH < 4.

We see on figure 6.10 that the peptide is positively charged for pH . 4 and negatively charged
for pH & 11. In these domains of pH, we expect that the electrostatic repulsion between the
peptides slows down the self-assembly process. The bulk rheology measurements would conclude
to a non-elastic state of the material, even at limiting values pH ∼ 4 and pH 11, unless the sample
is assessed after a prohibitively long equilibration time. This observation is in agreement with the
rheology results obtained by Caplan et al. with the peptide KFE12 [107], that would share the same
theoretical curve as the one presented on figure 6.10 (for KFE12, we would find [T]0 ≈ 1.5×10−3M,
but this difference with figure 6.10 does not affect significantly the curve). To gain more insight into
the kinetics of self-assembly experimentally observed here around a pH of 4, we need to compare
the electrostatic repulsion force describe here with the attractive interaction between peptides.
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Interaction Potential

From the previous section we have a description of the electrostatic repulsion between two identical
blocks. We will use a van der Waals interaction potential to describe the attractive component of
the blocks’ interaction. It is certain that many forces are driving the self assembly. The hydrophobic
bond is usually the dominant one, and it has been shown through simulation that they contribute
to the short time association of peptides in the initial β-sheet [108]. The hydrogen bonds are likely
to ensure the cohesion of the blocks and are responsible for the peculiar helical shape of the β-sheet.
The van der Waals dispersion forces are long range and are usually the ones responsible for bringing
the molecules together [1, 124]. Such a model has been used by Girgsby et al. [125] for poly-L-lysine
peptide, in which they also included short range specific interaction (e.g. hydrophobic bonds), that
are discarded here.

The potential of net interaction of two blocks of material separated by a distance d and with a
characteristic surface s of interaction is given by [1, 121]:

UDLVO(d)
kBT

=
4sc
κ

Ψ2
se
−κd − sA

12πd2
(6.14)

where A is the Hamaker constant, taken to be A = 5kBT for proteins in aqueous solutions [126, 127,
128], and κ−1 = 10 nm is the Debye length characterizing the range of the electrostatic repulsion.
Here the effective potential Ψs is given by Ψs = 4 tanh(ψ̃s/4).

For the other geometry considered in the previous section, we write the interaction between two
crossed cylinders with perpendicular axis [123]:

UDLVO(d)
kBT

=
4π2ce−2κR

κ3K2
0 (κR)

Ψ2
se
−κd − AR

6d
(6.15)

with the following expression for the effective potential at the surface:

Ψs =
8 tanh(ψ̃s/4)

1 +
[
1− (1−K2

0 (κR)/K2
1 (κR)) tanh2(ψ̃s/4)

]1/2
(6.16)

The Debye length is bigger than the typical radius (3.5 nm) of the cross-section of the KFE8
double-layer ribbon (see figure 6.2). In figure 6.11 we plot the interaction potential given by equa-
tion 6.14 in the planar geometry at various pH, and for s = 10nm2 and s = 100 nm2 corresponding
respectively to dimensions of ∼ 3 × 3 nm and ∼ 10 × 10 nm for the surface of blocks’ interaction.
This last characteristic size of 10 nm is intended to include the electrostatic layer on the side of
the β-sheet and thus to account for edge effects in a admittedly ad hoc, but analytically tractable
manner.

We observe on this figure that the potential barrier value is decreasing as the pH increases
from 3 to 7, as expected from the corresponding decrease of the surface charge density σ on the
interacting blocks (see figure 6.10). At pH > 6, we observe that Umax

DLVO < kBT , meaning that the
potential barrier is not significant and that the block monomers can easily assemble. In that case,
the system is expected to quickly flocculate and form a stable network, as seen experimentally [99].
We need however to gain some more insights on the gelation kinetics by building some time scales
from this model interaction potential of the blocks.
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Fig. 6.11: DLVO interaction potential for pH=3.5 (red) and pH=4 (blue) in the planar
geometry. The thin black lines are for pH=3, 4, 5, 6 and 7, from the top to the bottom
line. The left axis is for a characteristic surface of interaction s = 10nm2, whereas the
right axis is for s = 100 nm2.

Figure 6.12 shows the DLVO interaction potential given by equation 6.15 for two charge cylin-
ders. On the figure, we observe the same qualitative behavior as in the other DLVO plots obtained
in the planar geometry (figure 6.11). Although the drop of the potential barrier is more drastic
then in the plane interaction when increasing the pH from 3.5 to 4 (and note that the potential is
purely attractive at pH=6), the magnitude of this barrier is significantly higher. This indicates that
the model is highly sensitive to the geometry considered for the building blocks. We can connect
the drop in the potential barrier with the decrease of time scales of gelation using a Kramers’ type
relation, t ∝ eE/(kBT where t is the characteristic time of reaction and E is the potential barrier.
To obtain a decrease of a factor ∼ 50 in t (as observed on figure 6.8), a drop of ∼ 4kBT should
be observe for the barrier potential when increasing the pH from 3.5 to 4. In our case, the planar
geometry provides more realistic magnitudes for the decrease in the potential barrier when increas-
ing the pH from 3.5 to 4, and we will consider only this choice in the following discussion where we
provide a more detailed analysis of the time scales of gelation.

Time Scales

From the interaction potential given above it is possible to extract some time scale of network
growth using colloidal aggregation theories. The characteristic Brownian aggregation time when
considering a diffusion limited aggregation of non-interacting (except at contact) monomers is given
by [2]:

tB =
3η

4kBTc0
(6.17)
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Fig. 6.12: DLVO interaction potential and for pH=3.5 (red) and pH=4 (blue) in the
cylindrical geometry. The thin black lines are for pH=5 and 6. The solid lines are for
a cylinder with radius R = 3.5 nm corresponding to the model of KFE8 helical ribbon
presented in figure 6.2, and the dashed lines is for a radius R = 2nm. Solid and dashed
black lines overlap to be indistinguishable.

where η is the viscosity of the solvent, and c0 is the initial concentration of monomer. By using
η = 1 mPa · s the viscosity and c0 = n−1 × 4× 1023 m−3 as obtained with 80% purity of a 0.1wt%
KFE8 powder disolved in water, where n is the number of peptide per initial β-sheet structure
modeled by the block monomer, we obtain tB ≈ n × 10−7 s. This time is interpreted as the
characteristic time to form dimer from non-interacting monomer. We note at this point that our
model includes now two parameters, s and n characterizing the geometry of the block monomer to
model the β-sheets.

To account for the potential of interaction between monomer, we can use the Fuchs stability
factor W to write [2]

tDLVO = tB ×W with W = 2dmax

∫ ∞

dmax

eUDLVO(x)/(kBT ) dx
x2

(6.18)

where dmax is the distance between monomer at which the interaction potential is maximum. With
our model, tDLVO is a characteristic time of fiber growth. Equation 6.18 was derived for a spherical
geometry of the interaction between monomer, whereas our model assumes interactions between
edges of the blocks to obtain a linear fiber growth. However as a first approximation, we expect this
time to be correlated to the critical gel point time, t0gel measured experimentally in this study, and
defined as the characteristic time at which the self-assembly first percolates the entire sample, and
thus tightly related to the dynamics of growth of the structuring element. Moreover, the growth
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of fibers of a similar self-assembling system has already been paralleled to the bulk rheological
properties of the system in a recent study [129].

As observed on figure 6.8, t0gel undergoes a two fold increase as the pH is reduced from 4 to
3.5. The amplitude of this variation is fairly independent of the choice of α0 for the gel point
criteria in the viscoelastic region 0.2 < α0 < 0.8. By assuming tDLVO ∝ t0gel, we thus expect to
have WpH=3.5/WpH=4 ∼ 100. The integral in equation 6.18 can be numerically evaluated using the
expression of UDLVO(d) from equation 6.14. We find WpH=3.5/WpH=4 = 1.3 for s = 10nm2 and
WpH=3.5/WpH=4 = 30 for s = 100 nm2. This suggests that the geometry of the block for the model
should include the Debye-Huckel side layer when considering the surface section connecting the
blocks.

For this surface of interaction s = 100 nm2, we calculate W (pH = 3.5) = 6 × 106, which leads
to tDLVO ≈ n × 1 s. One turn of the helix contains about 100 KFE8 molecules [105], that is we
take n ≈ 100. This leads to tDLVO ∼ 1 min which is the right order of magnitude for the system’s
gelation at this pH, assuming the concentration of monomer is negligible after 100 × tDLVO, and
that the gel point is reached at this instant.

The geometry factors s and n used in this model have the following effects: increasing s tends
to sharpen the drop of tDLVO when increasing the pH, by increasing more the time tDLVO at small
pH than the one at large pH; increasing n, the initial size of the block induces a uniform increase of
tDLVO over the whole range of pH. The order of magnitudes obtained here for s and n are however
realistic.

6.5 Conclusion

We have used multiple particle tracking to assess the kinetics of formation of a self-assembling
peptide system. The temporal resolution, as well as the high sensitivity of the technique to variation
of the mechanical properties of weak gels allowed us to follow the system’s characteristic time of
gelation as a function of the pH of the peptide solution. This assessment is impossible to reach with
classical bulk rheology technique. However it has important consequences on the understanding
of amyloid fibrils formation [109]. We also presented a quantitative simple model of self-assembly
formation that yields realistic estimations of time of gelation.



CHAPTER 7

Conclusions and Outlook

7.1 Conclusions

In this thesis we have characterized, improved and used an experimental technique that assess the
micromechanics of biopolymer solutions. The method consists of measuring the thermal motion
of micron-sized probe particles embedded in the biomaterials. Multiple particle tracking measure-
ments are performed using a standard fluorescent video microscopy setup. Many of the advantages
of this passive technique has been outlined in chapter 1 and 2: weak stresses are applied on the
material, preventing the fragile microstructures from being disrupted; small sample volumes are
used so that the environment (temperature, pH, concentration of chemicals) of the sample can be
quickly and easily changed; measurements are fast and non-invasive so that temporal evolution of
the material can be followed in real-time. Moreover, multiple particle tracking offers access to a
wide range of time scales to follow out-of-equilibrium systems that exhibit kinetics ranging from a
few seconds to several days.

In chapters 3 and 4 we have developed general models to account for localization errors in
the tracking. We classified the cause of these errors into two different sources. Because of the
inherent noise in the fluorescent video microscopy setup, multiple particle tracking suffers a low
spatial resolution in the probes position estimation as compared to other single particle tracking
technique, leading to significant inaccuracy in the mechanical measurements. We have proved that
this apparent constraint can be successfully corrected on the average properties extracted with this
technique, such as the mean-squared displacement and the rheological properties. Another source
of errors arising in multiple particle tracking measurements comes from the finite exposure time
required during the video acquisition of the particle motion. We developed a novel theoretical
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model to quantify for this second type of errors and we investigated the effect of these errors on
microrheology measurements of fluids in which an embedded particle’s mean squared displacement
displays a plateau above a certain onset time. Using common viscoelastic models, we find that the
exposure time has a great effect on the measured mean squared displacement.

The correction methods and the theoretical predictions mentioned above are general results that
apply to the averaged quantities extracted from any kind of particle tracking experiment. These
groundwork studies should widen the range of possible applications of particle tracking, and to help
interpreting particle tracking measurements.

A unique feature of the tracking technique we used here is its ability to track simultaneously
hundreds of particle dispersed at different locations in the sampled medium. Each particle probes
its local environment that is reported by the individual mean-squared displacement of the particles.
Thus, systems that are heterogeneous at length scales larger than the probe size will be character-
ized by the different values of the mean-squared displacement as reported by each particles at each
of their location. Calculating the moments of the distribution of these individual mean-squared
displacement provide a quantification of the related property (local viscosity, pore size, local elastic
modulus, ...) distribution in the material. However, when a mean-squared displacement is experi-
mentally extracted from a single trajectory, statistical accuracy is degraded by the finite duration of
the tracking that can differ from one particle to the other. Thus different measured mean-squared
displacements can also be obtained in strictly homogeneous system because of poor statistics. In
chapter 5 we developed and experimentally verified a theoretical way to decouple this statistical
inaccuracy from an actual medium heterogeneity, by fully characterizing the peculiar statistical
sampling design of the technique. In particular, the ability of the technique to efficiently probe
a certain fluid has been quantified in terms of a transparency factor, characterizing the degree of
possible assessment of the given fluid by the technique. Estimates for mean and variance of the
probes dynamics in a heterogeneous material were derived, and we showed how these measure-
ments are irremediably biased if some part of the probed fluid are transparent to particle tracking.
We noted that this is a strong weakness of this technique. Further theoretical studies should be
performed to establish a criteria of statistical validity of a given measurement in an heterogeneous
system. Nevertheless, these new statistical tools allow the extraction of a maximum information
from multiple particle tracking measurements, that will serve the assessment of heterogeneity in
a complex material. This is expected to be particularly important for the study of biomaterials
properties and functions.

Overall, this technique is well suited to studying sensitive, expensive and time-evolving complex
biomaterials, for which micrometer scale properties can play a central role in biological mechanisms.
An interesting class of biomaterials is called self-assembling peptides. These systems have been
recently developed from the self-assembly of custom designed oligo-peptides that form a polymeric
network. The latter serves as a scaffold for 3D cell culture. Also, these peptides serve as a
model system for biological self-assembly that share important similarities with processes involved
in protein conformational diseases. These observations constitute the framework that motivates
the study presented in chapter 6. We have used multiple particle tracking to assess the kinetics
of formation of a self-assembling peptide system. The temporal resolution, as well as the high
sensitivity of the technique to variation of the mechanical properties of weak gels allowed us to
follow the system’s characteristic time of gelation as a function of the pH of the peptide solution.
This assessment is impossible to reach with classical bulk rheology technique. However it has
important consequences on the applications mentioned above. Moreover, it allowed us to develop
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a refined quantitative model of self-assembly formation in terms of the Derjaguin-Landau-Verwey-
Overbeek (DLVO). This theory reports realistic estimations of time of gelation, and could be used
to predict the behavior of the self-assembling peptides under different conditions.

7.2 Future Work

We believe that the results and methods presented in this thesis will open new doors for future
works. The understanding of the limitations of the video microscopy particle tracking technique
that we presented in chapters 3 and 4 allowed us to improve the resolution of the measurement,
and surely to extend the range of applicability of this assessment method. In particular, it is
now possible to study stiffer materials with greater confidence. To this regard, corrections for the
dynamic errors, that we predict to be a challenging issue, would require more investigations. The
statistical sampling design of the measurement, thoroughly described in chapter 5, is a novel study
in the field of multiple particle tracking. It allowed us to extract deeper information from the
output data of the technique, by deriving almost unbiased estimators for the first two moments
of the mean-squared displacement distribution. We expect that a generalization to estimators for
higher order moments of this distribution is possible.

The methods developed in this study to confirm the validity of the characterizations presented
in chapters 3 to 5 could also be sources of inspiration for future directions. They rely on theoretical
models describing the techniques, that are verified through both Brownian dynamics simulations
and experiments on well-defined systems. Such experimental systems should be found useful in the
demonstration of future theoretical predictions.

Chapter 6 describes how particle tracking can be used to follow gelling systems. This novel
approach could be apply to a wide variety of time-evolving systems. We have shown that particle
tracking provides with an original, meso-scale view of the mechanism. Our results on self-assembling
peptides should be correlated with direct observations of the microstructure, using atomic force
microscopy or quick-freeze electronic microscopy of the gel at different time points during its self-
assembly.





Appendix A

Noise Characterization and
Spatial Resolution

A.1 Noise Characterization

To characterize the noise in our system we used the CCD transfer method described by [130]. This
technique provides a robust estimation of the different sources of noise. We observed a sample of
fluorescein to evaluate the camera response at similar wavelengths as the beads. Regions of interest
that exhibit uniform illumination were chosen on the camera field. For a given illumination, we
found that the sources of noise characterized here are independent of the shutter time (see Fig. A.1).

The random pattern-independent noise, that includes the photon shot noise and the signal in-
dependent readout noise, is estimated by half the variance of the brightness distribution obtained
on the image resulting from the difference between two successive frames taken at the same il-
lumination [131]. When estimated over the whole dynamic range of the camera, we found that
this noise contribution is Gaussian distributed (as expected at high-light-level detection), with a
variance linearly dependent on the illumination Stot that we estimated by the average brightness
value in the sample. Note that Stot is expressed in ADU. We designate this noise contribution by
Nrn and we write:

N2
rn = N2

ro + βps × Stot (A.1)

where we found experimentallyN2
ro = 0.05 ADU2 for our camera readout noise and βps = 0.009 ADU

for the photon shot noise coefficient of our setup (Fig. A.1).
The fixed pattern noise, and the photo-response non-uniformity noise estimation are evaluated
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Fig. A.1: Photon transfer curve for our setup. The open symbols designate pat-
tern independent noise estimation, the filled symbols are the total noise measure-
ments. The readout and fixed pattern noise contributions are signal independent,
N2

fp + N2
ro = 0.1 ADU2, the photon shot noise is 0.009 × Stot and the photo response

non-uniformity noise follows 7×10−6×S2
tot. The total noise curve is the sum of the four

noise contributions and compares well with its experimental estimation, thus proving
negligible effects of non-linearity. Note that the photon transfer curve is independent
of the shutter time.

in the following manner: the photo response of individual pixel is evaluated independently for 10
different illuminations with 100 frame-long movies being acquired for each illumination. A linear
fit of response versus signal is produced for each pixel. The fixed pattern noise is obtain as the
variance of the intercept distribution over all the pixels. The photo-response non-uniformity noise
coefficient is given by the variance of the slope distribution [131]. The pattern dependent noise
Npdn is then written:

N2
pd = N2

fp + γnu × S2
tot (A.2)

where we found experimentally N2
fp = 0.05 ADU2 for the fixed pattern noise and γnu = 7×10−6 for

the photo response non-uniformity noise coefficient of our camera (see Fig. A.1).
The total noise is the variance of the raw image brightness distribution. Estimated at different

illuminations, we found that the total noise compares well with the sum of the random noise with
the pattern dependent noise in the whole dynamic range of the camera, indicating that non-linear
contributions are negligible (see Fig. A.1).

Another contribution to the total noise in an image can arise from uneven autofluorescence in
the sample (in cells for example) or signal from out of focus particles. We call this contribution
“background noise” Nbg. It is negligible in the static experiments we performed in this study, but
becomes important in dynamic studies. Finally the total noise is written:

N2
tot = N2

bg +N2
ro +N2

fp + βps × Stot + γnu × S2
tot . (A.3)
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The noise contributions considered here are by nature spatially white, except for the pattern de-
pendent noise and the background noise which might exhibit correlation lengths larger than 1 pxl.
The 2D autocorrelation function calculated for regions of an image that are selected by our noise
extraction procedure gives information on the distribution of noise correlation lengths. In movie
frames obtained from both static and dynamic experiments, we found that the autocorrelation func-
tion is sharply peaked at 0 pxl with negligible occurrence at larger lag distances (data not shown).
This suggests that a spatially white noise model, as used in the next section of this Appendix,
is a reasonable assumption. It is expected that this assumption will hold for many microrheology
experiments where a low concentration of probes is usually used in signal-free (e.g., non fluorescent)
medium. However, a different conclusion can be reached in other experimental scenarios, where for
example out-of-focus autofluorescence of the sample might exhibit large patterns covering several
pixels.

In the time domain, we characterized the CCD noise by calculating the power spectral density
of the temporal variation of the noise intensity in a movie. We found in both static and dynamic
experiments that the noise is temporally white from the frame rate frequency for the upper limit
of our spectrum, and at least down to a frequency of 0.1 Hz.

A.2 Relation Between Noise and Spatial Resolution

The multiple particle tracking algorithms we use in this study have been explained in detail else-
where [16]. In this Appendix we develop a model to relate the spatial resolution of the technique
to the noise-to-signal ratio of the data. In the method, movies of particles are acquired using a
CCD camera. Usual CCD chips contain 640 × 480 pxl, and typical trackable particle size have an
apparent radius â greater than ∼ 2 pxl which is usually different from the actual radius a of the
bead. The particle position is determined by a brightness weighted average over a circular mask of
radius w > â applied on the filtered image of the particle. As noticed by [16], if w < â, clipping
of the particle image by the mask deteriorates the resolution. For w > â, this clipping effect is
negligible as compared to the noise contribution, which will be the only consideration retained in
the following model. Our aim is to evaluate the position of the particle that is determined from its
filtered image. We define Stot(ρ, r) = Stot(ρ− r) the ideal brightness value at a location ρ on the
particle image centered at the true position r = (x, y) (r = 0 in the following). A convenient way
to account for noise is to add a spatially white offset δSρ to the ideal brightness profile:

〈δSρ〉 = 0 , (A.4)

〈δSρ δSρ′〉 = N2
tot(ρ)l2n δ(ρ− ρ′) , (A.5)

where ln is the correlation length of the noise, and Ntot(ρ) is the noise level. We know from the
noise characterization, Eq. A.3, that the noise level depends on the brightness distribution through:

N2
tot(ρ) = N2

bg +N2
ro +N2

fp + βps × Stot(ρ) + γnu × S2
tot(ρ) , (A.6)

with N2
bg the background noise, N2

ro the readout noise, N2
fp the fixed pattern noise, βps × Stot(ρ)

the photon shot noise and γnu×S2
tot(ρ) the photo-response non-uniformity noise. Also, usual mask

sizes satisfy πw2 � l2n which justifies the use of continuous integrals rather than finite summations.
However, we find slight differences between our measurements on pixelized images and the following
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model, as discussed in the Results section. Under the continuous assumption, we can infer∫ 2π

0

∫ w

0
δSρρdρdθ = 0 . (A.7)

Depending on the spatial repartition of the noise on the particle image, the brightness-weighted
centroid x̂ of the filtered image will suffer a shift that we can estimate by the following:

x̂− x =

∫ 2π

0

∫ w

0
δSρ ρ cos θ ρdρdθ∫ 2π

0

∫ w

0

[
Stot(ρ)−B

]
ρdρdθ

, (A.8)

where B designates the background brightness value assumed uniform at the scale of one particle.
We then write

ε2 =
〈(
x̂− x

)2〉 =
l2n

∫ 2π

0

∫ w

0
N2

tot(ρ)ρ2 cos2 θ ρdρdθ(∫ 2π

0

∫ w

0

[
Stot(ρ)−B

]
ρdρdθ

)2 . (A.9)

By assuming a Gaussian brightness distribution for the particle image,

Stot(ρ) = B + S e−2ρ2/â2
, (A.10)

where S is the signal level and â is the apparent radius of the particle image, we find

ε2

l2n
= f1

(
w/â

)
×

(
N

S

)2

+ f2

(
w/â

)
× βps + 2γnu ×B

S
+ f3

(
w/â

)
× γnu , (A.11)

where
N2 = N2

bg +N2
ro +N2

fp + βps ×B + γnu ×B2 (A.12)

is the noise amplitude evaluated at the background level and we have introduced the following
functional forms:

f1(x) =
1
4π

(
2x2

1− e−2x2

)2

, (A.13)

f2(x) =
1
2π

[
1− (1 + 2x2)e−2x2(

1− e−2x2
)2

]
, (A.14)

f3(x) =
1
8π

[
1− (1 + 4x2)e−4x2(

1− e−2x2
)2

]
. (A.15)

Note that Eq. A.11 is formally equivalent, in terms of scaling, to theoretical results obtained by
[20]. We can evaluate the order of magnitude of each term for a typical mask size w = 7pxl, with
typical apparent radius â from 4 to 5 pxl; then f1 & 1.25, f2 ∼ 0.15 and f3 ∼ 0.04. Also, in most
cases the background level is around B ∼ 50 ADU. Typical values obtained for our camera are:
N2

ro = 0.05 ADU2, N2
fp = 0.05 ADU2, βps = 0.009 ADU, γnu = 7 × 10−6, and N2

bg ranging from
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∼ 0 ADU2 for static experiments to ∼ 2 ADU2 for dynamic experiments. We find that the first
term in Eq. A.11 always dominates in the range S between 10-200 ADU. This justifies both our
method for estimating noise in regions without particles as well as our simulations which include
only signal independent noise. Furthermore, we will use the following formula obtained by keeping
only the first term (in which noise is S independent) of Eq. A.11:

ε ∼ N

S

ln

2π1/2

(
2w2/â2

1− e−2w2/â2

)
, (A.16)

as obtained by [16]. A Gaussian profile is usually a good approximation for a typical particle image.
However in some cases when the particle is close to the focal plane of the setup, its image presents
a flatter peak and sharper edges (see Fig. 3.1D). It is thus interesting to consider a flat brightness
distribution,

Stot(ρ) = B + SH(â− |ρ|) , (A.17)

where H is the Heaviside step function. In that case we find the same form to Eq. A.11 with:

f1(x) =
x4

4π
, (A.18)

f2(x) =
1
4π

, (A.19)

f3(x) =
1
4π

, (A.20)

for which we verify that the first term in Eq. A.11 also dominates. Thus we will write for the
hat-like spot:

ε ∼ N

S

ln

2π1/2

w2

â2
. (A.21)

Overall, we proved that even though the noise level increases at the particles location due to its
signal dependency, this has negligible effect on the spatial resolution. In both cases (Eq. A.16 and
Eq. A.21), we find that the spatial resolution is proportional to the noise-to-signal ratio, and the
slope depends only on the ratio of the mask area over the particle image area. It is essential at this
point to notice that this slope is sensitive to the value of â: for a typical mask size 2w+1 = 15pxl,
the slope increases more than 30% as the apparent radius of the particle increases from 4 to 5 pxl.
Often video particle tracking is performed on half-frames, as single frames are usually composed of
two interlaced fields. In that case, both the image and the mask are shrunk by a factor 2 in the
direction perpendicular to the interlacing. It is easy to verify that the same result is found for such
elliptical masks and particles. However, we explain in the Results section how this de-interlacing
of pixelized images affects the measured trajectory.





Appendix B

IDL procedure to calculate
statistics

B.1 Usage

At the IDL prompt,

Im = MSDMOMENTS( t [ , TimeStep = value ] [ , MicPerPix = value ] [ , Mydts = array ] $
[ , N Lag = in t e g e r ] [ , Dim = in t e g e r ] )

where

• t is the output array of trajectories from the tracking algorithms.

• TimeStep is the time interval between two consecutive movie frames, in seconds.

• MicPerPix is the on-screen magnification, in microns per pixel.

• Mydts is an array of integers giving the lag times in TimeStep units.

• N_Lag is the number of lag time to make the calculation; an array of N_lag lag times is
created for a log scale plot.

• Dim is the dimensionality of the trajectories.

The output array contains the following information (see chapter 5 for notations):
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dim=2 dim=1
m[0,*]= τ m[0,*]= τ

m[1,*]= dx m[1,*]= dx
m[2,*]= dy
m[3,*]= M̂1x m[2,*]= M̂1x

m[4,*]= M̂1y

m[5,*]= M̂2x m[3,*]= M̂2x

m[6,*]= M̂2y

m[7,*]= µ̂2[M̂1x] m[4,*]= µ̂2[M̂1x]
m[8,*]= µ̂2[M̂1y]
m[9,*]= µ̂2[M̂2x] m[5,*]= µ̂2[M̂2x]
m[10,*]= µ̂2[M̂2y]
m[11,*]= θ m[6,*]= θ

B.2 IDL code

FUNCTION MSDMOMENTS, t , TimeStep = TimeStep , MicPerPix = MicPerPix , Mydts = Mydts , $
N Lag = N Lag , Dim = Dim, FileName = FileName

IF NOT KEYWORDSET( TimeStep ) THEN TimeStep = 1d ELSE TimeStep = DOUBLE( TimeStep )
IF NOT KEYWORDSET( MicPerPix ) THEN MicPerPix = 1d ELSE MicPerPix = DOUBLE( MicPerPix )
IF NOT KEYWORDSET(Dim) THEN Dim = 2
IF NOT KEYWORDSET( Filename ) THEN Filename = 0

Dim t = N ELEMENTS( t [ ∗ , 0 ] )
Ind Id = Dim t − 1
Ind Time = Dim t − 2

; Cha r a c t e r i s t i c s o f the t r a j e c t o r i e s
Id Pos = UNIQ( t [ Ind Id , ∗ ] ) ; Subsc r ip t o f the end
N Id = N ELEMENTS( Id Pos ) ; Number
Id = t [ Ind Id , Id Pos ] ; I d e n t i t i e s
Id Length = Id Pos − SHIFT( Id Pos , 1 ) − 1 & $

Id Length [ 0 ] = Id Pos [ 0 ] ; Number o f d i sp lacement at l ag=1

; Create the l i s t o f Lag
Max Lag = ( N Id GE 2) ? Id Length [ (SORT( Id Length ) ) [ N Id−2] ] : MAX( Id Length ) − 1
IF KEYWORDSET(Mydts ) THEN BEGIN

Lag = LONG(Mydts [WHERE(Mydts LE Max Lag ) ] )
ENDIF ELSE BEGIN

IF NOT KEYWORDSET(N Lag ) THEN N Lag = 50
IF (Max Lag LE N Lag ) THEN Lag = LINDGEN(Max Lag)+1 ELSE BEGIN

N Ind = N Lag−1
REPEAT BEGIN

N Ind++
Index = DINDGEN( N Ind )/( N Ind−1)
Lag = ROUND(Max Lagˆ Index )
Lag = Lag [UNIQ(Lag ) ]
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ENDREP UNTIL N ELEMENTS(Lag ) EQ N Lag
ENDELSE

ENDELSE
N Lag = N ELEMENTS(Lag )

; Ca l cu la te N box
Time = t [ Ind Time ,SORT( t [ Ind Time , ∗ ] ) ]
Time Pos = UNIQ(Time)
N box = Time Pos − SHIFT(Time Pos , 1 ) & N box [ 0 ] = Time Pos [ 0 ] + 1
N box = TOTAL( N box , /DOUBLE ) / N ELEMENTS( N Box )

; Pos , Time , Id
xy Id = TRANSPOSE( [ t [ 0 : Dim−1 ,∗ ] ∗ $

REBIN( [ MicPerPix ] ,Dim,N ELEMENTS( t [ 0 , ∗ ] ) , /SAMPLE) , $
t [ [ Ind Time , Ind Id ] , ∗ ] ] )

Result = DBLARR(7∗Dim+3,N Lag , /NOZERO) + !VALUES.D NAN
Result [ 0 , ∗ ] = Lag ∗ TimeStep

FOR j =0, N Lag − 1 DO BEGIN

; L i s t o f Displacements
dx = xy Id − SHIFT( xy Id , Lag [ j ] , 0 )
dx = dx [ WHERE( (dx [∗ ,Dim ] EQ Lag [ j ] ) AND ( dx [∗ ,Dim+1] EQ 0) , N dx ) , 0 :Dim−1]

; I nd i v i dua l p a r t i c l e p o s i t i o n s
W Good = WHERE( Id Length GE Lag [ j ] , N Id )
Norm = TOTAL( Id Length [W Good]+0)
Id Length = Id Length [W Good ]
N dx I = Id Length + 1 − Lag [ j ]
Pos Low = ( N Id EQ 1) ? 0 : $

[ 0 , TOTAL( N dx I [ 0 : N Id−2] , /CUMULATIVE, /PRESERVE TYPE) ]

; Weights
Weight = DBLARR(N dx , /NOZERO)
FOR i = 0 , N Id − 1 DO Weight [ Pos Low [ i ] ] = $

DBLARR( N dx I [ i ] ) + ( Id Length [ i ] + 0 )/ DOUBLE( N dx I [ i ] )
Weight = REBIN(TEMPORARY(Weight ) , N dx , Dim) / Norm

dxb = TOTAL(dx , 1 ) / N dx
dx = dx − ( dx [ ∗ , 0 ] ∗ 0 + 1 ) # dxb
dx2b = TOTAL( Weight ∗ dxˆ2 , 1 )
dx4b = TOTAL( Weight ∗ dxˆ4 , 1 )
dx6b = TOTAL( Weight ∗ dxˆ6 , 1 )
dx8b = TOTAL( Weight ∗ dxˆ8 , 1 )

N Seg = Lag [ j ]
; F i r s t the one f o r which N dx I ge N Seg
W Good = WHERE( N dx I GE N Seg , N Good , COMPLEMENT = W Bad, NCOMPLEMENT = N Bad)
IF N Good GE 1 THEN BEGIN

N dx I Good = N dx I [W Good ] − ( N dx I [W Good ] MOD N Seg )
Pos Good = [ 0 , TOTAL( N dx I Good , /CUMULATIVE, /PRESERVE TYPE) ]
Good = LONARR(Pos Good [ N Good ] , /NOZERO)
Weight = Good ∗ 0D
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FOR i = 0 , N Good − 1 DO BEGIN
Good [ Pos Good [ i ] ] = Pos Low [ W Good [ i ] ] + LINDGEN( N dx I Good [ i ] )
Weight [ Pos Good [ i ] ] = DBLARR( N dx I Good [ i ])+ $

( Id Length [ W Good [ i ] ] + 0 ) / DOUBLE( N dx I Good [ i ] / N Seg )
ENDFOR
n = Pos Good [ N Good ] / N seg
Weight = REBIN(TEMPORARY(Weight ) , n , Dim)
dx 2 = REBIN(dx [ Good , ∗ ] ˆ 2 , n , Dim)
dx 4 = REBIN(dx [ Good , ∗ ] ˆ 4 , n , Dim)
dx 6 = REBIN(dx [ Good , ∗ ] ˆ 6 , n , Dim)

ENDIF

; Then the r e s t that br ing only one
IF N Bad GE 1 THEN BEGIN

FOR i = 0 , N Bad − 1 DO BEGIN
dx I = dx [ Pos Low [W Bad [ i ] ] : Pos Low [W Bad [ i ] ]+ N dx I [W Bad [ i ] ] −1 ]
Weight =( (N Good EQ 0) && ( i EQ 0) ) ? $

REBIN( [ Id Length [W Bad [ i ] ] ] , 1 , Dim) : $
[ Weight , REBIN( [ Id Length [W Bad [ i ] ] ] , 1 , Dim ) ]

dx 2 = ( (N Good EQ 0) && ( i EQ 0) ) ? $
REBIN( dx I ˆ2 , 1 , Dim) : [ dx 2 , REBIN( dx I ˆ2 , 1 , Dim ) ]

dx 4 = ( (N Good EQ 0) && ( i EQ 0) ) ? $
REBIN( dx I ˆ4 , 1 , Dim) : [ dx 4 , REBIN( dx I ˆ4 , 1 , Dim ) ]

dx 6 = ( (N Good EQ 0) && ( i EQ 0) ) ? $
REBIN( dx I ˆ6 , 1 , Dim) : [ dx 6 , REBIN( dx I ˆ6 , 1 , Dim ) ]

ENDFOR
ENDIF

n = (N Good EQ 0) ? N Bad : ( n + N Bad )

Weight = TEMPORARY(Weight ) / Norm

dx 22b = TOTAL(Weight ∗ dx 2 ˆ2 ,1)
dx 42b = TOTAL(Weight ∗ dx 4 ˆ2 ,1)
dx 2dx 4b = TOTAL(Weight ∗ dx 2∗dx 4 , 1 )

M 4 = dx8b/105 − 4∗dx2b∗dx6b/15 + 2∗dx2bˆ2∗dx4b − 3∗dx2bˆ4

Result [ 0∗Dim+1, j ] = dxb
Result [ 1∗Dim+1, j ] = dx2b
Result [ 2∗Dim+1, j ] = dx4b/3−dx2bˆ2+(dx 22b−dx2bˆ2) ∗ $

TOTAL(Weight ˆ2)/ TOTAL(Weight∗(1−Weight ) )
Result [ 3∗Dim+1, j ] = ( dx 22b−dx2bˆ2)∗ TOTAL(Weight ˆ2)/ TOTAL(Weight∗(1−Weight ) ) + $

( dx4b/3−dx2bˆ2+(dx 22b−dx2bˆ2) ∗ $
TOTAL(Weight ˆ2)/ TOTAL(Weight∗(1−Weight ) ) ) / N box

Result [ 4∗Dim+1, j ] = ( ( dx 42b−dx4bˆ2)/9+4∗dx2bˆ2∗( dx 22b−dx2bˆ2)+ $
4∗dx2b ∗( dx2b∗dx4b−dx 2dx 4b )/3) ∗ $

TOTAL(Weight ˆ2)/ TOTAL(Weight ) + $
( dx8b/105 − 4∗dx2b∗dx6b/15 + 2∗dx2bˆ2∗dx4b − $
3∗dx2bˆ4 − ( dx4b/3−dx2b ˆ2)ˆ2)/N box

Result [ 5∗Dim+1, j ] = N dx / $
(N box ∗ ( MAX( t [ Ind Time ,∗ ] )−MIN( t [ Ind Time , ∗ ] ) + 1 − Lag [ j ] ) )

Result [ 6∗Dim+1, j ] = TOTAL( Id Length + 1) / $
(N box ∗ ( MAX( t [ Ind Time ,∗ ] )−MIN( t [ Ind Time , ∗ ] ) + 1 ) )

ENDFOR



B.2. IDL code 135

RETURN, Result

END
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