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In this thesis we study the Brown-Peterson cohomology
theory from an unstable point of view by studying its class-
ifying spaces. This is a new approach to complex cobordism
which yields significant new information. In particular,
we calculate the cohomology of the classifying spaces and
show they have no torsion. We then apply this to determine
the homotopy type of the classifying spaces. We begin
applying these results by giving a new proof of a theorem
of Quillen and classifying all torsion free (localized)
H-spaces.
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The O-Spectrum for Brown-Peterson Cohomology Part I

by W. Stephen Wilson

Introduction

BP denotes the spectrum for the Brown-Peterson cohomology,

BP*(.), associated with the prime p. [ / , 3,// ] The spectrum

can be given as an 9-spectrum BP={BPk, [2 ,/6 ], i.e. QBPk=BPk-1

and BPk is k-1 connected for k>O. We have Bpk()[,BPk], the

unstable homotopy classes of maps. The usual way of viewing

BP*(*) is BP*(.)={.,BP}*, the stable homotopy classes of maps

of the suspension spectrum of a space into BP. We will study

the Brown-Peterson cohomology theory from an unstable point of

view by studying the BPk.

Interest in the Brown-Peterson theory stems from the fact

that it is a "small" cohomology theory which determines the

complex cobordism theory localized at the prime p and that all

of the nice properties of complex cobordism carry over to

BP*(-), such as knowledge of the operation ring. Historically,

everything about the Brown-Peterson theory has been as nice as

could be hoped for. We will push on further in that direction.

Z(p) is the integers localized at p, i.e., rationals with

denominator prime to p.

Main Theorem (3.3) The Z (co)homology of the zero componentS(p)
of BPk has no torsion and is a polynomial algebra for k even

and an exterior algebra for k odd. (k can be less than zero.)#

Using the main result of [Iz], the above theorem determines

the Hopf algebra structure of the (co)homology.(see section 3)

We begin by reviewing Larry Smith's result on the Eilenberg-



Moore spectral sequence for stable Postnikov systems.[4]1 We

combine this with Brown and Peterson's original construction

of BP ([C 1) to calculate H*(BP2k+l,Z ) assuming a technical

lemma which we prove in section 2. In section 3 we prove the

main theorem and some miscellaneous items such as lifting our

result to MU.

In Part II we determine the homotopy type of the BPk

using the main theorem here.

This paper is a part of work done for my Ph.D. thesis

at M.I.T. under the supervision of Professor Frank Peterson.

It is my pleasure to thank Prof. Peterson for his advice,

encouragement, and understanding through the last several years.

I am very grateful for the quite considerable influence which

he has had on my attitudes and tastes in mathematics. Thanks

are also due to Larry Smith and Dave Johnson for comments on a

preliminary version of this paper, in particular for pointing

out a mistake in the original proof for the prime 2.

Section 1

For the remainder of the paper all coeffecient rings are

assumed to be Zp=Z/pZ unless stated otherwise. In this section

we show H*(BP 2k+l ) is an exterior algebra on odd dimensional

generators. H*(BP2k+l) is a Hoof algebra, setfor odd primes

having odd dimensional generators is equivalent to being an

exterior algebra. The general reference for Hopf algebras is

[/o]. We quote what we need from [/l].

Let K be a product of Eilenberg-MacLane spaces. We will

be concerned with the situation



Y -- PK

X -- K
f

where all spaces are infinite loop spaces and all maps are

infinite loop maps. w is the fibration induced by f from the

path space PK over K. All cohomologies are thus cocommutative

Hopf algebras and H*(K)\\f* and H*(X)//f*, the kernel and

cokernel of f* in the category of Hopf algebras are defined.

There is a natural map PH --> QH, where P and Q denote

the primitives and indecomposibles respectively of a Hopf

algebra H. When this is onto, H is called primitive.

Lemma 1.1 ([/4,p.691) H' I H a subHopf algebra over Z , H

primitive, then H' is primitive. #

If V is a graded module, let s V be the graded module

(sV) n+q=V . Let V denote the elements of odd degree. From
n+q n

[/4 ,p.95] we have a filtration of H*(Y) of diagram A such that

P[s-1((Q(H*(K)X f*)) )]
1.2 Eo H * (Y )=H * (X )// f* OE[...]

[s-l( (Q(H*(K)\\ f*))-)]P

as Hopf algebras. E and P denote exterior and polynomial

algebras generated by odd and even dimensional elements

respectively. E[...] is determined by H*(K)\\f*.

H*(K) is primitive because it is generated by cohomology

operations on fundamental classes, therefore, H*(K)\\ f* is

primitive by 1.1. So for x e Q(H*(K)\\f*) we have x' + x,

x' s P(H*(K)\\f*) and thus x' + x" c PH*(K). For x of odd

degree, x' and thus x", are determined uniquely by x. Let

i:'K + Y be the inclusion of the fibre.



Lemma 1.3 ([/f,p.8 6 and p.1101) i*(s-l(x))=s*(x"), s4 the

cohomology suspension, s*:H*(K) - H*(QK).#

Note that if x is of odd degree then s*(x")30 by the

following lemma.

Lemma 1.4 a s PH*(K), if s*(a)=0, then a=Ptx 2t +pkx2k+

(p=2, a=Sqnxn) where Pi s A is the i-th reduced p-th power, A

is the Steenrod algebra and xi is of degree i. #

I IProof It is enough to consider K=K(Z.,n) and a=P in P EA
p n

an Adem basis element. The proof is an argument on the excess

of I and can be found in [/3]. #

Brown and Peterson [3 ] construct BP by a series of

fibrations which we now describe. Let be the set of

sequences of non-negative integers (rl,r 2 ,...) which are almost

all zero. Define d(R)=ý2ri(p 1-1), ý(R)=ýri and let Ai be the

R with ri =1 and zeros everywhere else. Let Vj be the graded

abelian group, free over Z(p), generated by R E with a(R)=j

and graded by d(R). Then we have the generalized Eilenberg-

MacLane spectrum K(VJ)= V Sd(R)K(Z (). BP=inverse limit
j(R)=

Xj where we have the fibrations

i
K(Vj ) -- Xj

(*) k
X -------1 SK (V )

induced by kj- 1 . We have an A/A(Q ) resolution for A/A(Qo,Q 1,...)

=H*(BP), d j:Mj M-_ with H*(K(V ))=Mj and (1j)**(kj)*=dj+ I .

The Qi are the Milnor primitives. [9 I (For p=2, Qi=p i+l in

the Milnor basis.) For an A/A(Q o ) generator iR E H*(K(V )),

dj(iR)=Q iiR-A
o R



The spectrum K(V ) can be given as an 0-spectrum,

{ K(Vj,k) = x K(Z (p)d(R)+k) }. The entire diagram (*)
X(R)=J

can be turned into 0-spectra and maps of 0-spectra. From this

we get a sequence of fibrations with BPk=inverser limit Xj .

.3 .2

- - k..
XJ-1 - -1 - K(V ,k+l)

We suppress the k in the notation for Xj , i and k . Note that

k can be less than zero. We have (Uj)* (kj)**s*=s**(ij)**(kj) *

where the ij and kj on the right are for BPk and on the left

for BPk-l. This is because kj for BPk-l is the loop map of

the k. for BP.. Similarly for ij. The iterated cohomology

suspension gives a map s*:Mj - H*(K(VJ,k)) which has as its

image the primitives, PH*(K(V.,k)). In general we will

denote the iterated suspension by s* and it should be clear

when we mean only one. We have the following commutative

diagram. d M
SM *M

H*(K(Vj,k)) <----- H*(K(Vj+1,k+1))

(i )**(k )*

We will often use s*(dj+1 ) for (ij)*'(k )*. It is given by

the same formula EQi iR-Ai. In the next section we prove the

following lemma.

Lemma 1.5(J) For k odd, if a E PH 21+ (K(Vj,k+l)) such that

(kj_-1)*(a)=0 , then there exists b e PH*(K(Vj+ 1 ,k+l)) such that

(ij)*-(k )* (b)=s*(a)#0. #

We use this to prove the next proposition.

K(V ,k) X
J

(a+)



Proposition 1.6(j) For k odd, H*(XJ)// (k )* has no even

dimensional generators. (For p=2 it is an exterior algebra.)#

Proof For j=0, Xo=K(Z (),k) and all generators of H*(Xo) are

in the image of s*:Mo=A/A(Qo) 0 H*(K(Z(p),k)). So if x is an

even dimensional generator of H*(K(Z (),k)) and k is odd, then

there is an odd dimensional x' e Mo with s*(x')=x. We have

the exact sequence d s

M1 --  /A / A (Q o )=M o ----A/A(Q o ,Q1 , ...) + 0.

Thus there exists x" s M1 with dl(x")=x' as E(x')=0 because

E(x') is an odd dimensional element in A/A(Qo,Ql,...) which

only has even degree elements. So s*(x") E H*(K(V1 ,k+1)) and

(k )*(s*(x"))=s*(dl).s*(x")=s*(dxlx)=s*(x')=x and the even

dimensional generator x E H*(Xo) goes to zero in H*(X)// (k )*

(For p=2 and x an odd dimensional generator, then x2=Sqdegxx

is killed by the same argument, so we have an exterior algebra.)

By induction, assume proposition 1.6(j-1). By 1.2 we have:

P[s- (Q(H*(K(Vj ,k+l))\\(kj )* )]

E H*(Xj )= H*(X j - 1)// (k )*OE[.']@ 1 -

[s- (Q(H*(K(Vj ,k+1))\\(kjl)*))]P

Now by our induction assumption, all even dimensional generators

-1
look like s-1 (x) where x E QH*(K(Vj,k+l))ý(kj-1)*-. These

elements map injectively to the cohomology of the fibre, see

1.3 and the remark after it. As discussed above (before 1.3),

x can be represented by an a E PH*(K(V ,k+l)) with (kj-1)*(a)=0.

Now, as a is of odd degree, from 1.5(j), there exists b such

that (ij)*.(k,)*(b)=s*(a)30. But by 1.3, (j)*(s-l (x))=s*(a)

and (ij)* is injective on these even degree indecomposibles

giving that (k )*(b)=s-l (x)+decomposibles. Therefore, the
th
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generator s-(x) goes to a decomposible in H*(X 3 )// (kj)* and

we are done. #

Corollary 1.7 For k odd, H*(BPk) is an exterior algebra on

odd dimensional generators. #

Proof. Because K(Vj,k) is highly connected for high j we have

H*(BPk)= direct limit H*(XJ)// (kJ)*. Because we are working

with Hopf algebras, odd dimensional generators for odd primes

means.we have an exterior algebra. The direct limit is achieved

in a finite number of stages so we have the result.using 1.6. #

Section 2

We will now prove lemma 1.5(j). We have already seen that

that s*(a)pO. (1.4)

Let A be the mod p Steenrod algebra. We d6fine a filtration

A=F A F1 AD F2A ... by giving a basis for F A. Given an
p1 1 2  n niAdem basis element, P a...B n it is a basis element

for FsA if s<E i . For p=2 and an Adem basis element Sq =

i i2  im I
Sq Sq ...Sq , i >2i +1 , Sq is a basis element of FsA

if s or more of the i. are odd.

For our purposes it is usually more convenient to work in

the Adem basis, however, the Milnor basis is a necessary

excursion for p=2. For odd primes, a Milnor basis element

E i

QIpR (QI =o Q1 ... ) is a basis element for FPA if s<Es .

For p=2, a Milnor basis element PR is a basis element for FSA

if R=(rl,r 2,...) has s or more odd ri.

Claim 1 i) The two definitions of FSA are the same,

ii) If a E FSA, and b E FtA, then ab s F+tA. #



Ai A1  Ai
Sketch proof Milnor's Qi=P B-BP For odd primes P is

in the algebra of reduced p-th powers and so can be written in

the Adem basis without any B's, similarly for all PR in the

Milnor basis. The Adem relations for p odd preserve the

number of B's exactly, so we see that Qi l F A and not in F2A.

If we were to rewrite a Milnor basis element Q PR in the Adem

basis we would still have Eei B's.

The proof of the second part just uses the fact that the

Adem relations never decrease the number of Bocksteins.

The proof for p=2 is slightly more complicated and is

left for the reader. #

Given a s PH*(K(VJ,k)), (any k), it can be written as

a= E aRiR where iR is the fundamental class of

K(Z(p),d(R)+k) and aR e A. If it can be written like this

with each aR E FnA, then we say a is with n Bocksteins (w.n a's).

If n=l, we just say w. 8's. If a is with n Bocksteins but not

with n+l B's we say a is with exactly n B's. As discussed

above, Qi is with exactly one Bockstein. Therefore by the

definition of d. and the above claim, if a e Mj with n a's,

then S'(cj)(a)is with n+l B's.

Claim 2 If ct=(d-)(Q)and a is with 2 Bocksteins, then there is

a b' wi•bA's such thatSj)(b')=a. #

Proof First for odd primes; write b= E aRi R with a R E A.

A=F A/F A F IA, so write aR=bR+cR with bR FA/F A and cR s

F1A. bRQi then has exactly one a. CRQi has more than one 8.

We know that t=cFf)(b)has more than one R soS jbRiR)=0. Let

b'=cRi R .



A.
For the prime 2 we have Q i- =P and for a Milnor basis

R-ii

Swh 1R-2 A.j +Ai+
element PR we have PRP A P , thus increasing

ri+j even

the filtration precisely one. Using this fact, the proof for

p=2 is the same as for odd primes. #

Proposition 2.1(j) Given a E PH*(K(VJ,k)), a with B's such

that s*(d )(a)=0, then there exists a Mj such that

s*(a)=a and d (a)=0. #

Proof of 1.5(j) For k and a odd, then a is with V's in

PH*(K(Vj,k+l)) for dimensional reasons, i.e., all of the

Steenrod algebra elements used are odd dimensional, and all

odd dimensional elements have V's. (kj_-1)*(a) = 0 implies

s*(d.)(a)=0 and we can apply proposition 2.1(j) to get a such

that s*(Oi)=a and d (a)=0. By exactness, there exists M+ 1

such that dj+ 1 ( b)=a. Then b'=s*(b) E PH*(K(Vj+1 ,k+2)) has

s*(dj+l)(b)=s*(dj+l )(s*(5))=s*(dj+1 ())=s*(a)=a. So let

b=s*(b'), then s*(a)=s*(dj+l)(b) which is what we want. #

Proposition 2.2(j) Given an a as in 2.1(j), then there exists

b e PH*(K(Vj+1,k+1)) such that s*(dj+l)(b)=a. #

Proof See proof of 1.5(j). #

Remark Proposition 2.2(j) is really the essential feature that

makes everything work. It means that exactness still holds in

the unstable range for primitives with s's.

We need proposition 2.2(j-l) in the induction argument

for the proof of proposition 2.1(j).

Proof of 2.1(j) This follows at once from the next

proposition, just lift a up one step at a time until it is

in the stable range. #



Proposition 2.3(j) Given a with B's in PH*(K(V ,k))

such that s*(dj )(a)=O, then there exists a with

PH*(K(V ,k+l)) such that s*(')=a and s*(dj)(a)=Q. (For j=O,

s*(d )(a)=0 is a vacuous condition.) #

Proof j=O, trivial. For j=l the argument is the same as for

j>1 except easier, so assume j >1. Now, trivially, there exists

a' with B's such that s*(a')=a. (Let a'=T(a).)

s*(d )(a') e ker s* by commutativity of the following diagram.

So, s*(d )(a')=Pnx2n+BPtx2t+l s PH*(K(Vj- 1 ,k)) by 1.4. (p=2,

or Sq 2t+ x )
x2t+l

s*(dj_ )(Pnx2n+ fPtx ) = 0
2t+1

as d d.=0.
j-1 3

a=a'-Pn ptY2n - P Y2t+l

0 ( x2n

s*(dj_-1)

0 < x2t+l

Cs*(d )

0 -- Pnx2n P 2t+lx2t+1

PH*(K(V- ,k)

s*

PH*(K(VjI,k-1) )

Z
V-

PH*(K(V. ,k+l))

s *

PH*(K(V ,k))
d ( \ 3

/

and x2n are in the kernel of s*(dj_-

with a's and x2n is with 2 8's.

Proof s*(dj1)(Pnx 2 n) is a p-th power as

s*(d Ji)(aptx~t~l)

Pnx2n=(x2n)P

is not, because it has a B on the left

which must stay thePe by the Adem relations. So Pnx2n and

15

(any k)

B's in

2n
Sq X2n

Now

Y2n
/

Y2t+l

Claim x2t+l

!N

u \u

• f" | f | |

s \

I

x2t+l



Bptx2t+l are each in the ker s*(dj l ) as they cannot give

s*(djl)(BPtx2 t+l)= -s*(djl)(pnx2n). H*(K(Vj_ 2 ,k-1)) is a

free commutative algebra, so [s*(djl)(X2n)]P=s*(djl1)(pnx2n)

=0 implies s*(dj_l)(x2n )=0. P is monomorphic on

PH2t+l(K(Vj_ 2 ,k-1)), ([/3]), so s*(dj_l)( 8 ptx2 t+l)=0 implies

s*(djl-)(x2t+l))=0. (p=2, much easier)

a' is with 8's so s*(dj)(a')=Pnx 2n+8Ptx 2 t+l is with 2 8's,

and is equal to E(EXibi)iR + mE(Emcm)iR where Xi and Um are
Ri Rm

e0 e Zp and the bi and cm are Adem basis elements which begin

with pn and OPt respectively. (This follows from the proof

of 1.4.) From this we see that x2t+l is with 8's and x2n is

with 2 8's. (same for p=2) #

By induction on j, x2t+l is with B's and in the kerNel Of

s*(djl-), so by proposition 2.2(j-l), x2t+l=s*(d )(y2t+l) and

likewise x 2n=s*(dj)(y2n) where y2n is with B's by an earlier

claim. So a-a'-Pn 2n- ty2t+l is with 8's. This is easily

shown by writ ing out y2n and y2t+l using the Adem basis and

then noting that Pny2n and P tx2t+l are still in the Adem basis

form for dimensional reasons. So, we have s*(dj)(a)=0 and

s*(R)=s*(a')=a. #



Section 3

Our first objective is to compute the (co)homology of

BP2k. The bar construction ([ ]1) gives a spectral sequence

of Hopf algebras: (k odd)

TorH(BPk)
Tor* k(Z ,Zp)=> EoH*(zero component of BPk+l)

Now H,(BPk) is an exterior algebra on odd dimensional

generators QH*(BPk). (Cor. 1.7) A standard computation (see

[I/1) gives: TorH*(BPk)(Z ,Zp)=F(s (QH (BP ))) where r denotes

the Hopf algebra dual to the polynomial algebra. Now all

elements in r(sl(QH*(BPk))) are of even degree and the

differentials change degree by one, so our spectral sequence

collapses and we have: H*(zero component of BPk+)

[EoHl(zero component of BPk+i)]* =[TorH*(BPk+l)(ZZp)]* =

r[(sl(QH,(BPk)))] * = polynomial algebra.

We will now show H,(BPkl) is a polynomial algebra for k

odd. Using the Eilenberg-Moore spectral sequence ([6 ,/*]) we

have TorH*(BPk)(ZpZp)=> EoH*(BPkl) if BPk is simply connected.

Assume it is, then the same argument just given shows H*(BPkl)

is a polynomial algebra. The only modification is:

TorH*(BPk)(Z ,Zp ) = r(s-I(QH*(BPk)))

If BPk, k odd, is not simply connected, then it is easy

to see that one can get a splitting BPk = (xS1 ) X X where

X is simply connected. This is because BPk is an H-space with

Z(p) free homotopy. Its k-invariants are therefore torsion and

primitive, but (xSl)(p) has no torsion in Z(p) cohomology.

Thus we have a spectral sequence of Hopf algebras:



TorH*(X)(ZpZp)= EoH*(zero component of BPkl)

and our argument goes through. We have proved the following

proposition.

Proposition 3.1 The mod p (co)homology of the zero component

of BPk is a polynomial algebra on even dimensional generators

for k even, and an exterior algebra on odd dimensional

generators for k odd. (Note that for k odd, BPk is connected.)#

Proposition 3.2 The Z(p) (co)homology of BPk has no torsion.#

Proof For k even this is trivial because H*(BPk) has no

elements in odd degrees. For k odd we view the Bockstein

spectral sequence as a spectral sequence of Hopf algebras.

The differentials are the higher order Bocksteins. Let ýs

be the first non-trivial differential and let x be the minimum

degree generator that Bs acts non-trivially on. Bs(x) is an

even dimensional primitive, contradiction, so all differentials

are zero.#

We can now prove the main theorem.

Theorem 3.3 The Z(p) (co)homology of BP2k+l is an exterior

algebra and the Z p) (co)homology of the zero component of BP2k

is a polynomial algebra.#

Proof We will do the case for polynomial algebras, the exterior

case being similar. From 3.2 we know the (co)homology is free

over Z(p) and so we can lift the mod p generators (3.1) up to

it. These lifted elements generate the Z(p) (co)homology ring

because there is no torsion and their mod p reductions generate

the Z (co)homology. By considering the rank we can see there

can be no relations and we have a polynomial algebra. #
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We can now lift our result to MU. Normally the spectrum

MU is given by {MU(n)}, the Thom complexes, and maps

S2MU(n) + MU(n+1). [ However, if Mn =lim(k+*)Q 2k-nMU(k) ,

then OM =M and for finite complexes MUn(X)=
n n-l

lim(k+-)[S 2knX ,MU(k)]= lim(k+o)[X, n2k-nMU(k)]=[X, M n.

Thus, {M n=MU as an 0-spectrum.

Corollary 3.4 The integer (co)homology of the zero component

of Mn has no torsion and is a polynomial algebra over Z for n

even and an exterior algebra for n odd. #

Proof From [3] we have MU p)ýiV S2niBP and so (Mn)(p)=

Hi BPn+2ni  By 3.3 for n even H*(Mn ,Z)@Z(p) H(Mn,Z(p))
H,((Mn)(p),Z p))= polynomial algebra over Z p). Thus the

integer homology has no torsion, and localized at every prime

it is a polynomial algebra, so it is a polynomial algebra

over Z. Similarly for n odd. Since there is no torsion, the

same thing works for cohomology. #

Remark 1 A completely analogous theorem is true for MSO if

the ring Z(1/2) is used.

Remark 2 There are several ways to determine the number of

generators for 3.1, 3.3, and 3.4. The spaces BPn and Mn are

just products of rational Eilenberg-MacLane spaces when

localized at ., (This is because their k-invariants are

torsion.) Because there is no torsion, the number of

generators is the same as for the rationals. As examples we

have (BP)=Z pX2(pl),...,2(pil),...] so for 2n>0,

2n S SH*(BP2nZ(p))(=Zp)[ 2n (BP)] and wl(MU)=Z[x 2 ,...,x 21,...] so

for 2n>0, H*(M2n,Z) = Z[s 2n (MU)].



20

We have shown that both the cohomology and homology of

the zero component of BP2n are polynomial algebras. This is

a very strong statement, in fact, it determines the Hopf

algebra structure of the (co)homology.

Definition A connected bicommutative Hopf algebra is called

bipolynomial if both it and its dual are polynomial algebras.#

There is a bipolynomial Hopf algebra B(p)[x,2n] over

Z (p) (or Z p) which has generators ak(x) of degree 2pkn.[7 ]

It is isomorphic as Hopf algebras to its own dual.

In [u2] we prove the following proposition.

Proposition 3.5 If H is a bipolynomial Hopf algebra over Z(p)

(or Z p), then H (= j B p)[x ,2d ]. (For p=2 and Z2,

replace 2dj by d .) #

Using this and the counting argument of remark 2 we can

just write down the Hopf algebra structure for BP 2n. As an

example, we will do this for n>0. Let { n be the set of

sequences of non-negative integers R=(rl,r 2,...) with almost

all ri=0. Let d(R)= 2n + Z2(pi-l)ri for our fixed prime p.

We say R is prime if it cannot be written R=pS+(n,0,0,...),

S E Pn

Proposition 3.6 For n>0, H*(BP 2nZ(p)) Re B ()[xR,d(R)] #
R n
R prime

If we work over the integers and let B[x,2d] be the

bipolynomial Hopf algebra on generators c n(x) of degree 2dn

with coproduct c (x) -+ Ec n(x)cj(x) ([ 7]) then we have an

analogous proposition. [/.]

Proposition 3.7 If H is a bipolynomial Hopf algebra over Z,



then H= 0 B[xj, 2 d ]. #

We can now apply this to MU={M }. Let In be the set of

sequences of non-negative integers I=(il,i 2,...) with 1 >n

and almost all ij=0. (n>O). Let d(I)=Ej 2j i . We say I

is prime if it cannot be written I=kJ, where k>l and JE In.

Proposition 3.8 If {Mk  is the 0-spectrum for MU, then for

n>0, H*(M 2 n ,Z) = @ B[x ,d(I)] as Hopf algebras. #2n1I Fri*e nM

Proof Just use 3.7 and the counting done in remark 2. #

Let S be the sphere spectrum and let i:S + BP represent

1 E ~oS (BP). S={QSn} as an 9-spectrum where QX=lim ansnx. ±

induces maps in :QS n + BP . H,(QSn ) is given in terms of homology

operations on the n dimensional generator. [5 ]

Proposition 3.9 Let n>0, the kernel of (in)*:H*(QSn) + H,(BPn )

is generated by homology operations on the n-dimensional

class which have Bocksteins in them. #

Proposition 3.10 Let n>0, if n :BPn - K(Z( ),n) represents the

generator of Hn(BPn,Z(p)), then the kernel of (jn)*:H*( ((Zp),n))

+ H*(BPn ) is generated by cohomology operations, on the

n-dimensional class which have Bocksteins in them. #

Proof of 3.9 By 3.2, any homology operation which has Bocksteins

in it goes to zero. Let u be a homology operation with no 8's

such that ux n0 in H*(QSn). As u has no 8's, u(s,) kxn is a

p-th power for some k. So u(s) kxn=ux n+k=(U'x )nk . Now byn•n+k n+k ;

induction on the degree of u, i,(u'xn+k )#0 in H*(BPn+k) and n+k

is even since we have a p-th power. H,(BPn+k) is a polynomial

algebra and so [i*(u'xn+k)]P #0 and is =i*[u'Xn+k]P=i*u(s) kxn

i,(s*)kuxn=(s,)k i,(uXn) and so i(uxn )#0. #

The proof of 3.10 is similar.



The 2-Spectrum for Brown-Peterson Cohomology Part II

by W. Stephen Wilson

Introduction

Let BP denote the spectrum for the Brown-Peterson cohomology

theory, BP*"(),.L,,• ,12] We have BP (X)L[X, BPk ] where BP=

{BPk} as an 2-spectrum, i.e. BP BPBPk_.[4] In Part I [2o]

we determined the structure of the cohomology of BPk. In this

part we study the homotopy type of BPk.

The structure of each BPk is very nice and gives some

insight into the cohomology theory. In particular, using it,

we obtain a new proof of Quillen's theorem that BP*(X) is

generated. by non-negative degree elements as a module over

BP*(S).[//I] (X is a pointed finite CW complex.)

Let Z(p) be the integers localized at p, the prime

associated with BP. We explicitly construct spaces Yk which

are the smallest possible k-l connected H-spaces with w, and

H, free over Z(p). The Yk are the building blocks for BPn,

i.e., BPn  i Yk. In fact, one of our main theorems states
1

that for any H-space X with w, and H, free over Z(p), then

X = Hi Yk . (This is not as H-spaces, see section 6.) To

understand the spaces Yk we need a sequence of homology

theories:

BP*(X)=BP<o>,(X)+.. .+BP<n+l>Z(X)-+BP<n>,(X)+...+BP<0>,(X)=H(X,Z(p))

These are constructed using Sullivan's theory of manifolds with

singularities. BP*(So)=Z (p)[x,x 2 .... with degree of xi =

2(pi-l). BP<n>,(So)=Z(p)[xl,...,x n as a graded group. Let
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BP<n> = {BP<n>k } be the 9-spectrum for BP<n>,('). For k >

2(pn-l+...+p+l), the space BP<n>k cannot be broken down as a

product BP<n>k = YxX with both X and Y non-trivial. For k <

2 (pn+...+p+l), H*(BP<n>k Z(p)) has no torsion. So, for k

between these two numbers we get Yk = BP<n>k"

Main Theorem For 2 (pn-1+...+p+l) < k < 2(pn+...+p+l)

BPk = BP<n> ~x I1 BP<j>k+ 2 (pJil)
j>n

and cannot be broken down further. #

The proof of this theorem exploits the fact from [20]

that the Z(p) cohomology of BPk has no torsion.

We begin by constructing the theories BP<n>,(*). In

section 2 we review what we need about Postnikov systems.

Section 3 is devoted to preliminary necessities for the proof

of the main theorems in section 4. Then we state the main

results and prove Quillen's theorem (section 5) and a general

decomposition theorem for spaces which are p-torsion free and

H-spaces when localized at p. (section 6)

In a future paper with Dave Johnson these results will be

applied to study the homological dimension of BP*(X) over

BP*(So). [II

This paper is part of my Ph.D. thesis at M.I.T. I would

like to thank my advisor, Professor Frank Peterson, for his

encouragement and understanding. I would also like to acknow-

ledge the influence of his papers on this research, in particular,

[o1].
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Section 1 Construction of BP<n>

This section deals with Sullivan's theory of manifolds

with singularities. [/9] The approach we take is due to Nils

Baas. This section is not intended to be an exposition on the

Baas-Sullivan theory, for we only wish to use it to construct

certain specific homology theories, the general case being

covered in detail in [3]. Even the definitions we give will

be missing major ingredients, in all cases we refer to [3].

If we dealt with the case of one singularity, P, then a

manifold with singularity P would be a space V = NV xM cPxM

where N is a manifold with aN=PxM and cP is the cone on P.

One can make a bordism group of a space using such objects in

place of manifolds. An element of the bordism would be

represented by a map f:V+X. So, as far as bordism is concerned,

one might just as well consider only the manifold N and insist

that maps f:N+X, when restricted to aN=PxM, factor through the

projection PxM - M. This is the approach Baas takes. When

more than one singularity is considered, the definitions

become quite technical. From [3]

Definition V is a closed decomposed manifold if there exist

submanifolds alV,...,3nV such that V=3 1VU... n nV where union

means identification along common part of boundary such that

a(ai V ) = (a1ViV) av)... a•_-lvn aiV)U}0Y . . . (a nvn aiV),

which gives 3i V the structure of a decomposed manifold.

Continue, defining ak( j (aiV)), etc. #

Let Sn={P ,P2,. . Pn } be a fixed class of manifolds. Very

loosely, A is a closed manifold of singularity type Sn if for



each subset wC{l1,2,...,n) there is a decomposed manifold A(w)

such that A(0)=A, a iA(w)= A(w,&)xPi if i i 9, a A(w) = 0 if

i e m. A singular Sn manifold in X is a map g:A+X such that

gliaA(c) = A(w,i)xPi factors through the projection A(m,i)xPi

+A(, i).

More generally, singular manifolds with boundary, singular

manifolds in a pair, and a concept of bordism are all defined.

(rigorously) These bordism groups are shown to give generalized

homology theories, MSn,(.). One of the most important aspects

of these theories is the relationship between MSn,(.) and

MSn+1*(-). This will be a major tool throughout the paper

There is an exact sequence

MSn,(X) )MSn,(X)
6 n+l

MS n (X)

The product of an Sn manifold with a closed manifold N gives

an Sn manifold by: (NxA)(w) = NxA(m). On a representative

element A+X, 8 is Pn+1xA * A + X. Any Sn manifold A can be

considered as an Sn + l manifold by setting A(w,n+l)=0. So

y(A+X)=(A-÷X). For an Sn+l manifold A we see that A(n+l) is an

Sn manifold, so 6(f:A+X)=fjA(n+l)+X. The degrees of these

maps are: degree 8= dimension Pn+l' degree y=0O, degree 6=

-dimension Pn+1 -1. In our one singularity example, aN=PxM,

6 Just restricts to M. Baas of course defines these maps

rigorously, shows they are well defined and proves the exactness

theorem.

Above we remarked that the product of a manifold and an



Sn manifold is again an Sn manifold. This gives us a map,

MSo,(X)OMSnw(Y) * MSn,(XxY). This is precisely the condition

that tells us the spectrum associated with MSn,(.) is a module

spectrum over the spectrum for the standard bordism theory

MSo0 ,(). Further, MSn,(X) is a module over MSo,(So) and the

above maps, 8,y, 6 are all MSo,(So) module maps.

We now get on to our applications. All manifolds considered

above could be taken with some extra structure, and we assume

them all to be U manifolds. So MSo (*) is MU,(*) the standard

complex bordism homology theory for finite complexes. Now

MU,(S = W(MU) = Z[x2,...,x21,...] where degree x2j =2j. We

choose a representative manifold Pi for x 2 1. Fix a prime p.

S(n,m) = {Pil i<m, ipJ 3 -l, j<n} . Then by all of the above,

we have a homology theory MUS(n,m),(*) made from U manifolds

with singularity type S(n,m). For large m we have an exact

sequence:
XP

MUS(n,m),(X) pn- MUS(n,m),(X)

MUS(n-l,m),(X)

From these exact sequences and the homotopy of MU we see

that MUS(n,m)*(So) S= (MU)/[S(n,m)] where [S(n,m)] is the

ideal generated by S(n,m). We define the homology theory

MUS(n),(-) = lim(m+oo) MUS(n,m)*,(). MUS(n),(e)Z (p) is a

homology theory which we will denote by BP<n>,(.) and the

corresponding spectrum by BP<n>. The reason for the notation

is that if BP + MU(p) is Quillen's map ([12]), then BP + MU(p)

+BP<oo> clearly gives an isomorphism on homotopy and so



BP = BP<o)>. Thus BP<n> is a module spectrum over BP and we

have:

BP<n>,(X) ) BP<n>,(X)

1.1 6 y

BP<n-l>,(X)

with degree of B= 2(pn-1), degree y=O, degree 6= -2pn+1.

BP,(So) = Z (p)[X2 (pl 1 ).. .,X 2 (pil),...]. BP<n>, = BP<n>*(So)

= BP,(So)/[x 2 (pil) i>n] as a module over BP,. Although BP,

acts on BP<n>*(X), it is not known if X2 (pi 1_l) acts trivially

for i>n.

Every spectrum can be represented as an 2-spectrum.[]-1

Let BP<n> = {BP<n>k } be the Q-spectra, i.e. ,,BP<n>k = BP<n>kl

and BP<n>k is k-1 connected for k>O. This means that

BP<n>k(X) = [X, BP<n> k ] where BP<n> (*) is the cohomology

theory given by BP<n>.

The theories BP<n> are independent of choice of manifolds

Pi representing x2i but seemingly dependent on the choice of

generators X2 (pi -1 ) chosen for fS(MU). However, the results

we obtain are independent of the choice of even these generators

because the spaces BP<n>k for different choices become homotopy

equivalent when k is small enough. In addition, in [2.i] we

show that BP<l> is independent of choice of x 2 i. In fact, BP<l>

is just the irreducible part of connective K-theory when

localized at p.

We now permanently reindex the X2 (pi-1 ) to xi with degree

2(pi-1). From 1.1 we have a split exact sequence:
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x
1.2 0 -- BP<n>, BP<n> BP<<nn-l>, ---- 0

BP<n>, = Z (p) [x1 ,...,xn] as a group. Again, from 1.1 for

finite complexes we get a cofibration ([ I ]):

21 8S BP<n> BP<n>

1.3 nY
i=p -1 BP<n-l>

For the spaces in the O-spectrum this becomes a fibration:

BP<n>k+j - BP<n>
1.4 ýy

j=2 (pn-1) BP<n-l>k

If M is a graded module let skM be the graded module (sk M)k+q

M q Then,

1.5 * (BP<n>k) = k (BP<n>,) k>0

From 1.3 we have an exact sequence:

8* Y*
1.6 H*(BP<n>) <-- H*(BP<n>) - H*(BP<n-l>)

For most of the paper, unless otherwise noted, all

coeffecient groups will be Z where p is the fixed prime

associated with the BP<n>. Let A be the mod p Steenrod algebra

and Qi the Milnor elements. [ q]

Proposition 1.7 H*(BP<n>) = A/A(QoQ...,Q n ) = An  #

Note Baas and Madsen have a more general result which includes

this, however, as this special case has a much more elementary

proof we give it here.

Proof wS(BP<0>) = Z(p), so BP<0> = K(Z(p)) and H*(BP<0>)=A/A(Q o).

We prove the result by induction on n using 1.6. Let 1 denote
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the lowest dimensional class of each spectrum, then y*(l)=l.

Assume H(BP<n->)=An- If y*(Qnl)=0, then for dimensional

reasons, a*(l)=XQnl, 0# E ZP . If a s An, then O#aQnl=3*(al)

in An- 1 because An-l= An(1)$An(Qnl). Therefore al#0 in H*(BP<n>).

This takes care of exactness at H*(BP<n-l>), So now H*(BP<n>)

=A nX with ý*:X+X an isomorphism, but the degree of 8* #0 so X=0.

All we need now is Q n1=0 e H*(BP<n>). Our map BP + BP<n>

n+l
is an isomorphism on homotopy below dimension 2(p -1) and

therefore an isomorphism on cohomology in this range. H*(BP)

=A/A(Q,Q1,...).[5] The dimension of Q is 2pn-1 so Q 1=0.#

Section 2 Postnikov Systems

We collect here the results we need about Postnikov systems.

We assume X is a simply connected CW complex. We start with

the standard diagram:

nXn
gn - k

X ~) -- - - > K(On(X),n+l)
X n-1 \

X =point

2.1 Definition and existence [16]

A Postnikov system for X is a sequence of spaces {Xn }

and maps, {g :Xn + Xn- }, {p :X+Xn} such that pn-l-= gn' n and

the fibre of gn is K( n(X),n), the Eilenberg-MacLane space.

The fibration gn :Xn + Xn - is induced by a map k :Xn-1

K(r (X),n+l) from the path space of K(7Tn(X),n+l). Thus

k ng t 0 and kn 6 Hn+l (Xn- n(X)). k is called the n-thk 0g n and kn E H CX - x)). kn is called the n-th



k-invariant of X. Postnikov systems for simply connected CW

complexes always exist and (p n)#:k(X) + wk(Xn) is an isomorphism

for k<n and k (Xn)=O for k>n.

2.2 Induced maps [8 1

Given f:X - Y then we have {fn:Xn ÷ yn} such that

f"n- n(X) gn ()n f"pn(X) pn (Y)*f and f#(kn(X)) =

(f nl)* (k n(Y)).

2.3 Loop spaces

The Postnikov system for 2X is given by: (QX)n = QXn+l

Pn (X) = QPn+ 1 (X)' gn (QX) = g n+l(X), kn(~2X) = 2kn+ 1 (X) , so

kn (X) = s*(kn+1 (X)) s Hn+l(pXn , n(QX)) where s* is the

cohomology suspension defined by 6- 1. p *

H*(X,G) - H*+1(PX, QX, G) < H*+1(X,pt, G)

PX is the path space fibration over X.

2.4 Product spaces

A Postnikov system for XxY is given by {Xn x yn} with

k-invariants {k (X) x k n (Y)}.

2.5 H-spaces [ 9 ]

If X is an H-space, then each Xn is an H-space, pn and gn

are maps of H-spaces and kn E Hn+l(Xn-1. n(X)) is torsion and

is primitive in the Hopf algebra structure induced on H* by the

multiplication in Xh  . Also, if Xn-l is an H-space and kn is

primitive, then Xn is an H-space. If all k-invariants are

primitive, then X is an H-space.

2.6 Obstruction theory [/61

If Y is CW, and we have f n 1 :Y X n-l , then fn- lifts to

fn:Y + Xnr iff (fnl)*(kn(X)) = 0 E Hn+l (Y ,n(X)). If there



exist maps {f :Y - Xn } such that g (X) f = f n-l then

there exists f:Y+X with pn(Y).f = f n
2.7 Construction of spaces [16]

Given a sequence of fibrations gn:Xn + Xn - 1 with fibre

K(wn,n) and X1 =pt, then there exists a CW complex X and maps

Pn:X _+Xn such that {Xn}is a Postnikov system for X.

2.8 Independent k-invariants

Assume for the rest of this section that f,(X)QZ(p) is

free over Z(p) and the k-invariants kn(X) are torsion elements.

This will always be the case in our applications. From the

Serre spectral sequence of a fibration we obtain the following

natural ladder of exact sequences:

(gs )*
0 + H' (Xs-1,Z() Hs(K(sr (X),s),z ()

0 S(x Hs(Xs-1s Hs(Xs) - HS(K(w (X),s))

2.9 T +(s(gs s+(Xs

HS+ (xs-l s ) *s+1

Tis the transgression. Also we obtain

2.10 Hk(Xs,G) = Hk(X,G) for k<s.

In the dimension of our ladder, the transgression is related

to the k-invariant map k by T.s* = k *. This motivates the

following definitions.

For x E HS(K(ws(X),s),Z(P)), a free generator, T(x) will

be called a k-invariant of X. If T(x)=0, it is called dependent.



The k-invariant T(x) is independent and hits a p-torsion

generator if and only if p.T(x) = ~*p(x) #0 where p is the mod

p reduction. If the k-invariants, T(x), of a2X, hit p-torsion

generators, then there is a y with s*(y)=x, and so s*(T(y)) =

T(x) showing that the k-invariants T(y) of X also hit p-torsion

generators. (Remember that we have restricted ourselves to

spaces with torsion k-invariants.) If H*(X,Z(p)) has no p

torsion, then all p torsion generators of Hs+l(Xs-  Z )) are

hit by k-,invariants. This is true because the coker T

H +(Xs, ) Hs(Xs+Z ) H s+(X,Z(p)) which is free,

all by 2.9 and 2.10.

2.11 Localization [18]

Usually we will work with localized spaces, i.e. spaces

with rw,(X) a Z(p) module. For simply connected spaces or H-

spaces, the localization X(p) and a mod p equivalence X - X(p)

can be built by 2.7 using W,(X)1Z p) for homotopy groups and

k (X)Z (p) as the k-invariants. We get that

H,(X,Z)@Z p) H*(X,Z(p)) H,(Xp),Zp)) - H(X(p),Z).

2.12 Irreducible spaces

If a space cannot be written as a non-trivial product of

spaces it will be called irreducible (indecomposible). If X

is connected and QX is irreducible, then X must also be

irreducible. If X is a localized space with ,*(X) free (over

Zp )) then if Xs- 1 in the Postnikov system for X is irreducible

and all of the s k-invariants are independent, then Xs is

also irreducible.



Section 3 The Map

Before we can prove the main theorem,

BP k BP<n> x H BP<J>k+ 2 (pJl)
J>n

for k<2(pn+ ... +p+l), we need the maps BPk ' BP<J>k+ 2 (Dp l).

The natural transformation BP,(-) + BP<n>*(.) gives us the map

BPk + BPkn>k which is onto in homotopy. If we obtain the map

BPk + BP<J>k+2 (pJ_l) for k=2(p-l1+...p+l) then we have it for

all kS2(pj-l+...+p+l) by taking the loop map. We can then

combine these maps to give a map

BPk  BP<n> k x BP<J>k+2(p-J_ ) for k<2(p +...+p+l).
j>n

We fix k=2(p4-)+..+p+l) and construct a map BPk + BP<j>k+ 2 (pJl)

by the following series of lemmas.

Lemma 3.1 There is an element x S Hk+ 2 ( p J-)(BP<J>k,Z(p))

such that x. :BP<J>k + K(Z ), -k+2(pJ-l)) is onto in homotopy,

k<2(p ( +..+p+1). #

Before proceeding, we need to state a lemma which we will

prove later.

Let ik be the generator of Hk(BP<j-l>k).

Lemma 3.2 For k>2(p -l+...+p+l), Q ik 0 in H*(BP<j-1>k).

For k=2(p-l 1+...+p+l), Hi(BP<j-l>k) = 0 for i=k+2pj-l =

dimension Q ik = pk+l. #

Proof of 3.1 We go to the fibration 1.4.

BP<J>s - BP<J>k

s=k+2(pJ-1)

BP<j-l>k
k=2(pJ-l+...+p+l)



BP<j>s is s-1 connected and w (BP<j> ) Hs (BP<J>s,Z (p) Z (p)

To show a* is onto in dimension s we look at the Serre

spectral sequence for the fibration 3.3. In this range we

have the Serre exact sequence:

3.4 HS(BP<J>k,Z(p)) H (BP<j>s,(p)) Z Hs+1(BP<j-1,Z( )

We have k=2(pj-l+...+p+l) and so s+l=k+2(pJ-l)+l. By 3.2

and the numbers we are using, the last term is zero and so 6*

is onto. If x j' HS(BP<J>k,Z (p ) is such that ý*(xj) is the

generator, and S s -+ BP<J>s represents 1 E is (BP<j>s) = Z (

then the composition Ss + BP<J> BP<j>k induces
s >k. K(Z(p),S) induces

an isomorphism on Hs , so therefore x. is onto in homotopy. #

Lemma 3.5 There is a map f j:BP k - BP<J>k+ 2 (pj-l) for

k<2(pj-l+...+p+l) such that (fj)# is onto) (k> -2(pJ-1))

(fj)#: T"k+2(p J-l)(BPk) k+2(pJ-1)(BP<j>k+2(pJ-1)) Z(p) #

Proof It is enough to prove this for k=2(pj-l+...+p+l). We

have a map BPk - BP<J>k + K(Z(p), k+2(pJ-1)) from lemma 3.1.

Each of these maps is onto in homotopy so the composite is too.

K(Z(p),k+2(pJ-l)) is the first non-trivial term of the Postnikov

system for BP<j>k+2 (DJ-1). We know that the k-invariants of

this space are torsion by 2.5 and that its homotopy is free

over Z(p) by construction. (1.5) The main theorem of [20]

gives us that H*(BPk,Z(p)) has no torsion. Obstructions to

lifting the map to a map of the type we want are therefore

torsion elements in Hq+l(BPk,Tq(BP<j>k)), (2.6) which has no

torsion. Therefore we see that we can lift the map. #



Corollary 3.6 For k<2(pn+...+p+l) there is a map

BPk + BP<n>k x IT BP<j> k+2(pj1) which composed with
j>n

projections is onto in homotopy for ,*(BP<n>k) and

7k+2(pJ-1) (BP<J>k+2(pJ-l))• #

Before proving 3.2 we will make an observation which we

need in the next section.

Consider the map B:BP<j>s - BP<j>k, s=k+2(pj-1). We have

0#:K(Z p),S) - K(7s(BP<j> k,S). (B#)* is onto in Z(p) cohomology.

Pick a generator x e HS(K(%s(BP<j>k),s)Z(p) ) such that (B#)*(x)

is a generator. We wish to study the k-invariant T(x). Above

we showed that for k<2 (pj-l+...+p+l) there was such a k-

invariant which was dependent. Here we wish to show the

following lemma.

Lemma 3.7 For k>2(pj-l+...+p+l), the above k-invariant T(x)

is independent and hits a p-torsion generator. #

Proof Using the naturality of the mod p version of 2.9 we

have:

Z p=HS(BP<j>s)

0 Hs(K(Z (),)) -- Hs(K(Z(),S)) ) 0

3.8 *1I (Y
------ HS((BP<j>k)s)-------- Hs(K(rs (BP<j>k),s) ) I--

H" (BP<j>k)
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As in 2.8, T(x) is independent and hits a p-torsion

generator iff E(p(x))0O, P the mod p reduction. Because

(# )*(x) is a generator, this is equivalent to B* not being

onto in 3.8. Again we go to the Serre exact sequence for 1.4.

3.9 Hs (BP <j> ) * Hs (BP<j> s )  Hs+l(BP<j -l>k)

We know from the proof of 1.7 that for k very large (i s )

XQj ik, X$0. By 3.2, for k>2(pj-l+...+p+l) we know Qj i k  0

so T(i s ) = AQ. ik ý 0 in this range. So, in 3.9 we see that

3* is not onto and T(x) for such an x is an independent

p-torsion generating k-invariant. #

We will need the following in our proof of 3.2.

Lemma 3.10 Qn+l =XPP +.'+ (mod A(Qo,...,Qn)), X#0 E Z .

Sp21
Note For p=2, just consider Pi = Sq 2 i

Proof The lowest non-zero odd dimensional element of
i-1

A/A(Q ,...Q n ) is Qn+l1 From [9 ], Qi PP  , Qi-1 ], so

n n n n-l n-l n

Qn+l = PP Qn -Qn Pp = -Q P P -(P Q n-l -n- PP )Pp

n-l n n
= nl PP pP (as the dimension of Q PP is less than the

n-l n-1

dimension of Qn+l and also odd, so it is zero) =...

pn-l n n-l

(-1)n+Q opl pp PP (mod A(Qo,...,Q ) ). Let kn=l+p+...+pn-1

all that is left to show is: (note that Qo=ý)

k n k
Claim P npp n+P , 0 Z .#

p

Proof By the Adem relations,



k n kn-
pn pp

t=0

k +t k -t
(-)n p n+l P t (p-I) (pn-t)-l

kn - pt

So all we need is for the binomial coeffecient to be zero mod

p for 0 < t < kn_1 and # 0 for t=0. First we reindex, let s+t

= kn-1 . Then (p-l)(pn-t)-1 = (p-)(pn -kn- +s)-i =

(p-l)pn -(p-l)kn- +(p-l)s -1. Now (p-l)kn-1  pn- -1, so

this is (p-l)pn pn-p +1+(p-l)s-l=(p-2)pn+(p-_)pn-1 +(p-l)s.

kn-pt = k n-pkn- 1 +ps = l+ps. So our coeffecient is:

(p-2)pn + (p-l)p n- 1 + (p-l)s

1 + ps

We want to show this is 0 for O<s<k and #0 for s=k n.

From [/7], if a=Eaip , b=Ebip , ai and bi < p, then mod p

S i . So for s < p n-2our binomial

bi

is 2)\ but (p-l)s < l+ps, so it
0 0 l+ps /

s < pn-2 Set s = pn-2 + s > pn-2. We

' (p-2)pn + (p-l)pn-l + (p-l)pn-2

pn-1 + 1 + ps1

coeffecient

is zero for

get:

+ (p-l)s1

( a
b

p-2 p-1 p1) /(p-1)s1
0 /) 1 0 1 + ps



for sl < pn-3 this is zero again. Let sl = pn-3+ s2 Continue

like this until we get:

(p-2)pn + (p-l)pn - l +...+ (p-l)p + (-l)sn-_2

p n-+ pn-2+ ... + p2 + 1 + psn- 2

where 0 < Sn2 < 1. For Sn-2 =0, this is zero again as it is

p-2 0 p2 p-1 (p-1) p-1\ 0
0 1 1 0 1

For Sn-2 =1, we get
p-2 p-1 p-1 p-1

0 1 , 1 1

This finishes the proof of 3.10. #

Proof of 3.2 For large k, Qj ik F0 in H*(BP<j-l>k) because

H*(BP<j-l>) = A/A(Qo,...,,_)l). (1.7) The Eilenberg-Moore

spectral sequence [16]

3.11 TorHl*(BP<j-l>k+l ) (Z ,Z p ) => H*(BP<J-l>k)

collapses in dimensions < pk and on indecomposibles,

s*:QH*(BP<j-I>k+l ) - QH*(BP<j-týb) is an isomorphism in this

range. For k>2(pj-l+...+p+1), dimension Qj ik < pk so Q ik70.

For k=2(pj-l+...+p+l), the E2 term of 3.10 has one element

in dimension pk+l (for p=2, none), s-l ( Q  ik+ 1 ). All

j-1
Qi i =0 for i < j so by 3.10 this is s- (X1PP "' .+ k+l

-1 corresponds to the cohomology suspension ([/4]).

s*(ppj-+...+p+l k+ = k/2 ik = k) = 0 so s-(Qik+is hit by a differentiak+l and the(ik follows. #

is hit by a differential and the result follows. #



Section 4 Proofs

In the last section we constructed a map (3.6)

4.1 BPk + BP<n> x TH BP<j> k+2(pj_) for k<2(pn+...+p+l).
j>n

If this map is a homotopy equivalence for some k>0O then it is

a homotopy equivalence for all k<2 (pn+...+p+l). To see this,

look at the diagram for f:X . Y

r,( X) 7= *+1 (X)

w, (Y) ,+ (Y)

If either Qf# or f# is an isomorphism then so is the other and

then they are both homotopy equivalences because our spaces

are the homotopy type of CW complexes.

We will prove the homotopy equivalences for the

k = kn = 2 (pn-
1+...+p+l) + 1, (ko = 1) by induction on the

Postnikov system. As a plausibility argument, as well as the

fact that we need it, we prove the following lemma.

Lemma 4.2 The homotopy is the same on both sides of 4.1. #

Proof v,(BPk) sk(Z(p)[x1,X2,..']).

wy*BP<n>k x j~n BP<J>k+ 2(pJ-l))=*(BP<n>k) j w*(BP<>k+2(p -1))
j>n

s (Z(p)[Xl...'Xn s k+2(pl)(zp)[X ,. .,x]). (1.5)
j>n

Our isomorphism takes a Z(p) generator on the right hand side,

k+2(o -1) 1  i. k[ 1 i-1 i1 +
s [(xl ) ... (x ) 0] to s [(x I ) ... (xJ-1 ) - (x ) ].#



kn = 2(p n - +
n

Statement P(n,s) i = k + 2 (pJ- 1 )n

k +s k +s
f n :(BPk ) 

n

n
+ (BP<n>,.

k +s
I

n
SH (BP<j> 1
j >n

is a homotopy equivalence. #

Statement P(n,s) implies a similar statement

k < kn+I replacing kn.

Statement K(n,s) All k-invariants

k +s+2
Hn

k +s
((BP<n>k ) n

n

are independent and hit p-torsion generators. (see 2.8) #

4.4 K(n,s) implies that all k-invariants

Hk+s+2 (BP<n>k)k+s,Z(p ) )

generators

are independent and hit p-torsion

for k > k n.

Statement A

P(n,s)

K(n,s)

s < m

s <m

=> K(n+l,m)

Statement B

1) K(n+j,s)

2) P(n,m)

s <m J > 0

P(n,m+l)

4.3

k +s
) n

for any

T(x) in

,Z p))

T(x) in

(k =-i).Recall that + 1) + 1



4.5 Now, to get things started, observe that statement

P(n,0) is true for all n as it just reduces to

K(Z(p), k)-)  > K(Z (p) kn). Also, statement K(0,s) is

trivially true for all s because BP<O>k =1 is just the circle
0

localized at p and has no k-invariants.

Lemma 4.6 Statements A and B imply statements P(n,s) and

K(n,s) for all n and s. #

Proof Claim (t) a) P(n,m) is true for m < t, all n.

b) K(h,m) is true for m < t, all n. #

Claim (t) is true for t = 0 by 4.5. We will show claim (t)

=> claim (t+l). By 4.5 we know K(0,t) is true, applying

statement A n times we have K(n,t), therefore we have K(n,t)

for all n giving us b) of claim (t+l). Now, applying state-

ment B we obtain P(n,t+l) for all n. This proves claim (t+l),

so, by induction, claim (t) is true for all t and we are done.#

Now we will prove statements A and B. In the next section

we will explore some of the consequences of P(n,s) and K(n,s).

Proof of statement A Consider the fibration 1.4

BP<n+l>i -- BP<n+l>k

n+J k1=k
i = k + 2(p n+l-1)

n+l BP<n>k

and the induced maps on the Postnikov systems: q = k + s + 1

BP<n+> )k+s q--1 k+s
n> (BP<n>,q)k

4.7 k k

K(7 (BP<n+l>i),q+l)-- K(w (BP<n+l>k),q+l)-- K(7w ),q+l)
I *



a# and y# give the split short exact sequence 1.2, 1.5.

We know that the k-invariants in Hq+1((BP<n>k)k+s,Z( ) are

independent and hit p torsion generators for s < m by state-

ment K(n,s), s < m of A and comment 4.4; equivalently, (-")

is injective:

4.8

H (K( (BP<n>k ),q ) )  ) Hq+1((BP<n >kk+s)

(Y#) (*-1 ,k1

Hq(K(wq(BP<n+l>k) ,q ) )  Hq + 1((BP <n+l>k)k+s)

(B#)* ('T)q ((BP) n

Hq(K( wq (BP <n+l>i ) , q ) ) ) H ( <

Assume for a moment that yq-1 pulls these k-invariants

in Hq+l((BP<n>k k+s, Z(p)) back to independent p-torsion

generating k-invariants in Hq+l((B P <n+l >k )k +s , Z )), i.e.

(~)q (y#)* = (yq-l)*(•"1)q is injective in 4.8. Then the

first possible dependent k-invariant is of the type discussed

in 3.7. There, it was shown to be an independent p-torsion

generating k-invariant. Assume for some minimum s < m that we

have a dependent k-invariant, or one which is not a p-torsion

generator, equivalently, assume there is an x e ker (T) q

therefore q > i. By what we have assumed about the k-invariants

pulling back, x is not in the image of (y#)*. Thus, by the

split exactness of homotopy, and therefore the (y#)*, ($#)*

sequence of 4.8, (B#)*(x) = y 9 0. Now using the result 2.3

about the k-invariants of loop spaces, (s*)r.(,)q = (q-r(*) r

r=i-k=2(p n+-1). By our minimality assumption on s, (T) is
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injective so 0 i () .q-r(s*)r(y) = (s*)r.( T) (y) =

(s*)r.(r')(,) (#)*(x) = (s*)r.(q-l)*.(T)q(x), contradicting

('i) (x) = 0, #

All we need now is to show that (T)q.(Y#)* =(yq-l)*.(-,)q

is injective. We have the maps (k+s+l=q)

(BP k+s Fq-j (BP<n+l>k) k+s yq-1- (BP<n>k k+s

If we show that (F q-l)*.(yq-l)*.(I )q is injective, we will be

through. Using statement P(n,s), s < m, from our given in A,

we see that this is true if G**(r")kn+S+l is injective

(as k=kn+I > kn), G the projection:

k +s k +s k +s
(BP<n.>k ) n x I (BP<j>k) n (BP<n>k ) n

n j>n n

This follows trivially from statement K(n,s), s < m. #

Proof of Statement B By 1) of statement B and 2.4 on

k-invariants of product spaces, all of the k-invariants on the

right hand side of P(n,m) are independent and hit p-torsion

generators except possibly a zero k-invariant if m=2p4-3 which

corresponds by construction (3.6) to a dependent k-invariant
kn +m

on the left hand side of P(n,m). Now by P(n,m), (f n )* is

an isomorphism and so pulls back all of the independent p-torsion

generating k-invariants to independent p-torsion generating
k +

k-invariants in (BPk ) n . This determines all of the

k-invariants on the left hand side because we know the homotopy



is the same on both sides. So by this, (and 3.6 if m=2p -3)
k +m+l

f# on wk +m+l must be an isomorphism. Thus (f n )# is an

isomorphism on w* giving us P(n,m+l). #

Section 5 Statement of Results

In section 4 we proved the main theorem: k<2(pn+...+p+l)

BP = BP<n>k x H BP<j>k+ 2 (p 1l)
J>n

The main theorem of [2.0o] says: The Z(p) (co)homology of the

connected part of BPk has no torsion and is a polynomial algebra

for k even and an exterior algebra for k odd. The map above

is a map of H-spaces for k < 2 (pn+...+p+l) so we have the

following corollary.

Corollary 5.1 For k < 2 (pn+...+p+l), the Z(p) (co)homology of

the connected. part of BP<n>k has no torsion and is a poly-

nomial algebra for k even and an exterior algebra for k odd.

For k=2 (pn+...+p+l), H*(BP<n>k,Z(p)) has no torsion and is a

polynomial algebra. (Note that for k > 0 or k odd < 0, BP<n>k
is connected.) #

Note For k=2 (pn+...+p+l), H*(BP<n>k,Z p )) is not a polynomial

algebra.

At the rationals, the space BP<n>k is just a product of

Eilenberg-MacLane spaces. So, since there is no torsion, the

number of generators over Z(p) is the same as over Q. As an

example, for k even, 0 < k < 2 (pn+...+p+l), we have

H*(BP<n>k,Z(p))=Zp [)sk S(BP<n>)]=Z p)[sk(Z )[x,...,x ])].



For k even and less than 2(pn+...+p+l), the (co)homology

Hopf algebras of 5.1 are bipolynomial, that is, both it and

its dual are polynomial algebras. Such Hopf algebras are

studied in [13]. There, such a Hopf algebra is shown to be

isomorphic to a tensor product of the Hopf algebras B(p)[x,2d]

studied in [71]. B(p)[x,2d], as an algebra, is a polynomial

algebra over Z(p) on generators ak(x) of degree 2p kd. As a

Hopf algebra it is isomorphic to its own dual.

Letting R(n,k) be the set of all n-tuples of non-negative

integers, R=(rl,...,r n) with d(R)=2k+ E2 (p i-l)r i . R is called

prime if it cannot be written R=pR' +(k,O,...,O) with R' e R(n,k).

Then, as a further example, we have the following corollary

from [13] and the counting done above.

Corollary 5.2 For 0 < k < pn+...+p+l as Hopf algebras:

H*(BP<n>2k , Z (p)) B (p) [x R d ( R ) ]
R e R(n,k)
R prime #

We now utilize statement K(n,s); all k-invariants T(x)

k +s+2 k +s
in H n ((BP<n>k n , Z(p)) are independent and hit p

n

torsion generators, kn=2(pn-l+...+p+l) + 1. This implies that

BP<n>k cannot be written as a non-trivial product. (2.12)

Corollary 5.3 For k > 2 (pn-1+...+p+l), BP<n>k is irreducible.#

Using the fact that k n+2(pJ-l) > kj for j > n we have now

completed the proof of the main theorem.

Theorem 5.4 For k ( 2 (pn+...+p+l)



BP = BP<n>k x H BP<> k+ 2 (pjl)
j >n

and for k > 2(p n-+...+p+l), this decomposition is as irreducibles.#

Note For k <2 (pn+...+p+l) this is as H-spaces.

Now letting k < 2 (pn-1+...+p+l) and using two versions of

5.4 we have
BPk = BP<n>k x OTHER and

BPk = BP<n-l>k x BP<n>k+ 2 (pn_l) x OTHER.

From this we get the following corollary.

Corollary 5.5 For k < 2(p n-+...+p+l)

BP<n>k - BP<n-l>k x BP<n>k+ 2 (pn_l) #

Note For k < 2(pn-l+...+p+l) this is as H-spaces.

This gives us the pot~vt where the fibration 1.4 becomes

trivial. Again, using BPk = BP<n>k x OTHER for k<2(pn+...+p+l)

and the fact that for finite complexes BP<n>k(X)=0 for high k

we get 5.6.

Corollary 5.6 1) BPk(X) + BP<n>k(X) is onto for k<2(p n  +..+p+l).

ii) BP*(X) + BP<n>*(X) is onto in all but a finite number of

dimensions. #

We now apply 5.6 to prove Quillen's theorem. The problem

was first studied in [ 6 ].

Theorem 5.7 (Quillen) Let X be a finite CW complex, then BP*(X)

is generated as a BP*(So) module by elements of non-negative

degree. #

Proof If u BP k(X) and k < 0, we will show u is a finite sum



xix u - u, u i  BPk+ 2 (p -1)
i u i (X) and xi  BP*(S) =i>0 1

Z()[xl,...,xi,...] of degree -2(pi-1). By downward induction

on the degree of u we will be done.

Consider the maps

gf
BP*(X) gn BP<n>*(X) n BP<n-1>*(X)

Find n such that gn(u)ý0 but fngn (u) = gn-1 (u) = 0. Such

an n exists because n=O gives g (u) H k(X,Z(p))=0 as k < 0,

and for n high enough BPk (X) BP<n>k(X), by the finiteness

of X.

Dual to 1.1 we have an exact sequence and commuting

diagram:

BPk+ 2 (pn- 1)(X) xn BPk(X)

gn x n
BP<n> k +2(p n -1)(X) (X n BP<n> (X)n BP<n- >k(X)

u -u g (U) 0

As f (gn(u))=0 there exists u' with x u'=g'u)by exactness.

But now, by 5.6 and 2(pn+...+p+l) > k+2(pn-1) for k < 0 we

have that gn is onto in dimension k+2(pn-1) and so pick un

BPk+ 2 (pn-1)(X) with gn(uý=u'. Then by commutativity, gn(xnun)

=g (u). Now continue this process using u-xn u n. By the

finiteness of X, BPk+2 (P -1(X) will be zero for large j and

we will get our finte sum u= E xiui and be done. #
i>0 n-i

The spaces BP<n>k are most useful in the range 2(p +..±p+l)

<k< 2 (pn+...+p+l) where they are both irreducible and torsion

free. In the next section, we will identify these with spaces

that have perhaps a more tangible description.



48

Section 6 Torsion free H-spaces

All modules will be over Z(p), and, until further notice,

all coeffecients will be Z p). In this section we will study

torsion free H-spaces. Our immediate goal is to construct and

study the following spaces.

Proposition 6.1 There exists an irreducible k-l connected

H-space Yk which has H*(Yk) and w*(Yk) both free over Z(p)

and such that each stage of the Postnikov system is irreducible.#

Proof We will build up a Postnikov system for Yk and use 2.7.

We drop the subscript k. Clearly we must start the Postnikov

system with Yk = K(Z(p),k). We will now just build up a

Postntkov system by killing off the torsion in cohomology as

effeciently as possible. ff,(Yk) is free over Z(p) and HJ(Yk)

has no torsion for J < k+l. Yk is an H-space. Assume we have

constructed the s-1 stage, yS-1 for s > k such that ,(yS-1)

is free and HJ(Y s-1 ) has no torsion for j < s. Assume also

that Y S- has an H-space structure. HS+l (Ys- ) = P T where

F is the free part and T is the torsion part. It is finitely
n n

generated so it is isomorphic to (Z(p)) o Z ) , where
i>O p

(G)n=G$...@G n times. Using the torsion generators, this

isomorphism determines a map:

Y-1 n= Z timesK(Z ps+l) = K(F , s+l), F =(Z )n

n= C ni times (P) n n (p)

i>O

Let this map be the s k-invariant, ks. This constructs the

space YS as the induced fibration. ks is torsion and so it is

primitive because there is no torsion in lower dimensions,

therefore by 2.5, YS is an H-space. Recall the Z(p) sequence 2.9



0 - HS s- )  > HS(y s) + HS(K(Fn,s)) Hs+ s- ) + HS 1 (y) ýo

Using k * = T-s* we see that all of our "k-invariants"

T(x) are independent and hit p-torsion generators by construction.

Coker (gs)* is a subgroup of a free group and so is 'free giving

us:
(gs)*

0-4H S(Y )- s )Hs(Y s) ÷ coker (gs)* + 0

with both ends free by our induction hypothesis. Therefore

HS(Y s ) is free. HS+l(Ys) is coker T = coker (ks)* which by

construction is F, so free. By the isomorphism 2.10,

HJ(Y s ) = HJ(Ys-1), J < s, we have HJ(Y s ) is free for j<s+l.

Also 7T,(Y) is free by construction. Because we have used the

minimum number of Z(p)'s for is(YS), if Ys-1 is irreducible,

then so is YS. (2.12) #

This would give us a space Yk with the properties we

specified, but we want more than this from Yk9

Lemma 6.2 Yk as in 6.1 is unique up to homotopy type. #

Proof In the proof of 6.1 if we choose a different isomorphism

n n
HS+lY s-l  (p)) o 0 (i = F @ T. This would give us

J>0 p

a different k-invariant and then possibly a different space YS

We would like to know that really Y*,S YS. Our result will

follow.

Lemma 6.3 Let G be an isomorphism G:T = T. If we have surjec-

tions g,f:F n + T, then we can find an isomorphism h:Fn Fn

such that the diagram commutes:



F n T

n

Proof Given generators xi, 0 < i < n of Fn we can pick yi

f-l(G(g(xi))) because f is onto. Map the generator xi to yi

and extend to get our map h which commutes by our choice of

yi. If we tensor the diagram with Z , then g, G, f are all

isomorphisms of vector spaces. This forces h to be an

isomorphism mod p, but since Fn is free over Z(), h is also

an isomorphism. #

Note If we tried to work over Z, the last step of the above

proof would fail and we would not be able to prove the

uniqueness of the sort we want.

s sWe can now return to our proof that Y,s Y. Our choice

of k-invariants ks, k's : Y-1 + K(F n,s+l) really corresponds

to a self' isomorphism G:H+l (Ys-1). As the k-invariants are

torsion and G is an isomorphism when restricted to the torsion

subgroup T, we can apply the lemma. Let g=(ks)*, f=(k's )*

This gives us a self isomorphism h*;HS+ (K(Fn,s+l)) which can

always be realized by a homotopy equivalence h:K(F n,s+l) +

K(Fn,s+l). This has the property that h*k' = k so we have

a map Y,S - YS over the identity yS-1 s-1, which is just

h# on rs and therefore a homotopy equivalence. #

This completes our construction of the spaces Yk'

Unfortunately, this construction tells us nothing about r* (Yk)

and H*(Yk) except that they are free. However, to remedy that,

we have the following.

Proposition 6.4 For 2 (p n-1 +...+p+l)<k< 2 (pn+...++l), BP<n>, =Y,..#n



Proof H*(BP<n>k) has no torsion by 5.1. Statement K(n,s)

(section 4) just tells us that BP<n>k is built up exactly as

we constructed Yk and so by 6.2 we are done. #

We know *,(BP<n>k) and H*(BP<n>k) so we now know the same

for Yk" We can now prove the main theorem of this section.

Theorem 6.5 If X is a simply connected CW H-space with ,*(X)

and H*(X, Z (p)) free and locally finitely generated over Z(p),

then X = H Y k #
i i

Remark 1 The simply connected assumption is not necessary

because one can just split off a bunch of circles localized

at p. Y1 = (S )(p). Then, what is left is still an H-space,

see the next remark.

Remark 2 The reason for the H-space hypothesis is that we

want torsion k-invariants (2.5). Since spaces with Tr, and

H* free are H-spaces if their k-invariants are torsion we

could have used the hypothesis that X must have torsion

k-invariants instead. Note that our homotopy equivalence is

not as H-spaces.

Remark 3 There are really two ways we could have approached

this theorem. We did not need to construct the spaces Yk as

we did, but actually use the spaces BP<n>k and what we know

about them. The proof is the same and nowhere would we need

our knowledge of 7,(BP<n>k). Then, using the theorem and our

knowledge of BP<n>k we could imply the existence of a unique

Yk of the type we constructed. However, we could just do what

we have done, construct the Yk and prove the theorem in

ignorance of 7* (Yk) , that is, forgetting 6.4. Then, afterward,



we can note that BP<n>k (for the appropriate n) satisfies the

criterion of the theorem and is irreducible, thus getting

BP<n>k k Y This is the prettiest way and gives a better

understanding of the space BP<n>k, or Yk, depending on how one

looks at it.

Remark 4 The ideal space to apply the theorem to would be

BPk but alas, it was necessary to prove this special case before

we could make the identification Yk = BP<n>k. BP<l> corresponds

to the spectrum constructed in [IO] and so we do get the

result of Sullivan and Peterson:

p-2
BU = H 21 = p

(p) i=0 2(p-1) i=1l Y2i

Proof of 6.5. As always, we do everything by induction on the

Postnikov system, but first we need the map X 1 1Ti Yki . The

construction is similar to that for the main theorem except

easier because X is only a theoretical space. We revert back

to mod p cohomology for the proof. We start with the mod p

version of the sequence 2.9.

6.6
0 -1 Hs(X X - H s(Xs K ((K7 (X),s))-1Hs+1(Xs-1)-+ Hs+1(Xs)+0

Choose VSC Hs(Xs) = Hs(X) such that i*:Vs -+ ker T. Let r5 be

the rank of Vs . This determines a map f' :X - K((Z )r s ,s).

H*(X,Z(p)) has no p torsion so f's lifts first into the product

of rs copies of K(Z(p),s) and then into the product of rs copies

of Ys, denoted rYs.  (It lifts by 2.6 because Ys has p-torsion

k-invariants and free homotopy.) So we have f :X - rY such
s s
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that the image of (fs)* in dimension s is Vs. Let

f = fs : X - I rYs = Y.

Claim: f is a homotopy equivalence. #

Proof By induction on the Postnikov system assume

fS:XS -yS (r k)s is a homotopy equivalence. (X 1=Y=pt)
k -z

Let f# be the induced map K(rs+ 1 (X), s+l1) K(rs+1 (Y), s+l).

fs is a homotopy equivalence, if f# is too, then

s+l s+l s+l s+l
+ #: (Xs+ ) r(Y ) is an isomorphism and so f is a

homotopy equivalence. f# is a homotopy equivalence iff

s+l s1s
(f#)*:HS+l(K(Ts+l (Y),s+l)) ÷H +(K(lrs+l(X), s+l)) is an

isomorphism. Now

r

K( 7s+ 1 (Y) ,s+)=K( Ts+( H rYk),s+l) x K((Z(p)) s+,s+l)=K x K'
k <s

and Hs+l(KxK ')=H s+l(K)@H s+ (K'). Ker y =HS+1(K') by the

construction of the Yk, i.e., all k-invariants are independent

and hit p-torsion generators. Using the naturality of 2.9 we

have:

s+1 s+l X %Hs+l T Ts+2s-•H (Xs l ) - (K(7r._ (X),s+l)) 1 ->Hs +2(xS)_

6.7

\ TrS

S1

- TT5l/T/_ s ·i \TTS+
2

1.s\

1 )-S+l

H S~l H ry s 1 (rY s+(K (Y)$H 1 (KI
k<s



s+l s+l
Now (i )*:H (rY s+)--- ker y = H (K') and by

ls+l S+l S+l

construction of fs+' s+)*:H (rYs+ s+

By commutativity, (f#)*:ker Ty * ker X TyH S+l(K) is injec-

tive and by our construction of the Yk it hits every possible

element in cohomology, i.e., all that reduce from torsion

elements in Z(p) cohomology. fs is a homotopy equivalence by

induction so by commutativity of 6.7 TX also hits all possible

elements and we have isomorphism on the ends of diagram 6.8

giving us the desired isomorphism by the five lemma.

-s+ l  s+l
0- Vs+1 H (K( 1 (X),s+))---- image -X 0

6.8 I(f# (fs),

S Hs+l (rYs+l )  +l(A'lHS+l(K) ' image T Y 0

Using similar techniques to those above we obtain the

next lemmas.

Lemma 6.9 Any map Yk - Yk which induces an isomorphism on

k (Y k
) = Z~() is a homotopy equivalence. #

Lemma 6.1.0 For k > 2(p n-+...+p+l), any map BP<n>k - BP<n>k

which induces an isomorphism on wlk is a homotopy equivalence.#

A map f:X - Y of simply connected CW complexes is said to

be a mod p homotopy equivalence if f* : H*(Y)-->H*(X) is

an isomorphism, the coefrec~en• s being Zp.

Mod p homotopy type is the equivalence relation given

by this, written X - Y. If vTF(X)oZ is locally finitely
bti wpte P (p)

generated over Z(p) then X 'n Y is equivalent to X(p) = Y(p.



X X This gives us the following corollary.
p (p)"

Corollary 6.11 Let X be a CW complex such that X(p) satisfies

the condition of 6.2, then

X 1 H Yki
p i ki

Note that Y. = BP<w> = BP and we get an unpublished

result of' Peterson.

Corollary 6.12 (Peterson) Given a spectrum X with no

S S
p-torsion in either H*(X, Z(p)) or i7r(X), with w*(X)OZ(p)

locally finitely generated and zero below some dimension,

then

X Lo \ S BP #P V,
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BIOGRAPHICAL NOTE

W. Stephen Wilson were born on November 11, 1946, which

used to be Armistice Day so they always let school out then.

Later it became Veteran's Day, which doesn't have quite the

same ring to it. More recently Veteran's Day has been relocated

to convenient mondays, so they don't always let school out

on the right day anymore.

Completely unaware of the future of our birthday anniversary,

(see if people remember V-E day after WW III) we were raised

in total ignorance of everything in far western Kansas.

(St. Francis)(the most north-westernest town in the state)

We graduated from high school in 1964 and came to M.I.T.

where we have been since then. In 1968 we finished the

requirements for an S.B. in mathematics and spent the next 15

months on an N.S.F. Graduate Fellowship, receiving our S.M. in

mathematics in September, 1969. Because our country needed us,

we served as a full-time teaching assistant during the next

year and a half-time teaching assistant the year after that.

This last year we have been an N.S.F. Graduate Fellow again.

Although we have built up considerable seniority in the

last eight years, our petition to become a tenured student was

rejected. Students beware, this could happen to you.

No biographical note for us would be complete without

mentioning Jessie and Marie, but there is so much to say.


