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ABSTRACT

Based on data provided by Digital Elevation Maps (DEM), this work studies the
basin landscape, its form and scales, the relationship to concepts of optimality in the
channel network organization, issues of network growth, scaling properties in the
geometry of the network and the spatial distribution of hydrologic variables in river basins.

The large amount of data in DEMs allows the study of the distribution of
contributing area (a surrogate variable for mass) and energy in the basin. It is found that
these distributions at the link level follow a power-law with common scaling slopes of 0.43
and 0.9 across different basins in the U.S. In order to study the physical processes leading
to such organization, a simple model of landscape simulation and channel network growth
is presented. The model is based on the observed scaling relationship between slopes and
areas in the basin S-A-0 and is called the Slope-Area model. It is shown that not only the
spatial but also the temporal properties of the simulated structure present fractal
distributions, which is common to self-organized critical systems.

Three principles of energy expenditure and their implications for the three-
dimensional structure of river basins are examined. A random search algorithm to find the
optimal channel network (OCN) that drains a given area is presented. OCNs are shown to
reproduce common geomorphological characteristics of actual river basins. In order to
predict the level of optimal energy for a basin at DEM resolution, a connection was made
with the Slope-Area model because of the size restrictions present in the random search
algorithm. It is shown how the basin in its evolution tends towards states of minimum
energy expenditure linking OCNs with evolution models.

The implications of minimum energy expenditure on the shape of competing
drainage sub-units that try to optimally allocate space among them in order to drain a given
area were studied. It is shown that OCNs elongate with size and reproduce the observed
behavior in actual basins known as Hack's law.

The planar geometry and planar oscillations of river courses are studied. The
geometric scaling of rivers is shown to be self-affine and the scaling behavior is common
across different basins. It is also shown that the parameter 0 used in the Slope-Area model
affects not only the vertical profile of rivers and energy distribution in the basin but it also
influences the structure of the network and the tortuosity of rivers. The self-affine scaling
of actual rivers is reproduced only when the appropriate value of 0 is used in the model



showing the connection between the vertical dimension of the basin, the organization of
energy and the planar form of rivers.

The spatial organization of energy, mass and slope in river basins is studied with
the multifractal formalism. This analysis goes one step beyond the study of the geometric
form of rivers and looks into important hydrologic variables. It is shown that the
distribution of these variables has a multifractal scaling with a common spectrum across
different basins.

The issue of hillslope and channel scales in the basin is also studied, given its
importance in hydrologic applications of DEMs. Based on the behavior of the mean slope
of points with common values of contributing area, four regions are identified in the basin.
These regions are in increasing order of area: (1) convex hillslopes where diffusive
sediment transport processes dominate, (2) concave hillslopes, (3) a region where hillslope
and channel nodes with the same contributing area coexist but which can be differentiated
using a threshold criteria previously proposed in the SIBERIA model of landscape
evolution, and (4) channels with a large contributing area.

Finally, the convergent/divergent nature of hillslopes compared to the aggregate
organization of the channel network is studied. The relationship with an observed break in
the power-law behavior of the distribution of areas at small scales is analyzed. A landscape
evolution model that takes into account the divergent geometry of hillslopes is presented.
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Title: William E. Leonhard Professor of Civil and
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"Uncertainty is fruitful...

so long as it is accompanied

by the wish to understand"

Antonio Machado

"Every valley has been made

by its river, and the proportion

between valleys is the same as

that between river and river"

Leonardo da Vinci

"When the river is flooded,

it's because it is raining,

and if you hear it making noise,

it's because it is carrying stones"

Traditional vallenato song.

Northern Part of Colombia.

"But then..." I ventured to remark,"

you are still far from the solution..."

"I am very close to one," William said,"

but I don't know which."

"Therefore you don't have a single answer

to your questions?"

"Adso, if I did I would teach theology in Paris."

"In Paris do they always have the true answer?"

"Never," William said," but they are very

sure of their errors."

"And you," I said with childish impertinence,

"never commit errors?"

"Often," he answered." But instead of conceiving

only one, I imagine many, so I become the slave of none."

Umberto Eco, The Name of the Rose.
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Chapter 1

Introduction

1.1. Scope

The geometrical structure of river networks and the

properties of catchment landscapes have fascinated

hydrologists and geomorphologists for many years. Two

challenging avenues of research in the study of river basins

are, first, the understanding of the non-linear physical

processes that drive the system towards the current state of

the basin and generate the intricate forms of the network,

and, second, the analysis of the relationship between form

and hydrologic response. Furthermore, as the National

Research Council mentions in its report on opportunities in

the hydrologic sciences:

The search for an invariance property across
scales as a basic hidden order in hydrologic
phenomena, to guide development of specific
models and new efforts in measurements is one
of the main themes of hydrologic science"
(National Research Council, 1991, p.197 ).

Scales, form and processes are the main themes of the present

work.

One key element of this work is the large amount of data

on the landscape of catchments now available through digital

elevation maps (DEM) which provide elevations in a grid,

usually 30m to a side. The ability to handle data at this

18



resolution allows us to move one step down in the level of

aggregation of the analysis. From Horton's studies based on

streams and Shreve's framework based on links, this work will

move to the analysis of the network and the basin landscape

at the scale of pixels. One of our objectives is to develop

new characterizations of river basins that could be used both

to understand and to infer the physical processes that lead

to the observed behavior and to check the results of

catchment evolution and channel network simulation models. We

will look at the spatial organization, distribution and

scaling of variables like contributing area (as a surrogate

for flow), slope and energy, which are not topological but

physically based and govern the geomorphic and hydrologic

processes in the basin.

we will also develop in this work various models of

landscape evolution and channel network growth with the

purpose of obtaining some understanding of the physical

processes and the non-linear interactions in the river basin,

viewed as a dynamical system. Although these models can be

perceived as very simplistic, the goal is to gain some

predictive understanding of the key variables and the

essential physics that could help in the development of more

comprehensive models which require higher levels of

complexity. The simplicity of the models to be presented will

also permit the simulation of basins in large domains

necessary in scaling studies.

19



1.2. Outline

We will try to present in this section a global

description of the main questions to be studied in this work

and the interrelationships between the various chapters in

this report.

Chapter 2 is a literature review and analysis of

previous work on the area of fluvial geomorphology. We have

concentrated in this chapter only on those pieces of research

that have been most influential on the questions posed and

the results presented in later chapters. The review of

previous work related to methods and tools developed in other

areas, like physics and biology, is presented in the

individual chapter where such tools are used.

Chapter 3 presents the characteristics of the data set

of river basins to be used in this work, the data structure

developed by Tarboton et al. (1989b) to analyze DEMs and a

review of the handling procedures and general properties of

DEMs.

Chapter 4 examines the distributions of mass and energy

in river basins. These distributions are found to have a

power-law behavior invariant over many spatial log-scales.

This is one of the properties of self-organized critical

systems. These are dynamical systems that evolve towards

states characterized by fractal distributions in space and

time. The question of whether the physical system behind the

20



evolution of the landscape has some of these fractal

properties motivated the development of a simple model to be

presented in chapter 5. Another result in chapter 4 is the

existence of a break in the power-law behavior of the

cumulative distribution of contributing areas at small

scales. This fact will be used later in chapters 11 and 12,

where processes at the hillslope scale are studied.

Chapter 5 presents a simple model of landscape

simulation and channel network growth called the Slope-Area

model. The model is based on the scaling relationship between

slopes and areas observed in river basins. The simplicity of

the model allows the analysis of large simulation domains and

the study of spatial and temporal properties over various

log-scales. It is found in chapter 5 that the simulated

landscapes exhibit the three scaling properties commonly

associated with self-organized critical systems.

Chapter 6 studies river networks from a different

perspective. In this chapter we present an optimization

method that allows the study of network structures, where

three principles of energy expenditure originally proposed by

Rodriguez-Iturbe et al. (1992b) hold true. These networks are

called Optimal Channel Networks (OCN). The optimization

method is analogous to the random search algorithm used in

the classical traveling salesman problem. The structure of

networks obtained by minimizing the energy expenditure

reproduce common geomorphological measures, like Horton's

21



laws and the power-law distribution of areas studied in

chapter 4. One of the implications of this chapter is that

these measures are not the result of a random process but

there is instead an important optimization component in

network structures.

The optimization approach to the study of river networks

only examines what should be the final equilibrium state of

the network and not the processes that drive the system

towards that state. In order to understand the relationship

between evolution and energy minimization, chapter 7 takes

the Slope-Area model and the OCN model described in chapters

5 and 6 and analyzes their relationship in terms of energy

expenditure. It is shown that the values of total energy in

networks simulated with these two models are very similar. An

argument explaining how the landscape in its evolution

prefers states of minimum energy expenditure is presented.

This observation provides a way to examine the hypothesis

that actual river systems optimize energy expenditure. Given

that the random search procedure used in chapter 6 to

construct OCNs is computer intensive, the largest domains

that can be studied are of the order of 104 pixels. This size

is about two orders of magnitude smaller than basins at the

available resolution of DEMs. The Slope-Area model is used

then as an intermediate step to check the optimal value of

energy in large domains. Networks are simulated inside the

domain of actual basins, using the Slope-Area model. The

total energy expenditure of the simulated and the actual
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networks are shown to be very similar, indicating that river

basins appear to organize in states of minimum energy

expenditure.

The OCN formalism is used in chapter 6 to analyze the

internal structure of the optimal network given the domain it

has to drain. Chapter 8 will examine instead the consequences

of the optimality criteria when the dimensions and

proportions of independent drainage sub-units are adjusted to

drain optimally a larger area. The connection between optimal

organization and Hack's law, a scaling relationship that

quantifies the observation that river basins change their

shape and become longer and narrower with size, is examined

in this chapter. It is shown that the hypothesis that

attributes the scaling behavior of Hack's law to the fractal

nature of rivers is not entirely correct because of the

elongation and change of shape of basins with size. It is

proposed in chapter 8 that this elongation may be the result

of optimal configurations of competing sub-basins.

Chapter 9 looks in more detail at the fractality of

rivers in an effort to better describe quantitatively their

tortuosity. This chapter shows that the geometrical structure

of rivers has self-affine properties. The Slope-Area model is

used to study the connection between the self-affinity of

rivers and the scaling parameter between slopes and areas

used in the driving mechanism of the model.
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As hydrologists are interested not only in the

geometrical form of rivers and their scaling properties but

also in the spatial distribution of important hydrologic

variables, chapter 10 uses tools from the multifractal

formalism to study such distributions. This analysis goes one

step beyond what is done in chapter 4, where no consideration

is given to the spatial organization of the variables studied

and only the lumped distribution is observed. In chapter 10

the similarities in the multifractal spectrum of the spatial

distribution of contributing area, slope and energy across

different basins in the U.S. are shown.

Most of the data analysis up to this point in the

present work look at the entire landscape. However, for

hydrologic applications it is very important to understand

the difference between channels and hillslopes and their

spatial organization. In practical applications of DEMs it is

necessary to identify channel pixels because of the different

way in which they respond hydrologically. Chapter 11 examines

a threshold criteria proposed by Willgoose et al. (1991a) to

differentiate between channels and hillslopes. The behavior

of mean slope versus contributing area is used to infer the

dominance of different processes at various scales. A

modified version of the SIBERIA model developed by willgoose

et al. (1991a) is presented and the simulated landscapes are

shown to reproduce the observed slope-area scaling behavior.
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In chapter 12 the break in the power-law behavior of the

cumulative distribution of areas observed in chapter 4 and

one of the threshold criteria described in chapter 11 are

used to guide a modification of the landscape evolution model

presented in chapter 11. The objective is to show that the

break in the distribution of areas is caused by a change in

the spatial organization of drainage flow in the basin at the

hillslope scale and at the channel scale. While channels are

aggregating structures that collect water, hillslopes can be

either divergent or convergent.

Finally, chapter 13 presents some concluding remarks and

proposes some questions not addressed in the present work as

possible avenues of future research.
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Chapter 2

Literature Review

2.1. The Early Years

The extensive literature on the area of fluvial

geomorphology eludes a complete and exhaustive review. Rather

than trying to present everything that has been written, we

will try to focus on those pieces of research that have been

most influential in the development of the ideas to be

presented in later chapters.

This work will concentrate on the analysis of the river

basin as the geomorphic unit of interest, with its channel

network and the surrounding hillslopes:

"Every river appears to consist of a main
trunk, fed from a variety of branches, each
running in a valley proportioned to its size,
and all of them together forming a system of
valleys, communicating with one another..."
Illustrations of the Huttonian Theory of the
Earth by John Playfair. (Tinkler, 1985, p.59).

This work will not only concentrate on new

characterizations of the river basin but it will also try to

present evolution models to infer the processes behind our

observations. We should probably go back to the work of W.M.

Davis (1850-1934) and his scheme of landscape evolution

called the "geographical cycle," which became the predominant

paradigm in the geomorphology of the first half of the

twentieth century.
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Davis' ideal cycle of erosion begins with a rapid uplift

of mass which is wasted by erosion as the basin passes

through stages of youth, maturity and old age. The river

basin goes from a stage with an imperfect channel network and

many lakes, to a final stage called the peneplain where all

the mass has been consumed. The key idea of the cycle is that

by looking at the current properties of the landscape, it

would be possible to infer its age (at least qualitatively)

and its future evolution. The concept was analogous to

Darwin's biological evolution which was very much in vogue at

that time (Ritter, 1988).

Contemporary to Davis but working outside the paradigm

of the geographical cycle we find G.K. Gilbert (1843-1918).

His emphasis in studying landscapes was directed more towards

how processes create the observed features rather than the

placement of landforms in a certain historical sequence.

Gilbert considered the observed features as the result of an

equilibrium between erosive and resistive forces. Decades

later his approach was praised by those who started the

quantitative analysis of landscapes (Sack, 1992).

2.2. The Quantification of Geomorphology

One of the most influential papers in the quantification

of geomorphology was the paper "Erosional development of

streams and their drainage basins; hydrophysical approach to

quantitative morphology" by R.E. Horton, published in 1945.

In this paper Horton, a hydrologist, brought an entirely new
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set of tools, from hydraulics to statistics, to the study of

quantitative geomorphology (Morisawa, 1985). The emphasis in

this paper was on the study of infiltration, runoff and slope

properties as key parameters of channel initiation. Also,

Horton presented a complete statistical analysis of the

network structure (Ritter, 1988).

The paper by Horton inspired A.N. Strahler and his group

of students at Columbia University, as well as L.G. Leopold

and coworkers at the U.S. Geologic Survey, to develop a

quantitative study of geomorphic forms. Strahler announced

his programme in a controversial paper (Strahler, 1950) where

the ideas of Gilbert and Horton were exalted against the

denudation cycle of Davis (Kennedy, 1992). The group of

students at Columbia included names like Chorley, Schumm,

Melton, Morisawa and Woldenberg whose work will be reviewed

later in this chapter. An interesting review of these years

is presented in Strahler (1992).

Horton (1945) introduced a way to classify and order the

various streams of channel networks. Strahler (1952) later

revised the scheme in a footnote making it purely

topological. The network is seen as a rooted tree. Nodes are

defined as points where two river segments merge or a river

is initiated. In the latter case the node is called a source

node. Streams and their corresponding order are defined as

follows:
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1) Segments initiated at a source are assigned order

one.
2) When two streams of order o join, a stream of

order w+1 is created.

3) When two streams of different order join, the

stream with higher order continues down the tree.

This way of classifying streams allows the statistical

analysis of mean properties of the families of segments with

the same order. Horton (1945) found that mean properties of

streams (for example number, length, areas and slopes),

grouped by order, behaved approximately in a geometric

fashion:

Rb RL ; = RA ; Rs
NO L I1 A.I S I (2.1)

where Nw, Lw, Aw and Sw are the number, mean length, mean area

and mean slope of the streams of order 0. Rb, RL, RA and Rs

are called Horton's bifurcation, length, area and slope ratio

and their values in actual basins are usually around 4, 2, 4

and 2 respectively. The law of areas was more precisely

formulated by Schumm (1956). Although Horton's laws have been

criticized, especially because of the large amount of

averaging implied by the ordering scheme, they remain one of

the key descriptors of network topology.

Another important property of the catchment defined by

Horton (1945) is the drainage density:

D = LT
An (2.2)
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where LT is the total length of channels within a basin of

order Q and total area An. The drainage density is one of the

fundamental scales of drainage basins because it determines

the limit of the extension of the drainage network.

Horton (1945) also proposed a law for the angle 0 at

which a tributary enters a main stream (see Figure 2.1):

cos 0 = SM / ST (2.3)

where SM and ST are the slopes of the main channel and the

tributary. Howard (1971a) posed a different criteria which

appears to work better for streams of similar size that join

at an angle 0. If 01 and 82 are the angles between the

incoming and the outgoing streams (i.e. 0=01+02, see Figure

2.1) then Howard proposed:

cos 01 = S3/S1  cos 02 = S3/S2 (2.4)

where S1 and S2 are the slopes of the incoming streams and S3

the slope of the outgoing stream. Relationship (2.4) was

related to minimum power loss at the stream intersection

(Howard, 1971b).

In 1948 J.H. Mackin introduced the idea of a graded

river where the slopes and other channel characteristics are

adjusted to give the river precisely the velocity necessary

to carry the sediment out of the basin, i.e. it is a system

in equilibrium (Mackin, 1948). Although qualitative

(Morisawa, 1988), Mackin's paper presented a number of ideas
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Figure 2.1: Angles in (a) Horton's and (b)
Howard's junction models (adapted from
Abrahams, 1984).

later analyzed with much greater rigor by Leopold and Maddock

(1953) and Leopold and Miller (1956). In these papers, the

hydraulic geometry of channels was thoroughly investigated

and many experimental relationships were measured in the

field, for example:

w - Qb d - Qf v - Qm  S - Q-8 (2.5)

where w, d, v, S and Q are channel width, depth, velocity,

slope and discharge respectively and the measurements are

taken at discharges of the same frequency at different points

in the network. The mean values of the exponents b,f,m and e

were found to be around 0.5, 0.5, 0.1 (i.e. velocity is

approximately constant in the network) and 0.5 respectively.

Tarboton et al. (1989a) found a value of e of 0.5 in the

analysis of drainage networks obtained from digital elevation

maps using contributing area as a surrogate for flow. Flint
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(1974) related the slope-flow scaling relationship to

Horton's slope and area laws.

In 1947 Langbein et al. introduced the non-dimensional

hypsometric curve. This curve shows the proportion of area

above a certain percent elevation, where the percent

elevation is equal to the elevation above the outlet divided

by total relief. This curve is a combination of both the

slope-area relationship (S~A- 8) and the network structure

which aggregates contributing area. The hypsometric curve has

been used as a tool to examine age of river basins as shown

in Figure 2.2 (Schumm, 1956). However, the hypsometric curve

may also reflect the degree of tectonic activity in the basin

(Scheidegger, 1977, Willgoose et al., 1989).

4)
Area. %

Figure 2.2: Hypsometric curves from sub-
basins in the Perth Amboy Badlands, New
Jersey. Numbers increase from youthful to
mature basins (from Schumm, 1956).
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In 1957 Hack studied the relationship between the length

L of the main channel and the area A of the basin and found a

scaling behavior of the form L-Aa with a=0.6. Grey (1961)

confirmed the result with a=0.568. Hack explained the value

of a greater than 0.5 as a result of the elongation of basins

with larger area.

2.3. The Topological Random Model

In 1966 Shreve introduced the concept of link as the

section of channel between two forks (points of confluence of

two channels) or between a source (point furthest upstream of

a channel network) and a fork. The former segments were

called interior links and the latter exterior links. The

magnitude of the network was defined as the number of

exterior links. Shreve (1966) used the concept of link as the

basic unit of the channel network instead of using the stream

and introduced the random topology model. The main idea was

to consider all topologically distinct channel networks

(TDCN) with the same number of links to be equally likely and

to use combinatorial graph theory to study average properties

of such a family of networks. Notice that link-based analysis

of channel networks is much more disaggregate than stream-

based analysis.

The most probable set of stream numbers in a TDCN family

(in which its members have the same number of links) follows

approximately Horton's law of stream numbers. Shreve (1967,
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1969) and Smart and Werner (1976) added a second postulate

which assumed that interior and exterior links had separate

distributions of length and area which are independent of

location. These distributions have usually been assumed to be

exponential or gamma. With the second postulate, Horton's

length and area laws can be obtained as the most probable

behavior in a TDCN family. Other properties that do not

depend on orientation are well described by the random

topology model as either the most probable or the average

behavior of a TDCN family.

Numerous tests have been devised to check the postulates

of the random topology model. The tests that this model has

not been able to pass when compared to actual networks are

usually related to orientation. A classical example is the

distribution of cis and trans links, defined by James and

Krumbein (1969) analogously to the definition in organic

chemistry. The idea is to look at which side the tributaries

that bound a certain link in the channel under study are

coming from. If both tributaries come from the same side, the

link is called cis. If the tributaries come from opposite

sides the link is defined as trans. A bias was found in the

distribution against short cis links but not against short

trans links. Also there were many more trans links than cis

links. Other more complicated link classifications proposed

by Mock (1971) also showed divergence from the random

topology model. Most of the differences appear to be related
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to space-filling constraints and network development

dynamics. An excellent review is presented in Abrahams(1984).

2.4. The Hydrologic Response of the Basin and

Geomorphology

Hydrologists have recently been using a different

approach in an effort to establish a link between the

geomorphological characteristics of a basin and its

hydrologic response. This approach consists of using a linear

transport assumption and the random topology model to find

the mean ensemble response.

The first attempt in this direction was the

geomorphologic instantaneous unit hydrograph (GIUH)

introduced by Rodriguez-Iturbe and valdes (1979) and restated

by Gupta et al. (1980). The GIUH was seen as the

probabilistic distribution that a raindrop that fell in the

basin would reach the outlet at a certain time. The network

was divided into states corresponding to streams of different

orders. The movement of drops between streams was defined in

terms of transition probabilities between states. The drop

would fall in a state with certain probability (measured

according to area) and follow a Markov chain through higher

states until reaching the outlet. Using Horton's laws,

expressions can be found for the GIUH and simplified

regressions for peak discharge and time to peak have been

performed (Rodriguez-Iturbe and valdes, 1979).
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Gupta and Waymire (1983) argue that the Strahler

ordering is a coarse characterization and propose to use

links instead of streams for the geomorphologic study of the

basin response. The basic tool is the width function (Surkan

(1968), Calver et al. (1972), Kirkby (1976)). This function

measures the number of links N(x) at a topological distance x

from the outlet. If the velocity in the network is constant,

the width function, when rescaled appropriately, is precisely

the instantaneous unit hydrograph. The idea is to find the

average width function for a family of random networks that

share certain property. In order to do that, it is useful to

see the second postulate of the topological random model from

a different point of view. Gupta and waymire (1983) showed

the second postulate to be equivalent to having sources and

forks occurring independently of one another and with an

equal probability of one-half. Therefore, the topologically

different networks can be seen as the graph of a birth and

death Markov process, growing from the outlet upward with

exponential lifetimes for the individuals of the population

(links in this case). Mesa (1986) and Troutman and Karlinger

(1984, 1985, 1986) studied the ensemble average of the width

function given magnitude and diameter for a birth and death

process.

Mesa (1986) also analyzed the vertical dimension of the

network which is important when considering energy in the

basin. He defined the link concentration function (Icf) in an

analogous way to the width function. The Icf N(h) counts the
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number of links crossing the elevation contour h. Mesa (1986)

showed that a homogeneous birth and death process was not a

good representation of N(h), due to the concavity of rivers.

Gupta and Waymire (1989) suggested a self-similar model for

link drops that was based on the slope-area relationship

S-A- 8 . This model implied that the moments of the slope

distribution would scale as -k@ where k is the order of the

moment. Tarboton et al. (1989a) argued for a different type

of scaling based on DEM analysis.

2.5. Modeling of Networks, Hillslopes and Landscapes

Another active area of research in geomorphology has

been the modeling of networks, hillslopes and landscapes.

Random models tied to space (i.e. not topological) have been

formulated by various authors. Most of them belong to the

random walk class. The first model was developed by Leopold

and Langbein (1962) where source points are selected at

random and the walker wanders randomly until it reaches

another stream or the boundary. Scheidegger (1967) restricted

the walker's possible directions to only two in order to

study tributaries to a main stream. A different approach was

formulated by Howard (1971a) where the network develops by

headward growth and branching. The model was improved by

including stream capture and the law of angles between

tributaries shown in Equation (2.4) (Howard, 1990).

The evolution and recession of slopes have also been

modeled by numerous authors (see Scheidegger (1970) for a
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review). Ahnert (1976) developed a slope model that included

many transport processes (splash, wash, soil creep, etc.) as

well as modes of weathering (mechanical, chemical or

combined). His main interest was to model not only the form

of the slope but also the waste cover. Kirkby (1971) proposed

a sediment continuity equation of the form az/at=aQs/ax where

Qs is a sediment transport law, z elevation and x the

location along the hillslope. The form suggested for the

sediment transport was Qs-QmSn where Q is discharge, S slope

and m and n are coefficients dependent on the governing

process (e.g. 0.0 and 1.0 for soil creep, 1.3.-1.7 and 1.3-

2.0 for soil wash, 2.0-3.0 and 3.0 for channels,

respectively) . If tectonic uplift T is included, then

equilibrium forms can be found using:

= 0 = T - pQmSn (2.6)
at

where Q=Rx, S=az/ax and R is excess rainfall. The solution to

the equation is:

z = z(0) -[T]n [ n X- (n-m+l)/n (2.7)
[$Rm]  n-m+l1

and therefore:

S =T - 1/n X( 1 - m)/n (2.8)
x - m

Figure 2.3 from Kirkby (1971) shows the equilibrium

profiles for different values of m and n. If one notices that

x corresponds to the contributing area, then Equation (2.8)
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Figure 2.3: One-dimensional equilibrium
profiles for sediment transport of the form
IQmSn (from Carson and Kirkby, 1972).

is the slope-area relationship observed in rivers with

0=(1-m)/n. Also, if m>l, the equilibrium profile is concave

and if m<l it is convex.

The natural extension of hillslope models is the

analysis of the entire three-dimensional catchment. Smith and

Bretherton (1972) studied the stability of landscapes using

an equation of sediment transport of the form:

= -V.n Qs (2.9)at

where

Vz (2.10)

Ivzl

and Qs, the function that represents sediment transport,

depends on slope S=IVzl and discharge Q, which can also be
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parameterized as r*A where r is a measure of mean excess

rainfall and A is contributing area defined as:

V.1 A = 1 (2.11)

Using a linear stability analysis, it can be shown

(Smith and Bretherton (1972), Tarboton et al. (1989b, 1992),

Loewenherz (1991)) that the landscape is unstable when:

Qs - a - <0 (2.12)

If Qs is assumed to have the form pQmSn,then condition in

Equation (2.12) is equivalent to have m>l, which as we saw in

Equation (2.7) is equivalent to a concave profile. A

different model is presented in Luke (1974).

The criteria implied by Equation (2.12) (a change in

profile from convex to concave with increasing area) was used

by Tarboton et al. (1989a) to determine the location of

channel heads. In a log-log diagram of link slopes versus

areas, the change from stable slopes to unstable rills and

channels would manifest itself in a break of the slope-area

relationship. Dunne and Aubry (1986) and Loewenherz (1991)

argue for a stabilizing effect of sheetwash flow that would

move the head of channels downhill from the observed slope-

area break. The latter author presents a more detailed and

rigorous stability analysis of the original Smith and

Bretherton (1971) formulation.
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Models of landscape evolution have been developed by

Cordova, Rodriguez-Iturbe and Vaca (1982) and Roth et al.

(1989) using fluvial transport equations. Willgoose, Bras and

Rodriguez-Iturbe (1990 a,b,c,d) present a model where

hillslopes and channels are explicitly differentiated through

a channel initiation function. The evolution of the model is

driven by:

S T + S f (Yi) + Dz (2.13)
at j ax;

where Y is an indicator function that moves from a value of

zero (at hillslopes) to a value of one (at channels) whenever

the channel initiation function (a measure of processes that

tend to promote channelization parameterized as 02Qm2Sn 2)

exceeds a certain threshold. The function f(Y) is used to

represent the different sediment transport coefficients for

hillslopes and channels (f(Y)=1 for channels and f(Y)=Otp for

hillslopes with Ot<l). The third term represents diffusive

processes like rainsplash, rock slides, etc. Other details of

this model will be reviewed in later chapters of this report.

This model by Willgoose et al. (1990a) is able to simulate

natural looking channel and reproduce the values observed in

nature of the most common geomorphological statistics. The

effect of a subsurface saturation mechanism instead of the

original Hortonian runoff production was investigated in

Ijjasz-Vasquez et al. (1992).
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In the experimental side of basin evolution research it

is important to mention the work that began in 1969 at

Colorado State University where a series of studies of

drainage basin evolution in their rainfall-erosion facility

was initiated. This facility of 9m wide, 15 m long and 1.8m

deep was used to analyze the evolution of drainage systems,

to study the influence of slope and relief on the developing

network and to understand the effect of baselevel lowering

among other effects. A complete review of the results can be

found in Parker (1977) and Schumm et al. (1987).

2.6. Scaling in Networks

Recently, new characterizations of the channel network

and the landscape based on ideas of scaling and fractals

(Mandelbrot, 1977, 1983) have been developed. Mark and

Aronson (1984) and Culling and Datko (1987) looked at the

fractal dimension of the landscape and found different values

at large and small scales.

Tarboton et al. (1988) and La Barbera and Rosso (1989)

examined the fractal dimension D of the network in terms of

Horton's numbers and the fractality of individual channels

expressed as:

D = D1 log Rb (2.14)
log R1

where the value of D1 (the fractal dimension of individual

river courses), calculated with the box counting algorithm,
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was found to be around 1.1. This value was used to explain

Hack's law of elongation. We will examine this issue in more

detail in Chapter 8.

Finally, as mentioned in Section 2.3, scaling in the

third dimension of river basins has been investigated by both

Gupta and Waymire (1989) where a self-similar model of slope

scaling versus area was proposed and by Tarboton et al.

(1989) where a multi-scaling model was proposed. The

difference resides in the way different moments of the

distribution of slopes scale with contributing area.

The present work will develop many of the issues

introduced in this chapter and try to develop new

characterizations of the river basin using the data now

available with digital elevation maps. The goal is to move

into more disaggregate measures away from streams and links

and looking at the entire landscape at a small resolution.
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Chapter 3

Digital Elevation Maps

The analysis of basin landscapes and channel networks in

this work will use elevation data from Digital Elevation Maps

(DEM). In this chapter we will present a small review of

current methodologies for analyzing DEM data, the data

structure and programs developed by Tarboton et al. (1989b)

used in this work, and the basic characteristics of the river

basins analyzed in later chapters.

Digital Elevation Maps provide elevation data over a

rectangular grid usually 30 m to a side. Each rectangular

component of the grid is termed a pixel. Numerous methods

have been proposed to recognize the location of valleys,

their extension and the location of drainage lines.

One of the first methods was proposed by Peucker and

Douglas (1975). They identified valley pixels using the

elevation of neighboring pixels to check for 'v-' shaped

profiles. An efficient way to identify these pixels is by

passing a 2x2 window and flag the highest pixel of the four.

The unflagged cells are defined as the valley lines.

Unfortunately, the method does not assure a continuous

network nor single-pixel channels. Band (1986) presents some

rules for connecting the network. Tribe (1991, 1992) proposes
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a related method using wider windows and a threshold slope

for accepting 'v-' shape profiles.

Another method, and probably the most commonly used, was

proposed by Mark (1984) and O'Callaghan and Mark (1984). The

method consists in assigning to each pixel a drainage

direction based on the steepest direction. Using these

directions, a cumulative area is assigned to each pixel by

counting the number of pixels that would flow through it

following the drainage lines. The calculation of areas is

done recursively in the algorithm of Tarboton et al. (1989b)

rather than iteratively as originally proposed. Finally, the

drainage network is defined as the set of pixels with

contributing area above a certain threshold value. This

criteria assures a connected network. This method has been

used by numerous researchers (Band (1986, 1989), Jenson and

Domingue (1988), Morris and Heerdegen (1988) and Tribe

(1991)). Tarboton et al. (1989a) present a criteria for

finding the threshold value based on a break on the scaling

behavior between slopes and contributing areas in the basin.

There are two other problems with the method of

O'Callaghan and Mark (1984). First, digital elevation maps

have many pixels (and sets of adjacent pixels) surrounded by

neighbor pixels with higher elevations. These lower pixels

are termed pits. The drainage network cannot flow out of them

and spurious "lakes" are formed. The most common method to

remove pits is by finding the pit's outflow point and then
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increase the height of the pit to overflow it (Tarboton et

al, 1989b). The second problem is to determine the flow

direction of pixels in flat areas. The resolution of the DEM

is in meters making it impossible to find the proper drainage

direction in areas with small slopes like floodplains.

Different researchers use different rules usually not clearly

explained. Tarboton et al. (1989b) use a rule to handle

floodplains where directions are assigned iteratively towards

neighbors whose direction has already been defined. In this

way the pixels in the flat areas point toward the outflow

pixel of the region without creating loops. However, this

method creates parallel flow lines in a few cases around the

main channels in some of the basins as are shown later in

Figure 3.1. This is unrealistic and prevents the use of the

DEMs analyzed in this work for the study of features like

meandering. we believe these two problems are minimal in the

regions studied in this work because the basins chosen have

enough relief to be detected in the DEM without much

uncertainty. The appropriateness of this method in

mountainous regions has been discussed by Tribe (1992).

The grid structure of DEMs is not the only form in which

elevation maps are provided. Two other possibilities include

triangular irregular networks (TIN) (Palacios-Velez and

Cuevas-Renaud, 1986) or contour based DEMs (Moore et al.,

1988). Some authors claim that the presence of pits is the

result of an incorrect data structure like grid DEMs (Tribe,
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1992). However, most of the data available comes in the

rectangular matrix structure.

The elevation data used in this work was provided by the

U.S. Geological Survey at either of two resolutions: 7.5.

minute quadrangle in a 30 m grid or 1 degree quadrangle on a

3 sec arc grid. The accuracy of the first set is quoted to be

7 m of root mean square error. This is the difference between

the true elevation and the linearly interpolated elevation

from the DEM for benchmark points. The second set has a

quoted absolute vertical accuracy of ±30 m relative to mean

sea level. However, since the analysis of this work is

entirely based on relative elevation within the basin, we are

interested in the relative accuracy and not the absolute. The

U.S.G.S. claims that the relative vertical accuracy conforms

to the actual hypsographic effects. Tarboton et al. (1989b,

1992) and Lee et al. (1992) study the effect of accuracy on

certain aspects of the analysis of basin landscapes with

DEMs.

The basins used in this work have been processed from

the raw DEM data into a usable data set by Tarboton et al.

(1989b). Table 3.1. shows the properties of the ten river

basins located across the US which will be used in the

present work. Figure 3.1. shows the boundaries and channel

networks of these basins.
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Figure 3.1: Boundaries and channel networks
(defined using a threshold value of
contributing area) for the DEMS used in this
work (continues) .

48



Big Creek At=200

800

700

600

500

400D

3o01

200 3i) 400 5(X) 6(X) 700

Schoharie Creek Headwaters At=100

50 100 150 150 250 300 350 4(l) 450 500

East Delaware River At=200

Figure 3.1: (contd.)

49

300

200

oonn

?iLu

I



North Fork Cour d'Alene River At=100
450

400

350i
300)
250)

200-

150

100ý

50i
-0

-50
0 50 100 150 200 250 3(X) 350 4M 450

Buck Creek At=500
1i(1

1200

1000

6001

400)

200

0 200 400 6X)0 Mt) I(0)

Racoon Creek At=500

-200 0 200 4(X) M) X(X) I(XK)

Figure 3.1: (contd.)

50

14£1M

i



Schoharie Creek At=400
1200,

1000I

800

600

400 600 9m00 1(X0 1200 1400

St Joe River At=350

1200

1000

200 400 XM 800)

Figure 3.1:

1000 12(X0 1400 1600

(contd.)

51

400

200

0-

-200

0

St. Joe River At-3$0

--

E

E

~.-"h ~rc_



Basin

Beaver Creek

Brushy Creek

Buck Creek

Big Creek

East Delaware River

Schoharie Creek Headwaters

North Fork Cour d'Alene River

Racoon Creek

Schoharie Creek

St. Joe River

Map Quadrangles L
Map Quadrangles L

Used

Canton E

Upshaw. Houston,
Graytson, Massey,
Moulton, Addison

Gasquet SW and SE
Ship Mtn NW, NE
SW and SE, Dillon
Mtn. NW and SW,
Preston Peak SW

Calder NW, NE, SW
and SE

Binghampton

Hunter, Kaaterskill

Spokane

Hookstown, Midway
Burgettstown, Clinton
Alquippa, Avella

Binghampton

Spokane E
Hamilton W,Wallace W

ocation

?A,OH

AL

CA

NY

NY

ID

PA

NY

MO,ID

Area Pixel Size
(km-) (mxm)

1223 70.5x92.67

322 30x30

606 30x30

147 30x30

933

98

440

448

2408

2834

68.3x92.67

30x30

62.6x92.67

30x30

68.3x92.67

62.2x92.67

Table 3.1: Characteristics of river basins analyzed in this work.
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Chapter 4

Power-law Distributions of Contributing Area

and Energy in River Basins

4.1. Power-law Distributions in Spatially Extended

Systems

It has been shown recently (Bak et al, 1987, 1988) that

many spatially extended dynamical systems evolve naturally

towards a critical state with no characteristic time or

length scale. These systems have been called self-organized

critical systems. The system at the critical state presents a

scale-invariant (fractal) structure which manifests itself

into power-law distributions.

One of the first models that motivated the study of

power-law distributions in spatially extended systems and the

relationship to the dynamics of the system is a very simple

sandbox model developed by Bak et al. (1987, 1988). In this

model avalanches of sand are modeled using a threshold rule.

Whenever the slope at a point exceeds a threshold value,

grains of sand are distributed to neighbor pixels. This

movement could make the slopes of neighbor pixels exceed the

slope threshold and could cause an avalanche. Many of the

avalanches are small but a few are as big as the entire

domain. The distribution of these sizes follows a power-law

indicating that there is no characteristic scale in the
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avalanche process between the grid size and the entire

domain.

Another system that shows power-law distributions, at

least in space, is Scheidegger's (1967) stochastic model of

river networks, as shown in Takayasu et al. (1988). In

Scheidegger's model, every point in a triangular grid is

connected with its left or right neighbor downstream with

equal probability of one-half. In this way a network is

constructed (see Figure 4.1). Takayasu et al. (1988) examined

the distribution of sizes of sub-basins draining to the lower

boundary (like the one highlighted in Figure 4.1) and found a

power-law behavior of the form:

P[A>a] - a-P (4.1)

with 0=1/3. Dhar and Ramaswany (1989) proved that the value

of p was precisely 1/3 and this model, along with some

Figure 4.1: Dendritic structure formed by
Scheidegger's (1967) stochastic river model
(from Takayasu et al, 1988).
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Abelian group models, is one of the very few self-organized

critical systems where a theoretical proof of the power-law

nature of the distribution exists and the value of the

scaling exponent can be derived.

4.2. Power-law Distribution of Contributing Areas in

River Basins

The behavior of Scheidegger's model motivated us to

examine what is the distribution of sub-basin sizes in actual

basins. Using DEM data, river networks were identified for

different catchments. The cumulative distribution of

contributing areas to each link of the networks (which is a

measure of the size of the sub-basin draining through that

link) is presented in Figure 4.2 (Rodriguez-Iturbe et al,

1992a) for the basins in our data set. The distribution

follows a power-law of the form (4.1) but with a value of 5

around 0.43 for the basins in our data set. Table 4.1 shows

the values of P for various basins. The break in the power-

law at large areas appears to be a finite size effect and it

is also observed in models like Bak's sandbox. The power-law

character of the distribution of contributing area and its

scaling exponent serves then as a test of networks generated

by simulation models when they are compared to actual

networks. For example, although Scheidegger's model presents

a power-law distribution of areas, the scaling exponent P is

much smaller than the value found for natural basins.
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Figure 4.2: Cumulative distribution of link
contributing areas for different basins across
the U.S. (after Rodriguez-Iturbe 1992a) Top
figure (left to right): Schoharie Creek
Headwaters (NY), Racoon Creek (PA), North Fork
Cour d'Alene River (ID), St. Joe River
(MO,ID), Schoharie Creek (NY). Bottom Figure
(left to right): Brushy Creek (AL), Big Creek
(ID), Buck Creek (CA), East Delaware River
(NY), Beaver Creek (PA,OH).
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Basin

Beaver Creek
Brushy Creek
Buck Creek
Big Creek
East Delaware River
Schoharie Creek Headwaters
North Fork Cour d'Alene Riv
Racoon Creek
Schoharie Creek
St. Joe River

Scaling slope link-based Scaling slope link-based
distribution of areas distribution of energy.

0.44 0.72
0.42 0.87
0.36 0.74
0.40 0.90
0.41 0.95
0.45 0.98

er 0.45 0.97
0.46 0.99
0.41 0.83
0.44 0.98

Table 4.1: Scaling slopes of power-law
behavior of cumulative distributions of link-
based area and energy for different basins.

We have examined whether the threshold value used to

determine the network could influence the distribution of

areas. Figure 4.3 (Rodriguez-Iturbe et al, 1992a) shows the

cumulative distributions for networks identified in the St.

Joe River basin using different threshold areas to find the

network. As the threshold area is decreased, the distribution

moves to the left because the minimum value of area

considered is smaller. Also, the range over which the

distribution follows a power-law increases. The scaling

exponent 3 remains approximately constant.

4.3. Power-law Distribution of Energy in River Basins

Besides contributing area, another variable of interest

in river basins and which will be analyzed in great detail in

Chapter 6 is energy expenditure E=Q*S (or equivalently A*S)
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Figure 4.3: Cumulative distribution of link
areas for St. Joe river basin using different
threshold values of contributing area to
identify the network, (after Rodriguez-Iturbe
1992a).

where Q is discharge, S slope and A contributing area. One

of the areas where the concept of self-organized criticality

is being studied in detail is earthquakes. The classical

Gutenberg-Richter law shows that the cumulative distribution

of earthquake magnitudes (a measure of energy release)

follows a power-law indicating the possibility of a self-

organized critical state at play (Bak and Tang, 1989).

Using DEM data we examined the cumulative distribution

of energies at the link level using contributing area as a

surrogate for discharge Q. Figure 4.4 (Rodriguez-Iturbe et

al, 1992a) shows the distribution of energy for five

different basins. Again a power-law is observed with scaling

exponent around 0.9. Table 4.1 shows the value of the scaling

exponent for different basins. The flattening of the

58



U
ULw

A

'u

Energy

o

oa

10' 10 z 10 104 I I O 10 0" I

Energy

Figure 4.4: Cumulative distribution of link
energy expenditure for different basins across
the U.S. (after Rodriguez-Iturbe 1992a) Top
figure (left to right): Racoon Creek (PA),
Schoharie Creek Headwaters (NY), North Fork
Cour d'Alene River (ID), Schoharie Creek (NY),
St. Joe River (MO,ID). Bottom Figure (left to
right): Brushy Creek (AL), Beaver Creek
(PA, OH), East Delaware River (NY), Big Creek
(ID), Buck Creek (CA).
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distribution for small energy values is similar to that

observed in earthquakes (Bak and Chen, 1991) and it is

probably due to problems of resolution for small slopes given

the integer values of elevation in DEMs.

The existence of a power-law distribution of link energy

expenditure is not surprising if one realizes that slope and

areas in rivers are related through a scaling relationship of

the form S-A-0 with 0=0.5 (Tarboton et al., 1989). Then, using

(4.1):

P[E>x] = P[AS>x] - P[A1-e>x] ~ I a-1-Pda - x-P/(1-9 ) (4.2)

With 5=0.43 and 0=0.5, the predicted scaling exponent for

energy is approximately 0.86 not far from the measured value.

4.4. Distribution of Contributing Area at the Pixel

Scale.

Clearly in Figure 4.3, there is a value of the threshold

area below which the analysis would include hillslopes in the

distribution. Therefore, instead of defining and using links

as the basic unit for the distribution we will also

investigate the behavior of the distribution of areas moving

down to the pixel level. This implies that the contributing

areas for all the pixels in the basin are included in the

distribution.
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Figure 4.5 shows the entire distribution for the St. Joe

River basin. The behavior shown in this figure is

characteristic of all the basins examined. There appears to

be a certain value of contributing area (at approximately 20

pixels for the case shown in Figure 4.5) where the power-law

behavior breaks. To the right of this break, the distribution

follows a power-law with an exponent f which is approximately

equal to 0.47 for all basins. Table 4.2 shows the values of

the slope 1 in the region to the right of the break for the

basins analyzed.

II

100 10' 10 10' 10 10
s  10

Area
Figure 4.5: Cumulative distribution of
pixel-based contributing areas for Brushy
Creek basin. The vertical line corresponds to
the value of area for which a break in the
power-law behavior is observed.

To the left of the break, the distribution increases its

slope but it does not necessarily follows a straight line in

all basins. This behavior appears to be an indication of a

change in the character of the spatial organization of flow

directions in the basin. We will use this break as one of the

criteria for differentiating channel and hillslope pixels in
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Chapter 11 as well as a motivation for an improvement in the

modeling of landscape evolution at the hillslope scale in

Chapter 12.

Basin Scaling slope pixel-based
distribution of areas .

Beaver Creek 0.49
Brushy Creek 0.46
Buck Creek 0.45
Big Creek 0.45
East Delaware River 0.45
Schoharie Creek Headwaters 0.53
North Fork Cour d'Alene River 0.50
Racoon Creek 0.47
Schoharie Creek 0.48
St. Joe River 0.48

Table 4.2: Scaling slopes of power-law
behavior of cumulative distribution of pixel-
based contributing area after the break.

4.5. Summary

Motivated by the lack of characteristic spatial scales

in self-organized critical systems like Scheidegger's

stochastic river model, we examined the cumulative

distribution of mass and energy in actual basins. It was

found that these distributions followed a power-law with

common scaling exponents 0.43 and 0.9, respectively, across

different basins. The value of 0.43 is different from the 1/3

for Scheidegger's model which illustrates the possibility of

using the characteristics of the distribution as a test for

simulated networks.
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Finally, when the cumulative distribution of areas is

examined at the pixel scale instead of the link level, a

break is found in the power-law behavior. This break is an

indication of different flow organizations at the hillslope

and channel scales and will be used later to distinguish

between these two scales and to guide modeling efforts of

landscape evolution at the hillslope scale.
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Chapter 5

A Simple Basin Landscape and

Channel Network Growth Model

5.1. Motivation

The existence of spatial power-law distributions in

river basins hints to the possibility of a self-organized

critical system at work in the evolution of landscapes. The

results shown in Chapter 4 are only one part of the story

because they show only the spatial aspects of the system but

not the temporal properties.

In order to study the temporal aspects of landscape

evolution, it is necessary to have a model able to simulate

landscapes in a domain large enough to allow the study of

temporal as well as spatial distributions of the process over

various orders of magnitude. At the same time, the model

should have enough realism included in its formulation to be

able to reproduce at least some basic geomorphological

properties observed in actual basins.

The landscape evolution model could be used then to

check whether the dynamical system shaping the catchment

organization shares some of the properties usually observed

in self-organized critical systems, namely: (1) power-law

distribution in space (in Bak's sandbox it is the
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distribution of spatial sizes of the avalanches), (2) power-

law distribution in time (in Bak's sandbox it is the

distribution of lifetimes of the avalanches), and (3) power-

law growth of perturbations. This last property means that

the system evolves "at the border of chaos" (Bak and Tang,

1991).

5.2. The Slope-Area Model

One of the most detailed models of catchment evolution

and channel network growth is the SIBERIA model developed by

Willgoose et al. (1991 a-d). In this model the landscape

evolution is simulated by a sediment transport continuity

equation. The simulated catchments and river networks look

realistic and reproduce topological and metric properties

observed in actual basins. However, the non-linearity of the

sediment transport equation and the spatial coupling of the

process makes the numerical solution of the system's

evolution a difficult task.

The purpose of developing a different model in the

present work was to have a simpler description of the

evolution of the landscape that would allow simulations in a

large domain in reasonable computer time. The key mechanism

by which a channel network grows and extends to cover the

basin is a reinforcing feedback occurring at the tip of the

channels (Willgoose et al, 1989). The headtip of the channel

is a point that has lower elevation and is therefore able to

capture more flow (or equivalently more contributing area)
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than its neighbors. This larger area gives the tip higher

erosive power allowing the channel to move uphill thereby

lowering the elevation of the point at the tip by evacuation

of sediment. This feedback process will be the main driving

mechanism of the landscape evolution in the model to be

presented in this chapter.

A scaling relationship between slopes S and contributing

areas A (as a surrogate for flow Q) of the form:

S - A-0 (5.1)

has been observed in rivers with the value of the scaling

exponent usually around 0.5 (Tarboton et al, 1989a). What

Relationship (5.1) represents is the concavity of river

profiles. Among others, Leopold et al. (1964) report a mean

observed value of 8 in streams of the U.S. of 0.49 using flow

measured in the field (although for ephemeral streams in

semiarid regions a value of 1.0 is quoted). Flint (1974)

relates (5.1) to Horton's slope and Schumm's area laws. The

value of contributing area at which Relationship (5.1) breaks

down has been used by Tarboton et al. (1989a) as a criteria

to identify channels.

Theoretically, Relationship (5.1) has been the object of

numerous studies. It can be obtained formally in 1-D profiles

subject to uplift and erosion with a sediment transport

function of the form QmSn. In this case the equilibrium

profile has slopes that scale as in (5.1) with 0=(m-l)/n
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(Carson and Kirkby (1972), Kirkby (1971), Smith and

Bretherton (1972), Willgoose et al. (1991c), Tarboton et al.

(1992)). Another way of looking at Relationship (5.1) is as

the result of the minimization of energy expenditure (Yang

(1971), Yang and Song (1979), Rodriguez-Iturbe et al.

(1992b)) as we will examine in Chapter 6. In general,

Relationship (5.1) is at the heart of every study of the

three-dimensional structure of river basins.

The relaxation of slopes to follow the slope-area

scaling relationship will be used as the driving mechanism of

our simple model. The Slope-Area model simulates the

elevation field over a gridded domain. At every iteration the

model assigns flow directions along the steepest slope

downhill. Following these flow directions, the model

calculates the drainage area Ai of each pixel i. Then, the

slope at pixel i at the next iteration is set to Si = k Ai-8

where k is a constant and 0 the scaling parameter. The model

keeps the elevation of the outlets (and any lakes) constant

and uses them to recursively calculate the elevations of all

pixels draining to the outlet using the assigned slopes. The

more area a pixel is able to capture, the smaller its slope

and consequently, its elevation at the next iteration. In

this way the model simulates the reinforcing feedback

necessary for the growth of the drainage network. The process

is iterated until an equilibrium landscape is reached

(Ijjasz-Vasquez et al, 1993a).
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Boundary and initial conditions are similar to those of

Willgoose et al. (1991a). The initial condition is usually a

flat plateau with the same mean elevation but very small

random perturbations in order to properly define drainage

directions. The elevation of the outlet (or outlets) is kept

at a lower level. Boundaries are closed except for the

outlet. Figure 5.1 shows an example of how a landscape and

its network develop in a square basin draining through one of

its corners. This simulation uses 6=0.5. The drainage network

is presented by defining pixels that have a contributing area

of at least five pixels as channels. This threshold concept

is commonly used to infer networks from DEMs. Figure 5.l.e is

the equilibrium landscape. At this point the entire area is

drained by the network, the landscape is at equilibrium, and

the slope of each pixel is equal to kAi-0 5 .

Figure 5.2 presents simulations of the Slope-Area model

in large domains (500x500) with different outlet locations:

lower left-hand corner (Case a), center (Case b) and lower

edge (Case c).

5.3. Signatures of Self-Organized Criticality

At this point there is not yet a clear and definite

consensus on what a self-organized critical (SOC) system is.

However, there are certain properties common to all these

systems which make them interesting to study. Going back to

the sandbox model of Bak and others (1987, 1988, 1989), there

are two distributions of interest which correspond to the
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Figure 5.2: Drainage network for landscapes
simulated with the slope-area model in large
domains (500x500 pixels) with different outlet
locations: (a) lower left-hand corner, (b)
center and (c) lower edge.
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size of the avalanches and :heir duration or lifetime. The

power-law character of these distributions shows the spatial

and -emporal fractal signatures of the dynamics. It is the

dynamics itself and not a tuning parameter that is

responsible for the lack of spatial and temporal scales. A

third property of the sandbcx model, and one which is not

frequently analyzed in SOC systems, is the power-law growth

of perturbations (Bak, 1991). In chaotic dynamical systems,

the growth of perturbations is exponential (Berge et al.

(1984), Holden (1986)). SOC systems evolve "at the border of

chaos" as P. Bak has called this behavior.

Another model that has been studied in the context of

self-organized criticality is the Diffusion Limited Aggregate

(DLA). This is a structure formed by random walkers that

stick to a structure grown around a central seed (Feder

(1988), Vicsek (1989)). Figure 5.3 presents an example of a

DLA. Alstrom (1990) and Alstrom et al. (1990) make an analogy

between the sub-trees of the structure and the avalanches of

the sandbox model. They study the distributions of sizes and

lifetimes of the sub-trees. The lifetime corresponds to the

amount of time it takes for each sub-tree to grow. In the

case of the Slope-Area model we will examine the distribution

of sizes of sub-basins (a spatial signature) and their

lifetimes (a temporal signature). Figures 5.4 and 5.5

(Ijjasz-Vasquez et al, 1991' are diagrams in log scale of

these distributions. They follow a power-law as in SOC

systems.
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Figure 5.3: A typical Diffusion Limited

Aggregate (from Vicsek, 1989).
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Figure 5.4: Cumulative distribution of

contributing areas (i.e. sub-basin sizes) for

a network simulated with the slope-area model.
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basin lifetimes for a network simulated with
the Slope-Area model.

To examine the way in which perturbations grow we ran

two experiments with identical parameters but minute

differences in the perturbations of the initial elevation

field. The landscapes were simulated to equilibrium and the

difference between the two evolutions was measured in phase-

space using (Ijjasz-Vasquez et al, 1992b):

d12(t) = Iz.lt)- z2 (t)I = -7 z' (5.2)

where zji(t) is the elevation of node i at time t in

simulation j (j=1,2). Other measures could be used as well.

For example, the square root of the sum of squares of the

elevation difference at grid nodes. Figure 5.6 (Ijjasz-

Vasquez et al, 1991) shows the behavior of d12 with time. The

growth of the perturbations was found to be geometric and not

exponential as in chaotic systems.
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elevation fields.

Although the analogy between avalanches and sub-basins

shows that power-law distributions in space and time are

generated by the dynamics of the Slope-Area model without the

need of tuning a parameter, there is still a difference

between models like the Slope-Area model or DLA and models

like Bak's sandbox. In most SOC systems the evolution reaches

a metastable state where avalanches continuously occur in

time. In river basins, the system goes to an equilibrium and

the structure is frozen in time with respect to small

perturbations. The fractal signature of the dynamics is the

lack of characteristic scale in the distribution of sub-units

at equilibrium.

Recently, other models of channel network have been

shown to have power-law distributions in space, for example

Rinaldo et al. (1993), Takayasu and Inaoka (1992).
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Finally, it is worth making an observation regarding

Figure 5.4. The cumulative distribution of areas shown in

this figure was calculated using all the pixels in the

simulation. However, a break in the power-law behavior is not

apparent as was the case in the actual basin presented in

Figure 4.4. This indicates that the Slope-Area model is

properly reproducing the aggregating features of the

landscape at the channel level but a different flow

organization occurs at the hillslope scale. This is related

to a different slope-area scaling in hillslopes as will be

shown in Section 7.3.

5.4. Summary

A simple landscape simulation and channel network growth

model based on the scaling relationship between slopes and

areas observed in actual basins was presented. The simplicity

of the formulation of the dynamics allows large simulation

domains. These large simulations permit the analysis over

various log scales of the spatial and temporal signatures of

the system. It was shown that not only the cumulative

distribution of areas, a spatial feature, follows a power-law

as is the case in actual basins, but also the lifetimes of

the sub-basins and the growth of perturbations, which are

temporal features, follow power-laws. These three properties

are common to self-organized critical systems.

The Slope-Area model will be used later for comparison

with actual basins in the framework of energy expenditure in
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Chapter 8. Also, a configuration like the one shows in Figure

5.2.b. will be used in Chapter 7 to study the way river

networks allocate space to their sub-units. The influence of

the parameter 0 of the scaling Relationship (5.1) on the

structure of the network will be examined in Chapter 9.
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Chapter 6

The Three-Dimensional Structure of Networks and

its Relation to Energy Expenditure

6.1. Three Principles of Energy Expenditure in River

Basins

Chapter 5 showed a way to study basin landscapes by

examining the evolution of the dynamical system on its way to

equilibrium. An equally valid approach could be to study the

structure of river networks from an energy optimization point

of view. The idea is not new: Woldenberg (1969) argues for

honeycomb-like organization of sub-basins based on arguments

of least-work shapes; Howard (1971b), Roy (1983) and

Woldenberg and Horsfield (1986) use principles of minimum

energy dissipation to explain the observed behavior of angles

of incoming tributaries; Yang (1971) uses energy concepts in

his study of river profiles; Stevens (1974) talks about

different patterns of connectivity and some optimality

criteria; and Howard (1990) applies the local minimization of

energy at junctions to drive a network organization model.

However, all these studies concentrated on a single aspect of

the river network and did not look at the entire network as a

unit.

Rodriguez-Iturbe et al. (1992b) have postulated three

principles of energy expenditure in river basins. The goal is
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to derive from these three principles the average behavior of

the most commonly observed relationships of the river network

structure. The three principles are:

(1) Minimum energy expenditure in each individual

link of the network given the flow it has

been assigned to carry.

(2) Equal energy expenditure per unit area of

channel in every link of the network.

(3) Minimum total energy expenditure in the

network given the area it has been assigned

to drain.

The first two principles are related to local conditions

at the link level and from them relationships between the

width, depth, slope, velocity and flow at the link level can

be derived. The third principle is of global character and is

related to the way in which the network structure is

organized to deliver water and sediment out of the assigned

area. It is this organization of the network that will

determine how much flow each of the individual links has to

carry.

Maybe as important as the minimum energy conditions

themselves are the constraints imposed in principles (1) and

(3). Without them, the minimization of energy would imply

unrealistic conclusions as will be examined later in this

chapter.

The first principle is similar to Murray's (1926) law in

physiological vascular systems. The observation that the sum
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of the cubes of the radii of incoming vessels is equal to the

cube of the radius of the large parent vessel was explained

in terms of energy minimization. The second principle was

conceptually suggested by Leopold and Langbein (1962).

we will now proceed to examine the implications of the

three principles of energy expenditure on the three-

dimensional structure of river basins at the local link level

and the global network scale.

6.2. Implications of the Energy Expenditure Principles

at the Link Level

In this section we will use principles (1) and (2) to

derive relationships between the physical characteristics of

the channel and the flow carried, following Rodriguez-Iturbe

et al. (1992b). Let us consider a channel of length L, slope

S, assigned flow Q and rectangular section of width w and

flow depth d.

The flow to be assumed throughout the analysis is the

mean annual flow as a representative value of the work done

by the link. Although it is also possible to think of the

bankful discharge as a key value of the flow, most of the

work performed by the flow through time occurs at discharges

smaller than the bankful capacity.

The force responsible for the flow is the downslope

component of weight Fl=pgAwLS where Aw is the cross-sectional

flow area w.d. The force resisting is F2=TPwL where T is the
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stress per unit area and Pw is the wetted perimeter 2d+w.

Under no acceleration conditions F1=F2 and then T=pgRS where R

is the hydraulic radius Aw/Pw. Assuming turbulent

incompressible flow, the boundary shear stress is also t=Cfpv 2

where Cf is a dimensionless resistance coefficient. Taking

together the last two expressions we obtain S=Cfv 2/(Rg). Now,

the rate of energy expenditure in a segment of length L can

be written as:

El = pgQSL = Cfpv 2QL/R = CfPV 3 PwL (6.1)

According to the second principle, the energy

expenditure per unit area of channel (Eu=El/(PwL)) is constant

throughout the network, i.e.

Eu = Cfpv 3 = constant (6.2)

which implies that the velocity tends to be constant

throughout the network if the coefficient Cf is constant.

Leopold and Maddock (1953), Wolman (1955) and Brush (1961)

have found that the increase of velocity downstream in the

network is not significant (v-Q0 .1 ).

In order to find a relationship between d and Q, let us

substitute R=(wd)/(2d+w) in Equation (6.1):

E1 = Cfpv 2QL(2d+w)/(wd) =

= QLCfpv 2 (2/w) + QLCfVv2 (1/d) =

= QLCfpv 2 (2d/Aw) + QLCfpv2/d =

= dL [2Cfpv 3 ] + (QL/d) [Cfpv 2 ] (6.3)
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Notice that the terms in brackets are constant. If the

value of Q is given, then the first principle of minimum

energy expenditure implies:

dEl/d(d) = 0 = L [2Cfpv3] - (QL/d2 ) [Cfpv 2]  (6.4)

and therefore:

Q = 2vd2  (6.5)

then:

d - Q0.5 (6.6)

The above result has been observed in the field by Leopold et

al. (1964) who found a scaling exponent of 0.4 for the

dependence between depth and flow in the downstream

direction.

Given that d=Q/(vw), then:

Q=(v/2)w 2  (6.7)

and:

w - Q0.5 (6.8)

A similar relation between width and flow was found in the

field by Leopold et al. (1964).

Equations (6.5) and (6.7) imply that w=2d. This result

is a direct consequence of the assumption of a rectangular

section. Other sections can be used and the same scaling

relationships (6.6) and (6.8), which are the ones we are

interested in, are obtained but with different

proportionality coefficients.
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From (6.6) and (6.8) we have R=wd/(2d+w)-Q 0 - 5 . Given that

S=Cfv 2 /(Rg) then:

S - Q-0.5 (6.9)

which is the slope-area relationship observed in the field by

Leopold et al. (1964) and in DEMs by Tarboton et al. (1989)

among others.

Notice that Equation (6.1) is only accounting for energy

expenditure in the "operation" of the channel. It is also

possible to represent the energy expenditure related to the

"maintenance" of the channel as F(soil,Q)PwL where F(.) is a

function representing the work per unit time and unit area

involved in the removal and transportation of sediment

(Rodriguez-Iturbe et al, 1992b). A reasonable form for F is

F=KTm where K depends only on the properties of the soil and

water and m is a constant. Equation (6.1) would then change

to:

El = Cfpv 2 QL/R + KTmPwL (6.10)

The derivation of all the relationships in this section using

(6.10) is analogous and none of the results change (see

Rodriguez-Iturbe et al, 1992b for details). It is foreseeable

that a third term may be required, related to the

"construction" of the channel network, to measure the work

done in removing material to build the network structure.
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Summarizing, the local energy principles (1) and (2)

imply the average behavior of the well-known empirical

relationships d-Qo0 5 , w-Qo0 5, S-Q-0.5 and v constant throughout

the network at a certain time when measured at flows with the

same recurrence.

6.3. Minimum Total Energy Expenditure and the Spatial

Organization of the River Network

Principle (3) states that the different regions in the

basin should be connected in such a way that water and

sediment are taken out of the basin most efficiently, i.e.

minimizing total energy expenditure. Replacing (6.5) in (6.3)

we can obtain the energy expenditure at each link:

E1 = k QO.5L (6.11)

where the proportionality factor k is a function of Cf, p and

v and therefore is constant across the network. The total

energy expenditure is the sum of the energy expenditure for

all the links:

ET = Zi k QiO-5Li (6.12)

The configuration with the lowest value of ET is the one

chosen by the third principle. The comparison across networks

in the same domain requires the assumption that k has the

same value across them (and not only inside each of the

networks).
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The third principle, nevertheless, has an important

constraint: the network has a certain area to drain. If one

were to use, for example, all the different TDCN

configurations, which are not tied to a metric space, the

results would not be reasonable. Assuming a unit area for

each node of the TDCNs and comparing the values of ET, the

optimal network would have Rb=2 which is unrealistic but not

surprising. Included in the family of TDCNs with the same

number of links are networks with both a wide-fan structure

and a narrow-strip structure depending on the value of Rb

(see Figure 6.1) It is clear that in terms of energy

expenditure a network with all its nodes near the outlet (in

the fan case) would be more economical than one with most of

the nodes far away (in the strip case). This comparison is
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Figure 6.1: Two extreme examples in the
family of TDCNs with 16 external links. The
comparison between networks that do not drain
the same basin domain gives unrealistic
results (from Rodriguez-Iturbe et al, 1992b).
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not fair. The optimization criteria cannot be used in a

topological space but should be tied instead to a real space

by fixing the area to be drained, before the comparison of ET

between networks is made.

Suppose an area of 100x100 pixels with closed boundaries

except for an outlet at a corner is to be drained in an

optimal way (i.e. with minimum ET). Three examples of

networks draining such an are shown in Figure 6.2, the third

one being a random network. Assuming unit grid size and area

as a surrogate for flow, the values of the total energy

expenditure ET of these three networks are 72,862, 60,410 and

58,786 respectively.

The combinatorial problem of finding the optimal

configuration in a domain of this size is NP-hard and is not

possible to solve due to the enormous number of combinations.

Similar Operations Research problems use heuristic methods to

find near-optimal solutions. One strategy that can be adapted

to our network optimization problem is the one developed by

Lin (1965) for the traveling salesman problem. The idea is to

iteratively change at random the flow direction of a randomly

chosen node.

Beginning with a network like the ones shown in Figure

6.2, the search proceeds, looking for an optimal network. The

changes in flow direction should be such that no lakes are

formed and the entire area is still drained by the network.

The value of ET is calculated for the new network and the
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Figure 6.2: Three networks given as initial
condition to the random search algorithm used
to find OCNs. The total pixel-based
energyexpenditure for each of these cases is
72862, 60410 and 58786 respectively.
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configuration is accepted if ET for the new network is

smaller than the value for the old network. The procedure is

repeated until no further improvement on ET is obtained after

a large number of iterations.

Although there is no assurance that the solution

represents a global minimum, we have seen that the final

values of ET fall very near each other and probably near the

absolute minimum. Figure 6.3 shows the final network obtained

after the optimization procedure. The value of ET is 39,816

which is much lower than the value for the original networks

in Figure 6.2.

Other heuristic optimization strategies can be

implemented, like simulated annealing. In this method new

configurations with higher values of ET are accepted with

certain probability instead of always being rejected as in

the method previously described. This allows the system to

escape from local minima with small trapping boundaries

(Johnson (1987), Wejchert(1989)). The methods give very

similar answers (Rinaldo et al, 1992).

Networks with minimum values of ET are called Optimal

Channel Networks (OCN). These networks not only reproduce

Horton's laws with appropriate values of Rb, R1 and RA

(Rinaldo et al, 1992) but also exhibit a power-law cumulative

distribution of areas with scaling exponent very near the
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value of 0.43 encountered in actual basins (Rodriguez-Iturbe

et al, 1992c), as shown in Figure 6.4.
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Figure 6.3: An Optimal Channel Network
constructed in a 100x100 domain. The total
pixel-based energy expenditure for this OCN is
39550.
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Figure 6.4: Cumulative distribution of areas
for the optimal network shown in Figure 6.3.
The scaling slope is -0.42
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It is important to mention two issues regarding the way

OCNs reproduce Horton's scaling laws and the power-law

cumulative distribution of areas observed in actual channel

networks. First, there is a difference between the

"explanation" of Horton's laws from the TDCNs and the

implications derived from OCNs. In TDCNs the observation of

Horton's laws in nature is seen as the result of the presence

of this behavior in a large proportion of the family of

random networks. On the other hand, the OCN formalism implies

that Horton's laws are a direct consequence of the search for

organization with minimum energy expenditure. Networks that

do not obey Horton's laws would be too expensive in terms of

energy. Nevertheless, we have found an enormous variety of

near-optimal networks that differ in the small scale details

but whose levels of energy expenditure are very similar. This

is in consonance with the enormous variety of networks

without geologic controls observed in nature in which

Horton's laws hold remarkably well.

The second issue is the interesting fact that the

network structure in its search for low energy states does

not choose any preferential spatial scale but chooses a

fractal scaling behavior, opening up the question of whether

other fractal structures may be seen as states of minimum

energy expenditure. Studies on other aggregating structures

hint towards this possibility (Feuerecker et al. (1987),

Merte et al. (1988))
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Recently, many other properties of OCNs have been

examined, confirming the ability of this formalism to

reproduce the most common geomorphological and scaling

properties of actual river networks (Rinaldo et al. (1992),

Rigon et al. (1993)).

Finally, notice that although the analysis in this

section concentrated on the planar organization of the

network, the three-dimensional structure was embedded through

the scaling relationship S-Q-0.5 derived from the first two

principles. The third principle sets the flows that each link

has to carry so the network minimizes total energy

expenditure, and then each individual link adjusts its slope,

configuring in this way the three-dimensional structure of

the basin.

6.4. Summary

Three principles of energy expenditure proposed by

Rodriguez-Iturbe et al. (1992b) and their implications on the

structure of river networks have been studied in this

chapter. The first two principles, which work at the link

level, imply that, given the flow Q carried by the link, the

geometry of the link is adjusted so that width and flow

depth scale as Q0.5, slope scales as Q-0. 5 and velocity is

constant across the network. The third principle is in charge

of organizing the network structure to minimize total energy

expenditure as well as connecting all the nodes in the area

given to drain. Using tools from Operations Research it was
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found that Optimal Channel Networks reproduce common

geomorphological measures like Horton's laws (Rinaldo et al,

1992) and the power-law distribution of areas observed in

actual basins.

As mentioned at the beginning of the chapter, the OCN

approach is a different way of studying networks from that of

models of landscape evolution like the SIBERIA model

(Willgoose et al, 1991 a,b) or the Slope-Area model described

in Chapter 5. The OCN formalism presents postulates regarding

the equilibrium organization of the network without taking

into consideration the evolution process that brought the

network to its optimum state. The relationship between OCNs

and evolution models will be studied in Chapter 7, in order

to understand the physical mechanism used by the network to

minimize energy expenditure.

The OCN formalism was used in this chapter to study the

preferred internal structure of the best network to drain a

given area. Later on, in Chapter 8, we will combine issues of

minimum energy expenditure with competition to study how the

basin areas are distributed among competing units and what

implications this process has on the shape of river basins.
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Chapter 7

Optimal Channel Networks, Slope-Area Networks

and Digital Elevation Maps

7.1. Motivation

The evidence presented in Chapter 6 and other related

papers (Rodriguez-Iturbe et al. (1992b,c), Rinaldo et al.

(1992), Rigon et al. (1993)) shows that OCNs are able to

reproduce the most important statistics of actual channel

networks. Another comparison test might be made to determine

how similar the total energy expenditure in actual basins is

to the value predicted by an OCN constructed within the same

domain. However, the random search strategies used in OCNs

are computer intensive procedures, and only domains of up to

104 pixels have been analyzed. This size is about two orders

of magnitude smaller than the typical size of basins in DEMs

at the scale of resolution available.

One way in which OCNs and DEMs can be compared is by

using, as an intermediate step, networks generated with the

Slope-Area model. This model is able to simulate networks at

the scale of DEMs, given its simple dynamics. We will show

that Slope-Area networks and OCNs have very similar values of

total energy expenditure ET when compared with each other in

the small domains where the random search methods of OCNs



work. We will then use the Slope-Area model to study whether

the value of ET in DEMs is near the optimal level.

Next, by relating total energy expenditure to potential

energy we will present a clue to the mechanism through which

networks grow, evolve and organize in order to minimize ET.

Finally, the role of perturbations in the search for

configurations having low energy will be examined, as well as

the existence of unstable equilibrium landscapes with high

levels of energy expenditure.

7.2. Total Energy Expenditure in OCNs and Slope-Area

Networks

The first step in the analysis will be to compare the

values of ET for OCNs and for Slope-Area networks in domains

that can be handled by the random search algorithm. If both

the Slope-Area model and the random search algorithm of OCNs

produce networks of similar total energy, then the efficient

Slope-Area model can be used to test whether real basins

obtained from DEMs actually optimize total energy

expenditure. In order to make a fair comparison, 100

repetitions of the search procedure of OCNs in a 24x24 domain

were performed. The experiments started from different random

initial networks that drain the domain under study. An

example of such random initial networks is presented in

Figure 7.1. The search procedure rearranges the elements of

the network into configurations with smaller total energy

dissipation:
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ET = kY i Qi0-5Li (7.1)

Figure 7.2 presents the configuration with the lowest

value of ET obtained from among the networks. Figure 7.3

shows the histogram of the final values of total energy

expenditure ET. Even though there is some variation in these

values (between 1620 and 1680, where k=1, Qi=Ai and Ai=1 in

Equation (7.1)), it is very small compared to the amount by

which ET has been reduced from its initial value (from a mean

value of 2250 to a mean value of 1640).

Now, using the same 24x24 domain and, as initial

landscape, a plateau with the same mean elevation but

different random perturbations, 100 repetitions of the Slope-

Area model were carried out in a manner similar to the

simulation shown in Figure 5.1. The histogram of final total

energies is presented in Figure 7.4. In order to demonstrate

how similar the energies for OCNs and Slope-Area networks

are, Figure 7.5 presents together three histograms of

energies: that for the initial random networks used in the

OCN procedure (at the right-hand side), that for the final

OCNs and that for the networks simulated with the Slope-Area

model (the latter two at the left-hand side). The overlap

between the histogram of OCNs and that of Slope-Area networks

and the small difference between these two histograms,

compared to the distance between them and the histogram for

random networks, supports the idea of using the Slope-Area

model to generate networks with near-optimal energy
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Figure 7.1: Example of a random network used

as initial condition in the random search

algorithm for an optimal configuration.

77h
i 1

Figure 7.2: OCN with the lowest value of ET

among 100 repetitions of the random search

procedure.
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Figure 7.3: Histogram of values of total

energy expenditure ET for the 100 repetitions

of the OCN procedure.
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Figure 7.4: Histogram of values

energy expenditure for 100 networks

with the slope-area model.
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Figure 7.5: Histogram of total energy
expenditure for 100 random networks (right-
hand side), OCNs and networks simulated with
the Slope-Area model (left-hand side).

expenditures. The computational demands of the random search

procedure of OCNs prevent the construction of histograms with

enough data points for large domains. However, a few OCNs

were constructed in a 64x64 domain (each of which required

approximately 20 hours of CPU time) and were compared against

networks of the Slope-Area model. The difference in total

energy between was in all cases less than 5%.

In the search for optimality, the river network may find

itself trapped in local minima. The perturbations found by

the growing network may have forced it to develop in less

than optimal configurations. It is therefore of interest to

examine the role of perturbations as a mechanism to move the

system out of these minima. Physically, these perturbations

may represent the local inhomogeneities encountered by the

landscape during its evolution.
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For this purpose, the elevation field of an equilibrium

landscape obtained with the Slope-Area model was perturbed by

adding small random values to the grid point elevations,

disrupting in this way the local structure. The landscape was

then given back to the model as initial condition and run to

equilibrium, eliminating in this process expensive defects in

terms of energy. Figure 7.6 presents an example of the final

network of the equilibrium landscape before the

perturbations. The total energy expenditure ET was measured

each time a new equilibrium was reached. Then, a new

perturbation was applied. Figure 7.7 presents the behavior of

ET resulting from this process. The value of ET decreases as

the network cleans its small-scale defects, upon reaching a

low energy state. Figure 7.8 shows the final network after

the perturbation process has concluded, when the lower energy

state has been reached. Even though the changes between the

networks in Figures 7.6 and 7.8 are small, they are

noticeable. However, the reduction in ET is not large. Figure

7.9 presents the histogram of total energy expenditure of 100

different networks obtained with the Slope-Area model after

perturbations were applied and a new stable equilibrium with

lower energy was found. The histogram shifts to the left from

its position in Figure 7.4 (which corresponds to the

equilibrium networks before the perturbations) and the

overlap with the histogram of OCNs is even larger.

Nevertheless, the change is small and the perturbation

process requires repeated runs of the model making it very
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Figure 7.6: Example of a network in an

equilibrium landscape generated with the

slope-area model before perturbations.
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Figure 7.7: Evolution of the total energy

expenditure ET under repeated perturbations.

ET is measured whenever the landscape reaches

a new equilibrium after each perturbation. The

value of ET decreases as the network takes

care of the small-scale defects in its

structure.
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Figure 7.8: Network obtained by repeated

perturbations of the landscape corresponding

to the network shown in Figure 7.6.

1600 1620 1640 1660 1680 1700
Total Energy Expenditure

1720 1740

Figure 7.9: Histogram of total energy

expenditure for 100 networks simulated with

the slope-area model after reaching a lower
value of ET through repeated perturbations.
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difficult to be implemented in large domains. Therefore, it

seems reasonable to use the results of the model without

perturbations to compare the energy expenditure level of DEMs

and the value for OCNs.

7.3. Total Energy Expenditure in DEMs and Networks

Generated by the Slope-Area Model

The next step is to use actual basins identified from

digital elevation maps and take their boundaries and outlet

location as boundary conditions for the Slope-Area model.

Table 7.1 (Ijjasz-vasquez et al, 1993a) compares the total

energy expenditure of Slope-Area networks simulated using the

actual domains of four different basins across the US. and

the total energy expenditure of the actual basins calculated

using pixels. In every case, the difference between the total

energy dissipation ET (measured using equation (7.1)) in the

simulated and the real basin is less than 5%.

Basin Pixel-based Energy Pixel-based Energy
from DEM of slope-area network

Brushy Creek 2 224 524 2 115 340
Big Creek 914 069 904 377
Schoharie Creek Headwaters 589 091 558 937
North Fork Cour d'Alene River 418 034 404 866

Table 7.1: Comparison of the total energy
expenditure of four actual basins and
corresponding slope-area networks simulated
using the actual domain of the basins.
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As an example, Figure 7.10 presents three networks in

the same domain taken from North Fork Cour d'Alene river

basin in Idaho, US. Figure 7.10.a is the network extracted

from the DEM using a threshold contributing area of 50

pixels. Figure 7.10.b shows a network simulated with the

Slope-Area model. Figure 7.10.c shows a random network of the

kind used as initial condition for OCNs in Chapter 6. All

three networks are presented using the same threshold. While

the values of ET in the first and second cases are 4.2x10 5 and

4.0x10 5 (in pixel units), ET for the third network has the

much larger value of 6.1x10 5 . The similarity of values of

energy expenditure between the real and the simulated network

suggest that river networks tend indeed towards a state of

minimum energy expenditure.

It has been found, for some basins, that the scaling

relationship S-A-8 between slopes and contributing areas does

not hold for all the values of areas but instead, there are

two scaling regimes (Tarboton et al, 1989a). Figure 7.11

illustrates such behavior in one of the basins studied (Big

Creek, Idaho, US). In this figure, the slopes of the pixels

in the basin are grouped into bins according to their

contributing area. The circles represent the mean value of

the slopes for the pixels in each bin. The break observed in

scaling has been used by Tarboton et al. (1989) to identify

the threshold value of contributing area that separates

hillslopes from channels.
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Figure 7.10: Three different networks
draining the same boundary domain in the North
Folk Cour d'Alene river basin. (a) Drainage
network identified from DEM, (b) Drainage
network simulated with Slope-Area model, (c)
Random drainage network (continues).
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Figure 7.10: (contd.)
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Figure 7.11: Slope-area scaling relationship
in Big Creek basin. Two scaling regimes at the
hillslope and channel scale can be observed.
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A slope-area scaling relationship with two different

scaling regimes can be used in the Slope-Area model. We have

found that this change affects the flow pattern below the

areas at which the break occurs. To illustrate this behavior,

Figure 7.12 shows the network of a basin grown with the break

in scaling. While the basin in Figure 7.6 was simulated with

S-A-0 -5 for every value of A, the basin in Figure 7.12 has

S-A-0 -5 if A is larger than 20 pixels and S-A-0 -0 (i.e. S

constant) otherwise. In the original model the pattern is

aggregated at all scales while in the modified version of the

model it tends to be parallel below the threshold value.

Actually, this is the behavior observed in DEMs at the

hillslope scale.

Using the values of the two scaling regimes between

slopes and areas observed in Figure 7.11 (S-A-0 -12 if A<210

pixels and S-A-0.5 otherwise, values that correspond to the

Figure 7.12: Networks simulated with the
Slope-Area model using the two mean scaling
relationships shown in Figure 7.11.
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actual slope-area scaling) and the real boundary of the Big

Creek basin, the Slope-Area model was used to simulate the

drainage network. The total energy expenditure ET (calculated

using those pixels identified as channels above the threshold

area) is 4.54x105 (in pixel units) for the real basin and

4.51x105 for the simulated network.

Summarizing, this section has shown that the difference

in total energy expenditure of networks simulated with the

Slope-Area model using actual basin boundaries from DEMs and

the total energy expenditure of the actual river network is

small. This suggests, along with the evidence shown in

Section 6.2, that drainage networks tend to organize

themselves so as to minimize energy dissipation while

delivering water and sediment out of the basin.

7.4. Potential Energy and Total Energy Expenditure

The original expression for ET=kai Qi0.5Li is difficult

to manipulate analytically and visualize its minimization is

not an easy task. In this section we will show that the

minimization of ET is equivalent to the minimization of the

total sum of elevations, constrained by the slope-area

relationship implied by the first two energy principles. This

new interpretation will help in the understanding of the

process through which networks grow and organize to minimize

total energy expenditure and visualize the role of

perturbations in this process.
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Using the first two principles of optimal energy

expenditure (Rodriguez-Iturbe et al, 1992b) and the scaling

relationship that can be derived from them:

Si = k Ai - 0 .5  (7.2)

it is possible to show that minimizing the total energy

expenditure E is equivalent to the minimization of the sum of

elevations:

Ep = 1i zi (7.3)

where zi is the elevation of pixel i above the outlet. Notice

that zi can be partitioned as the sum of drops from pixel to

pixel along the flowing path between pixel i and the outlet,

i.e.

Ep = Ii j (i) hj (i) (7.4)

where hj(i) is the drop from pixel j (i) to its neighbor

downstream and j(i) indexes the pixels along the flowing path

from pixel i to the outlet. The summation in (7.4) can be

reorganized by counting how many times a certain drop hn

appears. This number is equal to the number of times a

flowing path goes through pixel n, and this is equal to the

number An of pixels draining through n. Therefore:

Ep = In An hn (7.5)

Now,

hn = Sn Ln = k An- 0 "5 Ln (7.6)
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where Sn is the slope of pixel n and Ln is the length from

pixel n to its neighbor downstream. The second equality comes

from equation (7.2). Substitution of (7.6) into (7.5) gives:

Ep = k Tn An0"5 Ln (7.7)

which is the same expression (7.1) for the total energy

expenditure ET. Another way of looking at this result is by

saying that all the potential energy available is spent by

the water in its movement downhill and therefore Ep and ET are

the same (Tarboton and Veneziano, personal communications).

By minimizing ET, the network is also minimizing the sum

of elevations Ep (which can be seen as a measure of the total

potential energy of the basin). It is important to notice

that the state of minimum potential energy for the basin is

not the flat plane because of the constraint (7.2) on the

slopes. With a flat plane, the network is not able to deliver

water and sediment out of the basin. In the Slope-Area model

and other landscape evolution models, each pixel is set to

drain into the steepest direction downhill. Given that the

slope of each pixel comes from the preceding iteration, by

choosing the lowest neighbor the pixel is setting its

elevation to the lowest possible value. As the network

connects all the points in the basin, information is

transmitted across the entire domain. On one hand, a change

in a pixel's elevation affects the elevation of all the

pixels uphill. On the other, the capture of additional area
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by pixels uphill changes the contributing area and elevation

of pixels downhill. This interaction and communication may be

the mechanism through which the principle of global

optimality is embedded in the network growth process. The

network in its evolution always tends towards states with

lower elevation.

7.5. Minimum Total Energy Expenditure, the Stability

of Landscapes and the Role of Perturbations

There are landscapes that, if used as initial condition

for the Slope-Area model, would not be modified by the

algorithm because the slope-area relationship holds at every

node. One such landscape is the classic equilibrium form used

by Smith and Bretherton (1972) and later by Loewenherz (1991)

in their analysis of stability and channelization of

surfaces. Figure 7.13.a shows the landscape and Figure 7.13.b

the parallel flow directions of the configuration. At every

point the slope S is exactly equal to A-0. 5 and therefore the

landscape is at equilibrium and remains unaltered when given

as initial condition for the Slope-Area model. However, if a

small random perturbation in elevation is applied as was done

in Section 7.2, then the configuration changes radically.

Figure 7.13.c shows the equilibrium after only one

perturbation and Figure 7.13.d after ten perturbations.

Figure 7.14 shows the dramatic drop in the value of the total

energy expenditure even after a single perturbation. The
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Figure 7.13: Unstable equilibrium landscape

form used by Smith and Bretherton (1972) . (a)

Isometric view, (b) Original flow direction,

(c) Equilibrium network after one

perturbation, (d) Equilibrium network after

ten perturbations.
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Figure 7.14: Decrease of total energy
expenditure for the equilibrium landscape
shown in Figure 7.13 affected by repeated
perturbations.

system quickly reaches a state of low ET after three or four

perturbations are applied and then remains at that level.

This experiment illustrates the nature of the search for

an optimal network configuration. As presented schematically

in Figure 7.15, this is a problem with many local minima and

the system is able to move between them if its elevation

field is perturbed. Each of these local minima (which have

very similar values of total energy expenditure) is a

different configuration and their large number is consistent

with the enormous variety of channel networks found in

nature. Even though the details of their structures are

different, these configurations have common statistical

properties and near-optimal values of E. Furthermore, there

are also unstable equilibrium states with high values of E

which, when perturbed, move quickly to configurations with
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low total energy expenditure. An example of these unstable

equilibrium landscapes is the one shown in Figure 7.13.a.

Unstable Equilibrnum

Perturbations

Figure 7.15: Schematic representation of the
multiple local minima and unstable equilibrium
landscapes in the energy minimization problem
of drainage networks.

7.6. Summary

The comparison between levels of total energy

expenditure predicted by optimal channel networks and those

measured in actual basins identified with digital elevation

maps was performed using as an intermediate tool networks

generated with the Slope-Area model. First, it was shown that

in small domains, that could be handled by the random search

algorithm used to find optimal networks in Chapter 6, OCNs

and Slope-Area networks have very similar values of total

energy expenditure. Then, using the actual boundaries and

outlet location of river basins, the Slope-Area model was

used to grow networks in these domains. The actual network

and the simulated one had very similar values of energy for

various basins studied.

By showing the equivalence between total energy

expenditure and the sum of elevations in the basin (a measure
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of available potential energy), a possible mechanism by which

the network evolves to states of low energy was presented.

Finally, unstable landscapes in the sense of Smith and

Bretherton (1972) were shown to be states of very high energy

expenditure which are unsustainable under perturbations.

In the next chapter we will examine the implications of

minimum energy expenditure on the shape of river basins. The

question is what is the best way to share the space among

competing basins from a minimum energy expenditure point of

view. The answer will have implications on issues like space

allocation and basin elongation.
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Chapter 8

Implications of Minimal Energy Expenditure on

the Shape of River Basins: Hack's Law and

Optimal Allocation of Space

8.1. Hack's Relation

Hack (1957) measured quantitatively his observation that

river basins change their shape as their size increases

becoming longer and narrower. For the rivers he examined a

scaling relationship between the length L of the main channel

from the outlet to the divide and the area A of the basin was

found:

L - Aa (8.1)

with x=0.6. Grey (1961) using his own data and those from

Taylor and Schwarz (1952) showed the same scaling with

a=0.568. Eagleson (1970, p.379) shows that data from

different sources fit Hack's relation well.

Mandelbrot (1982) suggested that river courses can be

approximated by wiggly fractal lines of dimension D>1. This

behavior has been observed using box-counting analysis in

DEMs by Tarboton et al. (1988) and La Barbera and Rosso

(1989) among others. They have found that the box-counting

fractal dimension is on the average 1.1, very near
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Mandelbrot's prediction of 2a=1.2 based on the scaling

exponent in equation (8.1).

However, the fractal argument assumes that the shape of

the basin does not change as the area increases and that the

entire scaling behavior comes from the fractal character of

the channels. This does not fit with the original idea of

elongation proposed by Hack (1957). Such arguments have been

raised by different authors, among them Feder (1988, p.208).

The issue of elongation and fractality of rivers has also

been studied by Robert and Roy (1990).

We will examine in this section the possibility that the

observed elongation of river basins can be regarded as the

consequence of the optimum allocation of area in a minimum

energy sense. In order to examine such possibility, let us

consider the following experiment. Given an area of width L

and length h, we will drain it using OCNs constructed in sub-

basins of width w and length h, as shown in Figure 8.1. This

configuration can be considered as an idealization of

tributaries to a main channel.

L
Figure 8.1: Optimization domain of width L
and length h. This domain is drained by OCNs
of width w and length h.
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The total energy expenditure for the entire area is

ET=(L/iw)Es where Es is the energy of the network in the sub-

basin of size w*h. In order to find the minimum ET given L, we

should look for the minimum value of Es/w. To do this, the

values of total energy expenditure in OCNs constructed in

areas of size w*h with different values of w are calculated.

The OCN with the smallest value of Es/w will yield the

minimum total energy expenditure for the entire basin and

will determine the optimal length/width ratio.

Figures 8.2.a and 8.2.b show the values of Es/w versus

width for OCNs with h=15 and h=20 for different values of w.

The optimal value of width is the one that gives the lowest

value of Es/w. Figure 8.3 shows OCNs with optimal values of

width for h=60, 45, 30 and 15 respectively. Using the optimal

width wopt(h) for a given h, we can find the relationship

between length h and area A=h*wopt(h). Figure 8.4 shows the

scaling relationship: h-Aa with a=0.57 which is very similar

to the value of 0.568 observed in actual basins (Taylor and

Schwarz, 1952). This relationship indicates that in the

search for optimal drainage configurations, basins elongate

with size and do so at the rate observed in nature (Grey,

1961, Taylor and Schwarz, 1952).

One important point remains to be analyzed in order to

make a meaningful comparison between Hack's result and the

relationship obtained from optimality principles. In the case

of OCNs, the lengths used were the Euclidean lengths from top
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Figure 8.2: Values of Es/w versus w for OCNs
with length (a) h=15 and (b) h=20. Es is the
total energy expenditure of the OCN in the
domain of size w*h.
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Figure 8.3: OCNs with optimal values of
width for h=60, 45, 30 and 15 pixels
respectively. The optimal value of w for each
h is the one that gives the lowest value of
Es/W.
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Figure 8.4: Log-log plot of length h versus
area A=h*wOpt(h). The scaling slope is a=0.57.
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to bottom of the sub-basin and not along the channel as has

been the practice in the study of geometrical features of

river basins. With the aid of DEMs we can compare the

relationship between the Euclidean length (measured with a

straight line) and the topological length (measured along the

main channel).

Using a threshold value of area, a network can be

identified in the DEM (Tarboton et al, 1988). At the

intersection of every two links of the network, we defined

the outlet of a sub-basin. For each sub-basin we calculated

the total topological length measured along the main channel

up to the boundary and the Euclidean length from that point

in the boundary to the outlet. The two lengths are related by

Lt-LeP . Table 8.1 (Ijjasz-Vasquez et al, 1993b) shows the

values of 0 for different basins located across the US. The

average value of 5 is 1.05. Because of the opportunity the

channel has to wander more as the size of the basin

increases, a value of P>1 is not surprising. We will examine

in Chapter 9 the significance of a value of 0>1 in terms of

the self-affine properties of watercourses. Figure 8.5 shows

an example of the relationship between Euclidean and

topological length for every sub-basin in the case of Brushy

Creek basin (AL).

Notice however, that if the boundaries of river basins

were geometrically similar, then Le-A 0 -5 and consequently

Lt-A 0.525 (using P=1.05) which is much lower than the value of
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R n in

Beaver Creek
Brushy Creek
Buck Creek
Big Creek
East Delaware River
Schoharie Creek Headwaters
North Fork Cour d'Alene River
Racoon Creek
Schoharie Creek
St. Joe River

1.07
1.04
1.08
1.04
1.02
1.07
1.04
1.04
1.03
1.04

Table 8.1: Values of the scaling slope
between maximum Euclidean and topological
length for every sub-basin in different river
basins across the U.S.

E

0

I

10' 102 103  
104 101

EUCLIDEAN LENGTH (m)
Figure 8.5: Log-log relationship between the
maximum Euclidean and topological length for
every sub-basin in the Brushy Creek basin. The
scaling slope is 0=1.04 in this case.
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a found in river basins. On the other hand, the measured

value of a=0.6 along with P=1.05 would imply that Le-A 0. 57 1

which is very near what is observed in the elongation derived

from OCNs.

Another way of comparing the elongation behavior between

OCNs and DEMs is by taking all sub-basins for an OCN grown in

a domain as large as possible and using a measure of

catchment shape.

There is a large number of measures to describe the

shape of catchments using different ratio combinations of

area, perimeter and maximum length (Zavoianu, 1985). One of

the earliest measures was proposed by Horton (1932) and is

called the form factor Rf = Ab/L 2 where Ab is the area of the

basin and L its maximum length from the mouth to the opposite

side. Miller (1953) introduced the circularity ratio Rc=Ab/Ac

where Ac is the area of a circle whose circumference is equal

to the basin perimeter. Schumm (1956) proposed the elongation

ratio Re=D/L where D is the diameter of a circle of area

equal to that of the basin, i.e. Re=(2/7O0 5 ) A0 .5/L. Also,

noting the similarity of an "ideal" basin shape and

lemniscate curves, Chorley et al. (1957) defined the

lemniscate ratio R1= P/Pm where Pm is the basin perimeter and

P is the perimeter of the ideal lemniscate with parameter k.

The value of k is calculated as rL2/4A where L and A are

measured in the actual basin. As pointed out by Morisawa

(1958), the influence of the irregularity of the divide on

122



measures based on the perimeter of the basin becomes very

high as the size of the basin increases. This is a direct

consequence of the fractal character of basin boundaries

(Tarboton et al. (1988), Ijjasz-Vasquez et al (1993c)).

Therefore, we have preferred to use Schumm's elongation ratio

to analyze catchment shapes.

As pointed out by Eagleson (1970), Schumm's elongation

ratio cannot be separated from Hack's relation. Schumm's

elongation ratio should scale with area as Re-A
0 .5/L- A-0.068

(Eagleson, 1970, p.379). We will now examine this scaling

relationship in DEMs and OCNs.

Figure 8.6 (Ijjasz-Vasquez et al, 1993d) shows, with

dots, the scaling relationship between L and A for all sub-

basins in the North Fork Cour d'Alene river (ID). The fitted

lines gives a scaling relationship L-A0 -563 implying

Re-A -0 -063 very near the value presented by Eagleson (1970).

Similar scaling values were found for other basins analyzed.

Superimposed on Figure 8.6 we have presented, with (+), the

values of L and A for all sub-basins from an OCN constructed

in a 100xl00 domain (shown in Figure 6.3). The results from

the OCN fall within the range of variation of the DEM data.

The best-fit line to the OCN points gives a slope of 0.573

not very different from the value for the DEM data. In this

way we have also shown the elongation of OCN sub-basins when

they are free to compete instead of being in a controlled
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experiment like the one presented at the beginning of this

section.

101

102

101 102 1033  10. 105

Sub-basin Area A
Figure 8.6: Scaling relationship between the
area and maximum Euclidean length for all sub-
basins in the North Fork Cour d'Alene river
basin (.) and for an OCN constructed in a
100x100 domain (+). The fitted line
corresponds to the DEM data.

8.2. Optimal Allocation of Space Around a Central

Outlet

8.2.1. Allocation of Space by OCNs

One important geometric characteristic of network

structures and fractal growth patterns is the way in which

their components are organized in space. Such organization

can be studied by examining the set of angles among subtrees.

The understanding of the behavior of these preferred angles

can provide a better picture of the hierarchical ordering of

fractal patterns and the physical dynamics of competition and

screening that generate these structures. Diffusion Limited

Aggregates (DLA) is an example of the kind of structures
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recently analyzed in this context (Arneodo et al, 1992). The

results of such analysis in DLA have been useful in

developing hierarchical models to describe the DLA structure

(Halsey et al. (1986), Ball (1986), Lee et al. (1990)).

We will study in this section how space is allocated in

an optimal way around a central outlet. The results will be

compared in the next section against three different models

of network organization and a related small-scale erosion

experiment. If a drainage network is designed to deliver

water and sediment out of a circular domain, a natural

question is how many sub-basins (or independent drainage

units) are optimal for this work?

Figure 8.7 shows three sectors of a circular domain,

with different central angles. Using sectors like these, OCNs

were constructed to drain them. The question is whether the

entire circular domain is more efficiently drained by 4 sub-

basins with a central angle of 90', 6 of 600, 12 of 300 or

any other angle. The total energy spent in draining the

circle is ET = (2X/0) Ece = n0Ece where 0 is the central angle

of the sector of circle used, Ece is the total energy

expenditure of the OCN constructed within the sector of angle

0 and no is the number of sub-units (or sectors) the circle

has been divided into for its drainage. Figure 8.8 shows the

energy per pixel for the entire circle (ET/nr2 ) when drained

by OCNs constructed in sectors with different central angles.

125



'j ; 4-1 ý,ý ' L I I.
,•_. ' = .. '"-- -. , = ,

- -I •.44 '-. -_-•. • - ,-

m ., .

- ,. =• o -

_ 2 ~L-

~~- -J I ~Y~L~t L

I
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There appears to be a minimum of energy at 600 (i.e. 6 sub-

basins).

It is interesting to contrast this result with an

unconstrained analysis of optimal central angles. In Rigon et

al. (1993) triangular domains with different central angles

were studied by keeping the area of the basin constant (i.e.

changing the base and height of the triangle accordingly).

The energy per unit area decreased with larger central angles

but no clear minimum was found. The difference with the

experiment presented in this section is the division of the

same domain using sub-units to minimize the total energy

expenditure of the entire domain instead of analyzing domains

with different form but ecual area.

3.2

3.1

~ 3

2.9

2.8

27
0 10 20 30 40 50 60 70 80 90 100

Angle (Wdcees)

Figure 8.8: Total energy expenditure per
unit area for the whole circle when it is
drained by OCNs constructed in sectors with
different central angles.
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8.2.2. Allocation of Space by Other Models

Now we can compare the optimal allocation of areas in

six sub-units around a central outlet with the way other

network models divide space in a similar domain. we will

examine three different models in this section: A DLA-like

model, the Slope-Area model and a random network growth

model. A method to count major drainage units is developed

for the last two models. We will also discuss a related

small-scale erosion experiment.

Let us first consider a DLA-like model proposed by

Meakin (1991b) In this river network evolution model the

elevation field z obeys the Laplace equation and the rate of

river growth is proportional to the local gradient of z. The

model is equivalent to a diffusion-limited aggregation model.

A related invasion percolation model has been presented by

Stark (1991) as another possibility of river network growth.

In DLA studies, it has been shown using wavelet

transforms (Arneodo et al, 1992) and stability considerations

(Procaccia and Zeitak (1988), Derrida and Hakim (1992)) that

there exists a preference for a pentagonal symmetry in DLA at

the macroscopic level. This means that five major branches

are preferred in the organization of the structure around the

central seed. Originally, it was this result that motivated

our interest in the allocation of space in river networks.
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Figure 8.9: Example of a network simulatedwith the Slope-Area model around a central
outlet.

The second model we will consider is the Slope-Area

model. Figure 8.9 shows an example of a drainage network

grown in a 500x500 domain with the outlet in the center. In

order to make a reasonable and unbiased comparison with the

results from the previous section, it is necessary to devise

a quantitative criterion to count the number of sub-basins

around the outlet. There are two extreme cases, illustrated

in Figure 8.10: a spiral pattern with a single channel, and

an explosion pattern with every node going directly into the

outlet without aggregation (Stevens (1974), Rodriguez-Iturbe

et al. (1992b)).

129

I ___

I -

--



Figure 8.10: Two extreme cases (spiral and
explosion patterns) of networks around a
central outlet (from Stevens, 1974).

There are two key parameters in the counting procedure

to identify structurally different networks: first, the

distance from the outlet at which counting should be done and

second, the value of contributing area to be used to

distinguish the main channels. It is important not to do the

counting too near the outlet because of grid effects but not

too far away either to avoid counting channels that may merge

downstream before entering the outlet. Grid effects occur

when the counting is done at a small distance from the outlet

because the small number of nodes around the outlet can bias

the results. Figure 8.11 shows, for a simulation in a domain

with 104 pixels, the contributing area of nodes located at

different distances from the outlet. At distance 0, there is

only one node with area 104 (the outlet itself). As we move

away from the outlet, some nodes have large areas and some

have very small areas (the latter overlap each other on the
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Figure 8.11: Contributing area of nodes
located at different distances from the outlet
for a network grown in a 104-pixel domain with
the Slope-Area model. This diagram illustrates
the way in which major independent drainage
sub-units are counted.

of 4 pixels is a reasonable value for the counting. Nodes at

distances 1 or 2 are affected too much by grid effects and at

distances 6 or higher it is all too frequent to have major

channels which merge downstream before entering the outlet.

The threshold value of contributing area used to

identify pixels as channels in this work has been chosen as

the ratio between the total area (104 pixels in our

simulations) and the number of channels that would appear in

the explosion case at distance 4 (which in a square grid are

8,4=32). In this way, we can be sure to count the channels

even in the extreme explosion case.

One hundred simulations were performed with the Slope-

Area model and the number of branches or major drainage sub-

basins were counted using the above procedure. Figure 8.12

131



35

30

25

20

u.

15

10

5

0 2 4 6 8 10 12

Nwlber of Branchb

Figure 8.12: Histogram of the number of
drainage sub-units for 100 simulations of the
Slope-Area model. The histogram shows a peak
at a value of six sub-basins.

shows the distribution of the number of drainage sub-units.

The histogram shows a peak at six sub-basins which parallels

the result obtained from optimality principles. Furthermore,

notice that the histogram is concentrated around 6 even

though the two extreme cases (spiral and explosion) have 1

and 32 branches. Sensitivity studies on the values of the two

parameters of the counting procedure (distance from the

outlet and threshold are to identify main branches) show that

the peak of the histogram moves at most between five and

seven with reasonable values of the parameters.

The third model we will examine is a random network

growth model. The structure is grown around a central seed

and at each iteration a new layer of nodes surrounding the

structure is added. The flow direction at each newly added

node is chosen at random as long as it joins another node
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already in the structure. The drainage directions allow the

calculation of contributing areas and the determination of

the network. This random model is similar in spirit to the

Eden model (Vicsek (1989), Meakin (1991)) and the classical

random network model by Howard (1971). If the counting

procedure used for the Slope-Area networks is applied to the

random networks, we obtain the histogram of the number of

main branches for 100 simulations is shown in Figure 8.13.

There is a clear peak at four branches. Varying the

parameters of the counting procedure will not move the peak

above five branches. It would be interesting to analyze the

behavior of the modified version of Howard's model where

junction angles are moved to satisfy a minimum-energy

expenditure criterion (Howard, 1990) to see the effect of

local optimization rules on the allocation of space.

I

0 1 Z 3 4 5
Numr O B.ar

Figure 8.13: Histogram of the number of
drainage sub-units for 100 repetitions of the
random network growth model .
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We have shown in this section the way in which three

different models allocate space among independent sub-units

to drain a circle area towards a central outlet. A DLA-like

model used five major sub-basins, the Slope-Area model used

six and a random network growth model used four. These

results can be compared to that of Section 8.2.1 where the

drainage of a circle by OCNs grown in sectors was optimal

when six sub-units were used.

Finally, we would like to include some preliminary

results from a related small-scale erosion experiment

developed in collaboration with G. Moglen and L. Reingold

(unpublished results). The original purpose of this

experiment was to study the formation and growth of the

drainage structure that develops to do the work of delivering

water and sediment out of a sandbox. A similar sanbox

experiment was performed by Wittman et al. (1991). Many

erosion experiments have been reviewed by Schumm et al.

(1987) but they do not have the domain configuration used in

this section.

The sandbox in our experiment had an outlet in the

center through which water and sand were drained. Water was

poured on the outer boundary through a porous tube. The

outlet was closed until the sand in the box was saturated.

Once the outlet was opened, water and sand began to flow

towards the center and a drainage structure formed. We

counted the number of sub-basins formed around the center:
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out of 5 experiments, 3 of them had 6 independent drainage

sub-units, 1 had 5 and 1 had 7. Although there are many

differences between this experiment and the formation and

growth of actual river basins, including for example the way

water comes into the system (from the boundary instead of

uniform rainfall), scale issues (slopes, relief, droplet

size, etc.) and channel stability differences, it is

interesting nevertheless to observe some features of

competition and probably optimal energy dissipation on such a

small scale sharing the behavior observed in landscape

evolution models.

8.3. Summary

We have examined in this chapter the implications of the

principles of energy expenditure on the shape of river

basins, specifically on the problems of elongation of basins

with increasing size and the optimal allocation of space

around a center outlet.

The elongation of basins, described by Hack's

relationship was reproduced by Optimal Channel Networks with

the appropriate scaling exponent. A discussion on the

explanation of Hack's law based on the fractal character of

rivers was presented.

It was shown also that the optimal way to distribute

space around a central outlet is by using six independent

drainage units. This behavior was reproduced by the Slope-
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Area model but not by a random network model nor a DLA-like

model. A related small-scale erosion experiment also showed

six branches in its drainage structure.

Despite the fact that Mandelbrot's argument of the

fractality of river courses as the cause of Hack's law was

not valid because of the lack of geometrical similarity of

river shapes, it is clear that watercourses do not follow a

straight line. The next chapter uses new tools to better

characterize the tortuosity of individual channel and basin

boundaries and also to relate it to physical parameters.
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Chapter 9

Self-Affinity of River Courses

and Basin Boundaries

9.1. Introduction

The extraordinary geometrical complexity of river

systems has been studied with success in numerous papers

using the tools of fractal geometry. The concept of fractals

was introduced by Mandelbrot (1977) to study irregular shapes

with similar geometric characteristics over a range of

scales. Fractals are objects in which properly scaled

portions are identical (in a deterministic or statistical

sense) to the original object. A descriptor of this scaling

behavior is the fractal dimension. Common examples of

fractals include the shore of continents, the shape of

clouds, the profile of mountains and river systems (Peitgen

and Saupe (1988), Meakin (1991b)). In river systems the

fractal scaling can be observed at two different levels,

either at the scale of organization of the river network

structure or at the individual wandering watercourse (Nikora,

1991). Fractal properties of river systems at both levels

have been analyzed by Tarboton et al. (1988), Hjelmfelt

(1988), La Barbera and Rosso (1989), Snow (1989) and Nikora

(1991) among others. These studies have described the fractal

scaling of the geometrical properties of river systems and
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have calculated the corresponding fractal dimensions. All of

these studies have considered rivers as self-similar fractals

based on the calculation of the box-counting dimension.

There are however, two types of fractal objects: self-

similar and self-affine. The difference between them resides

in whether the appropriate rescaling of the parts to obtain

the original object is isotropic or anisotropic (i.e. the

amplification scales are not the same in different

directions). Two classical examples of self-similar and self-

affine fractals are coastlines and mountains. In coastlines,

the small peninsulas and bays at the beach scale are

indistinguishable from the peninsulas and gulfs at the

continental scale when amplified isotropically, i.e., they

are self-similar fractals. Mountains, on the other hand, look

very flat when viewed at planetary scale but very rough when

viewed at human scale. However, if different scales are used

for the horizontal and vertical amplifications, the rescaled

mountain profiles look the same, i.e., they are self-affine

fractals. So, in order to characterize the scaling invariance

of 2-D self-similar fractals, one needs a single number, the

fractal dimension, while for self-affine fractals, the

anisotropic scaling requires two numbers (Matsushita and

Ouchi, 1989).

The purpose of this chapter is to investigate the

scaling properties of individual watercourses and basin

boundaries and to study whether these objects are self-affine

138



or self-similar fractals. Similar structures in other fields

have shown self-affine scaling, for example directed polymers

(Kardar and Zhang (1987), Perlsman and Schwartz (1992)) and

the boundary of growing interfaces (Kardar et al. (1986),

Meakin (1989)). We will also use the Slope-Area model to

analyze the influence of the vertical dimension and the

dynamical evolution of the landscape on the scaling behavior

of the planar form of channels.

Section 9.2 describes the method used to analyze the

scaling of river structures and to discern its self-affine or

self-similar character. Section 9.3 presents the scaling

analysis of channels extracted from digital elevation maps.

Section 9.4 studies the channels of simulated landscapes

under different conditions. Section 9.5 looks at the scaling

behavior of catchment boundaries and compares it to the

results of Section 9.3. Finally, Section 9.6 presents two

simple stochastic models of watercourses that graphically

illustrate the difference between self-affine and self-

similar fractals.

9.2. Self-Affine Scaling of Curves

As explained in the introduction, self-affine objects

are invariant under anisotropic rescaling. The most commonly

studied self-affine objects are single-valued functions which

hold:

F(x) = b-HF(bx) (9.1)
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with H>O (Vicsek, 1989). If we take the graph of this

function and rescale the x-axis by a factor 1/b and the y-

axis by a factor 1/bH we obtain the original graph.

A well-known function that behaves in a similar fashion

to (9.1) is the trace of a fractional Brownian motion (fBm).

This process describes the movement of a particle such that

the increments of its position scale with time as:

XH(t) - XH(O) - tH (9.2)

Notice that XH(t) and b-HxH(bt) are identical in distribution

(Feder, 1988). fBm has been used in hydrology to simulate

series that reproduce the Hurst phenomenon (Mandelbrot and

Van Ness (1968), Mandelbrot and Wallis (1968)). Extensions to

surfaces have been used to simulate mountains and clouds

(Peitgen and Saupe, 1988).

The trace of a fBm is a self-affine object because the

scaling necessary to obtain the original distribution is

different in the horizontal and the vertical axis. Matsushita

and Ouchi (1989) have developed an algorithm to study the

self-affinity of curves which are not necessarily uni-valued

functions as are the examples presented so far.

Let us consider a curve in which the smallest length

scale is 1 (defined as unit length). In the case of a digital

elevation map, 1 is the pixel size. Now, we can take two

arbitrary points Pi and Pi+N separated by N units (i.e. by a
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distance Nl) along the curve, and calculate the variance of

the x and y-coordinates of the points between Pi and Pi+N:

i+N i+N
X2 .j -i i,i+N X )2 2 (Yi, i+N ( )).

N N

where:

i+N i+N
Pi, i+N(X) = 1 Xj and ii,ji+N(Y) =  YJ (9.4)

N NN =i. N=i

By repeating the calculations for many pairs of points

at different distances N, we can find the scaling behavior

of:

X2 - N2% and Y2 _ N2y (9.5)

If the scaling exponents ux and uy in (9.5) are the same, we

have a self-similar fractal with fractal dimension D=1/Ux

=1/Vy . If Ux and uy are different, then we have a self-affine

fractal because the scaling behavior is anisotropic

(Matsushita and Ouchi (1989), Matsushita et al. (1991)).

Methods commonly used to measure fractal dimensions, like box

counting, are not able to identify this kind of anisotropy.

To illustrate the procedure described, let us use a

well-known example of a self-affine object: the trace of a

simple Brownian motion (which is a fBm with Hurst coefficient

H=0.5). A simplified version was used by Scheidegger (1967)

to simulate river courses. In this case, at each timestep the

particle moves one unit up or down with equal probability.
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Figure 9.1 shows a realization of such motion. Figure 9.2

shows the scaling of X2 and Y2 versus N. The slopes of the

lines give, from equation (9.5), ux =1.0 and 1y =0.5 as

predicted by the theory of fBm (Kondoh et al, 1987). What

these exponents indicate is that a rescaling of the

horizontal axis by a factor 1/b needs a rescaling of the

vertical axis by a factor 1/bl/ 2 to leave the distribution

invariant in a statistical sense.

9.3. Self-Affine Scaling of Watercourses

In this section we will study the scaling properties of

the main channel in a river basin using the procedure of

Matsushita and Ouchi (1989) described in Section 9.2. The

main channel is identified by beginning with the outlet and

travelling upwards. At each bifurcation the path with largest

contributing area was followed. Figure 9.3 shows an example

of a river basin, its boundary and its main channel.

There are two points to be noticed when analyzing the

scaling properties of channels. First, in the case of the

Brownian motion shown in Figure 9.1, the preferential axis of

the walker's movement was the horizontal. This is not the

case in rivers where the overall flow orientation may occur

in any direction. Therefore, it is necessary to repeat the

analysis of Section 9.2 using different orientations to find

the principal axis of anisotropy.
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Figure 9.2: Self-affine scaling of the trace
of a Brownian motion. (o) represents the
scaling of X2 and (+) the scaling of Y2 ,
calculated using Equation (9.3). The slopes of
the fitted lines give ux=1.0 and uy=0.5.
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Second, in order not to over-estimate the scaling and

roughness of self-affine curves, linear trends have to be

taken away (Malinvernc, 1990). The method of Matsushita and

Ouchi (1989) handles a linear trend well as long as this

trend does not change. It is not uncommon to observe in

actual rivers an overall trend but sometimes such a trend

shifts near the top of the basin as tributaries of similar

size merge to form a larger channel. Figure 9.3 shows with a

line across the main channel the point where the shift in

direction occurs for that particular basin. In this section

of the paper we will do the scaling analysis excluding the

small portion at the top. In Section 9.5 we will describe a

more elaborate method for detrending the entire river. Both

methods give very similar results.

Figure 9.3: Boundary and main channel of the
East Delaware river basin. The small line
across the main channel indicates the change
in trend.
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Now we can proceed to find the scaling of X2 and Y2 for

different axis orientations. Figure 9.4 shows the log-log

scaling of Y2 versus N for different axes oriented at every

150. If the watercourse were a self-similar object, the

slopes would be the same for different orientations. However,

this is not the case and Figure 9.5 presents the scaling of

X2 and Y2 for the principal anisotropy axes. The slopes give

ux=1.0 and uy =0.75 showing that indeed we have a self-affine

object. The principal anisotropy axes are located, not

surprisingly, along the overall direction of the channel and

perpendicular to it.

Table 9.1 (Ijjasz-Vasquez et al, 1993c) shows the

scaling exponents of the main channels of nine different

basins located throughout the US. In all cases we have found

self-affine scaling with ux=1.0 and uy=0.75. Given that these

ILV

103
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10'

100

10-i
100 10' 102 103

N
Figure 9.4: Scaling of Y2 of main channel of
the East Delaware river basin for different
axis orientations every 15'.
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rivers are located in regions where the relief can be

appropriately measured with DEMs, it is possible that in

regions where meandering is a dominant feature of the river,

the scaling parameters will change. Related work on fractal

dimensions of meandering rivers has been presented by Nikora

(1991) and Snow (1989). Different tools to identify the river

courses were used in these cases.

10'

10-1
KC

N
Figure 9.5: Scaling of X2 (o) and Y2 (+)
along the principal anisotropy axis for the
main channel of East Delaware river basin. The
slopes of the fitted scaling lines give
ix=0.99 and uy=0.79 for this basin.

Basin Dx Dy

Beaver Creek 1.00 0.75
Buck Creek 0.98 0.73
Big Creek 0.99 0.71
East Delaware River 0.99 0.79
Schoharie Creek Headwaters 0.97 0.75
Racoon Creek 1.00 0.76
Schoharie Creek 1.00 0.76
St. Joe River 1.00 0.76

Table 9.1: Self-affine scaling of the main
channel for different basins across the U.S.
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9.4. Self-Affine Scaling of Channels in Simulated

Landscapes

In the Slope-Area model, the driving mechanism is the

relaxation of slopes to hold the scaling relationship between

slopes and areas:

S - A-8  (9.6)

The scaling exponent 0 is a measure of the concavity of

rivers. However, 0 affects not only the vertical profile of

channels in the model but also the overall appearance and

tortuosity of the simulated networks. Figure 9.6 shows four

simulated networks with 0=0.01, 0.25, 0.5 and 2.0

respectively. The outlet is located at the lower left-hand

corner. The tortuosity of the watercourses increases with the

value of 0. Notice that 0 is the parameter that connects the

third dimension of the landscape with the aggregation pattern

of the network and the planar form of the watercourse.

It is possible to use the procedure described in Section

9.2 to study the scaling properties of the main channels from

the simulated basins with different values of 0. Figure 9.7

shows the values of uy versus 0 (the value of Ux is around 1.0

for all cases). The value of uy for the simulated basin with

8=0.5 matches well the value of 0.75 found for actual rivers

in Section 9.3. This result illustrates the link between the

planar form of watercourses and the dynamics of the landscape

evolution. The scaling of actual rivers is reproduced only
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Figure 9.6: Simulated networks with the
slope-area model. Values of 6 are 0.01, 0.25,

0.50 and 2.00 respectively. The networks are

drawn with a threshold value of area of 150

pixels.
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when the appropriate exponent 0=0.5 is used in the model.

Notice again that this value of 6 is the one derived from the

OCN principles analyzed in Chapter 6 and is the value

observed in actual basins (Tarboton et al, 1989a).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 9.7: Values of my for networks
simulated with the Slope-Area model using
different values of the scaling parameter 8.

9.5. Self-Affine Scaling of Basin Boundaries

It has been suggested that basin boundaries and river

courses are in essence mirror images of each other. Also, it

has been shown that, under certain general assumptions, the

topological characteristics of the channel and ridge networks

are identical (Werner, 1991). It is of interest then, to

compare the scaling characteristics of basin boundaries and

river courses.

Numerous models of growing boundaries have been shown to

have self-affine behavior. Examples include the Eden model
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(Family and Vicsek, 1985), ballistic deposition models

(Meakin, 1989) and even experimental ink fronts on sheets of

paper (Buldyrev et al, 1992). In the study of interfaces that

grow in the vertical direction starting from a horizontal

line as initial condition, the scaling of interest

corresponds to the behavior of the height-height correlation

function of the "surface width" (where height is the

elevation of the surface at each point and the correlation

function is defined in a way directly analogous to equation

(9.3), for more details see Vicsek (1989)). In all these

experiments the scaling studies have been performed in a

strip geometry where the boundary has a clear anisotropy

axis.

In this section we will study the scaling behavior of

the tortuosity of basin boundaries normal to the basin

domain. An example of a basin boundary was shown in Figure

9.3. In previous studies of growing interfaces, the direction

normal to the boundary is clearly defined. In basin

boundaries, on the other hand, in order to perform the

analysis we have divided the boundary into sections (of 200

pixels in length for the analysis to follow, although similar

results were obtained using sections of different lengths).

The individual linear trends were taken out from each of

these sections and a single detrended curve was obtained, to

which the self-affinity analysis was applied. Figure 9.8

shows, with circles, the scaling behavior of the oscillations

normal to the basin domain along the boundary for the basin
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shown in Figure 9.3. The slope gives a value of ^y=0.75,

showing that indeed the self-affine scaling of boundaries and

channels is similar.

I;

=

+
I-

0

0

N

Figure 9.8: (o) Scaling of Y2 for detrended
boundary of the East Delaware river basin
(uy=0.7 5 ). (+) Scaling of Y2 for detrended
main channel of the same basin (uy=0.74).

we have also presented in Figure 9.8 the results of the

analysis for the entire watercourse of Figure 9.3 after

detrending (without taking away the upper portion as in

Section 9.3). The resulting slope is similar to what was

found in Section 9.3. Table 9.2 (Ijjasz-Vasquez et al, 1993c)

presents the values of 'y for the main channels and the

boundaries of the nine basins analyzed.

The results in Table 9.2 indicate that the self-affine

scaling of rivers and boundaries is in fact very similar.

However, visually, boundaries seem to have larger

oscillations than channels and one would tend to say that
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Bx Boundary Ux Main channel

Beaver Creek 0.75 0.77
Buck Creek 0.74 0.77
Big Creek 0.79 0.74
East Delaware River 0.75 0.74
Schoharie Creek Headwaters 0.79 0.72
Racoon Creek 0.74 0.77
Schoharie Creek 0.76 0.75
St. Joe River 0.75 0.79

Table 9.2: Self-affine scaling of detrended
main channels and boundaries for different
basins.

they look "rougher" (see Figure 9.3). We can indeed

appreciate how this effect manifests itself in Figure 9.8.

Although the slopes are similar for the boundary and the main

channel, notice that the scaling of the latter breaks at a

smaller distance N between points along the curve. This

behavior is observed for all the basins analyzed. What this

means is that even if we take points further and further

apart along the channel, the variance does not increase

because oscillations of larger magnitude do not appear. On

the other hand, such oscillations do appear on the boundary

of the basin and the linear portion of the scaling is more

extended in this case. Furthermore, the scaling curve for

boundaries is located above the curve for channels,

indicating that the variance for the same distance between

points is larger for boundaries than for channels, even if

the self-affine scaling slope is the same.
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We have shown that basin boundaries have similar self-

affine characteristics to watercourses but the linear log-log

scaling is more extended in boundaries as a result of self-

affine oscillations of larger magnitude. So, although the

scaling properties are similar, boundaries and rivers cannot

be considered mirror images of each other in their planar

configurations.

9.6. Self-Affine Scaling of Two Random Walker Models

of River Courses

If rivers are self-affine fractals, a natural question

is how would a self-similar river look? In this section we

present two simple Markovian models that try to reproduce

river courses with different levels of complexity and as a

consequence different levels of success. Let us consider a

channel extracted from a digital elevation map as shown in

Figure 9.9. We can simulate this curve with a random walker

model. Numerous models of this type have been developed to

simulate rivers (Leopold and Maddock (1953), Scheidegger

(1961), Howard (1971), and Meakin et al. (1991) to mention

only a few).

In our model the walking particle chooses at each pixel

to continue with its previous flow direction with probability

p or change direction with probability (1-p). If the walker

decides to change, it will do so in the same direction (right

or left) it had turned the last time in the course of its

trajectory, with probability q and in the opposite direction
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Figure 9.9: Main channel of Schoharie Creek
Headwaters river basin.

with probability (1-q). Figure 9.10 shows a simulation with

parameter values p=0.7 (which means that the channel prefers

to stay in the direction it is already flowing in) and q=0.15

(which indicates that the channel has an overall sense of

direction and if it deviates from such a direction, it has a

tendency to return to it). These parameters were calculated

from the main channel of Schoharie Creek Headwaters shown in

Figure 9.9. We have not included self-avoiding conditions for

the sake of simplicity of the model, but these could be added

without any problem.

We can apply the method used in this chapter to analyze

the scaling behavior of the simulated river. Figure 9.11

shows the scaling in different orientations. In this case we

have found ux=Uy=0. 885. According to the theory, 1/D=0.885,

i.e. D=1.13. This value of the fractal dimension matches what

has been measured in actual rivers using the box-counting
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Figure 9.10: Simulated watercourse with

first stochastic model. The parameters used in

this simulation corresponds to the river shown

in Figure 9.9.

Figure 9.11: Scaling of Y2 for the simulated

channel shown in Figure 9.10. The common

scaling slope for different orientations of

the axis shows the self-similar character of

the curve.
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method (Tarboton et al, 1989). Having ux=uy implies that we

are looking at a self-similar fractal. It is easy in fact to

appreciate that the tortuosity in Figure 9.10 is isotropic in

every direction, unlike actual rivers (compare to Figure

9.9).

The stochastic model can be improved to better reproduce

river courses. Our second model works in the following way:

flow directions in the grid are indexed i=1,2,...,8. At each

pixel, the walker has a probability Pj of changing direction

given that it has been flowing in direction j. If the river

chooses to shift directions, a matrix Pijk gives the

probability that the walker changes to direction i given that

its current flow direction is j and its last flow direction

(without taking into consideration straight segments) was k.

Using the probabilities calculated for the actual river in

Figure 9.9, we have simulated the river in Figure 9.12. This

simulation seems to be a better representation of the actual

river. Figure 9.13 shows the scaling in the principal

anisotropy axis. The self-affine scaling goes as ox=1.0 and

uy=0. 7 1 which are similar to the values found in actual

rivers (although the value of my is a little low). Notice how

in this case the self-affine river appears to be much flatter

and oscillations are anisotropically distributed as opposed

to the self-similar model of Figure 9.10 where the tortuosity

of the river is isotropic in every direction.
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Figure 9.12: Simulated watercourse with

second stochastic model. The parameters used
in this simulation correspond to the river
shown in Figure 9.9.
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Figure 9.13: Scaling of X2 and Y2 along the

principal anisotropy axis for the simulated

channel shown in figure 9.12. The fitted

scaling lines gives Ux=1.0 and uy=0.71.
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9.7. Summary

In this chapter we studied the scaling properties of the

courses of main channels and basin divides identified with

the aid of digital elevation maps. Watercourses show

anisotropic scaling behavior characteristic of self-affine

fractals. The scaling behavior is similar across all the

basins analyzed with anisotropic scaling exponents ux=1.0 and

uy=0.75.

The same analysis was performed on networks simulated

with the Slope-Area model using different values of the

scaling parameter 6. The variation in 6 affects not only the

concavity of the river profile but also the overall structure

and tortuosity of the network. The measured self-affine

scaling for actual rivers is reproduced only when the

appropriate value of 6=0.5 is used.

Basin boundaries have been shown to possess self-affine

characteristics similar to those of channels but with a

larger scaling range. Therefore, although their scaling

behavior is similar, rivers and boundaries cannot be

considered mirror images of each other.

Finally, we have also presented two simple stochastic

models of river courses that graphically illustrate the

difference between self-similar and self-affine objects.

The analysis in this chapter has concentrated on the

scaling properties of river courses and basin boundaries as
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geometrical objects. However, hydrologists are also

interested in the spatial distribution of variables like

flows, slopes, energy, etc. The next chapter will examine the

spatial distribution of these variables on river basins.
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Chapter 10

The Multifractal Characterization of River

Basins

10.1. Introduction

The spatial distribution of variables in river basins

can have large variations. Figure 10.1 shows, as an example,

the contributing areas of the tributaries to the main channel

of the Brushy Creek basin. Notice the four orders of

magnitude of variability in the vertical axis. This large

variation had already manifested in the extended range of the

power-law cumulative distribution of mass and energy studied

in Chapter 4. However, it is also interesting to study not

only the distribution of values but also the spatial

distribution of these variables and their scaling properties.

The goal is to present an integrated picture of the basin,

not only geometrically, as was done in Chapter 9, but also

through the spatial distribution of mass, energy and slopes.

The multifractal formalism has shown great promise in

the understanding of problems similar to the one we are

interested in this chapter, especially because of the large

spatial variability of the properties to be examined in the

basin. The first characterization of multifractals was

introduced by Mandelbrot (1982, pp.375-377) and the formalism

was developed by Frisch and Parisi (1985), and Halsey et al.
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Figure 10.1: Sizes of tributaries draining
into main channel of the Brushy Creek basin.

(1986). These ideas have been applied to a number of

different phenomena that range from the study of energy

dissipation in fully developed turbulence (Menevau and

Sreenivasan (1987), Sreenivasan and Menevau (1988),

Sreenivasan et al. (1989), Prasad and Sreenivasan (1990)) to

the visit frequency of points in chaotic attractors (Halsey

et al. (1986), McCauley (1990)), to the growing probability

of sites in diffusion limited aggregation (Mandelbrot and

Evertsz, 1990), to numerous geophysical processes (Schertzer

and Lovejoy, 1991). Good reviews can be found in Paladin and

Vulpiani (1987), Mandelbrot (1989) and McCauley (1990).

Section 10.2 presents the general framework of the

multifractal formalism. Section 10.3 reviews the mathematical

derivation of the method for numerical calculation of the

multifractal spectrum. Section 10.4 presents the results of
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the multifractal formalism applied to four different

variables in nine basins. The first of the variables is the

energy expenditure defined as the product of discharge and

elevation gradient. The second field of interest is the

channel initiation function, a component of the SIBERIA model

of basin evolution (Willgoose et al, 1991a-d). This function

has the general form JQmSn where Q and S are discharge and

slope respectively, and f, m and n are constants. This

function models phenomena such as surface velocity, shear

stress and others that promote channel formation. We will

examine this function in more detail in Chapter 11. Finally,

discharges and slopes are not only the fundamental components

of both energy expenditure and the channel initiation

function, but are also themselves key descriptors of the

hydrologic response and geometry of the basin. They will also

be studied independently within the framework of the

multifractal formalism.

10.2. Theoretical Framework

The distribution and spatial organization of a variable

of interest (for example, energy expenditure or mass) over a

certain set (a river basin) can be studied with the aid of

the multifractal formalism. A grid with boxes of size r is

superimposed over the set. Every grid box is assigned the

value of the integral of the variable over the entire box.

This value is properly normalized by the integral of the

variable over the entire region. The result obtained in a box
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of size r around point x is denoted by Pr(X). The value of

Pr(x) measures what proportion of the variable under study is

enclosed by the box of size r around x (for example, how much

mass can be found in that box). The normalization makes it

possible to see Pr(x) also as a probability measure.

The value of Pr(x) depends not only on the location of

the box but also on its size r. For example, if a point x is

surrounded by points with larger values of the variable then

Pr(x) will increase with r as shown in Figure 10.2.a. Figure

10.2.b shows the inverse case where x is surrounded by

smaller values. The behavior of Pr(x) with r is directly

related to the organization of the variable of interest

around x and this behavior can be described by:

Pr(x) - (r/L)a (10.1)

where L is the domain size and the scaling exponent a is

usually called in the literature the local singularity

strength (Halsey et al, 1986). The case shown in Figure

10.2.a has a large value of a while the case in Figure 10.2.b

has a small value of a.

Any nontrivial pattern of organization of the measure

implies that the growth of Pr(x) on r will depend on the

point around which the grid box is centered. Different points

may have different values of a. In order to complete the

description of the spatial organization of the measure, it is

necessary to count the number Nr(x) of grid boxes with common
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Figure 10.2: Examples of points with (a)
large values of a and (b) small values of a.
Diagrams of the values of the variable around
point x and the increase of Pr(x) with r are
presented in each case.

values of a. These grid boxes are mixed and interwoven inside

the domain of study. Their number clearly depends on the size

r of the grid boxes. This dependence can be described as:

Nr(x) - (r/L)-f(a) (10.2)

f(a) can be seen as the fractal dimension of the set of boxes

with the same a-value, i.e., f(a) measures not only the

proportion of points with similar characteristics around them

but also the degree of clustering of these points. The curve

f(a) vs. a is called the multifractal spectrum (Halsey et al,

1986). This curve provides a synthesized picture of the full

complexity of the scaling structure. In general, the variable

a takes on values in a range [amin, Cmax] which corresponds to

the scaling of extreme cases similar to the ones shown in
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Figure 10.2. f(a) is usually a unimodal function (Paladin and

Vulpiani (1987), Tel (1988)).

Clearly not every spatial distribution of a variable has

a multifractal spectrum. For example, if the multifractal

spectrum of a random field is calculated, it would be found

that Pr(x) increases as r2 with the size of the grid box r for

every point x. Therefore, as every grid box has the same

value of a, Nr(x) is equal to the total number of boxes and

f(a)=2. The result of the analysis is not a curve as in

multifractal measures but a single point (a=2, f(a)=2).

10.3. Numerical Calculation of the Multifractal

Spectrum

The numerical calculation of the multifractal spectrum

based on Equations (10.1) and (10.2) requires large amounts

of data and is affected by prelogarithmic factors that depend

on the grid size r (Menevau and Sreenivasan, 1989). However,

there is a different way of calculating the multifractal

spectrum. The basic idea is to separately emphasize regions

where the intensity of the variable is high (i.e., a is

small) and regions where the intensity of the variable is low

(i.e., a is large). This emphasis can be done by studying the

cumulants of order q of Pr(x) defined as :

Cq(r) = Ii [Pr(xi)] q (10.3)
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where the centers xi of the boxes have been indexed. It is

possible to relate the scaling behavior of Cq(r) with r for

different values of q with the multifractal spectrum a vs.

f(a). This section will describe the derivation of this

relationship following Halsey et al. (1986), Tel (1988) and

Feder (1988).

Let us define the function T(q) as the exponent at which

the cumulant Cq(r) scales with the box size r:

Cq(r) - (r/L)t(q) (10.4)

The exponents t(q) are related to the set of generalized

dimensions Dq defined in Grassberger and Procaccia (1983a,b):

Dq = T(q)/(q-1) (10.5)

For the case q=0, Co(r) measures how many boxes of size r are

occupied by the measure and Do is the fractal dimension of

the support set where the variable of interest is studied (if

the entire basin is used, then DO=2). There is a

discontinuity in the definition of D1 but taking the limit

q-41 leads to:

-_i Pr(xi) (InPr(xi)) - D1 In(1/r) (10.6)

Thus D1 measures how the information (represented as usual by

IPlnP) required to describe the measure scales with In(1/r).

A different interpretation of the exponents Dq is presented in

Mandelbrot (1988). If the values of Dq are the same for every
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value of q, the measure is said to be simple scaling,

otherwise it is multiscaling.

It is possible to relate the exponents T(q), a and f(a).

Following Tel (1988) and Feder (1988), the summation in

Equation (10.3) can be replaced by an integral when r-+0. The

value of Pr(x) can be replaced using Equation (10.1) and the

integral over all boxes can be replaced using Equation (10.2)

to integrate over all possible values of a:

Cq(r) - J[PXi)] - f ( () qada (10.7)

Since r is very small, the value of the integral is dominated

by the largest value of the integrand. This largest value

occurs when qa-f(a) is minimized, i.e. when:

df(a)/da = q (10.8)

Therefore we have:

Cq(r) - rqx(q)-f(a(q)) (10.9)

Notice that the values of a(q) and f(a(q)) in the

exponent of r are exactly those that minimize the expression

q(-f(a). Using Equations (10.4) and (10.9) results in:

t(q) = qa(q) - f(a(q)) (10.10)

Taking the derivative of T(q) with respect to q and using

Equation (10.8) we obtain:
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dt(q) = X + qed_ df = a
dq dq dq

(10.11)

Equation (10.11) indicates that a is the slope of the

tangent to the curve T(q) vs. q. Equation (10.10) shows that

f(a) is the intercept of that tangent with the T(q) axis.

Inversely, Equation (10.8) indicates that the slope of a

tangent to the curve a vs. f(a) at the point (a(q),f(a(q)))

has the value q, and from Equation (10.10) -t(q) is the

intercept of this tangent with the f(cc) axis. Figure 10.3

shows graphically these relationships. It is important to

notice also that the right-hand side of the multifractal

spectrum corresponds to values of a(q) and f(a(q)) with q<0

and the left-hand side to q>0. The maximum of the spectrum

corresponds to q=0.

If the measure under study is simple scaling, then all

the values of Dq for different q are the same, as was

previously stated. Therefore, by replacing (10.5) in (10.11)

f(a)

Do

f(a(q ))

-r(q)

a(q) a(O)

Figure 10.3: Diagram of
multifractal spectrum.

a typical
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it is possible to see that the values of a(q) are the same

for every q. Equation (10.10) then shows that f(a(q)) is also

constant. Simple scaling measures are another example of

spatial organization of variables where the curve a-f (a)

reduces to a single point.

Summarizing this method, the procedure to calculate the

multifractal spectrum has three steps: first, find the

cumulants Cq(r) using (10.3); second, find their scaling

behavior and calculate T(q); finally, use (10.10) and (10.11)

to find a and f(a) with the values of T(q). Other methods,

some of which were used to confirm the results presented in

this chapter, appear in Chhabra and Jensen (1989) and Menevau

and Sreenivasan (1989).

10.4. Multifractal Spectra in River Basins

10.4.1. Variables under Study

A number of different variables in several river basins

will be examined with the aid of the multifractal formalism.

These variables are calculated using topographic data from

digital elevation maps.

First, we will examine the energy expenditure Ei defined

as the product of contributing area (as a surrogate for

discharge) multiplied by slope. Second, we will examine the

channel initiation function ai which has the general form

ai=PAimSin. This function is an important component of the
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SIBERIA model of river basin evolution developed by Willgoose

et al. (1991a-d) and represents a variety of processes

related to channel initiation. Finally, as key components of

the two variables above, we will also examine slopes Si and

contributing areas Ai.

10.4.2. Multifractal Spectrum of Energy Expenditure

The calculation of the multifractal spectrum for each of

the variables of interest follows the procedure presented in

Section 10.3. The multifractal analysis of the energy

expenditure Ei is used as an example to illustrate each of

the steps. Figure 10.4 shows, for the Buck Creek basin in

California, the scaling behavior of the cumulants Cq(r) for

different values of q and increasing values of the box size

r. The slopes of the fitted lines (in log-log paper) for

every value of q in that figure correspond to T(q) (i.e., the

scaling behavior of Cq(r) with increasing r) as defined in

Equation (10.4). Figure 10.5 shows the functions T(q) and Dq

versus q. The value of Dq is calculated using (10.5). Using

Equations (10.10) and (10.11), a(q) and f(a(q)) can be

numerically calculated and the multifractal spectrum combines

these two functions in a single graph.

There are two issues that can be studied at this point

regarding the spatial distribution of energy expenditure.

First, whether this spatial distribution has a multifractal

spectrum; and, second, how the multifractal spectra of energy
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Figure 10.4: Scaling of Cq(r)
size r as calculated using
energy expenditure in the
The fitted slopes for
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Figure 10.5: T(q) and Dq versus q as computed
using Equations (10.4) and (10.5) for energy
expenditure in the Buck Creek basin.
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expenditure for different basins compare. With these two

problems in mind, the multifractal spectra of Ei were

calculated for nine different basins. The resulting spectra

are shown in Figure 10.6. We can see that the spatial

organization of energy expenditure has a multifractal

distribution which is common across different basins.

0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 10.6: Multifractal spectra of energy
expenditure Ei for different basins.

The f(a) vs a curves for energy expenditure point

towards a common structure and spatial organization of energy

dissipation in basins with very different characteristics.

The multifractal formalism shows the similarities behind the

complex organization of energy dissipation in river basins.

The appropriate identification of the multifractal

characteristics of energy expenditure in river basins as

shown in Figure 10.6 is a first step towards the development

of multiplicative cascade models of energy dissipation.
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Models of this kind have been constructed to reproduce the

flux of energy from larger to smaller scales in turbulent

flows (Menevau and Sreenivasan (1987) and Sreenivasan and

Menevau (1988)). In turbulence studies, once the multifractal

spectrum of energy dissipation is identified, it is possible

to extract the underlying multiplicative cascade process

which is generating the structure and the spatial

distribution of energy dissipation (Chhabra et al, 1989). In

geomorphology, the work of Newman and Turcotte (1990)

presents a cascade model of erosion to explain fractal

features of landscape and is a related approach to the

problem of energy dissipation in river basins.

It is clear from Figure 10.6 that the agreement in the

multifractal spectra of different basins is very good in the

left-hand side of the spectra but there is more variation in

the right-hand side. This behavior has also been observed in

turbulence studies (Menevau and Sreenivasan, 1987). The

problem resides in the presence of noise in the data. The

right-hand side of the spectra corresponds to cumulants with

large negative values of q (see Figure 10.3). Large values of

q<0 emphasize regions of low intensity of the variable where

the influence of noise is greater. Confidence intervals

(corresponding to the linear fitting to find T(q)) in Equation

(10.4) can be drawn around the spectra. These intervals widen

as one moves towards the right in the spectra. The different

spectra in Figure 10.6 are statistically indistinguishable.
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The domains used in the calculation of the spectra in

Figure 10.6 were the largest square boxes entirely contained

inside each basin. This was done in order to avoid irregular

shapes that, when divided by a regular grid, would leave some

grid boxes with a small portion inside the basin and a large

portion outside it. The value of a in these boxes would be

unrealistically low and the resulting spectra would not

measure the true spatial distribution of the variable under

study.

Finally, we also investigated the spatial organization

of energy expenditure in one-dimensional cuts with different

orientations in the basin. Figure 10.7 corresponds to the

multifractal spectra calculated along different cuts in the

Brushy Creek basin (AL). The different spectra are very

similar indicating that the multifractal properties of energy

expenditure have directional isotropy.

a
Figure 10.7: Multifractal spectra of energy
expenditure measured along 1-D cuts in
different directions for the Brushy Creek
basin.
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10.4.3. Multifractal Spectrum of the Channel

Initiation Function

The second variable to be studied is the channel

initiation function, an important component of the SIBERIA

model of river basin evolution (Willgoose et al, 1991a-d).

This model simulates the development of landscapes and river

networks as a result of sediment transport processes over

geologic time. The model incorporates different transport

phenomena for hillslopes and channels. The distinction

between channel and hillslope pixels is made through the

channel initiation function. A channel advances to any point

where the initiation function exceeds a threshold value.

The channel initiation function depends on discharge and

slope and has the general form pQmSn where 0, m and n are

constants. This function represents a number of physical

processes that are observed to trigger channelization in the

field, for example, overland flow velocity, bed shear stress

and groundwater sapping. Channel growth is encouraged if

discharges or slopes are increased. The channel initiation

function depends on the resistance of the catchment to

channelization. As usual, contributing area will be used as a

surrogate for discharge.

The channel initiation function is analogous to the

probability distribution of growth in DLA where high values

of the distribution promotes the growth of the DLA network

(Feder (1988), Vicsek (1989)). The structure is more likely
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to trap the random walkers at the tips. The growth

probability measure in DLA studies has been shown to be

multifractal (Vicsek (1989), Mandelbrot and Evertsz (1990))

and its multifractal spectrum provides an integrated

representation of the spatial fluctuations of the probability

of growth. This representation is useful in describing the

dynamics of the growth process and screening effects (Ball

and Blunt, 1990).

The multifractal properties of two different versions of

the channel initiation function were studied, one based on

the overland flow criteria where m=l and n=0.75 and the other

corresponding to overland shear stress where m=l and n=1.17

(Willgoose et al, 1991a-d). Figure 10.8 presents the mean

multifractal spectra for both cases along with the energy

expenditure case using all the basins. For every value of q,

( 0.5 : 1.5 2 2.5 3 3.5 4 4.5 5

a
Figure 10.8: Mean multifractal spectra of
energy expenditure (A*S) and two forms of the
channel initiation function (AmSn ) (based on
overland flow criteria n/m=0.75 (case 1) and
overland shear stress n/m=1.17 (case 2)).
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the mean values of W(q) and f(a(q)) across the nine basins

studied were used to draw the mean spectra shown in Figure

10.8.

Given that the dependence on discharge for the three

measures has the same exponent m=1, the regions of high

intensity in these cases will be very similar (i.e., major

channels where discharges are very large). On the other hand,

when discharges are small and gravity forces (and

consequently slopes) become important in the channelization

process, some differences, albeit small, appear, as can be

appreciated, on the right-hand side of the curves. We will

study in more detail the channel initiation function and its

possible use in the differentiation between channel and

hillslope nodes in DEMs in Chapter 11.

10.4.4. Multifractal Spectra of Slopes and Discharges

Given that discharges and slopes are the variables on

which the energy expenditure and the channel initiation

function are based, it is of interest to characterize

separately the distributions and properties of the measures

Si (normalized drops) and Ai (as a surrogate for discharges).

Multifractal spectra for different basins are presented in

Figures 10.9 and 10.10 for these two variables. Again, these

spectra are very similar for all basins.

The f(a) curves for Ei, Ai and Si are very different in

character even though the three variables are embedded in the
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Figure 10.9: Multifractal spectra of slopes
Si for different basins.
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a

Figure 10.10: Multif=actal spectra

contributing areas Ai for different basins.
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same domain. Figure 10.11 shows the mean spectra for each of

the three variables calculated, based on the results shown in

previous figures. The spectrum for Si is much narrower than

the one for Ei. A single point spectrum would indicate simple

scaling (as explained in Section 10.3) while a spectrum like

the one shown in Figure 10.9 corresponds to multiscaling.

This issue is related, although not directly applicable, to

recent work in scaling/multiscaling relationships between

link slopes and discharges (Tarboton et al. (1989a,b), Gupta

and Waymire (1989)).

" '.er r ..DcnulOure

o Siope

- Discharce

0.5 *1

0
0 0.5 1 1 2. 3 3.5 4 4.5 5

Figure 10.11: Mean multifractal spectra of
energy expenditure Ei, slope Si and
contributing area Ai.

The strange form of the spectrum for Ai in Figure 10.10

is a result of the spatial configuration of river basins.

Figure 10.12 shows the individual points (a(q),f(a(q))) for

different values of q in the multifractal spectrum for one of

the basins. There are two regions where the values of the
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f(a) spectrum for Ai concentrate: around (1, 1.1) for large

q>O and around (2,3) for large q<O.

0 0.5 1.5 2 .5 3 3.5 4 45 5

a

Figure 10.12: Multifractal spectrum of
contributing areas Ai for Brushy Creek basin.
The individual points (a(q),f(a(q))) are shown
for different values of q.

Regions with high values of Ai (i.e., large channels)

are emphasized in Cq(r) for large q>O. In the most frequent

case, boxes with large Ai will be surrounded by boxes with

small Ai (i.e., hillslopes) as appears in Figure 10.13.a. The

large values of Ai will be approximately equal and the

contribution of each box of size r to Cq(r) will grow as ra(q)

with c(q)=l. The box-counting fractal dimension of this set

of boxes is the same as the box-counting fractal dimension of

rivers which has been shown to be around 1.1 (Tarboton et al,

1988).

The regions that are emphasized for large q<O correspond

to hillslopes near the upper regions of the basin where Ai is
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Figure 10.13: Regions with high values of a
(large channels) and low values of a
(hillslopes) for contributing area.

small. These concentrate on the right-most point (2,3) in the

spectrum. In general, these regions can be idealized as

appears in Figure 10.13.b. The value of Ai will increase

linearly downhill and the value of the integrated variable

(contributing area, and not simply area) in a box of size r

will be proportional to r3 , giving a(q)=3 for q<O large.

Hillslopes tend to fill the river basin and therefore the

fractal dimension of this set tends towards the value of

f(a(q))=2.

Now, we can compare the results of multifractal studies

of contributing areas in DEMs with traditional morphometric

models. One example which has been described previously in

this work is Scheidegger's (1967) stochastic model of rivers.

Contributing areas of basins draining to the horizontal line

at the bottom of the generated network (an example of which

was shown in Figure 4.1) were calculated and their

multifractal spectrum computed. This spectrum was also

calculated by Takayasu and Takayasu (1989) in a model of
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particle aggregation with injection which is analogous to

Scheidegger's model. The resulting spectrum appears in Figure

10.14 indicated with a continuous line.

a

Figure 10.14: Multifractal spectra of
contributing areas for bottom line of
Scheidegger's (1967) model (continuous line)
and pixels adjacent to main channel in Brushy
Creek basin (+).

Following the original conceptualization of the model by

Scheidegger, this spectrum describes the spatial organization

of sizes of tributaries to a large channel. This spatial

organization can also be studied in DEMs. Using the

contributing areas of pixels adjacent to the main channel in

Brushy Creek, the multifractal spectrum is calculated and

appears also in Figure 10.14 represented with (*). The

spectra for Scheidegger's model and the actual basin are very

similar on the left-hand side of the spectrum. The difference

in the right-hand side comes from the different spatial
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organization of contributing areas in hillslopes (i.e.,

regions of small Ai). In a DEM the tendency is to have

parallel flows (as shown in Figure 10.13.b) while in

Scheidegger's model there is a tendency for aggregation

regardless of the size of Ai. It is the same kind of

difference in aggregating behavior between channels and

hillslopes that causes the break in the power-law

distribution of contributing areas shown in Figure 4.5.

10.5. Summary

The complexity of the spatial distribution of a number

of variables in river basins was studied with the tools of

the multifractal formalism. The idea was to move one step

beyond the topological and fractal analysis of the

geometrical form of the river network and analyze instead the

distribution, organization and scaling of more physical

variables in river basins.

Four variables were analyzed: contributing area Ai (as a

surrogate for discharge), Slopes Si, energy expenditure Ei

(Ai.Si) and the channel initiation function (IQmSn) of the

SIBERIA model of basin evolution.

These four variables present multifractal

characteristics and they have very similar multifractal

spectra when analyzed in different basins. This shows the

existence of a common underlying structure of organization in

river basins. The identification of a common multifractal
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spectrum of energy expenditure is the first step towards the

development of multiplicative cascade models of energy

dissipation. These models should be able to reproduce the

multifractal spectrum that describes the spatial organization

and scaling of energy expenditure in river basins.

The multifractal spectra of different forms of the

channel initiation function provides a tool to understand the

spatial distribution of scaling properties of processes that

lead to channel growth and development. These spectra can be

used in the verification of models of network growth and

basin evolution.

Finally, the multifractal spectrum of contributing areas

is useful to understand the organization of flow directions

and patterns of organization. The comparison with models of

network structure can show differences with real basins which

may not be obvious at first. The multifractal spectrum of

Scheidegger's (1967) model shows such an example.

Most of the analysis in this work up to this point has

looked at the entire landscape of the basin. On various

occasions we have found differences in the organization and

distribution at large contributing areas (channels) and at

small contributing areas (hillslopes). At the same time we

have studied in this chapter the behavior of the channel

initiation function, a criteria used in the SIBERIA model to

differentiate between channels and hillslopes. The following

two chapters will gather all the differences in behavior we
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have seen in this work and provide a differentiation

criterion that could be an option to separate hillslope and

channel pixels in digital elevation maps which provide only

elevation data.
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Chapter 11

The Differentiation Between Hillaslope and

Channel Nodes in DEMs: A Hypothesis

11.1. Introduction

Drainage density has been a fundamental concept in

geomorphology since its introduction by Horton (1945) who

defined it as the ratio between total length of streams and

the area of the basin. Drainage density is a measure of the

extent to which the channel network occupies and dissects the

basin. Such extension depends on a number of geologic and

hydrologic factors.

The understanding of the transition between channels and

hillslopes is of fundamental importance in the use of Digital

Elevation Maps. These maps only provide elevation data for

the basin; the differentiation between hillslope and channel

grid points is necessary for hydrological applications.

We will examine in this chapter whether a hypothesis

presented by Willgoose et al. (1991a) in the development of

the SIBERIA model, where channels and hillslopes are

differentiated with a channel initiation function, can in

fact be observed in DEM data. The idea is to identify

different scaling regions of mean slope versus contributing

area in the catchment and to find threshold criteria to
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separate these regions. Finally, we will present a modified

version of the SIBERIA model that is able to reproduce the

various scaling regions observed in DEMs.

Section 11.2 presents a review of various threshold

criteria for differentiating channels and hillslopes based on

the slope-area behavior of points in the basin. Section 11.3

examines DEM data in relationship to the criteria proposed by

Willgoose et al. (1991a). Finally, Section 11.4 presents a

channel network growth and landscape evolution model that

reproduces the slope-area behavior observed in DEMs.

11.2. Threshold Criteria for Differentiating Channels

and Hillslopes

On numerous occasions in this work we have shown and

used the relationship observed in rivers between slopes and

contributing areas:

S - A-0  (11.1)

where e is approximately 0.5. At very small scales, this

relationship cannot hold because it would imply an infinite

slope when area tends to zero. Tarboton et al. (1989a)

measured slopes and contributing areas for links in channel

networks identified with DEMs. They found that Relationship

(11.1) breaks down at a certain value of contributing area

and they used this value to identify the channel network. A

threshold value of contributing area has been used by various
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researchers as presented in Chapter 3, but Tarboton et ai.

(1989a) justify it in terms of sediment transport processes.

Using a modified formulation of the sediment continuity

equations proposed by Kirkby (1971) and Smith and Bretherton

(1972), Tarboton et al. (1989b,1992) show how changes in

contributing area can result in a switch of the dominant

sediment transport processes and correspondingly, the slope-

area relationship observed. Tarboton et al. (1992) show that

when a combination of a mass wasting sediment transport

mechanism occurs concurrently with a wash sediment transport

process, the slope-area behavior changes from a positive to

a negative gradient in a log-log diagram (i.e., from a convex

to a concave profile). This switch corresponds to a change in

the dominance of the sediment transport mechanism. At small

areas, mass wasting diffusive processes (like soil creep and

rain splash) dominate, while at large areas, wash processes

dominate. Using link-based slopes and areas, Tarboton et al.

(1989b) describe techniques to identify the value Ath at which

the break in slope-area scaling occurs. The criteria proposed

then, is if:

A < Ath (11.2)

the grid point is a hillslope point.

In the Smith and Bretherton (1972) criteria channels

extend up to the point of break of the slope-area

relationship (or equivalently where the dominant sediment
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transport process changes from diffusive to fluvial) . This

implies however, an infinite rilling in the fluvially-

dominated portion of the basin, while natural streams are

separated by a finite distance in the field. The Smith and

Bretherton (1972) criteria also implies the non-existence of

convex-concave hillslopes, because the concave portion would

be fluvially dominated and hence channelized. On this issue,

Dunne and Aubry (1986) and Loewenherz(1991) argue for a

stabilizing effect of sheetwash flow. This effect would imply

both a finite scale of rill separation and the location of

channel heads at values of contributing area larger than the

one implied by the Smith and Bretherton (1972) criteria. The

movement of the location of channel heads downhill from the

break also imply that there may be portions of the

unchannelized hillslope with concave profiles where fluvial

sediment transport dominates.

Willgoose et al. (1991a-d) use both diffusive and

fluvial sediment transport processes in their SIBERIA model,

showing a break in the slope-area relationship in the

simulated landscape from a positive to a negative gradient.

However, they do not consider channels extending up to that

break, but use instead a threshold criteria that combines

both slopes and areas to distinguish channel and hillslope

nodes in the grid. This criteria allows hillslopes to have a

convex-concave profile. The criteria is called the channel

initiation function and represents processes that are

observed to trigger or activate channelization in the field.
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Two criteria that can be parameterized by the channel

initiation function, which are commonly used in the study of

erosion, are overland flow velocity (Henderson, 1966) and

overland flow shear stress (Horton (1945), Vanoni (1975),

Moore et al. (1988)). Willgoose et al. (1989, 1991a) show how

both of these criteria can be represented in the generic

form:

f Am ' Sn ' > Cth (11.3)

for different cross-sections. Cth is the threshold value. The

channel initiation function criteria (11.3) would be

represented as a straight line with gradient n'/m' in a log-

log slope-area diagram. The values for n'/m', in the case of

a wide channel assumption, are 0.75 for the overland flow

velocity criteria and 1.16 for the overland flow shear stress

case. We want to examine whether this threshold behavior can

be observed in the DEM data.

Threshold criteria combining slopes and areas to

idenrify channelized and unchannelized nodes have also been

presented as AS2>Cth by Montgomery and Dietrich (1988, 1992),

and as A>C1/S2 + C2S by Dietrich et al. (1992).

11.3. Pixel-Based Slope-Area Relationship in DEMs

Using the gridded elevation data provided by the DEM of

a basin, it is possible to assign a slope to each pixel in

the steepest direction downstream. In order to analyze the

average slope behavior, we can group the pixels with the same
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contributing area and calculate their mean slope. For large

values of contributing area there are usually not enough

pixels for a meaningful average. In these cases, the pixels

are grouped in bins according to area, such that at least 500

pixels are located within each bin. This procedure is very

similar in spirit to that of Tarboton et al. (1989a), except

that we are using pixels instead of links for the slope

calculations.

Figure 11.1 shows the log-log diagram of the slope-area

relationship for the Brushy Creek basin (AL). Four regions

can be observed in this diagram. At very small areas, the

slope actually increases with contributing area, indicating

the presence of a convex profile on average. This convexity

is the result of diffusive processes and its behavior can be

explained within the framework developed by Tarboton et al.

(1989b, 1992). The slopes begin to decrease as area increases

in Region II, but then they stabilize to an approximately

horizontal behavior in Region III. The slopes continue their

downward trend in Region IV.

Let us first examine the location of the vertical lines

that limit the regions appearing in the slope-area diagram.

The line between Regions I and II is located at the break

between the positive- and negative-gradient behavior of the

slope-area relationship. The location of the line between

Regions II and III coincides with the location of the break

in the power-law behavior of the cumulative distribution of
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Figure 11.1: Log-log pixel-based slope-area
diagram for Brushy Creek basin. Each circle
represents the average slope for bins of
common contributing area with at least 500
pixels.

contributing areas as discussed in Section 4.4. Figure 11.2

shows the cumulative distribution of areas for the Brushy

Creek basin. As will be shown in Chapter 12, this break

corresponds to a change in flow organization from a mixed

divergent/convergent regime at smaller contributing areas to

a purely convergent regime at larger areas. Finally, the

location of the line between Regions III and IV approximately

coincides with the threshold value of contributing area that

can be found using the link-based average slope method

described in detail in Tarboton et al. (1989a,b).
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Figure 11.2: Cumulative distribution of
contributing areas for Brushy Creek basin. The
value of area at which the power-law behavior
of the distribution breaks down corresponds to
the location of the boundary between regions
II and III in the slope-area diagram shown in
Figure 11.1.

The approximately horizontal behavior of the slope-area

relationship in Region III appears to be an artifact of the

slope averaging for a given value of the contributing area.

When lines are fit to the slope-area points in Regions II and

IV, it is reasonable to think that the observed mean behavior

in Region III is the result of averaging the two scaling

lines as shown in Figure 11.3. A threshold criteria of the

form proposed by Willgoose et al. (1991a) and shown in Figure

11.3, can be used to distinguish between hillslope and

channel pixels. In the diagram, this threshold criteria

corresponds to the line joining opposite corners of the

quadrilateral formed in Region III. Hillslope pixels are
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Figure 11.3: Slope-area diagram for Brushy
Creek basin with fitted scaling lines for
hillslopes and channels, the boundary between
regions II, III and IV and the threshold
criteria joining opposite corners of the
quadrilateral formed.

located to the left and below the threshold line and channel

pixels on the opposite side. We would not expect to see, on

the average, hillslope pixels in Region IV or channel pixels

in Region II because their corresponding scaling

relationships cross, by construction, the threshold criteria

precisely at the boundary of these regions.

Figures 11.4 and 11.5 show two other examples of slope-

area diagrams for the Schoharie Creek basin (NY) and Racoon

Creek basin (PA). The boundaries of Region III, the fitted

scaling slope-area relationships for channels and hillslopes,

and the corresponding threshold lines are shown in these

figures. Table 11.1 presents the values of n'/m' (the scaling

gradient of the threshold criteria) for various basins across

the U.S. The measured gradients of the threshold criteria are

approximately equal to the values predicted by the Willgoose
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et al. (1991a) criteria for overland flow velocity in some

cases, and for shear stress in others.

Basin Location n'/m'

Beaver Creek PA,OH,MN 0.98
Brushy Creek AL 1.05
Big Creek ID 0.62
East Delaware River NY 0.73
Schoharie Creek Headwaters NY 0.78
North Fork Cour d'Alene River ID 0.96
Racoon Creek PA 0.80
Schoharie Creek NY 0.83
St. Joe River MO,ID 0.61

Table 11.1: Scaling gradient n'/m' of the
threshold criteria to differentiate channel
and hillslope nodes in region III of the
slope-area diagram.

Summarizing, we can see four regions in the pixel-based

slope-area diagram. Region I corresponds to hillslope points

where diffusion processes tend to dominate over fluvial

processes. These points correspond to the convex hilltops

which have small contributing areas. In Region II we find

hillslope pixels, concave in the average, where slopes

decrease with increasing area. Region III has a combination

of hillslope and channel points that have the same values of

contributing area but which may be separated with a threshold

criteria of the form suggested by Willgoose et al. (1991a).

Finally, as contributing area increases, all the nodes in

Region IV are channelized.
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11.4. A Channel Network Growth and Landscape Evolution

Model

In this section, we will present a modified version of

the SIBERIA landscape evolution model with the purpose of

simulating a landscape and channel network that would

reproduce the slope-area scaling diagram configuration shown

in the last section for various basins. We will concentrate

our modeling efforts in Regions II, III and IV, as the

transition between Regions I and II has been appropriately

analyzed in detail elsewhere as a competition between fluvial

and diffusive processes (Tarboton et al. (1989a, 1992),

willgoose et al. (1991c)).

The governing equation of the model is:

= T ( Q Qou ) (11.4)
at

where zi is elevation at node i, T is tectonic uplift, and

Qsi i n and Qsiout are sediment coming in and out of node i,

respectively. The second constitutive equation is:

out in c Qa' S if node is a channel (
QS Qsi + (11.5)

Qi h Qh Si if node is a hillslopef

where Qi and Si are the discharge and slope at node i and 0c,

mc, nc, Ph, mh and nh are constants. The distinction between

channel and hillslope nodes is made with the channel

initiation function where, if:

Qi S'" > Dth (11.6)
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then node i is a channel. Finally,

Qi = Pr Ai (11.7)

where Pr is a constant relazed to mean rainfall and Ai is the

contributing area to node i, which can be recursively

calculated as:

Ai = Lj Iij Aj + au (11.8)

where the summation is taken over the eight nodes j neighbor

to i, Iij is an indicator function equal to 1 if node j drains

into node i, and 0 otherwn:se, and au is the unit area of a

single pixel. Drainage directions are defined in the steepest

slope direction. The simulations are run with closed flow

boundary conditions except at defined outlet nodes. The

initial condition is an elevation field with the same mean

elevation plus very small random perturbations to properly

define flow directions. The outlet is set at a lower

elevation. The tectonic insUr is constant in time and space.

The main difference between this model and the original

version of the SIBERIA model is in the way material is

removed from each pixel. Ahnert (1976) referred to this

difference in modeling slope evolution as point-to-point

transfer and direct-removal. In the SIBERIA model the

material carried from each point is deposited in the next

node downstream. Equivalently, the material carved at each

point is equal to the transport capacity of the stream minus

the material being carried from uphill (i.e., a point-to-
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point transfer). In the modified version, however, the

material removed is taken away from the system (i.e., direct

removal in Ahnert's terminology). One implication is that the

modified version of the model can be used only for basins

where deposition is not predominant, and not for deltas or

the lower and flat regions of basins. Other models of

landscape evolution -such as the slope-area model of Chapter

5 and the models in Kramer and Marder (1992), Takayasu and

Inaoka (1992), and Rinaldo et al. (1993)- also remove from

the system any material taken away from a point.

Even though the evolution dynamics of the modified

version are different from the original SIBERIA model, we

will see in this section that it is possible to essentially

reproduce the properties of the channel network and landscape

at equilibrium with either model. Although the original

motivation for developing the modified version of the model

was to get around some numerical problems observed in the

original version, this new model offers a different approach

to landscape evolution that seems to give very similar

equilibrium results. Future research should concentrate in

analyzing differences between simulated landscapes coming

from both models, using new and stronger geomorphological

tests not currently available.

The catchment is at dynamic equilibrium when the

tectonic input balances the fluvial erosion. At this point it

is possible to infer the slope-area relationship and relate
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it to the parameters of the model, as in Willgoose et al.

(1991c). At dynamic equilibrium for node i:

azi - 0 (11.9)

Therefore, using equations (11.4) and (11.5):

T = * QT (11.10)

where the multiplicative and power constants 3*, m*, and n*

depend on the character of node i (hillslope or channel).

Replacing Equation (11.7) in (11.10), a log-log linear

relationship between slopes and areas is obtained:

Si = [T l/n* A m* /n* (11.11)

By assuming that the observed DEM is at dynamic

equilibrium, it is possible to infer the value (or at least

some ratio of values) of the physical parameters of the

model. In the log-lcg diagram, the scaling lines fitted for

the hillslope and channel regions (see Figures 11.3 to 11.5)

correspond to Relationship (11.11). The slope of the scaling

lines would give the ratios mc/nc and mh/nh. The intercepts of

these lines are used to determine the value of the

multiplicative prefactors. Notice however, that there are

eight unknowns and only four given values (the slopes and

intercepts of the scaling lines) which allows certain ratios

of the parameters to be determined. Nevertheless, we have

found that the network structure and landscape properties

200



remain approximately the same if we use different values of

m* and n*, as long as the ratio m*/n* is kept constant. We

will see in Chapter 12 that this is not always the case in

other models, where convergence and divergence are taken into

consideration.

The meaning of the power exponents m* and n* is not

identical to that of the exponents m and n in the original

version of the model. The first difference appears in the

predicted scaling relationship between slopes and areas in

the original SIBERIA model. As already described in Chapter

2, the predicted relationship in the original version is:

S - A(1-m)/n (11.12)

which gives the appropriate scaling exponent 0.5 when the

values m=2 and n=2, measured in the field for sediment

transport capacity of streams (Leopold and Maddock, 1953),

are used. However, these field values of m and n do not

correspond exactly to m* and n*. The former measure how much

sediment can be transported by the current (IQmSn), while the

latter measure how much material is taken away from the node

(p*Qm*Sn*). The amount of sediment transported by the current

at a point i in the modified model is equal to the sum of

sediment taken away from all the nodes upstream from node i.

At dynamic eauilibrium the sediment transported is precisely

equal to TAi, or equivalently, using Equations (11.10) and

(11.7):
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Qtrans an* A m* +m' * (11.13)= AiPQ C =i Pr Ai Si

which suggests a relationship between m, n and m*, n* (e.g.

m=2, n=2 would be equivalent to m*=l, n*=2; we have used

values around these for the simulations to be shown later in

this section). This calculation can be performed only at

dynamic equilibrium. In other situations, the way sediment is

moved within the system is different for both models in the

evolution, although their final equilibrium states are

identical under the measures used (the slope-area scaling,

for example).

We can use the parameters inferred from the slope-area

scaling relationships at the hillslope and channel scale for

the Brushy Creek basin shown in Figure 11.3 to run a

landscape simulation to dynamic equilibrium. The slopes and

intercepts of the scaling lines are used along with Equation

(11.11) to determine the parameters of the run. The threshold

line is used to find the parameters Dth and ns for the channel

initiation function (11.6). The domain size is 50x50 pixels;

Figure 11.6 shows an isometric view of the simulated

catchment at equilibrium, and Figure 11.7 presents the

drainage directions at dynamic equilibrium. The final channel

network, determined with the appropriate channel initiation

function criteria, is represented in Figure 11.7 with a

continuous line.

202



Figure 11.6: Equilibrium landscape simulated
with the modified version of the SIBERIA
model. The parameters of this simulation were
inferred from the slope-area diagram of the
Brushy Creek basin shown in Figure 11.3.

Figure 11.7: Drainage directions at
equilibrium for simulated landscape shown in
Figure 11.6. The channelized nodes, identified
with the appropriate threshold criteria, are
shown with a continuous line.

203

....... ....... · ·' · · · · : . .; .
..... ... ... ....

.............···-
............

· · · · ·;·

....... ..

: Ii



In order to check that the landscape at dynamic

equilibrium indeed presents the expected slope-area scaling

relationships at the hillslope and channel scale, Figure 11.8

shows the slopes and areas for each one of the pixels in the

simulation without averaging or binning. The scaling lines

for the Brushy Creek basin (shown in Figure 11.3) are

reproduced.

0.05

Area
Figure 11.8: Slope-area diagram for
simulated landscape at dynamic equilibrium.
The slopes and areas for all the 2500 pixels
in the 50x50 simulation domain as well as
fitted scaling lines are presented. These
lines coincide with those of the actual Brushy
Creek diagram shown in Figure 11.3.

Finally, to see that the quasi-horizontal behavior

observed in Region III of the slope-area diagram may be, in

fact, the result of grouping and averaging in bins of common

contributing area, we have repeated the procedure with the

simulated data. By grouping the pixels in bins and finding

the average slope for each bin, we can obtain the slope-area
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diagram shown in Figure 11.9. The behavior of the actual

slope-area diagram in Region III for the Brushy Creek basin

is reproduced.

10

10-3

104
IH

Area
Figure 11.9: Slope-area diagram for
simulated landscape at dynamic equilibrium
after the bin averaging procedure used in DEM
data has been applied. Notice the behavior in
region III and its similarity to the
corresponding region in the Brushy Creek
diagram of Figure 11.3.

In this section, we have presented a modified version of

the SIBERIA model developed by Willgoose et al. (1991a-d).

The main modification corresponds to the nature of sediment

movement from a point-to-point transfer version to a direct-

removal method as described by Ahnert (1976). The model can

simulate landscapes that evolve to an equilibrium state where

the scaling relationships of slope versus area at the

hillslope and channel level are reproduced. Furthermore, when

bins of contributing area are grouped and their slopes are

averaged in the equilibrium landscape, as in DEM analysis,
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the actual behavior of the slope-area diagram in Regions II,

III and IV is reproduced. Again, we did not focus our

attention on Region I, as this behavior has been analyzed in

great detail elsewhere (Tarboton et al. (1989a), Willgoose et

al. (1991c)). As a final note, we have found that in only one

of the ten basins in the data set analyzed, Region III does

not behave in the way predicted by the averaging hypothesis

presented in this section. Figure 11.10 presents such

exception.
001
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Figure 11.10: Slope-area diagram for Buck
Creek basin. The behavior of the slopes in
region III does not appear to correspond to
the average of the two fitted scaling lines.
This basin is the only exception in our data
set.

11.5 Summary

In this chapter, we have examined the hypothesis that

hillslope and channel nodes could be differentiated based on

their slope-area scaling behavior using a threshold criteria

proposed by Willgoose et al. (1991a). This criteria, called
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the channel initiation function, models processes that

trigger channelization in the field like overland flow

velocity and shear stress. By looking at the mean slope

behavior at the pixel scale we were able to identify four

regions in the slope-area log-log diagram. In increasing

order of contributing area these regions are: Region I, where

diffusive sediment transport processes dominate and hillslope

profiles are convex; Region II, which has concave hillslope

nodes; Region III, where hillslope and channel nodes with the

same contributing area coexist but can be differentiated

using an appropriate form of the channel initiation function;

and Region IV, which has channelized nodes with large

contributing area.

A modified version of the SIBERIA model was presented.

The model simulates landscapes that evolve towards

equilibrium states in which the slope-area diagram observed

in actual basins is reproduced. Specifically, the behavior in

Region III is shown to be possibly caused by the grouping and

averaging in bins of common contributing area performed in

the DEM data.

The use of a threshold criteria like the channel

initiation function, in which a combination of areas and

slopes is used to differentiate between channel and hillslope

nodes in a DEM, is not without problems. The advantage of a

threshold area criteria is that a continuous network is

always obtained. The introduction of slopes in the threshold

207



adds noise to the criteria and a disconnected network is

commonly found. Research along these lines should continue

and the channel initiation function criteria may help some of

these efforts.

One problem with the modified version of the SIBERIA

model presented in this chapter, the Slope-Area model

presented in Chapter 5, and most other models of landscape

simulation and channel network growth, is their tendency to

aggregation and convergence down to the lowest scales (see

Figure 11.7 in this chapter, or Figure 7.6 for the Slope-Area

model). This feature translates into a cumulative

distribution of contributing areas that follows a power-law

down to the lowest values (see Figure 5.4 for the case of the

Slope-Area model). However, we know that the power-law

behavior breaks down at a value of contributing area that

approximately coincides with the boundary line between

Regions II and III in the slope-area diagram as shown in this

chapter. In Chapter 12, we will examine the relationship

between this break and the convergent/divergent nature of

hillslopes as opposed to the convergent and collecting

character of channels.
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Chapter 12

Convergence and Divergence in the Basin

Landscape

12.1. Introduction

The channel network is a collecting structure in which

its members aggregate into larger branches to deliver water

and sediment out of the basin in an optimal configuration as

examined in Chapter 6. Hillslopes, on the other hand, are not

necessarily aggregating structures. They are three-

dimensional objects with varied forms as shown in Figure 12.1

from Ruhe (1975). The form of the hillslope has a direct

effect on runoff and erosion as shown by Young and Mutchler

(1969). The effect on runoff has been recently incorporated

in the analysis of DEMs using new algorithms for calculating

contributing area. The effect on erosion has been less

studied from the modeling point of view. The importance of

the form of hillslopes on the location of channel heads in

the field has recently been noted by Dietrich et al. (1992).

The spatial flow organization of the basin is directly

related to the cumulative distribution of contributing areas.

We will examine in this chapter the relationship between the

observed break in this distribution and the different flow

organizations at the hillslope and channel scales. We will

present an evolution model in which the contributing area and
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Figure 12.1: Different forms of hillslopes
when considered as three-dimensional objects
(from Ruhe, 1975).

sediment transport take into account the existence of

divergent hillslopes. This model will also help us to

understand the way divergent and convergent hillslopes

organize in space.

12.2. Convergence and Divergence in a Landscape

Evolution Model

The issue of convergence and divergence in hillslopes

and their influence on flow paths and other variables of

digital elevation maps, mainly contributing area, has been

recently studied by various researchers (Fairfield and

Leymarie (1991), Freeman (1991), Quinn et al. (1991), Cabral

and Burges (1992)). The idea is to use algorithms where

multiple flow directions are used to handle divergent

landscapes which cannot be properly analyzed using a single

flow direction for each pixel. Analogously, in landscape

evolution models where a single flow direction is defined in
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the steepest slope, the model generates landscapes in which

the aggregation goes down to the smallest scales with no

consideration for divergent features.

In this section we will implement the algorithm proposed

by Quinn et al. (1991) to calculate the contributing area in

a landscape evolution model and proceed to study the

influence of the spatial organization of flows on the

simulated landscape. Quinn et al. (1991) propose to

distribute the contributing area downhill proportionally to

the values of the slopes downhill from each node, i.e.:

sij Cij Iij
Ai j = Ai Ci(12.1)

1 Sik Cik Iik

where Aij is the portion of contributing area passed from node

i to node j, Ai is the total area of node i, Sij the slope

from node i to node j, Cij a contour length measured normal to

the flow (equal to 0.5 in the orthogonal directions and 0.354

in the diagonal directions; for details see Quinn et al.

(1991)) and Iij is an indicator function equal to 1 if node j

has a lower elevation than node i and 0 otherwise. The

summation in the denominator is done over the eight nodes

around node i. The idea with this procedure is to allow the

contributing area to diffuse, if a node has more than one

neighbor downhill. The algorithm is able to handle divergent

landscapes and hillslopes not strictly aligned with the

orthogonal or diagonal directions. Finally, notice that the
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contributing areas are not necessarily integers when

calculated using (12.1).

The total contributing area to each node is then

calculated as:

Ai = 7k Aki + au (12.2)

where the summation is performed over the areas Aki passed

from nodes k, with higher elevation, located next to node i

and a unit value au for the area of the pixel.

Once the contributing areas to each node are calculated

it is possible to use the landscape evolution model described

in Chapter 11. As our interest in this chapter is focused on

the analysis of convergent and divergent regions, we will

use, for simplicity, a single slope-area relationship in the

model. This implies that only one set of parameters (1, m and

n) will be used for the sediment removal from node i:

S= Q + QT S (12.3)

12.3. Simulated Landscapes and their Cumulative

Distribution of Contributing Areas

The purpose of the modified version of the model

introduced in the last section is two-fold. First, we are

interested in simulating divergent and convergent hillslopes.

One important characteristic of landscape models is their

aggregation behavior at all scales. Visually, landscapes

212



simulated with these models look too "rough" because they

lack the roundness of divergent hillslopes. Second, we want

to study the influence of different flow organizations on the

cumulative distribution of areas with the purpose of

reproducing the observed behavior in actual basins.

What we have found in simulations with the

convergent/divergent model is that, in this new version, the

size of the diverging hillslopes and the form of the

cumulative distribution of areas are directly affected by the

values of m and n. This is unlike the version of the model

analyzed in Chapter 11 where the actual values of m and n did

not influence the overall structure of the landscape as long

as m/n was constant.

In order to show this effect, we will use as an example

the Brushy Creek basin (AL). To find the proper ratio m/n,

the gradient of the hillslope slope-area relationship shown

in Figure 11.3 can be used as seen in Equation (11.11). Three

different simulations were run with the same ratio m/n=0.56.

The difference between the simulations was in the values of m

and n: 1.68 and 3.00 for case 1, 0.56 and 1.00 for case 2,

and 0.112 and 0.2 for case 3. Figures 12.2 to 12.4 show the

cumulative distribution of contributing areas for cases 1, 2

and 3 respectively. In each figure the actual distribution of

areas for the Brushy Creek basin is shown with a continuous

line while the distribution for the simulated basin is shown

with circles. The first case has a power-law distribution
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that extends down to the lowest scale. As we will see in the

resulting network, the aggregation also begins at the lowest

scale. In the third case, the actual cumulative distribution

is well approximated by the simulation. Notice that the

distribution of areas in the simulated basins breaks down

before the real basin does because of its much smaller domain

size.

Now we can proceed to look at other properties of the

landscape using Cases 1 and 3. Figures 12.5 to 12.7 and 12.8

to 12.10 show the landscape, contour, and averaged flow

directions for the cases m=1.68 and n=3.00, and m=0.112 and

n=0.2 respectively. The landscape in Figure 12.8 appears more

natural than the one in Figure 12.5 because it is not

dissected to the lowest scale. Something similar can be said

about the contour maps in Figures 12.6 and 12.9. The
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Figure 12.5: Equilibrium landscape at
dynamic equilibrium for simulation with
m=1.68, n=3.00.
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Figure 12.8: Equilibrium landscape at

dynamic equilibrium for simulation with

m=0.112, n=0.2.
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landscape in Figure 12.5 is very similar to landscapes

generated with models in which contributing areas are

calculated using a single flow direction.

Figures 12.7 and 12.10 present how the flow directions

organize within the basin. To do that we have taken the value

of contributing area at which the power-law behavior of the

distribution breaks down, as an indicator of the boundary

below which divergence exists. This value can be read from

Figures 12.2 and 12.4 (3 for Case 1 and 15 for Case 3). For

nodes with areas below the break, Figures 12.7 and 12.10 show

an averaged flow direction where the weights used in the

averaging are those used in (12.1). In this way a graphical

sense of divergence in the planar representation of the basin

can be conveyed. To help the eye identify the collecting

network, we used the principal flow direction for nodes with

areas above the break.

All the figures above show from different perspectives,

the relationship between the actual values of m and n, the

size of diverging hillslopes, and the location of the break

in the power-law behavior of the cumulative distribution of

areas.

One final point about the diffusive effect of moving

contributing area to more than one neighbor downhill as is

done in the model through equation (12.1) needs to be

discussed. This diffusive effect is very different from the

diffusion term used in the SIBERIA model by Willgoose et al.
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(1991a-d), where the purpose was to simulate the convex tops

of hills in Region I of the slope-area diagram. The flow

directions in the simulated diffusive-dominated regions tend

to be parallel, and the vertical profile is convex. In the

model presented in this chapter, some of the hillslopes are

divergent (not just planar with parallel flow as generated by

the diffusion sediment transport term) and they are concave

because they are fluvially dominated. It is reasonable to

think that even more realism can be added to the simulated

landscape by including diffusion. The added diffusion would

round the tops of the hills, and would better simulate the

region of the slope-area diagram with positive gradient for

very small contributing areas in DEMs. Such extension is

currently under development by G. Moglen (private

communication).

12.4. Summary

A landscape evolution model was developed in order to

examine the hypothesis that the break in the power-law

behavior of the cumulative distribution of areas in river

basins is caused by the change, in flow organization, from an

essentially collecting and aggregating structure at the

channel level to a combination of convergent and divergent

features at the hillslope scale. The only change in this

model, compared to the version shown in Chapter 11, is the

way in which contributing areas are calculated. Instead of

moving area downhill only in the steepest direction, the
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contributing area is distributed to all nodes downhill

proportionally to the slopes in their corresponding

directions in the new model. In this way the modified version

is able to simulate divergent hillslopes using the feedback

provided by the diffusion of the contributing area dispersed

downhill and the diffusion's effect on sediment movement. The

parameters m and n of the model directly influence the size

of the divergent hillslopes and hence the location of the

break point where the cumulative distribution of areas

changes its power-law nature. The inclusion of the diffusive

processes is a point where the model can still be improved,

and the development of measures to study and understand the

organization of divergent features in the landscape will be

necessary in the near future. Also, the representation of the

sediment movement in hillslopes (especially those that are

divergent) used in the model presented in this chapter is

crude at best and better formulations are required.
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Chapter 13

Conclusions

13.1. Summary of Results

The main questions addressed in this work and the

results presented will be summarized in this section. The

data used came from Digital Elevation Maps (DEMs) which give

elevations in a gridded system. The data structure and

programs used to analyze the elevation field were those

developed by Tarboton et al. (1989b). Chapter 3 gives the

main physiographic characteristics of the basins analyzed.

In Chapter 4, the distributions of mass and energy in

river basins were examined. These distributions were found to

follow a power-law with common scaling exponents of 0.43 and

0.9 respectively across different basins. The value of 0.43

for areas can be compared against the 1/3 obtained for

Scheidegger's model of random river networks. This difference

illustrates the possible use of this property as a test for

simulated networks. The power-law distribution and fractal

organization in space is one of the properties of self-

organized critical (SOC) systems. These systems evolve

towards a state with fractal distributions in space and time.

Motivated by the possibility of describing the evolution of

river basins as a SOC system, a simple model of channel

network growth was developed in Chapter 5.
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One of the objectives of developing a simple model of

landscape evolution was the possibility of simulating

landscapes in a domain large enough to allow the study of the

spatial and temporal fluctuations of the geomorphic process

over various orders of magnitude. At the same time, the model

has enough realism in its formulation to reproduce many of

the common geomorphological statistics used to analyze

channel networks. The Slope-Area model developed in Chapter 5

uses the scaling relationship between slopes and areas

observed in river basins as the basic component of the

algorithm. It was shown that the cumulative distribution of

areas (a spatial feature) follows a power-law with an

exponent similar to that of actual basins. The lifetimes of

the family of sub-basins and the growth of perturbations,

which are temporal characteristics, also follow power-laws.

These three properties are common to SOC systems.

Chapter 6 presents three principles of energy

expenditure proposed by Rodriguez-Iturbe et al. (1992b) from

which the average behavior of the local geometric features at

the link level (width, depth, slope and velocity) versus flow

can be derived. The implications of a global principle of

minimum energy expenditure in the network were examined after

developing an optimization algorithm capable of finding the

Optimal Channel Network (OCN) draining a given basin area. It

was shown that OCNs reproduce common geomorphological

statistics like Horton's laws and the power-law behavior of

the cumulative distribution of areas.
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A problem with the optimization algorithm developed in

Chapter 6 is its computer intensive nature. The largest size

it can handle is about two orders of magnitude smaller than

the typical size of basins in DEMs at the scale of resolution

available. A plausible way to predict the optimum level of

energy for a basin at the DEM scale was presented in Chapter

7. The idea is to use the Slope-Area model as an intermediate

tool in the process. In the first step we showed that the

levels of total energy expenditure in OCNs and in Slope-Area

networks constructed in small domains that could be handled

by the optimization algorithm were very similar. Then, using

the actual boundary and outlet location of river basins

identified from DEMs, the Slope-Area model was used to grow

drainage networks in these domains. The actual network and

the simulated one were shown to have very similar values of

energy for the various basins studied. This evidence, along

with the tests presented in Chapter 5, tends to indicate that

river basins appear to evolve towards states of optimum

energy expenditure.

Furthermore, by showing the equivalence between total

energy expenditure and the sum of elevation in the basin (a

measure of the available potential energy), a possible

mechanism by which the network evolves towards states of

minimum energy was proposed in Chapter 7. In this way, a

connection was made between OCNs (which does not consider the

evolution process which basins must go through in order to

arrive at states of minimum energy expenditure) and evolution
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models that do not have any optimality requirements in their

formulation. It was also shown in this chapter how certain

equilibrium landscapes are unstable even though the slope-

area scaling relationship is present. These unstable

landscapes were shown to be states with very high total

energy expenditure and to be unsustainable under

perturbations.

Chapter 8 examines the implications of minimum energy

expenditure on the shape of competing drainage sub-units that

try to optimally allocate space among them in order to drain

a given area more effectively. Using a controlled geometry as

reference, it was shown that river basins tend to elongate

with size. OCNs reproduce what is known in geomorphology as

"Hack's law" with the scaling exponent observed in actual

basins. Also, motivated by a small-scale erosion experiment

in a circular domain which showed six main branches in its

drainage organization around a center outlet, it was shown

that OCNs and the Slope-Area model indeed reproduced this

behavior while other models based on DLA and random networks

did not.

Chapter 9 presented a method for describing the

geometric complexity of river courses and their scaling

behavior. Although rivers have been usually considered as

self-similar fractal lines, this chapter presents evidence

pointing towards the possibility that river courses are not

self-similar but self-affine fractals. The difference is the
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anisotropy that exists in the scaling of the oscillations

present in the planar form of rivers. The scaling behavior

was found to be similar across different basins. The same

self-affine fractal analysis was performed in networks

simulated with the Slope-Area model. It was observed that by

varying the value of the scaling exponent e between slopes

and areas, not only were the vertical profiles of rivers was

affected, but the form of the network structure and the

tortuosity of individual rivers were as well. It was shown

that the self-affine scaling observed in actual rivers was

reproduced only when the appropriate value of 8=0.5 was used

in the model. This relationship shows the connection between

the three-dimensional organization of the basin, the energy

optimization at the local level and the planar organization

of the river network along with the tortuosity of its

individual members.

Instead of looking only at the geometrical form of the

network or the individual channels, Chapter 10 analyzes the

scaling properties of more physical variables like energy,

slope, area and the channel initiation function (a measure of

mechanisms known to trigger channelization in the basin)

using the multifractal formalism. The interwoven scales in

the spatial organization of these variables were shown to

have a multifractal distribution which was found to be common

across different basins. These multifractal distributions are

directly related to multiplicative models that could be

developed in geomorphology. Using the multifractal spectrum
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of the contributing areas in river basins as an example, the

way this spectrum can provide information about the spatial

organization of key variables in the river basin, was shown.

In Chapter 11 we analyzed a threshold hypothesis

previously used to separate hillslopes and channels in DEMs.

Up to this point, most of the analysis was performed using

the entire basin landscape, but it is also important for the

hydrologist to be able to distinguish whether a pixel in a

DEM is a channel or a hillslope because of their different

hydrologic properties. The threshold criteria proposed by

Willgoose et al. (1991a) in the context of their SIBERIA

model of landscape evolution and channel network growth, was

studied in DEMs. By looking at the mean slope behavior versus

area at the pixel scale, we were able to identify four

regions in the slope-area log-log diagram. In increasing

order of contributing area these regions can be described as:

a region I where diffusive sediment transport processes

dominate and hillslope profiles are convex, a region II of

concave hillslope nodes, a region III where hillslope and

channel nodes with the same contributing area coexist but

which can be differentiated using a threshold of the form

proposed by Willgoose et al. (1991a), and a region IV of

channelized nodes with large contributing areas.

In Chapter 11 we also presented a modified version of

the SIBERIA model that shows how the landscape can evolve

towards an equilibrium state where the observed slope-area
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diagram is reproduced. The differences between this and the

original model in terms of sediment transport are discussed

in this chapter.

One of the problems of all landscape models presented up

to this point was the fact that they tend to aggregate and

form a convergent network down to the lowest scales. However,

it is clear that at the hillslope scale we find convergent as

well as divergent features. Furthermore, it was found that

the cumulative distribution of contributing areas, when

observed at the pixel scale instead of the link scale, shows

a break in its power-law behavior at small scales which would

indicate a change in flow organization. A modification to

landscape models is proposed in Chapter 12 where contributing

areas are calculated using more than one flow direction as

opposed to the single-direction constraint in previous

models. In this way, diverging hillslopes were simulated in

the model and the break in the power-law behavior of

contributing area was reproduced.

13.2. Suggestions for Future Research

13.2.1. Three Problems in Channel Networks and the

Basin Landscape

In this section we will propose three research problems

which are extensions of the results previously presented in

this work. The first problem examines growth modes different

from the headward growth mechanism present in the SIBERIA and
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Slope-Area models. The idea is to examine the implications of

various growth modes on the structure of the network and on

measures like the cumulative distribution of areas. The

second problem looks at the improvement of stochastic

branching network models previously proposed in the

literature by including some of the network properties found

in the present work. Finally, we will examine a possible

formulation of a modified version of OCNs where a measure of

the cost of construction (and not only operation and

maintenance as presented in Chapter 6) is added into the

optimization with the goal of including effects from the

initial topography. The presentation on these areas of

research is in the very preliminary stages of discussion and

the results shown should not be considered final.

In the second sub-section more general lines of research

and open lines of inquiry that may use some of the results

and methodologies presented will be described.

13.2.1.1. Different Growth Modes in Drainage Network

Development

Various idealized models of network growth have been

presented in the literature. At one extreme we have Horton's

(1945) model which suggested that on a steep surface a series

of parallel rills will form and, through micropiracy, a

network will develop. At the other extreme, we have the

headward growth model (Howard, 1971a) where the network is

fully developed right up to the edge of the dissected area.
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Once the boundary of capture has passed a region, the

drainage network is established and, aside from a decrease in

elevation, no other changes in flow direction occur. In

between these two models we have the one proposed by Glock

(1931) where major channels rapidly cut the basin area and

then smaller tributaries fill the space. Figure 13.1 (from

Schumm et al, 1987) shows schematically the differences

between the three models. Glock's mode of growth was observed

in the erosion experiments performed at CSU although the

stages proposed by him (elongation, elaboration, integration)

occurred simultaneously in different parts of the domain

(Schumm et al, 1987).

The SIBERIA model developed by Willgoose et al. (1991a)

as well as the Slope-Area model introduced in the present

work belong to the headward growth class of network

development models. Once the network captures a certain area,

the flow directions are largely fixed for the rest of the

evolution.

The headward growth mode has implications on the overall

form of the network that develops in a given area. We have

found that, although the simulated networks look reasonable

and reproduce common geomorphological statistics, they still

appear to be more elongated than the actual networks. This

difference can be appreciated in Figures 7.10.a and 7.10.b

where a Slope-Area network is grown in the same domain of a

basin at the DEM scale.
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Figure 13.1:

growth. (a)

growth model

Schumm et al,

Models of drainage network

Horton's model, (b) Headward

and (c) Glock's model. (From

1987).
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In this section, we will propose a modified version of

the Slope-Area model that tries to account for different

growth modes by parameterizing the speed to equilibrium of

different points in the basin. The difference between the

headward growth model and Glock's model is that in the former

model large channels, small tributaries and hillslopes pick

their flow directions and evolve towards equilibrium at

similar speeds. In Glock's model, on the other hand, large

channels which have higher erosive power grow much faster

than small streams, cut the drainage area quickly and are

followed only at a later time by smaller tributaries.

In the original Slope-Area model, every point captured

by the network is immediately relaxed to the value of slope

that is indicated by the slope-area scaling relationship.

Instead it could be possible to add to the captured network

only the Nv pixels in the boundary of capture with the

largest power (defined as A*S). The slope relaxation would

then be applied only to those points that belong to the

network. In the next iteration a new set of Nv pixels is

added and so on. The purpose of choosing only a set of pixels

at the boundary is to represent and enhance, in a very crude

way, the growth preference of points with largest erosive

power. The goal is to observe the influence of this effect on

the network structure. With a very large Nv we get back the

original Slope-Area model because every point in the boundary

of capture is added to the network.
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Figure 13.2 shows the effect on the resulting network

(drawn with a threshold area of 20 in a 50x50 domain) as the

value of Nv is decreased. We can clearly see how the

elongation is reduced in the network, the inter-valley

distance is increased and the drainage density (for the same

threshold area) is reduced. Not only do the networks look

more natural, but also the scaling exponent of the power-law

distribution of contributing areas increases to values more

in line with those observed, as Figure 13.3 illustrates.

Preliminary results indicate that there may even be a small

decrease in total energy expenditure at an intermediate value

of Nv.

The modified Slope-Area model presented in this section

is still a crude discrete representation of different growth

models in drainage network development, but it shows that it

is possible to improve the current models in order to better

simulate networks, reduce their elongation and obtain a value

of the scaling slope of the power-law distribution of areas

more in line with the actual one. A continuous formulation,

based on a better representation of sediment transport and

its temporal average, used within the framework of the

SIBERIA model would be a better modeling tool for this

purpose.
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Figure 13.2: Networks generated with the

modified version of the Slope-Area model as

the value of Nv decreases. The first network

is equivalent to the original slope-area

model.
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Figure 13.3: Power-law cumulative
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13.2.1.2 Stochastic Branching Models of Drainage

Networks

Hydrologists have recently looked at the ensemble

average linear hydrologic response of families of stochastic

networks with common properties. This average response can

hopefully be used in ungauged basins. The first attempt was

the Geomorphologic Instantaneous Unit Hydrograph (GIUH)

introduced by Rodriguez-Iturbe and Valdes (1979) and restated

by Gupta et al. (1980). The GIUH is the ensemble average of a

family of networks that share stream properties like Horton's

laws. Gupta and Waymire (1983) argue that the Strahler

ordering is a coarse characterization and propose to use

links instead of streams. The key tool in their approach is

the width function. Mesa (1986) and Troutman and Karlinger

(1984, 1985, 1986) studied the ensemble average of the width

function for a family of networks coming from a birth and

death process.

In the birth and death process, a network is constructed

from a single element (a link). Each element can bifurcate or

die with equal probability and its length comes from an

exponential distribution. The ensemble average can be found

by conditioning the family of networks on their magnitude or

diameter. The average width function was compared in Mesa

(1986) against that of actual basins. The model worked well

for small basins but appeared to underpredict the width

function for larger basins. However, the comparison was made
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between the predicted average of the ensemble and a single

basin realization without presenting an estimate of the

variance.

Stochastic birth and death processes do not have power-

law distribution for properties of their members, (see Figure

13.4 for the cumulative distribution of stream lengths). This

differs dramatically from the power-law distribution of

actual basins (Tarboton et al, 1988).
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Figure 13.4: Cumulative distribution of
stream lengths for a network simulated with a
stochastic birth and death model.

DEMs provide a data set with large enough basins to

carry ensemble averages of the width function of subbasins

with common properties. For example, we can take all

subbasins with a given diameter within a basin and find their

average width function. Figure 13.5 shows the result for two
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Figure 13.5: Average width function

predicted by birth and death model (lower

parabola) and actual average calculated from a

DEM for subbasins with (a) 100 and (b) 200

pixels.
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values of diameter (100 and 400 pixels). The lower parabola

in each case is the predicted average width function from the

stochastic birth and death model using the appropriate value

of the parameters calculated from the DEM data. In this case,

we can be more certain of the under-prediction of the model

because we are comparing it with an ensemble average of

actual basins. The situation is similar with conditioning on

magnitude, as shown in Figure 13.6. In this case, we see that

the birth and death process tends to overpredict the diameter

of the network.

C
Im.

C;i

Ez

0 50 100 150 200 250 300 350 400
Length (pixels)

Figure 13.6: Average width function
predicted by birth and death model (lower
curve) and actual average calculated from a
DEM for subbasins with magnitude 300.

It is possible to formulate a stochastic model in which

the distribution of areas follows a power-law. The model we

propose here as a preliminary idea was originally inspired by

multiplicative processes (Menevau and Sreenivasan, 1987). The

idea is to use the contributing area as a key variable.
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Starting with the total area of the basin at the outlet and

moving upward, a portion of the area is broken away from the

main channel creating a tributary at each step. The value of

the area taken away comes from a distribution that follows a

power-law of the form observed in actual networks. The area

of the tributary is also constrained to be less or equal to

half of the area carried by the main channel. The process is

iterated until the entire area is broken away from the main

channel. The result is analogous to Figure 10.1 where the

sizes of the tributaries draining into the main channel of

the Brushy Creek basin were shown. The network is completed

by repeating the breaking process in each one of the

tributaries until the entire area in each of the channels has

been used.

Preliminary results indicate that this power-law break

model generates a width function more in line with those of

actual basins. This behavior appears to be a consequence of

the presence of larger tributaries coming out of the main

channel. Stochastic birth and death processes seem to

generate networks with very long main channels and small

tributaries coming into them. This would explain the under-

prediction in the peak and the over-prediction in the

diameter observed in Figure 13.6.

The proposed power-law break model is not independent of

the multifractal spectrum. Preliminary results indicate that

only when the appropriate scaling slope of the power-law
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distribution of area is used, is the multifractal spectrum

reproduced. Figure 13.7 shows with (+) the actual

multifractal spectrum of the contributing areas of

tributaries coming into the main channel of the Brushy Creek

basin which was already shown in Figure 10.14. The continuous

lines show the spectra from simulations coming from the

power-law break model with different scaling slopes of the

distribution. The actual spectrum is reproduced when the

slope is 0.45. The differences on the right-hand side of the

spectrum come from hillslope nodes which are not represented

in the stochastic model.

0.8

0.6

0.4

0=1.00 0=0.75 0=0.45

0 0.5 1 15 2 2.5

a

Figure 13.7: Multifractal spectrum of sizes
of tributaries coming into main channel of
Brushy Creek basin (+). Multifractal spectra
of sizes of tributaries from a network
simulated with the power-law beak model using
different values of the scaling slope of the
cumulative distribution of areas (continuous
lines).
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Many points still remain to be investigated with the

power-law break model: how well is it able to reproduce

ensemble averages of the width function as well as other

properties of channel networks?; how can hillslope effects be

included?; how can the networks be tied to a physical space

and introduce space-filling constraints? On this last point

two papers may be of interest: the work on cis-trans links

(James and Krumbein, 1969) and more recent work on levels of

sets (Takayasu, 1993) in which a test to study the spatial

organization of variables, which appears to be stronger than

the multifractal spectrum, is presented.

One advantage of using area as the key variable of the

power-law break model is its linkage with many other

geomorphic variables. The clearest example is the third

dimension which can be introduced through the slope-area

relationship and can provide a link to energy organization

and measures like the link concentration function.

Finally, it is important to note that the ensemble

approach to the hydrologic response of the basin

underpredicts the peaks of the individual width functions of

the family. This is analogous to the distortion and

flattening of a unit hydrograph calculated by averaging

ordinates of a given time. Other measures (like peak, size,

time to peak, etc.) should also be considered in the ensemble

analysis.
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13.2.1.3. OCNs with a Modified Cost Function

The three principles of energy expenditure in river

basins originally proposed by Rodriguez-Iturbe et al. (1992b)

included energy costs for "operation" and "maintenance" of

the channel network. However, no "construction" cost was

included. This implies that no matter what the initial

topography is, the network would carve its way to an absolute

optimal state. Nevertheless, it is probable that the network

prefers to make a trade-off in its development. Absolute

optimality may be constrained as the network encounters areas

of very high elevation or non-easily erodible material. It

might be interesting to study these effects on OCNs as a

possible explanation of some sub-optimal local features

observed in actual basins.

Another consideration in this area of research is the

fact that OCNs have straight channels because if no

construction costs are included, it is optimal to do so.

However, we have shown in Chapter 9 that this is not the case

and actual river courses are self-affine curves. A possible

way of reconciling these two observations may be to include a

measure that accounts for inhomogeneities in topography or

material. Furthermore, the relationship between 8 (the

scaling exponent between slopes and area which can be derived

from the local energy principles) and the self-affine

character of river courses indicate that such reconciliation

may be feasible.
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A first attempt to include construction costs might be

to include a weighted term in the energy expenditure

expression. As shown in Chapter 7, the energy expenditure in

the original OCN formulation can also be seen as the sum of

elevations k iZi. The cost of excavating down to this

elevation field may be crudely parameterized as yijZei where

Zei = Zoi-Zi is the material excavated at node i and ZOi is

the original elevation at that point.

It is then possible to study the effects of different

values of y in the modified expression for total energy kliZ i

+ yliZei. In this case, the optimization would use not only

the area to be drained but also the original topography (in

order to calculate the excavation costs).

As the value of y compared to k is reduced, the network

tends more and more towards the original OCN organization

because minimizing operation costs is then more important

than minimizing construction costs. Figure 13.8 shows a

sequence of optimal networks with decreasing values of y from

y=k (in which case construction and operation costs are the

same) down to y=O (the original OCN). All simulations were

started with a random elevation field. As an initial network

for the optimal search algorithm we used the network shown in

Figure 13.8.a. The lower edge is open.

In the first case of Figure 13.8, given that y=k, any

network has the same cost kXi(Zi+Zei) = k-iZoi so the search

algorithm stays in the initial condition. As y goes down, the
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Figure 13.8: Optimal
construction costs included.
decreased from y=k to y=O.

networks with
The value of y is

network starts making a trade-off between construction and

operation costs. Figure 13.8 shows that sequence.

Other formulations could be more realistic but this

simple model illustrates some of the research questions that

might be studied.

13.2.2. Other Research Questions in River Networks

In this section we will discuss some research avenues

which are still not as clearly defined as those formulated in

previous sections. Most of these avenues come from unanswered
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questions left by the present work as well as improvements on

many of the concepts presented.

The characterization of the basin landscape and the

channel network should be improved with new and stronger

measures. This work has taken some small steps in this

direction, moving away from Horton's laws which are a coarse

topological measure. Every new measure usually requires a

modeling improvement in order to match these observations, as

has been shown in the present work.

Further understanding of the contributing area mapping

that assigns to each node the area draining through it is

very important, especially for analytical work. Given that

the contributing area may be used as a surrogate for flow,

which is a key variable in the evolution of the landscape and

the organization of the basin, it is necessary to have a good

handle on the area mapping. Three problems that require the

ability to understand and work with the area mapping are:

1) Understanding of screening effects in the growth of

the network. The relationship with growth potential (probably

in the form of the channel initiation function discussed in

Chapter 11) is essential. Analogous research questions in the

context of DLA are studied in Halsey and Leibig (1992).

2) Formulation of a theoretical relationship between 0

and the tortuosity of river courses measured through their

self-affine scaling. This problem as well as problem (1), may
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be tackled by looking at only a small region around the

boundary of capture, which is where all the action is

occurring in headward growth models, as discussed in Section

13.2.1.1. By analyzing how randomness in topography (or

inhomogeneities in the terrain) are processed by the

evolution dynamics and transformed into a drainage structure,

a new understanding of network growth may be developed.

3) Theoretical prediction of the scaling slope of the

power-law distribution of areas. One of the very few SOC

systems that has been studied analytically is Scheidegger's

stochastic river model because of its simplicity. To move to

higher-order models like the Slope-Area model or other models

of landscape evolution and to be able to predict the SOC

exponents is an interesting theoretical problem.

A great portion of the analysis presented in this work

deals with the observed mean behavior of different variables.

One example is the slope-area analysis, where only the

average slope for groups of pixels with the same contributing

area are observed. It might be important to consider the

entire distribution of slopes. This study could lead to

better understanding of the nature of randomness in the

basin, improved landscape models and maybe a better modeling

of runoff production mechanisms like saturation from below,

which depend on both slopes and areas. Some work has been

done in this direction (Tarboton et al, 1989a). To visually

illustrate the importance of the random distribution of
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slopes, Figure 13.9 shows the profile of the main channel of

the Racoon Creek basin. The profile is very reminiscent of

the Devil's staircase (Feder, 1988) related to multifractal

processes and multifractal distributions.

o

om

N

o

N

0
o

z

Length (pixels)

Figure 13.9: Normalized stream profile of
main channel in Racoon Creek basin.

The discussion between different sediment transport

modes (point-to-point or direct removal as described in

Chapter 11) is still open. We have concentrated in this work

only on the properties of equilibrium landscapes in which no

major differences have been observed between the original and

the modified SIBERIA model, with the exception of a little

more elongation in the latter model. Stronger measures are

needed to understand these differences in the final network.

However, the greatest difference between both models resides

in the evolution process. They get to similar equilibrium

landscapes but through different paths. Further study of the
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evolution of the landscape, a revision of the dynamic

equilibrium hypothesis and field verification might be

required in this line of research.

Two other problems in landscape modeling are the

inclusion of small and medium-scale catastrophic events and

the modeling of the widening of valleys. Given the

restriction of single-flow direction in our current models,

floods that move large amounts of sediment and alter

significantly the local structure of the network cannot be

modeled. This effect may be another way in which local

defects are corrected in the search of the basin for states

with lower energy expenditure, in the same spirit as the

experiments shown in Section 7.5. The single-flow direction

also does not allow the widening of valleys observed in

actual basins. This process may require, however, the

inclusion of different sediment transport mechanisms.

Further understanding and a better representation of the

mixed convergent/divergent features at the hillslope scale

are required. By locally adjusting analytical surfaces to

DEMs it may be possible to perform second-order analysis and

study the spatial organization of the convergent and

divergent hillslopes and their interlocking behavior (Papo

and Gelbman, 1984). Furthermore, in the modeling of

landscapes one should notice that runoff production in

convergent hillslopes is very different from runoff

production in divergent hillslopes (Young and Mutchler
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(1969), Dietrich et al. (1992)). This behavior has clear

implications for the evolution of the landscape, which might

require a revision in the way hillslope evolution is treated

in Chapter 12.

Most of the landscape evolution work at the hillslope

scale has been in 1-D form and very few researchers have

looked at the three-dimensional structure and the

convergent/divergent features. The way in which these

hillslopes evolve (along with the ease of measuring their

evolution in controlled experiments because of their size)

may be a feasible avenue of research. The linkage with the

channel as boundary condition and the corresponding

interactions should not be set aside.

Chapter 12 showed a possible way of inferring the

independent values of the parameters m and n of the sediment

transport equation in the landscape evolution model by

looking at the mixed convergent/divergent nature of

hillslopes. Previously, only the ratio m/n was available from

the scaling parameter e between slopes and areas. The results

in Chapter 12 are an example of how processes and parameter

values might be inferred from form. Another problem still

open is the coefficient of the slope-area relationship in

equation (11.11) where tectonics, rainfall and the

multiplicative factor of the sediment transport expression

are joined in a single ratio. How to infer their independent
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values from the form of the landscape using DEM data is still

an open question.

Finally, field verification of many of the underlying

hypotheses of sediment transport, landscape evolution,

network adjustment, channel head location and randomness are

required.

All of the proposed avenues of research in this chapter

can be encompassed in six areas: the relationship between

form and processes, the hydrologic response of the basin,

scales in the basin (hillslope versus channel), runoff

production, field verification and the study of the river

basin in the context of non-linear dynamical systems. This

work has barely touched upon some of these areas and many

research questions remain unexplored.
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