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Abstract—Two extensions to the proper orthogonal decomposi-
tion (POD) technique are considered for steady transonic aerody-
namic applications. The first is to couple the POD approach with a
cubic spline interpolation procedure in order to develop fast, low-
order models that accurately capture the variation in parameters,
such as the angle of attack or inflow Mach number. The second
extension is a POD technique for the reconstruction of incomplete
or inaccurate aerodynamic data. First, missing flow field data is
constructed with an existing POD basis constructed from complete
aerodynamic data. Second, a technique is used to develop a com-
plete snapshots from an incomplete set of aerodynamic snapshots.

I. INTRODUCTION

Model reduction using the Proper Orthogonal Decomposi-
tion (POD) has been widely applied to many physical prob-
lems [1]. Sirovich introduced the method of snapshots as a
way to efficiently determine the POD basis vectors for large
problems [2]. In particular, the method of snapshots has been
widely applied to computational fluid dynamic (CFD) formula-
tions to obtain reduced-order models for unsteady aerodynamic
applications [3], [4], [5], [6]. A set of instantaneous flow solu-
tions, or “snapshots” are obtained using the CFD method. The
POD process then computes a set of basis functions from these
snapshots, which is optimal in the sense that, for any given ba-
sis size, it minimizes the error between the original and recon-
structed data. For linearized problems, efficient POD methods
have also been developed that compute the snapshots in the fre-
quency domain [7], [4], [8].

While use of POD to capture the time variation of fluid
dynamic problems has been widespread, the development of
reduced-order models to capture parametric variation is less
common. The POD has been used to develop reduced-order
models for turbomachinery flows with sampling in both time
and over a range of interblade phase angles [9]. The result-
ing models were applied to flows at varying Mach numbers,
although the snapshot ensemble is computed at a single Mach
number condition. Accurate results were obtained for Mach
numbers close to that used in the snapshots. The POD has also
been used to develop models for optimization purposes [10]. In
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this case, the POD modes span a range of airfoil geometries. In
another example that includes parametric variation, a fast com-
putation has been developed that uses a POD basis to predict the
steady-state temperature distribution of flow in a square cavity
as the Rayleigh number is varied [11]. This method is a simple
combination of the POD basis and an interpolation procedure.

Another application of the POD is for the repair of damaged
data and construction of missing or “gappy” data as introduced
in Everson and Sirovich [12] for the characterization of human
faces. This idea could be extended to the prediction of aero-
dynamic flow fields. For example, a set of complete flow so-
lutions may be available from a CFD calculation. One might
wish to use these solutions as an information database in the
reconstruction of partial data, such as that obtained from exper-
imental measurements.

In this research, two extensions to the POD for aerodynamic
applications will be considered. The first is to combine the POD
approach with a cubic spline interpolation to capture parametric
variations. The second application will apply the POD for the
data reconstruction of transonic flows. In this paper, the basic
POD method will first be outlined, followed by a description
of the extensions with interpolation and incomplete data sets.
A set of results for transonic flows will then be presented. The
first example considers steady transonic flow past an airfoil with
varying angle of attack and Mach number. The second example
addresses a situation in which the complete flow pressure field
is reconstructed from pressure values only on the airfoil surface.
Finally, a problem is considered in which the POD snapshots
are constructed from an incomplete set of aerodynamic data.

II. PROPER ORTHOGONAL DECOMPOSITION THEORY AND

EXTENSIONS

A. Proper orthogonal decomposition

The basic POD procedure is summarized briefly here. The
optimal POD basis vectors Φ are chosen to maximize the
cost:[1]
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where (U, Φ) is the inner product of the basis vector Φ with the
field U(x, t), x represents the spatial coordinates, t is the time,
and <> is the time-averaging operation. It can be shown that
the POD basis vectors are eigenfunctions of the kernel K given
by

K(x, x′) = 〈U(x, t), U∗(x, t)〉 (2)

The method of snapshots, introduced by Sirovich [2] is the way
of finding the eigenfunctions Φ without explicitly calculating



the kernel K. Consider an ensemble of instantaneous solutions,
or “snapshots”. It can be shown that the eigenfunctions of K
are the linear combination of the snapshots as follows

Φ =

m
∑

i=1

βiU
i (3)

where U i is the solution at a time ti and the number of snap-
shots is large. For fluid dynamic applications, the vector U i

contains the flow unknowns at each point in the computational
grid. The coefficients βi can be shown to satisfy the eigen-
problem

Rβ = Λβ (4)

where R is known as the correlation matrix

Rik =
1

m

(

U i, Uk
)

(5)

The eigenvectors of R determine how to construct the POD ba-
sis vectors [using (3)], while the eigenvalues of R determine the
importance of the basis vectors. The relative “energy” (mea-
sured by the 2-norm) captured by the ith basis vector is given
by λi/

∑m

j=1
λj . The approximate prediction of the field U is

then given by a linear combination of the eigenfunctions

U ≈

p
∑

i=1

αiΦ
i (6)

where p << m is chosen to capture the desired level of energy,
Φi is the ith POD basis vector, and the POD coefficients αi

must be determined as a function of time.

B. POD with interpolation

The basic POD procedure outlined in the previous section
considered time-varying flows by taking a series of flow solu-
tions at different instants in time. The procedure could also be
applied in parameter space, that is, obtaining flow snapshots
while allowing a parameter to vary. Assume that the parameter
of interest is denoted by δ. This could, for example, be the flow
freestream Mach number or airfoil angle of attack.

A procedure for rapid prediction of the flow solution U at
any value of δ is as follows:

1) Let
{

U δi

}m

i=1
be the set of snapshots corresponding to

the set of parameter values {δi}
m

i=1
.

2) Perform the basic POD procedure described above on
{

U δi

}m

i=1
to get the POD basis

{

Φk
}m

k=1
.

3) The reconstruction of each snapshot is given by

U δi =

p
∑

j=1

αδi

j Φj (7)

where p < m is the number of eigenfunctions used in the
reconstruction. The POD coefficients αδi

j are given by

αδi

j =
(

Φj , U δi

)

(8)

4) If
{

αδi

j

}m

i=1

is a smooth function of δ, interpolation can

be used to determine the POD coefficients for interme-
diate values of δ that were not included in the original

ensemble. The prediction of U δ at any value of δ via the
POD expansion is given by (6)

U δ =

p
∑

j=1

αδ
jΦ

j (9)

where the coefficients αδ
j are found by cubic spline inter-

polation of the set
{

αδi

j

}m

i=1

. Note that no discussion of

a smoothness requirement was given by Hung [11]; how-
ever, this is important for the interpolation result to be
reliable.

C. POD for reconstruction of missing data

Typically, the POD has been used as a way of performing
data reduction on large systems, such as those encountered in
CFD applications. However, here a procedure will be described
in which the POD can be used to reconstruct an incomplete data
set. This procedure is based on that developed by Everson and
Sirovich [12] for the reconstruction of human face images.

The task is began by defining the “mask” vector [12] which
describes for a particular flow vector where the data is available
and where the data is missing. For the flow solution U k, the
corresponding mask vector nk is defined as follows:

nk
i = 0 if Uk

i is present

nk
i = 1 if Uk

i is missing or incorrect

where Uk
i denotes the ith element of the vector Uk. For con-

venience in formulation and programming, zero values are as-
signed to the elements of the vector Uk where the data is miss-
ing, and the pointwise multiplication is defined as

(

nk, Uk
)

i
=

nk
i Uk

i . Then the gappy inner product is defined as (u, v)n =
((n, u), (n, v)), and the induced norm is (‖v‖n)2 = (v, v)n.

Let
{

Φi
}m

i=1
be the POD basis for the snapshot set

{

U i
}m

i=1
,

where all snapshots are complete. Let g be another vector that
has some elements missing, with corresponding mask vector n.
Assume that there is a need to reconstruct the full or “repaired”
vector from the incomplete vector g. Assuming, that the vec-
tor g represents a solution whose behavior can be characterized
with the existing snapshot set, the expansion (6) can be used to
represent the intermediate repaired vector g̃ in terms of p POD
basis functions as follows:

g̃ ≈

p
∑

i=1

biΦ
i (10)

To compute the POD coefficients bi, the error, E, between the
original and repaired vectors must be minimized

E = ‖g − g̃‖2

n (11)

where E is defined using the gappy norm so that only the orig-
inal existing data elements in g are compared. The coefficients
bi that minimize the error E can be found by differentiating (11)
with respect to each of the bi in turn. This leads to the linear
system of equations

Mb = f (12)



where Mij =
(

Φi, Φj
)

n
and fi =

(

g, Φi
)

n
. Solving equa-

tion (12) for b and using (10), the intermediate repaired vector
g̃ can be obtained. Finally, the complete g is reconstructed by
replacing the missing elements in g by the corresponding re-
paired elements in g̃, i.e. gi = g̃i if ni = 0.

D. POD with an incomplete snapshot set

Assume an existence of a collection of incomplete data
{

gk
}m

k=1
, with an associated set of masks

{

nk
}m

k=1
. The POD

basis can be constructed using an iterative procedure. The first
step is to fill in the missing elements of the snapshots using
average values as follows:

hk
i (0) =

{

gk
i if nk

i = 1
ḡi if nk

i = 0
(13)

where ḡi = 1

Pi

m
∑

k=1

gk
i , Pi =

m
∑

k=1

nk
i and hk(l) denotes the lth

iterative guess for the vector hk. A set of POD basis vectors
can now be computed for this snapshot set, and iteratively used
to refine the guess for the incomplete data. The procedure can
be summarized as follows, beginning with l = 0:

1) Use the basic POD procedure on the snapshot set
{

hk(l)
}m

k=1
to obtain the POD basis vectors for the cur-

rent iteration,
{

Φk(l)
}m

k=1
.

2) Use these POD basis vectors to repair each member of the
snapshot ensemble, as described in the previous section.
The intermediate repaired data for the current iteration is
given by

h̃k(l) =

p
∑

i=1

bk
i (l)Φi(l) (14)

3) The values from these intermediate repaired data are now
used to reconstruct the missing data for the next iteration
as follows

hk
i (l + 1) =

{

hk
i (l) if nk

i = 1

h̃k
i (l) if nk

i = 0
(15)

4) Set l = l + 1 and repeat steps 1 through 3.
The above iterative procedure should be repeated until the

maximum number of iterations is reached or until the estimate
of the repaired data has converged (see Everson [12] for de-
tails).

III. RESULTS AND DISCUSSION

Results will be presented for transonic flow past a NACA
0012 airfoil with a baseline freestream Mach number of 0.8.
Both the interpolation and data reconstruction techniques will
be applied. Snapshots were obtained from an inviscid steady-
state CFD code, which uses a finite volume formulation as pre-
sented in Jameson et al. [13] and Damodaran [14].

A. POD with interpolation for parametric variation

The first problem considered is steady flow with varying an-
gle of attack and Mach number. The Mach number interval
[0.75, 0.85] is divided into 20 uniform intervals, and the angle

of attack interval [0◦, 1.25◦] is divided into 10 uniform inter-
vals. Hence, the total number of snapshots in the ensemble is
231. Based on this snapshot set, interpolation will be used to
predict the flow at any arbitrary Mach number and angle of at-
tack within the range considered. For demonstration, POD will
be applied to the pressure field only; the procedure for the other
flow fields is straightforward.

The first prediction considered is for the pair
(α = 0.45, M = 0.8), in which M = 0.8 is one of
the values used to generate the snapshots but α = 0.45 is
not. Figure 1 shows the comparison between the predicted
pressure (dash contour) and the exact pressure (solid contour)
corresponding to (α = 0.45, M = 0.8), where “exact” refers
to the solution from the CFD model. It can be seen that with
five eigenfunctions, Figure 1(a), the error is large in places
and two contours are far apart. However, as the number of
POD basis vectors is increased to 25, Figure 1(c), the contours
match closely. It should be noted that the cost for pressure
prediction with 20, Figure 1(b), or 25 eigenfunctions does not
differ greatly, since the method requires only interpolation of
the scalar POD coefficients. The number of eigenfunctions can
therefore be increased to obtain the desired level of accuracy.

Figure 2 shows the predictions of pressure coefficients on
the upper and lower surfaces of the airfoil corresponding to the
pressure field in Figure 1. One interesting point that can be ob-
served here is that with a small number of eigenfunctions, the
pressure distribution away from the airfoil shows a large error
while the pressure distribution on the airfoil surface is close to
the exact one. This can be seen clearly by comparing Figures
1(b) and Figure 2(b). Therefore, beyond a certain point, in-
creasing the number of the eigenfunctions improves the farfield
pressure prediction without having much effect on the surface
pressure distribution.

Now, let us define the error as

error = max|(U − Up)./U | = ‖(U − Up)./U‖∞ (16)

which is the the maximum percentage error between two corre-
sponding elements of the CFD solution U and pth-order recon-
structed solution Up, “./” means elementwise division. Figure
3(a) shows the maximum percentage error in log scale versus
the number of POD modes used to predict the pressure distri-
bution. It can be seen that the error decreases very quickly as
number of eigenfunctions is increased from one to 25.

The second prediction considered is for the pair
(α = 0.5, M = 0.812), in which α = 0.5 is one of
the values used to generate the snapshots but M = 0.812 is
not. Figure 4 shows the comparison between the predicted
pressure (dash contour) and the exact pressure (solid contour)
corresponding to (α = 0.5, M = 0.812). Experience has
shown that prediction is more sensitive with Mach number
than with angle of attack, hence it is expected that more
eigenfunctions will be needed in this example to get a good
result. As shown in Figures 4(c) and 3(b), 30 eigenfunctions
are needed to make the predicted flow field almost identical to
the exact.

The last example in this section is the prediction for the
pair (α = 0.45, M = 0.812) in which both α = 0.45 and
M = 0.812 are not values used to generate the snapshots.



Therefore, it is expected that a higher number of eigenfunctions
are needed to obtain a good result. Figure 5 shows the compari-
son between the predicted pressure (dash contour) and the exact
pressure (solid contour) for this case. As expected, Figure 3(c)
shows that with 30 eigenfunctions the error is larger than that
shown in Figure 3(b) with the same number of eigenfunctions.
It can be seen in Figure 3(c) that at least 40 eigenfunctions are
needed to get the same level of accuracy obtained in the previ-
ous two examples.

The above results show that the POD method combined with
interpolation allows models to be derived that accurately pre-
dict steady-state pressure fields over a range of parameter val-
ues. The approach can be extended to the case where more than
two parameters vary. For example, one might wish to include
geometric properties of the airfoil in order to apply these mod-
els in an optimization context. While the number of snapshots
in this case might be large, the method presented in this paper
is straightforward to apply.

B. POD with interpolation for maximum lift coefficient

In this example, the goal is to find the angle of attack such
that the cost

J = Cl (17)

is maximized, where Cl is the lift coefficient of the airfoil. This
problem can be solved by using a golden section search method
together with POD. The NACA 0012 airfoil is considered at its
baseline freestream Mach number of 0.8, and 51 snapshots are
computed corresponding to uniformly spaced values of angle of
attack in the interval [−1.25◦, 1.25◦] with a step of 0.05◦. Since
the airfoil is symmetric, the values of the angle of attack in a
positive interval such as [0.00, 1.25] only need to be found to
maximize the cost in (17). Fifteen eigenfunctions are used for
this case. As the the flow model used is inviscid, it is expected
that the lift coefficient is maximized when the angle of attack is
1.25 degrees.

Tolerance 0.1 0.01 0.001 0.0001
# iterations 6 11 15 20

AOA 1.193643 1.244918 1.249258 1.24993

Table 1: The tolerance and corresponding result by Golden Search
method for Maximum lift coefficient problem.

Table 1 shows that the solution converges to the expected
value 1.25 as the tolerance decreases. Hence, the minimized
wave drag coefficient or maximum of the ratio of lift coefficient
and wave drag coefficient problems can be treated similarly.

C. POD with interpolation for a tracking problem

For demonstration purposes, the quantity of interest tracked
in this example is the Mach field V corresponding to AOA =
0.77, assuming that the information that the AOA is 0.77 and
other other corresponding fields are not known. The statement
for this problem is to find a value of AOA such that the Mach
field from POD expansion Vp =

∑p

i=1
αiΦ

i
V is close to V ,

where
{

Φi
V

}m

i=1
is the POD basis for Mach field. The formula-

tion is then to find an AOA to minimize the cost functional

J = ‖V − Vp‖
2 (18)

Once again, Golden Section Search method together with PODI
is used here to find the minimum cost in (18) with the angle of
attack in the interval [-1.00, 1.25], and 15 eigenfunctions in
previous section are used for PODI method.

Tolerance 0.1 0.01 0.001 0.0001
# iterations 7 12 17 21

AOA 0.781541 0.772394 0.769920 0.770023

Table 2: The tolerance and corresponding result by Golden Search
method for Tracking problem.

Once again, the result converges to the expected AOA =
0.77 as the tolerance decreases. Once the AOA is found, other
flow variable fields corresponding to the Mach field can be ob-
tained immediately by applying the method in the section III-
A. The application of Tracking problem for the other fields is
straightforward.

D. Reconstruction of missing data in Aerodynamics

For purpose of this section, the incomplete data set will be ar-
tificially created by throwing away some portion of the data. In
this problem, it is assumed that the complete set of POD eigen-
functions has already been computed using the data in Section
III-A. The pressure field at AOA = 0.77 (which is not one of
the snapshots) is generated by the CFD code. Next, only the
airfoil surface values of this solution are kept, and treated as if
they were obtained from some experiment. Figure 6(a) shows
the points on the NACA 0012 airfoil surface where pressure
field values are available. Figures 6(b) and (c) show the con-
struction (dash contour) of pressure contour and the exact one
(solid contour) with four and five POD eigenfunctions, respec-
tively. As expected, the more eigenfunctions used, the closer
to the exact pressure the reconstruction is. The exact pressure
field can be obtained very accurately with only five POD eigen-
functions, showing that the POD methodology for data recon-
struction works very effectively for aerodynamic applications.

E. Reconstruction of missing snapshots

In the final example, a 26-member snapshot ensemble is
used. These snapshots correspond to steady pressure solutions
at angles of attack in the range [0◦, 1.25◦] uniformly spaced
with an interval of 0.05◦. To create the incomplete snapshot
set, 30% of the data of each snapshot is then discarded ran-
domly. The algorithm described in Section II-D is then used to
repair the data as follows. By first repairing the missing data
points in each snapshot with the average over available data at
that point, a new ensemble of data is created that has no miss-
ing values. With this new ensemble, a first approximation to
the POD basis is then constructed. Then, each snapshot in the
ensemble is repaired using the first approximation of the POD
basis. This repaired ensemble is then used to construct a second
approximation to the POD basis. This process is repeated until
some stopping criterion is met. For this example, the stopping
criterion is the limited number of iterations.

In Figure 7, the 30% incomplete second snapshot is repaired
by the above procedure with six POD eigenfunctions. The ex-
act pressure contour is the solid contour and the dash contour



is the reconstruction. Figure 7(a) shows the original damaged
snapshot. After 1 iteration, the repaired snapshot in Figure 7(b)
is much better, but it is still far away from the original. Fig-
ure 7(c) is the repaired snapshot after 25 iterations and can be
seen to match closely with the exact solution.

Figure 8 shows the repairing process for the 23rd snapshot.
Compared to the contour with 30% data missing in Figure 8(a),
Figure 8(c) is almost identical to the exact one with only seven
iterations. It can be seen that the convergence of the reconstruc-
tion process depends on the details of the particular snapshot
under consideration. In particular, it depends on the structure
of the flow snapshot and how much data is missing. For the
23rd snapshot shown in Figure 8, the convergence rate is much
faster than for the second snapshot shown in Figure 7.

Now the rate of convergence for the construction of the POD
eigenfunctions is investigated. In Figure 9(a), it can be seen
that construction of the first eigenfunction after two iterations
(dash contour) is already very close to the exact contour (solid).
However, in Figure 9(b), the construction of the second eigen-
function after ten iterations (dash-dot contour) is still far way
from the exact one (solid contour). At least 31 iterations are
needed to obtain the construction of the second eigenfunction
(dash contour) close to the exact one. It is observed that the
rate of construction of an eigenfunction that captures more en-
ergy is faster than that of an eigenfunction that captures less
energy. The first eigenfunction, which captures 90.65% energy,
requires only two iterations to converge very close to the exact
one; however, the second eigenfunction, which captures 7.7%,
requires 31 iterations. This observation is also be related to
the fact that successive POD eigenfunctions often correspond
to higher spatial frequency flow structures. For example, it can
be seen in Figure 9 that the second eigenfunction contains more
high-frequency shock structure than the first mode. It is there-
fore not surprising that reconstruction of this mode requires
more iterations.

The rate of convergence of the eigenfunctions through the
error is defined by

E(n) =

√

√

√

√

m
∑

k=1

(λk(n) − λk(n − 1))
2

where λk is the eigenvalue corresponding to kth eigenfunction,
m is the number of eigenfunctions, and n is the iteration num-
ber [12]. The rate of convergence of the error E(n) in log scale
is given in Figure 9(c). We can see that the error goes down
very fast when the number of iterations is less than ten but it
decreases slowly after that. It is also observed that the rate of
convergence depends on the random generator which means the
missing structure of the snapshots. Generally, the more data is
missing, the more iterations we need to obtain the convergent
reconstructions of snapshots.

Note that the procedure itself is quite expensive since we
have to solve m (number of snapshots) systems (12) for con-
structing m snapshots (the more eigenfunctions we use the
more systems we have to solve) for each iteration. Further-
more, an eigenvalue problem with size m has to solved to find
the eigenfunctions for each iteration.

IV. CONCLUSION

The POD basis has been shown to be efficient for capturing
relevant flow information for steady transonic aerodynamic ap-
plications. By coupling the POD basis with an interpolation
method, models are obtained that give accurate flow field pre-
dictions. These predictions do not require a projection onto the
CFD governing equations, but rather just a collection of flow
snapshots that covers the parameter ranges of interest. The in-
terpolation approach is applicable to any problem whose prop-
erties of interest are a smooth function of the parameters under
consideration. The POD has also been shown to be very ef-
fective for reconstructing flow fields from incomplete data sets.
While the rate of convergence of the reconstruction depends on
the amount of missing data and the structure of the flow field,
the method was found to work effectively for all problems con-
sidered.
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Fig. 1. Comparison of predicted pressure contours (dash) and exact pressure contours (solid) for a Mach number of 0.8 and angle of attack of 0.45◦; (a) five
POD eigenfunctions, (b) twenty POD eigenfunctions, (c) 25 POD eigenfunctions.
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Fig. 2. Comparison of predicted upper pressure coefficients (square), predicted lower pressure coefficients (circle), exact upper pressure coefficients (dash) and
exact lower pressure coefficients (solid) for a Mach number of 0.8 and angle of attack of 0.45◦. Cp∗ is the sonic pressure coefficient; (a) five POD eigenfunctions,
(b) twenty POD eigenfunctions, (c) 25 POD eigenfunctions.
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Fig. 3. Variation of percentage error versus the number of POD eigenfunctions in log scale; (a) M = 0.8 and AOA = 0.45◦, (b) M = 0.812 and AOA = 0.5◦,
(c) M = 0.812 and AOA = 1.1◦.
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Fig. 4. Comparison of predicted pressure contours (dash) and exact pressure contours (solid) for a Mach number of 0.812 and angle of attack of 0.5◦; (a) five
POD eigenfunctions, (b) 25 POD eigenfunctions, (c) thirty POD eigenfunctions.
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Fig. 5. Comparison of predicted pressure contours (dash) and exact pressure contours (solid) for a Mach number of 0.812 and angle of attack of 1.1◦; (a) five
POD eigenfunctions, (b) thirty POD eigenfunctions, (c) 35 POD eigenfunctions.
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Fig. 6. The reconstruction of the pressure field from airfoil surface pressure distribution (dash) and the exact one (solid). (a) The points on the airfoil where
pressure values are available, (b) the construction with four POD eigenfunctions, (c) the reconstruction with five POD eigenfunctions.
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Fig. 7. The reconstruction of the 2nd snapshot (dash), and the exact one (solid). (a) the 2nd snapshot with 30% data missing (b) The reconstruction of 2nd

snapshot after one iteration (dash), (c) The reconstruction of 2nd snapshot after 25 iterations (dash).
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Fig. 8. The reconstruction of the 23rd snapshot (dash), and the exact one (solid). (a) the 23rd snapshot with 30% data missing (b) The reconstruction of 23rd

snapshot after one iteration (dash), (c) The reconstruction of 2nd snapshot after seven iterations (dash).
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Fig. 9. (a) The construction of the 1st eigenfunction after two iterations (dash) and the exact one (solid), (b) The constructions of 2nd eigenfunction after ten
iterations (dash) and the exact one (solid), (c) The error E(n).


