
Functional Encapsulation and Type Reconstruction in a
Strongly-typed, Polymorphic Language

by

Shail Aditya Gupta

B.Tech., Indian Institute of Technology, New Delhi, India, 1987
S.M., Massachusetts Institute of Technology, Cambridge, MA, USA, 1990
E.E., Massachusetts Institute of Technology, Cambridge MA, USA, 1992

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of

the Requirements for the Degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

February, 1995

@ Shail Aditya 1995

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

g-' .
k .

Signature of Author /-
Department of Electrical Engineering and Computer Science

anuary 23, 1995

Certified

hv
I i I I JI \I

ArvinW
Professor of Electrical Engineering and Computer Science

S 1i S upervisor

Accepted by
Fre leric RlAF rg nthaler

Chairman, Committee Graduat4 Students
Eng.

MASSACHUSETTS INSTITUTE
ng: Tr l'tOW! nre%

APR 13 1995

I~- ------- | •| | V I \ I q

Functional Encapsulation and Type Reconstruction in a
Strongly-typed, Polymorphic Language

by

Shail Aditya Gupta

Submitted to the Department of Electrical Engineering and Computer Science
on January 23, 1995

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Static type systems are traditionally used to prevent run-time type-errors in user programs
and to assign appropriate storage representations to objects during compilation. In this thesis,
we explore some new ways of using static type information in the design, compilation, and
execution of programs written in a strongly-typed, polymorphic language.

Programmers often find it useful to know whether or not a particular data-structure may be
updated outside a given control block. Information about an object's non-mutability helps
compiler optimizations, improves aliasing and dependence analyses, and permits unrestricted
caching of functional data at run-time. In the first part of this thesis, we present a safe, static
mechanism for functional encapsulation of imperative data-structures using a powerful type
system based on closure types and regions. We introduce a new language construct called
close which delimits the scope of side-effects on imperative objects and converts them into
functional objects outside that scope. This mechanism may be used to build efficient, high-
level, functional data-abstractions within a language using its low-level, imperative constructs.
Type-safety and non-mutability of closed objects is guaranteed by a semantic soundness theorem
that ensures consistency between the static and the dynamic semantics. The type system is
presented in the context of Id, which is a strongly-typed, polymorphic, higher-order language,
and it easily simplifies to a first-order, monomorphic language such as C or Fortran.

In the second part of the thesis, we develop a general, compiler-directed methodology for com-
plete type reconstruction of run-time objects in a polymorphic language without using any
run-time type-tags. Run-time type reconstruction is carried out by instantiating static type
information for each function activation frame present within the dynamic call tree. Additional
type-hints are inserted automatically at compile-time and are decoded at run-time to ensure
complete type reconstruction. We present the necessary compiler analysis and the type re-
construction algorithm and prove their correctness. This technique has been used successfully
for displaying run-time objects within the Id source debugger for Monsoon and to perform
tagless garbage collection in the *T architecture. We describe the latter application in detail,
comparing its performance with other schemes for automatic storage reclamation.

Thesis Supervisor: Arvind

Title: Professor of Electrical Engineering and Computer Science

Acknowledgmentst

I am most grateful to my thesis advisor and my mentor, Prof. Arvind, without whose guidance
and encouragement I would not have seen this day. He showed a keen interest in me when I first
joined MIT in the fall of 1987 and took his course on Dataflow and Reduction Architectures
(6.847). I was highly impressed by his magnetic personality, a clear vision of the future of
parallel computing, and a strong conviction for achieving that research goal. After seven years,
I still remain deeply impressed, and in many ways, greatly influenced by his personality and
research ideas. I thank him for giving me the opportunity to work with him and with the other
members of the Computation Structures Group, which for the last seven years, has been a truly
exciting and friendly research atmosphere to work in.

I would also like to thank the other members of my thesis committee, Prof. Albert R. Meyer
and Dr. Rishiyur S. Nikhil, who provided valuable advice and guidance from time to time and
helped me get through my thesis defense with ease. I am especially grateful to Dr. Nikhil who
previously supervised my Master's thesis. He helped me shape my graduate academic career
and has been a continuous source of support and inspiration.

Xavier Leroy from INRIA, and Satyan Coorg from CSG gave enormous technical help while
developing the type system presented in the first part of this thesis. Prof. Arvind provided
valuable insights into the language design issues that led to the current design of the close
construct. James Hicks from MCRC and Christine Flood from CSG helped in implementing
and comparing various storage reclamation schemes described in Chapter 8. I sincerely thank
them all for their time and patience in helping me complete this research.

I heartily thank all the members of the Computation Structures Group, both past and
present, for their continuing friendship and support, making it all feel like a big family. I have
made some of the best friends of my life in this group both professionally and personally. I
would especially like to thank Zena Ariola for providing moral support and sound advice, and
Michael Halbherr for his delightful friendship and a wonderful time in Europe.

I would also like to thank Gita, Prof. Arvind's wife, whose love and care for me, home
cooked food, and invitations to participate in family festivities really provided me with the
feeling of a "home away from home".

I also thank all my other friends at MIT and elsewhere, and members of the music group
Gunjan for their enjoyable company and memorable experiences, creating welcome diversions
from work and making these past several years some of the most cherished moments of my life.

I am eternally grateful for the love and affection bestowed upon me from my family. The
encouragement and support I received from my parents, Vidyaratna and Kusum, is beyond
measure. This thesis is as much a fulfillment of their dream as it is of mine. It is the fruit of
their tremendous confidence in my abilities under all circumstances. I am very grateful to my
brothers, Vikram and Uday, for their love and support and who took all my responsibilities
at home upon themselves. I am also extremely grateful to my sisters, Archana and Kalpana,
who provided me with enormous love and affection as well as strong moral support and sound
advice during difficult times.

Finally, I am thankful beyond words to The Almighty God for keeping me steady on my
path, giving me the strength and will power to do the right thing every time, helping me to be
at peace with myself in the face of sorrow or joy, and ultimately making my lifelong academic
dream come true. May He continue to guide my path in the same way in future. Amen.

tFunding for this work has been provided in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under the Office of Naval Research contract N00014-92-J-1310.

To my parents,
Vidyaratna and Kusum.

Contents

Abstract

Acknowledgments

1 Introduction
1.1 Layered Language Design .
1.2 Id: A Strongly-Typed, Layered Programming Language . . .
1.3 Applications to Conventional, Imperative Languages
1.4 Outline of the Thesis .

1.4.1 Part I .
1.4.2 Part II .
1.4.3 How to Read this Thesis

I Types in Language Design: Functional Encapsulation

2 Functional Encapsulation of Imperative Data-Structures
2.1 The Problem

2.1.1 Abstraction and Polymorphism
2.1.2 Outline of our Approach

2.2 Imperative Type Systems .
2.2.1 Simple Hindley/Milner Type Inference
2.2.2 Type System of Standard ML
2.2.3 Type System of Standard ML of New Jersey
2.2.4 Limitations of the Standard ML Type Systems
2.2.5 Effect Systems
2.2.6 Syntactic Closure Typing System
2.2.7 Choosing an Imperative Type System

2.3 Closing Imperative Data-Structures
2.3.1 A Proposal for "Close"
2.3.2 Guaranteeing Type-Safety
2.3.3 Guaranteeing Non-Mutability
2.3.4 Efficiency and Parallelism
2.3.5 Termination of Side-Effects before "Close"

2.4 Sound Typings for Imperative/Closed Objects
2.4.1 Modeling "Imperativeness" in Types
2.4.2 Handling the Environment
2.4.3 Handling Structured Results

15
15
17
18
19
19
20
20

23

25
25
26
27
28
28
29
30
31
32
35
37
38
38
39
40
41
42
45
45
46
47

I

2.4.4 Handling Functions
2.5 Summary

3 Semantics of "Close"

3.1 Kernel Expression Language

3.1.1 Expression Syntax
3.1.2 Dynamic Semantics

3.1.3 Properties of the Evaluation Rules
3.2 A Closure Typing System

3.2.1 Type Syntax
3.2.2 Static Semantics
3.2.3 Properties of the Typing Rules ..

3.3 Type Soundness
3.3.1 Semantic Model
3.3.2 Properties of the Semantic Model .
3.3.3 Type Soundness

3.4 Type Inference

. 48

. 49

51
. 5 1
. 5 1
. 52
. 57
. 6 1
. 6 1
. 63
. 66
. 68
. 68
. 69
. 70
. 79

4 Closing Data-Structures
4.1 Specification of "Close" for Multi-Level Data-Structures

4.1.1 Dynamic Semantics Issues.....
4.1.2 Static Semantics Issues
4.1.3 Combining Type Generalization and Closing . .
4.1.4 Discussion
4.1.5 Closing a Fixed Set of Regions/Locations

4.1.6 Type Annotations as "Close" Specifications . . .
4.2 Closing Arrays

4.2.1 Dynamic Semantics
4.2.2 Static Semantics
4.2.3 Semantic Model and Soundness
4.2.4 Modeling I-Structure and M-Structure Arrays . .

4.3 Closing General Algebraic Datatypes

4.3.1 Specification Issues
4.3.2 Syntactic Specification of Algebraic Datatypes .
4.3.3 Dynamic Semantics
4.3.4 Static Semantics
4.3.5 Soundness

4.4 Functional Encapsulation in Conventional Languages . .
4.5 Conclusions

4.5.1 Summary of Part I
4.5.2 Implementation Status
4.5.3 Future W ork

81
. 81
. 82
. 83
. 84
. 85
. 86
. 87
. 89
. 89
. 90
. 91
. 92
. 93
. 93
. 95
. 96
. 98
..... 99
. 99
.100
.100
.101
.101

II Types in Run-time System Design: Type Reconstruction 103

5 A Typed Run-time System
5.1 Introduction .
5.2 Design Issues for a Typed Run-time System

5.2.1 Strong vs. Weak Typing
5.2.2 Static vs. Dynamic Typing
5.2.3 Tagged vs. Untagged Object Model
5.2.4 Type Maintenance vs. Type Reconstruction
5.2.5 Polymorphism and Higher-order Functions
5.2.6 Type Inference vs. Type Declaration

5.3 Our Approach
5.4 Applications of Complete Run-time Type Reconstruction

5.4.1 Polymorphic Source Debugging
5.4.2 Tagless Garbage Collection
5.4.3 Object-based I/O

5.5 Outline

6 Compiler-directed Polymorphic Type Reconstruction
6.1 Type Reconstruction Problem

6.1.1 Basic Type Reconstruction Scheme
6.1.2 Problems with Closures and Free Variables
6.1.3 Discussion

6.2 Type Reconstruction Framework
6.2.1 Run-time Model of Program Execution
6.2.2 Type Reconstructibility
6.2.3 Recording Compile-time Type Information
6.2.4 The Principle of Type Conservation

6.3 Compiler Support for Type Reconstruction
6.3.1 Detecting Violations of Type Conservation
6.3.2 Propagating Non-Conserved Type Information across
6.3.3 Program Translation

6.4 Run-time Type Reconstruction
6.4.1 A Type Reconstruction Example

6.5 Compiler Optimizations
6.5.1 Rearranging the Hint Parameters
6.5.2 Arity Analysis
6.5.3 Escape Analysis
6.5.4 Tail C alls .
6.5.5 Type Specialization

6.6 Implementation Status
6.6.1 Type Reconstruction in a Polymorphic Source Debug
6.6.2 Type Reconstruction for Tagless Garbage Collection

7 Formal Framework for Run-time Type Reconstruction
7.1 The Kernel Id Intermediate Language
7.2 Compiler Support for Type Reconstruction

7.2.1 A Type System for Computing Type-hints
7.2.2 Type Inference
7.2.3 Program Translation and Type-Hint Generation .

•

.

.

•. •

. . . o . .°

.F.n.t.ions

.

.

.

ger .. .

105
.105
.105
.106
.106
.107
.107
.108
.108
.108
.109
.109
.109

110
.111

113
.113
.114
.116
.117
.118
.118
.119
.120
.120
.123
.123
.124
.125
.126
.127
.128
.128
.129
.129
.130
.130
.131
.131
.132

133
.133
.134
.134
.137
.137

.

7.2.4 Discussion 140
7.3 Run-time Type Reconstruction 142

7.3.1 Type Reconstruction Requirements 142
7.3.2 The Reconstruction Algorithm 142
7.3.3 Reconstruction Complexity 144

7.4 Correctness of the Type Reconstruction Algorithm 145
7.4.1 Simple Expression Language and its Semantic Model 146
7.4.2 Partial Execution and the Dynamic Activation Tree 146
7.4.3 Type Reconstruction 149
7.4.4 The Type Reconstruction Algorithm 150
7.4.5 Correctness of the Algorithm 151

8 Application Study: Tagless Garbage Collection 155
8.1 Introduction 155

8.1.1 Storage Reclamation without Run-time Type Information 156
8.1.2 Garbage Collection using Run-time Type Reconstruction 156
8.1.3 Related W ork 157
8.1.4 Goals and Scope of the Study 157
8.1.5 Outline 158

8.2 Framework for Tagless Garbage Collection 158
8.2.1 Object Representations and the Memory Model 158
8.2.2 Overall Strategy 160

8.3 Compiler Support for Object Identification 160
8.3.1 Visible and Invisible Datatypes 160
8.3.2 Modeling Function Closures 160
8.3.3 Modeling Activation Frames 161
8.3.4 Run-time Type Encodings 162

8.4 Run-time Object Traversal and Marking 163
8.4.1 Interpreted Marking 163
8.4.2 Compiled M arking 165
8.4.3 Variations on Marking Schemes 166

8.5 *T Implementation 166
8.5.1 Multi-threaded Execution: Processor View 167
8.5.2 Multi-threaded Execution: System View 167
8.5.3 Memory Organization 168
8.5.4 Garbage Collection on *T 170

8.6 Performance Results and Analysis 172
8.6.1 Benchmark Runs 172
8.6.2 Performance Analysis 175

8.7 Conclusions . 178
8.7.1 Future W ork 178

Bibliography 180

List of Figures

1.1 The Layered Design of the Id Language

2.1 Conversions among Synchronization Protocols at the time of Closing..

3.1
3.2

. 18

44

The Dynamic Semantics of the Kernel Expression Language.....
The Static Semantics of the Kernel Expression Language

4.1 Dynamic Semantics of Arrays 90

5.1 Design Issues for a Typed Run-time System 106

The Run-time State of Computation in Example 6.1 ...
The Parallel Execution Model for Id
Kernel Id definition and the Type-map of map function. .
Visible and Invisible Application Sites
The Kernel Id definition and type-map of function h3 from
The Run-time State of Computation in Example 6.8 . . .

The Kernel Id Intermediate Language
Rules for computing Non-Conserved Type Information f(
Encoding and Decoding of Type Schemes
Program Translation and Hint Generation Rules.....
The Type Reconstruction Algorithm
The Evaluation Derivation Tree for Example 7.3.....

o

8.1 Run-time Object Representations for Id
8.2 Automatic Derivation of Invisible Datatypes
8.3 Generating Mark Functions for Datatypes
8.4 Type-code Interpretation at Run-time
8.5 Type-based Translation at Compile-time
8.6 The Organization of Computation Nodes and Memory Nodes in
8.7 Performance Results for Quicksort and Paraffins
8.8 Performance Results for Gamteb and Wavefront
8.9 Total Cost and Run-time System Cost for the Benchmarks. . .
8.10 Run-time System Cost Breakup

.115

...119

. 121

...122
Example 6.3...... 124
. 127

.134
r Kernel Id Programs. . 135
.138
.139
.143
. 147

.159

.162

.164

.164

.165
the *T machine. 169
.173
.174
.175
.176

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6

Chapter 1

Introduction

One of the main goals of modern, high-level programming languages is to provide an intuitive
programming model that is useful in writing applications and reasoning about their behav-
ior. Some languages enforce a style of programming that guarantees useful properties for the
programs written in those languages. In this thesis, we concentrate on a class of high-level
languages that are strongly-typed. Strong-typing enforces type-consistency which imparts a de-
gree of robustness to the program. A type-consistent program is guaranteed never to run into
a run-time type-error, e.g., attempting to use an integer in a floating-point computation or
applying a non-function object to an argument.

In a strongly-typed language, type-consistency can be enforced during compilation (static
typing) or during execution (dynamic typing). The compiler for a statically-typed language has
to be somewhat conservative in enforcing type-consistency: it may reject certain programs that
appear to be inconsistent, although such programs may not encounter a run-time type-error for
certain inputs (or even for all possible inputs). The advantage of being conservative is that a
program that has been statically determined to be type-consistent, is guaranteed to execute in
a type-consistent manner for all inputs. Therefore, no checks for type-consistency need to be
made during its execution.

Type information is primarily used in statically-typed languages to check for type-consistency
within programs and to choose memory representations for data-structures. Most of this in-
formation is thrown away once a program has been compiled. At most, some type information
may be saved in a symbol table to be used by a source-level debugger. In this thesis, we wish
to explore more fundamental ways in which to incorporate and use type information in the
design, compilation, and execution of a program written in a strongly-typed language. We wish
to use the type system of our language as a tool for structuring the language design into tight
abstraction layers, provide support for compiler optimizations and automatic code generation
as well as support for run-time facilities such as source-level debugging and garbage collection.

1.1 Layered Language Design

Modern, high-level languages offer a variety of data and control abstraction mechanisms to
enable users to structure their applications properly. Most programming language designs
fall into one of the following two categories: either a language includes a large repertoire of
common datatypes and their manipulation functions as part of its definition as in Common
Lisp [SJ90], or these objects are defined separately in a standard prelude or in system and user
libraries as in the case of Standard ML [MT91, MTH90], Haskell [HWe90], or C [Pla92]. The

first approach sometimes leads to language definitions that may be too large to understand,
implement and reason about. The second approach usually leads to small and simple language
kernels that may be used to "implement" high-level datatypes and their associated functions
as independent libraries. This approach seems better in terms of overall ease of understanding
and maintainability of the language, though it requires a careful design of the libraries and their
user interface.

The recent success of strongly-typed, polymorphic, functional languages, such as Haskell
and Standard ML, highlight the importance of this layered approach to language design. Small
language kernels have manageable semantic complexity and can be subjected to powerful rea-
soning techniques. At the same time, a small set of kernel primitives that can be suitably
mapped to the underlying architecture provide a flexible and efficient means of implementing
pre-defined and user-defined high-level datatypes. In order for such kernel implementations to
be sound and transparent to the end-user, a proper data and type abstraction mechanism must
be provided in the kernel language. Otherwise, the semantic correctness of the implementation
may be in doubt. An example of this situation is the C language [KR88] which offers complete
flexibility of a low-level kernel language but lacks a tight abstraction mechanism, leading some-
times to subtle errors in user programs. For this reason, many high-level languages offer only a
fixed set of high-level constructs with pre-defined semantics rather than provide the user with
the complete flexibility and the raw power of a low-level kernel language. The list comprehen-
sion mechanism, first introduced in NPL [Bur77, Dar77] and later adopted in Miranda [Tur85]
and Haskell, is an example of such a language construct.

From a language design standpoint, a powerful type system can be used to enforce the type
abstraction desired for kernel language implementations of high-level datatypes in libraries
without changing the high-level language definition or modifying the compiler. In Part I of this
thesis, we are going to present a type system that will allow us to build a data-structure in a
low-level, imperative style and then safely encapsulate it as a functional data-structure. The
motivation for doing so is as follows.

First, our type system reduces the complexity of writing compilers for functional languages.
Functional syntactic constructs, such as list and array comprehensions, that have to be im-
plemented within the compiler as primitive constructs, can instead be desugared into ordinary
functions that are implemented in an independent system library. This is possible because we
allow the programmer to use low-level imperative constructs while implementing the library
that are safely encapsulated within functional abstractions provided by the type system. This
approach is also very flexible since it allows modification and extension of existing language
constructs as well as addition of new constructs without disturbing the bulk of the compiler.

Second, our type system provides a way to safely implement functional computations using
imperative algorithms that cannot otherwise be expressed in a functional style efficiently. No-
table examples that have this characteristic are accumulation (histogramming) algorithms and
graph algorithms. Although, the final result may be functional, the computation often needs to
be performed in an imperative way in order to achieve efficiency in space and time. Using our
type system, an imperative computation can be safely embedded within a functional program
while still preserving its clean semantics and simple reasoning.

From the standpoint of a compiler, working hand-in-hand with a powerful type system can
prove to be more fruitful than working around it, as most compilers tend to do. Static types of
program fragments provide valuable information about "what" is being computed. The shape
and size of data-structures and the input/output parameters of functions can be determined
using their static types. Intelligent compilers can use this information while performing impor-
tant optimizations such as boxing/unboxing of data, code specialization, and register allocation.

Unfortunately, very few compilers actually propagate the full source type information all the
way to the back-end, the Glasgow Haskell compiler [PJ92] being a notable exception. In a lay-
ered language, this task is considerably simplified since only a small number of kernel language
constructs are involved within the later phases of the compiler.

It is also possible to use source type information at run-time to display objects during ex-
ecution, or to output them to a file, or to perform garbage collection. A run-time system that
has access to complete source type information from the compiler may not need to maintain
such information independently, say in the form of object type-tags, in order to handle such
applications. The compiler and the run-time system could be made to cooperate in automat-
ically recreating and using this type information when needed. In Part II of this thesis, we
will explore the technique of run-time type reconstruction that reconstructs the exact type of
every object on demand without paying the overhead of type maintenance. Furthermore, we
will explore ways in which static type information can be used to automatically generate spe-
cialized routines at compile-time for each data and control object within the program in order
to perform such tasks.

1.2 Id: A Strongly-Typed, Layered Programming Language

The idea of using type information within the design of a high-level language, its compiler, or
its run-time system is not new. But, very few systems make use of source type information
right from the design of an application all the way down to its execution in a coherent manner.
This research is geared towards such an integrated approach to managing type information in
the context of the parallel programming language Id [Nik91], developed at the Computation
Structures Group, Laboratory for Computer Science, MIT.

Id is a high-level, strongly-typed language and it uses the Hindley/Milner polymorphic type
system and its automatic type inference mechanism [Mil78, DM82] at its functional core. Id
also offers imperative data-structures (I-structures [ANP89] and M-structures [BNA91]) that
cater to imperative styles of programming. Id is a layered language by design (see Figure 1.1).
The language and its implementation can be divided into three distinct layers: the user-level
functional layer, the system-level imperative layer, and the architecture-level implementation
layer.

At the highest level of functionality, the Id language provides high-level constructs such as
arrays, lists, tuples, higher-order functions, and user-defined algebraic types. Special syntactic
constructs, such as array and list comprehensions and pattern matching are also provided.
Applications manipulating these objects make use of system and user libraries that support or
extend the functionality provided by the compiler.

The system-level layer consists of the Id kernel language. The primitive I-structure and
M-structure datatypes provide the basic data-structuring and synchronized memory access
mechanisms in this language. These primitive datatypes are used to represent all high-level
data-structures. Loops and procedures constitute the basic control mechanism. The compiler
translates high-level syntactic constructs such as pattern matching, and list and array compre-
hensions into primitive operations on kernel datatypes. The system and user libraries may also
make use of these kernel constructs to implement high-level data-structures.

Finally, the architecture-level layer consists of the run-time system of the language and is
responsible for implementing the Id execution model and managing the synchronized memory.
The compiler also generates type information and run-time support code for garbage collection
and source-level debugging that can be directly linked along with the object code to perform

Library and
nnniler _S onn,'rt

List and Array Comprehensions

Algebraic Types, Higher-order

Functions, Pattern Matching

Primitive Scalar Datatypes

I-Structures and M-Structures

Loops and Procedures

i Run-Time System

User-level

System-level

Architecture-level

Application Heap and Frame Manager, Type-direct
Object Code Multi-threaded Scheduler Automatic (

Support for GC, I/O, Debugger Generation

Figure 1.1: The Layered Design of the Id Language.

these auxiliary tasks during execution.
This layered design presents a very flexible interface to the application writer where more

functionality can be added to the user-level simply by adding more system-level libraries writ-
ten in the kernel language. The type system is responsible for clearly defining and enforcing
the abstraction between the two layers so that polymorphic, functional behavior and simple
reasoning can be preserved at the user-level. At the same time, the Id run-time system is able
to map the system-level kernel language constructs onto the underlying target architecture in
an efficient way, independent of the source language used.

1.3 Applications to Conventional, Imperative Languages

The functional encapsulation mechanism described in this thesis is not only applicable to higher-
order, polymorphic languages like Id and Haskell, but also to conventional, monomorphic lan-
guages like C and Pascal. This mechanism allows safe conversion of mutable objects into
read-only functional objects. This transformation is useful for both sequential and parallel

Id Language

User Libraries

System Libraries

npMor _Q ppt

versions of conventional imperative languages. We discuss some of these uses below.
The most important property of a functional object is that its value does not change during

the course of execution of the program. Therefore, a functional object may be freely copied
if necessary, or conversely, excessive copies may be freely eliminated. This property leads to
obvious compile-time optimizations such as common sub-expression elimination, code-hoisting,
and memory-fetch elimination that attempt to reduce the number of copies. This also permits
unlimited caching of such functional data in a parallel machine without any risk of write-
invalidation. In parallel systems using software-controlled shared-memory protocols [Nik94,
FLR+94] this may directly translates into cheaper protocols for object access and migration.

While writing parallel programs, programmers often make implicit assumptions that a
shared, mutable object may not be updated outside a given control block or that a partic-
ular processor may have exclusive access to a shared object without actually locking it. Such
assumptions are usually based upon the implicit logic of the program and as such it may be quite
difficult to prove their correctness. With a little help from the user in identifying such objects,
the encapsulation mechanism described in this thesis can verify such assumptions automati-
cally. This mechanism also allows making safe, unsynchronized access to such shared objects
outside their encapsulated control-block because the objects are guaranteed to be read-only at
that point.

Finally, conversion of mutable objects into functional objects also improves other compile-
time analyses such as memory-aliasing analysis and loop-dependence analysis by clearly dis-
ambiguating between read-only and read-write data. This, in turn, may benefit automatic
parallelization of sequential programs that make use of such analyses.

Thus, providing the ability to restrict the scope of side-effects to mutable data-structures
translates into important optimizations at all levels of program design and implementation.
This thesis provides the basic type-based framework for making such optimizations feasible.

1.4 Outline of the Thesis

1.4.1 Part I

This thesis is divided into two parts. In Part I (Chapters 2, 3 and 4), we describe a powerful
type system that has the ability to encapsulate programs constructing mutable data-structures
and view them as returning functional data-structures while guaranteeing that no more updates
take place on the returned objects outside the encapsulation.

Chapter 2 is an informal and intuitive condensation of the major ideas in Part I. We
introduce the problem by means of a simple example involving functional arrays in Id. We
briefly survey the literature comparing various existing imperative type systems and informally
describe our solution as an extension to one of the existing type systems. Then, we discuss
"language-level issues" such as type-safety, polymorphism and non-mutability within our type
system and how they interact with "system-level issues" such as space and time efficiency,
parallelism, and memory synchronization. Finally, we describe specific strategies used in our
type system that take care of these issues.

Chapter 3 describes the formal machinery and the soundness proof of our type system that
is the main theoretical contribution of Part I. We start with the description of a small, im-
perative language containing simple mutable locations and a special language construct called
close to convert them into immutable locations. We provide the dynamic and static semantics
of this language in terms of relational axioms and inference rules and show their useful seman-
tic properties. Then, we set up a semantic model that defines a consistent relation between

values and their types. This relation maps read-write locations to mutable types and read-only
locations to functional types. Finally, we prove a soundness theorem stating that the static and
the dynamic semantics of our expression language are consistent with respect to each other.
It follows immediately that the mutable objects that are successfully converted into functional
objects under our type system, are never updated again dynamically.

Chapter 4 extends the formal machinery of Chapter 3 to complex datatypes such as arrays,
tuples, functions, and general algebraic datatypes. We discuss how the user would syntactically
specify the conversion of arbitrary, imperative data-structures into functional ones and how the
compiler would automatically verify the soundness of this conversion. Finally we summarize
the results of Part I and discuss directions for future research.

1.4.2 Part II

In Part II (Chapters 5, 6, 7 and 8), we study the technique of complete run-time type recon-
struction and its various applications within the run-time system for Id.

Chapter 5 discusses some design issues that affect the use of type information within a
run-time system. There are "language issues" such as strong vs. weak typing, and allowing
polymorphism and higher-order functions in the language; "compiler issues" such as using static
vs. dynamic typing, and type inference vs. type declaration; and "run-time system issues"
such as using tagged vs. untagged object representation model, and using type maintenance vs.
type reconstruction to obtain type information at run-time. We classify various programming
languages on the basis of these issues. We also discuss our approach of complete run-time
type reconstruction with an untagged object representation model and discuss some of its
applications such as source debugging, tagless garbage collection and I/O.

Chapter 6 motivates the problem of compiler-directed polymorphic type reconstruction by
means of examples and describes the technique informally. First, we describe the logical execu-
tion model of an Id program, dividing the work into compile-time, link-time, invocation-time
and run-time. Then, we characterize the type information that needs to be recorded at compile-
time to permit complete type reconstruction at run-time. Next, we informally describe how to
analyze and translate the source program to propagate this information. Finally, we show the
process of run-time type reconstruction using an example and discuss some optimizations.

Chapter 7 formalizes the concepts of Chapter 6 using a simplified kernel language for Id.
This language is very close to the actual intermediate form used within the Id compiler. We
present the analysis and program translation rules to generate and propagate all the necessary
type information at compile-time. We also present a formal algorithm for type reconstruction
and prove its correctness.

Finally, Chapter 8 discusses a full scale application of type reconstruction, tagless garbage
collection. We describe a study that compares the performance of our type-reconstruction based
garbage collection scheme with conservative garbage collection and a compiler-directed explicit
deallocation scheme.

1.4.3 How to Read this Thesis

Both Part I and Part II are self-contained and may be read independently.
For Part I, Chapter 2 should be sufficient for readers that are only interested in understand-

ing the problem, its context, and the intuitive ideas behind the proposed solution. Readers
interested in the mechanics of the proposed type system and its extensions, possibly with a
view towards implementing it, should look at the semantic machinery described in Sections 3.1

and 3.2 of Chapter 3, the extensions discussed in Chapter 4, as well as the type inference ma-
chinery described in Chapter 3 of [Ler92]. Of course, theoretical enthusiasts may want to go
through all the detailed proofs provided in Chapter 3.

For Part II, Chapter 5 and Chapter 6 provide a general introduction to the idea of using type
information at run-time, an intuitive description of the issues involved, and the technique of
complete type reconstruction and its various applications. Chapter 7 is a must for readers inter-
ested in the detailed understanding and implementation of the type reconstruction mechanism,
although the last section on the correctness proof of the reconstruction algorithm is mainly of
theoretical interest. Finally, Chapter 8 provides a realistic perspective on the potential uses of
this technique in the context of tagless garbage collection, and its cost trade-offs.

Part I

Types in Language Design:
Functional Encapsulation

Chapter 2

Functional Encapsulation of
Imperative Data-Structures

In this chapter, we study the problem of providing a suitable type abstraction mechanism
between the user-level layer and the underlying system-level layer in a programming language.
We introduce a new language construct called close that provides a statically verifiable, safe
export mechanism for imperative data-structures from the system-level layer into the functional,
user-level layer. We present several examples illustrating the usefulness of this construct and to
discuss the technical issues involved in proving its soundness. We also compare our approach
to other systems in the literature.

2.1 The Problem

Let us consider the problem of implementing functional arrays in Id that are homogeneous,
non-mutable, polymorphic arrays. The library function makevector creates a one dimensional
functional array that memoizes a computation for a given index range as shown in the following
example: 1

Example 2.1:
def compute i = ... some large computation ... ;
compute.memo = makevector compute (1,10);

How is the function makevector implemented? Operationally, one has to allocate an empty
vector and fill it with the result of applying the given function to each index position. There are
two possibilities. We could treat makevector as a language primitive and hard-wire it within
the compiler. Then, we would have to provide a slew of such primitive functions that define
functional vectors, matrices, and higher dimension arrays, along with their common patterns
of construction. Some languages (including Id) provide special array construction syntax called
array comprehensions to alleviate this problem. While array comprehensions are convenient,
they still do not cover many useful construction patterns. They also increase the complexity of
the compiler and the language it must manipulate. Moreover, this solution does not apply to
user-defined functional abstractions in addition to those already present in the language.

'All our examples use the Id language syntax [Nik91]. We will provide brief explanations as necessary.
Function definitions in Id are introduced with the keyword def, all statements are terminated with a semi-colon
(;) and application is by juxtaposition.

The other possibility is to provide an imperative kernel language using which make.vector
and other array construction functions may be defined in a separate library. Special syntactic
constructs like array comprehensions may also be desugared into this kernel language. The ker-
nel language would support primitive operations such as simple arithmetic, allocating a vector,
storing/fetching a value at a particular index of a vector, and simple control mechanisms such
as iteration and procedure call. This is the approach taken in Id. This approach also enables
a system programmer to implement arbitrary new abstractions without changing the language
definition or the compiler. As an example, the make_vector function may be implemented in
the array library as shown below: 2

Example 2.2:
def make_vector f (1,u) =

{ a = ivector (1,u);

= {for i <- 1 to u do
aE[i] = f i };

in a };

Here, i_vector is a kernel primitive that allocates an empty one dimensional I-structure
array, which is filled with the result of applying the filling function to each index position.
Under the non-strict, parallel evaluation model of Id, the array a is returned as soon as it is
allocated; its filling loop executes in parallel. However, this does not create any race condition
for the array because the I-structure protocol [ANP89] supports fine-grain producer-consumer
synchronization on every memory location: multiple readers wait at an empty location until a
single writer fills it with the desired value.

Nevertheless, as it stands, there are some technical problems with the above implementa-
tion. I-structures and M-structures are imperative constructs, i.e., they can be assigned to,3

whereas functional arrays are supposed to be non-imperative. Therefore, returning an assignable
I-structure from make_vector is not appropriate. Furthermore, in the Hindley/Milner type sys-
tem, imperative objects are allowed only a restricted form of polymorphism to ensure type-safety
[Tof90]. Thus, the functional arrays implemented using I-structures in this manner would have
restricted polymorphism, which reduces the utility of such library implementations.

Both problems described above may be solved by providing the ability to package the above
implementation of the make_vector function into a type-safe, polymorphic, functional abstrac-
tion as required by its intended interface. In general, the kernel language should contain a
general type abstraction mechanism that can properly encapsulate such imperative implemen-
tations of functional data-structures while ensuring their polymorphism and non-mutability
outside the abstraction.

2.1.1 Abstraction and Polymorphism

It may appear that a conventional abstract datatype facility available in most modern languages
should be sufficient for our purpose. Indeed, we could write a functional array datatype that
is internally represented using I-structures and does not allow any mutation capability in its
abstract interface. But, such an abstraction is still not completely satisfactory because it only

2 All bindings within a let-block (enclosed within {}) execute in parallel. The bindings may be mutually
recursive and their textual order is unimportant. An underscore (_) on the left-hand-side of a binding implies

that the result of the right-hand-side expression is to be ignored. The result of the overall block is the value of
the expression following in.

3Strictly speaking, I-structures are not mutable, since they have write-once semantics, but an empty I-
structure can be filled with any value using assignment.

hides the internal data representation of the functional datatype, it does not automatically
restore the full polymorphism of the functional datatype from the restricted polymorphism of
its imperative implementation. This polymorphic strengthening of the datatype has to be done
explicitly and under additional semantic analysis that guarantees its soundness. As we will see
in Section 2.2, the treatment of type polymorphism is significantly more complicated by the
presence of imperative constructs under the usual call-by-value semantics.

A radically different but equally interesting approach is to define a call-by-name semantics
for the polymorphic objects within the kernel language and permit unrestricted polymorphism
for imperative programs. In this case, the conventional data abstraction mechanism would be
sufficient to hide the imperative implementation of a functional datatype. In this alternate
semantics, called polymorphism-by-name [Ler93], the evaluation of a polymorphic object is
suspended and each type instantiation re-evaluates the suspension in the current context to
produce a fresh instance. In contrast, the usual ML-like polymorphism is called polymorphism-
by-value where polymorphic objects are evaluated only once and the resulting value is shared
among all its instances.

Leroy showed in [Ler93] that the naive Hindley/Milner typing rules are sound with respect to
polymorphism-by-name semantics for imperative references and continuations. This approach
is used in languages like Quest [Car89] and to a limited extent in CLU [LAB+81] where explicit
type parameters are used to abstract and instantiate polymorphic objects. Unfortunately,
suspension and re-evaluation of polymorphic objects destroys their sharing characteristics which
are very important in the dynamic semantics of the Id language. Therefore, we would like to
improve upon the abstraction characteristics of the polymorphism-by-value type systems that
preserve such sharing.

In another case, Wright experimented with the type system of Standard ML by restrict-
ing polymorphism to only certain classes of syntactically recognizable values such as function
declarations, constants, and known functional constructors [Wri93]. These functional values
can be recognized statically and therefore can be generalized and shared safely. Mutable data-
structures are always classified as dynamic entities and therefore can never be generalized. He
showed empirical evidence that this restricted form of polymorphism is sufficient for a large
class of existing Standard ML programs. Unfortunately, our ultimate goal is to provide func-
tional and polymorphic view of dynamically created imperative data-structures for which this
approach is entirely inadequate.

2.1.2 Outline of our Approach

We can divide our problem into two distinct phases. First, it is important to be able to give
sound and accurate type semantics to imperative constructs in the kernel language. We must
precisely capture the imperative types of mutable objects and propagate them with first class
status while handling higher-order functions, storing into data-structures and passing them
around as arguments and results.

The second phase involves presenting a functional view of the mutable objects to the end
user. This may involve a semantic check on the part of the compiler (or the system programmer)
as well as some sort of type conversion to convert the imperative types into functional types. The
type system must ensure that fully functional and polymorphic behavior is projected through
the abstraction both in static and dynamic semantics. We present a new language construct
called close that achieves this functionality through the type system.

The interaction of polymorphism and imperative programming has been the subject of
active research in the past decade [Dam85, Tof90, AM89, LW91, Ler92, TJ92, Wri92]. Several

type systems have been proposed in the literature spanning a wide range of expressiveness and
complexity. We present a brief survey in Section 2.2. Since our main task is to provide an
encapsulation mechanism for imperative program fragments, we prefer to extend an existing
imperative type system that meets our needs rather than design a new one. We have chosen
the Closure Typing system proposed by Xavier Leroy in this thesis [Ler92] as a convenient
starting point for our encapsulation extensions. We motivate this choice in Section 2.2.7.
In Section 2.3, we informally describe the meaning and the use of the close construct via
examples and discuss issues of type-safety, non-mutability, efficiency, parallelism, and memory
synchronization in their context. Finally in Section 2.4, we present informal typing strategies
that ensure the soundness of the close construct.

2.2 Imperative Type Systems

It is well known that the simple Hindley/Milner type system yields unsound typing when applied
to mutable data-structures in the naive way. In this section, we briefly review this problem and
describe some practical extensions to the type system that handle it to some extent.

2.2.1 Simple Hindley/Milner Type Inference

Consider the following example4 in Id that emulates the ref construct of ML using a naive,
functional Hindley/Milner type system:

Example 2.3:
type ref to = mkref !to; % mkref :: Vto.to -+ (ref to)

r = mkref identity; % r :: Vtx.(ref (t -+ ti))

r ! !mkref_1 = square;
= r! !mkref _ true; h Dynamic Type Error!

The datatype ref defines a polymorphic constructor mkref that allocates a mutable cell and
initializes it with a given value. The value contained in the cell can subsequently be updated
by field assignment as shown above.

The type schemes5 for the constructor mkref and the mutable cell r inferred by the naive
type system are shown on the right. Note that the mutable cell r is given a polymorphic type
which can be instantiated to int - int or bool -+ bool as desired. Thus, this example passes
the type system even though it causes a run-time type-error, attempting to apply an integer
function square to a boolean true. The problem is that the type of a mutable object should not
be deemed polymorphic even if it initially contains a polymorphic value. This is because later
such objects may be updated to contain values that do not possess the expected polymorphism.
The type system must be aware of such mutable objects and keep track of their types in a
sound manner.

One way to avoid such unsound polymorphism is to statically approximate the state of the
mutable store and the set of objects stored within it. These (presumably) mutable objects are

4User-defined types and constructors in Id are introduced with the keyword type. A (!) in front of a con-
structor field denotes that it is mutable, and can be used in M-take/M-put (!) or examine/replace (! !) operations
during field access. Fields are accessed by position using numeric suffixes (starting from 1) to the constructor

name. Although Id has parallel semantics, our examples assume a sequential order of evaluation for simplicity.
5 A type-scheme is a polymorphic Hindley/Milner type containing type variables, such as to, tl,..., some of

which may be bound by the universal quantifier (V). Bound type variables may be substituted for different types
in different contexts giving rise to polymorphic type-instances.

not allowed to have polymorphic types. The mutable store approximation needs to be updated
whenever there is a possibility of allocating a new mutable object or updating an existing
mutable object. This has to be achieved in a flexible but sound manner within and across
function and local block boundaries.

Many type systems in the literature follow this general framework [Dam85, Tof90, LG88,
JG91, Wri92, TJ92]. The various systems differ in their notion of a store abstraction and the
amount of information propagated across function boundaries. An illustrative comparison of
some of these systems is presented in [OJ91]. First, we will briefly describe two such systems
that are simple extensions of the original Hindley/Milner type system and have been successfully
used in practical programming languages. Then, we will describe two more recent type systems
that are more complex but are much more powerful in dealing with higher-order functions.

2.2.2 Type System of Standard ML

In Standard ML [MT91, MTH90], type variables are syntactically classified into two separate
categories: imperative type variables (uo, ul,...) that may occur in the type of a mutable ob-
ject at some stage of type inference and therefore implicitly model the abstract mutable store,
and applicative type variables (to, tl,...) that can never occur in the type of a mutable object.
Furthermore, since the evaluation of variables and A-expressions (termed as non-expansive ex-
pressions) never generates any new mutable objects, imperative type variables occurring in
their types are allowed to be generalized. 6 Whereas, applications and let-expressions (termed
as expansive expressions) may allocate new mutable objects on evaluation, therefore imperative
type variables occurring in their types are not allowed to be generalized. The resulting type
system is sound [Tof90], easy to implement, and correctly rejects Example 2.3 as a type-error.
To see this, note that under this scheme, storage allocating functions such as mkref always con-
tain imperative type variables in their type-schemes because they allocate and return mutable
memory locations. Thus, the type of r cannot be generalized since it will contain an imperative
type variable that is created in an expansive expression (application).

One of the problems with this system is that the modeling of imperative objects is too
simplistic. The imperative type variables model values contained in a mutable location rather
than the locations themselves. This has the effect of "contaminating" the types of the values
fetched out of mutable locations. Consider the following example:

Example 2.4:
def identity x = x; % identity :: Vto.to -+ to
def identity' x = (mkref x) ! !mkrefl; % identity' :: Vuo.uo-+uo

nil' = identity' nil;
x = i:nil';

y = true:nil'; X Static Type Error!

Although identity' is assigned a polymorphic type, it is still weaker than the type of the
identity function. This is because the identity' function temporarily stores its argument
within an imperative location. This contaminates the type of the returned result to be impera-
tive and unnecessarily restricts its polymorphism as shown. We would have liked to assign the
same type to both identity functions.

Another problem with this system is that the distinction of expansive and non-expansive

6 Type generalization refers to the process by which some type variables occurring in a type are bound with a
universal quantifier (V) converting that type into a polymorphic type scheme.

expressions is also very simplistic. In particular, this system cannot deal with higher-order or
partially applied imperative functions. Consider the following example:

Example 2.5:
mkref' = identity mkref; % mkref' :: uo -+ (ref uo)

x = mkref' 1;
y = mkref' true; % Static Type Error!

The application of mkref to the identity function strips out its polymorphism because
the type system deems this application as expansive whether or not any mutable reference was
allocated within the identity function. This causes the unnecessary type-error to be flagged
by the type system. The following example illustrates a similar problem for partial applications:

Example 2.6:
def imp-map f 1 = % imp-map :: Vuoul.(uo -+ ul) -- (list uo) -+ (list ul)

(arg = mkref 1; % arg :: (ref(list uo))
res = mkref nil; res ::(ref(list ul))
in
{while not (nil? arg! !mkref_1) do

x:xs = arg!mkref_1;
arg!mkref_1 = xs;
res!mkref _ = f x : res!mkref 1;

finally reverse res!mkref_1}};

def fnmap f nil = nil . fnnmap :: Vtotl.(to -+ tl) -+ (list to) -+ (list tl)

I..fn-map f (x:xs) = f x : fn.-map f xs;

listidentity = impmap identity; % list_identity :: (list u3) -+ (list u3)
u = listidentity (1:2:nil);
v = listidentity (true:false:nil); % Static Type Error!

Just like identity' function in Example 2.4, the type-scheme assigned to the function
imp.map in the above example contains imperative type variables because it uses mutable lo-
cations internally, while its functional version fnmap carries only applicative variables. Fur-
thermore, when using impmap, although no actual allocations take place until after its second
argument, the type system has no way to determine this and it deems the first application to
be expansive as well. This results in a non-polymorphic type for the list_identity function
as shown. This problem of typing partial applications was fixed in part by the type system of
Standard ML of New Jersey, which we discuss next.

2.2.3 Type System of Standard ML of New Jersey

The type system of Standard ML of New Jersey [AM89] assigns an integer rank to each im-
perative type variable. We write these ranks as superscripts on the type variables. A rank 0
imperative type variable uO occurring within the type of an expression at the top-level indicates
that the type of some existing mutable object already contains uo and therefore uO should not
be generalized. Such a type variable is said to have entered the mutable store typing. A pos-
itive rank-d (d > 0) imperative type variable ud occurring within a function type denotes the
number of application after which ud will enter the store typing. Therefore ud is allowed to be
generalized for up to d - 1 partial applications involving the function type where each partial
application reduces its rank by one. This scheme is extended to typing objects enclosed within

,-abstractions by keeping track of the number of application necessary to make them enter the
store typing. The resulting type system is slightly more complex than Standard ML but still
relatively easy to implement and has been recently shown to be sound [HMV93].

Without going into details, it should be clear that this modification handles the function
listidentity in Example 2.6 quite well. The type of the function imp-map is now inferred to
be Vu2 .(u2 -U+ U2) -• (list ug) -+ (list U2), where the superscript 2 denotes that the actual
allocation of imperative objects in the function's body does not take place until after the second
application. Therefore, the type of list-identity is inferred to be Vu?.(list ul) -+ (list ut),
where the superscript 1 denotes the fact that one more application of this function will create
some fresh mutable memory locations.

Unfortunately, the simple ranking mechanism outlined above is still not sufficient to deal
with imperative higher-order applications as shown in Example 2.5. The type system does
not have any way to characterize when and how to incorporate "potentially" imperative type
information from arguments of higher-order functions within their final result. Therefore, the
type system must conservatively assume that all imperative functions generate mutable objects
when passed as arguments to higher-order functions. The following comparison illustrates this
point:

Example 2.7:
def apnil f = f nil; Y apnil :: Vtotl.((list to) -- ti) - ti

foo = ap.nil mkref; % foo :: (ref (list u°))
mkref' = identity mkref; Y mkref' :: u _ (ref u°)

Here, the imperative function mkref is passed as an argument to two polymorphic functions
ap-nil and identity. In the first case (identifier foo), the type of the application is correctly
inferred to be non-polymorphic because it actually creates a fresh mutable reference. But in
the second case (identifier mkref'), the type of the application is unnecessarily non-polymorphic
because the mkref function is never applied within the body of the identity function. The
type of the identifier mkref' should in this case be Vu2.u --+ (ref us), which is identical to the
type of the constructor mkref in this system. The problem is that the type system has no way
of knowing that the function ap.nil applies its parameter f to one argument and therefore
may potentially create mutable references, while identity passes its parameter unchanged and
therefore cannot create any mutable references. Hence, the type system must conservatively
assume that all imperative functions create mutable references when passed as arguments.

The formalization for the above type system presented in [HMV93] is somewhat more pow-
erful than the SML/NJ compiler implementation and it can deal with the above situation
correctly. Although, it requires a more complicated mechanism for rank book-keeping and uses
rank variables instead of fixed integral ranks. It also entails a more complicated type unification
mechanism that needs to resolve algebraic constraints on rank variables. The interested reader
is referred to [HMV93].

2.2.4 Limitations of the Standard ML Type Systems

Although the two type systems presented above cover a lot of practically useful cases of im-
perative programming, they are still not sufficiently powerful for our purposes. Ultimately,
we intend to smoothly convert mutable types into functional types, so our type system must
not only propagate the mutable type information properly where necessary, but also keep it
self-contained and easy to manipulate. The problem of type variable contamination as shown
in Examples 2.4 and 2.6 is a serious one in this regard. None of the systems presented above

have the ability to assign the same polymorphic type to functions identity and identity' or
functions fn-map and impmap. At some observational level, these functions are equivalent but
the internal implementation of the imperative versions shows up in their type and hence they
are not interchangeable with respect to these type systems.

Another fundamental problem with the above systems is that they concentrate on modeling
"imperativeness" of objects only to the extent it affects their type polymorphism. For instance,
there is no difference between the type of a record that contains a functional integer field and the
one that contains a mutable integer field. Since we are ultimately interested in approximating
dynamic mutability of all objects by means of their static types (whether polymorphic or not),
the partial modeling offered by the type systems above is also unsatisfactory for our purposes.

Both observations above show that tying the "imperativeness" of mutable objects to the
kind of type variables contained in their types is rather simplistic and imprecise. We will now
look at some type systems where this information is tracked independently, leading to a much
more complete and cleaner characterization of imperative objects.

2.2.5 Effect Systems

Effect systems are a broad class of polymorphic typing systems that use static type-checking and
inference techniques to model the dynamic behavior of programs written in imperative languages
[Luc87, LG88, TJ92, Wri92]. Originally, such systems were used to collect and propagate
side-effect information across program fragments for compiler optimizations and parallelization
[LG88]. One such type and effect system was successfully used in the FX-87 language [GJLS87]
which supported explicitly declared type polymorphism.

More recently, automatic type and effect inference techniques have been developed [TJ92,
Wri92] that use the effect propagation mechanism to infer types that model polymorphic imper-
ative objects more accurately than the systems given above. As we will see shortly, such type
and effect systems can be viewed as a logical extension of the type systems described above.

Effect Analysis

Probably the most appealing aspect of effect systems is their uniform and integrated mechanism
of type and effect information propagation across all function and local block boundaries. The
key idea is that every expression generates a read/write/allocate effect which is accumulated
along with its type. The effect of the body of a function, parameterized by the effect of its formal
arguments, is summarized as the latent effect of the function on the arrow type-constructor
(-+) in its type. Functions by themselves have no immediate effect. Unknown latent effects for
functional parameters of higher-order functions are modeled using effect-variables. This effect
parameterization permits a clean way of computing the overall effect of a function application
by instantiating its latent effect by the effects of its actual arguments. The effect information
propagated and accumulated in this manner may then be used to accurately identify the creation
of polymorphic imperative objects and avoid their unsafe generalization.

In one of the simpler effect systems proposed by Wright [Wri92], all type variables present
in the type of a freshly allocated mutable data-structure are collected as part of the effect of
that allocation. The explicit effect computation and propagation mechanism obviates the need
to mark such type variables as imperative. Unsound typings are then avoided by disallowing
generalization of type variables that occur in the immediate effect of an expression. This system
still does not deal with the issues of imperativeness and type polymorphism independently, but
at least the information flow across higher-order function boundaries is improved because of

the effect propagation techniques.
As an example, consider the function fnimap shown below:

Example 2.8:

fn-map :: Vtotifo.(to --~ tl) €-- (list to) --0 (list tl)
def fnmap f nil = nil

I..fn-map f (x:xs) = f x : fnimap f xs;

mkref :: Vto.to { 0)} (ref to)

reflist :: (list (ref (list t2))) with immediate effect {alloc(list t2)}
reflist = fn-map mkref (nil:nil);

fo, fi,... are effect-variables which may be substituted for any effect. € denotes the null
effect. Effect-variables are allowed to be generalized and instantiated just like type variables.
The type of the function fnimap illustrates the use of these effect variables. The latent effect
of the mapped function is captured in the effect variable fo that is exposed in the final effect
of the fn.map function.

The example also shows the type of the reference allocator function mkref. The latent effect
appearing over the arrow (-+) shows that the function allocates a mutable object of type to.
As shown in the example, the effect of mapping mkref to a polymorphic list instantiates and
exposes its latent effect of allocating mutable cells containing polymorphic objects. Since t2 is
present in the immediate effect of the expression creating reflist, it cannot be generalized.

This system infers the type-scheme Vtotlfo.(to - tl) -1 (list to) {to,'uo (list tl) for the

function impmap of Example 2.6 (c.f. fnimap of Example 2.8). Note that the first application
has no effect, and the second application records the effect of allocating new local memory
references for internal identifiers arg and res (as a set of type variables to, tl occurring in those
reference types) as well as the effect of applying the argument function f (captured via the
effect-variable fo). Thus, in this system, partial curried applications do not expose the final
effects prematurely, but the problem of type contamination by unnecessarily exposing local
effects still exists.

Principal Types and Minimal Effects

In order to compute the type and the effect of every expression automatically and efficiently,
one must show that the system admits unique principal types and effects for expressions and
that they are computable using an efficient inference algorithm. At least two effect-based sys-
tems [TJ92, Wri92] propose such inference mechanisms based on structural unification [Rob65].
The effect system of FX-91 [GJSO91] uses the more complex algebraic unification [JG91] which
permits unification modulo algebraic identities such as associativity and commutativity. This
provides more expressive power to the inference system, albeit at the cost of simplicity and effi-
ciency. Here, we will only discuss the inference system based on standard structural unification.

The basic idea is to compute the principal types of expressions in the usual way using the
standard Hindley/Milner type inference mechanism while accumulating a set of constraints
for the latent effect of all the function types in the program. Then, this constraint set is
solved separately to obtain the minimal effect of each function in the program. This process
is not completely straightforward because of the possibility of cyclic constraints created due to
mutually recursive functions. The following examples illustrate this problem':

7The latent effects of functions are represented in this system by a constrained effect-variable. The constraints

Example 2.9:

def fO x = fl x; h fO :: to 1-tl with { fo fi)

def fl x = fO x; % fi :: to -4 t1 with {fi l fo}

def g x = { a = mkref x; x g :: to - (list (ref to)) with {fo _ ({to0}U fo)}
in a:(g x) };

def h x = { a = mkref h; % h :: int - int with {fo Q {int fo4 int}}
in x+1 };

Minimal effects in the above cases are computed by combining the effects of all cyclic
constraints into one and finding the least assignment to effect-variables (starting from the null
effect q) that would satisfy all the constraint inequations. Thus, functions fO and f 1i in the above
example are each assigned the null effect 0 and the function g gets the effect {to}. The function
h represents an interesting case. Depending on the desired semantic interpretation of effects,
the least effect satisfying this constraint may be taken to be infinite and such expressions may
be classified as ill-formed (system [TJ92]), or this constraint may be simplified to { fo _ {fo}}
which yields the null effect € as the minimal solution (system [Wri92]).

Region Analysis and Effect Masking

Some effect systems also carry out a region analysis of memory allocation and sharing [LG88,
TJ92]. The static description of an expression also summarizes a conservative approximation of
the memory regions (locations) manipulated within the expression, in addition to its type and
effects. If a set of regions is found to be purely local to an expression, i.e., if these regions are not
accessible through a free variable of the expression, and if they are not exported via the result
of the expression, then the effects associated with those regions may be erased from the overall
effect of that expression. The idea is that only certain "observable" effects on "visible" regions
need to be kept, the rest may be safely erased without affecting the semantics of the program.
This is known as effect masking. This analysis may be able to mask all the side-effects to internal
data-structures of a procedure which largely alleviates the problem of type contamination. In
this sense, this scheme is capable of automatically assigning purely functional types for some
classes of imperative programs. For example, these stronger systems are able to infer the same

type for imp-map and fnmap (namely, Vtot l fo.(to -f tl) -~- (list to) 1- (list tl)) since the

mutable references created within imp-map can be masked.
Region analysis requires a lot of book-keeping to maintain a very fine static notion of the

mutable store. The benefit of obtaining this additional region information and performing
effect masking has to be weighed against the extra complexity required to do these analyses in
a practical language implementation8 . Furthermore, effect masking does not cover all cases of
effect erasure that we are interested in. For example, the effect generated by the make_vector
function of Example 2.2 can not be masked since the mutable vector is being returned as the
result of the function. The user can still update this vector and destroy the type polymorphism
that might result by erroneously masking this effect.

are of the form (effect-variable _ effect) which means that the effect on the right hand side is a lower bound on
the actual effect denoted by the effect-variable on the left hand side.

8 Indeed, region analysis was dropped from FX-91 language [GJSO91] which is a more recent version of FX-87
[GJLS87].

Analysis of Effect Systems

On the whole, effect systems seem to be a powerful tool to summarize a variety of dynamic
behaviors of programs accurately. But we still have to extend the effect masking analysis to meet
our original goal, which is to transparently encapsulate imperative programs into functional
abstractions. We also anticipate that external factors such as a user-declared functional interface
will play an important role in guaranteeing type-soundness in our system in spite of otherwise
non-maskable imperative effects in the program. None of the existing effect systems incorporate
such information. In Section 2.4, we will explore some of these ideas where a powerful type
system is combined with user-supplied information while trading off some of its power for speed
and simplicity.

2.2.6 Syntactic Closure Typing System

All the type systems we have seen so far, model the state of the dynamic mutable store and the
operations performed on it using some static approximation, and then use that information to
identify the objects that can safely be assigned polymorphic types. Instead of approximating the
dynamic behavior of the program, Leroy and Weis [LW91] introduced a more direct, syntactic
way of identifying and safely typing mutable objects using an extension of the Hindley/Milner
type system. We discuss their technique below.

Syntactic Analysis

The key idea in the scheme proposed by Leroy and Weis is that the static type of a complex
object can be used as a clue to its structural shape and dynamic properties (such as mutability)
of its various components. For example, an ivector type represents an assignable, I-structure
array, while a vector type represents a functional array. This is exactly the information required
to decide what parts of that object's type can be safely generalized. Note that this information
is independent of when/where/how the object was created in the program and depends only
on its static type structure. This analysis relies on the assumption that the type of an object
remains visible from all places within the program where that object may actually end up. Then
the generalization scheme is simply that the type variables present within an assignable portion
of a type (such as to within the type (ivector to),(list tl)) are considered to be dangerous and
are not generalized, while all other type variables occurring elsewhere in the type (such as tl)
are allowed to be generalized.

The key assumption in the above scheme is that all objects can be viewed as data-structures
whose component types are reflected back in the type of the overall object. In particular, objects
captured inside the environment part of a function closure must also be made visible in the type
of that function. Otherwise the mutability information of a datatype could be lost by placing
it within a function closure. The following example illustrates this point (c.f. Example 2.3):

Example 2.10:

def fnref x = . fnref :: Vto.to -+ (void :-4 to, to ref void)

{ r = mkref x;
def read () = r!!mkref_1;

def write y = { r!!mkref_1 = y };
in

read,write };

reader,writer = fnref identity;

= writer square;
= reader() true; % Static Type Error!

The function fnref emulates the functionality of the mutable constructor mkref of Exam-
ple 2.3 by creating separate read and write handles to a shared mutable reference r. In the
scheme proposed by Leroy and Weis, the function type-constructors (-+) of read and write
functions are augmented with closure types that expose the types of objects captured within
their closure environments. Without closure types, it is impossible to tell from the types of
the read and write functions that they share a mutable reference. Thus, closure types help in
identifying hidden dangerous type variables and therefore avoid their unsound type generaliza-
tions. In the above example, when the function fnref is used to create the reader and writer
handles to a hidden mutable reference to identity, their non-empty closure types correctly
restrict their types to be non-polymorphic and the type-error can be detected.

In general, closure types for a function must keep track of the type of all the free variables
occurring within the function body, whether such types are dangerous or not. This is because
such free variables may correspond to formal parameters of an enclosing function that may ul-
timately be instantiated with a mutable object at some application site. The following example
illustrates this point:

Example 2.11:

def K x = {fun y = x}; % K :: Vtot l . to -+ (tl -- to)

ref (t 2 -+t 2)
f = K (mkref identity); % f :: Vtl. tl -+ ref (t 2 -+ t 2)

The type of function f correctly generalizes tl and not t2 because t2 occurs under a mutable
type in its closure. This was possible only because we correctly kept track of the type to of the
free variable x in the closure type of the body of the function K.

Type Soundness and Type Inference Mechanism

Leroy developed this idea in his thesis [Ler92] showing the soundness of a type system with
closure types with respect to the dynamic operational semantics of a ML-like language with
higher-order functions. He also showed a type inference algorithm based on this type system
that is sound and infers principal types and closure types.

The type inference for closure types turns out to be very similar to effect inference. A new
class of variables called closure extension variables model the unknown closure types of higher-
order functions just like effect-variables. There is some flexibility in deciding what closure type
information really needs to be kept and what can be discarded. For example, it is possible to
keep only dangerous and certain visible type variables within a closure type of a function instead
of recording the full types of all its free variables. The algebra of Hindley/Milner types also
has to be extended to incorporate extensible sets of closure types, including ways to compute
dangerous type variables of a type and performing type substitution within closure types. The
type inference mechanism then computes the usual Hindley/Milner types for all objects while
accumulating a set of closure types for every function using simple structural unification. The
interested readers may refer to [Ler92] for details.

Analysis of the Closure Typing System

Leroy's syntactic system also succeeds in giving the same polymorphic type to imp-map and
fnimap functions just like the effect-based systems with effect masking. In his thesis [Ler92],

Leroy makes some interesting comparisons of the expressive power of the various systems we
have seen so far. His system turns out to be incomparable to the effect-based systems in
power. This is not too surprising because his approach is semantically very different from the
effect-based systems.

2.2.7 Choosing an Imperative Type System

As mentioned earlier, we have chosen the closure typing system of Leroy as a starting point
for the typing extensions proposed in this thesis. In this section, we attempt to motivate this
choice in the context of the various type systems we have seen above.

The real choice is between an effect-based system (Section 2.2.5) or the closure typing system
(Section 2.2.6). Type systems of Sections 2.2.2 and 2.2.3 and their extensions are either too
simplistic in that they do not deal with higher-order functions properly or they suffer from the
problem of type contamination.

A requirement imposed by our ultimate goal to selectively convert some imperative objects
into functional ones is that we should be able to uniquely label groups of imperative objects,
recognize them independent of other objects, and track their movement within the program.
Some sort of region-based analysis is necessary for this purpose. Either an effect-based system
with regions may be used, or we may have to extend the closure typing system with regions.

The contrast between the closure typing and the effect-based approaches may be understood
by examining the way in which imperative type information is collected and propagated. In the
closure typing system, the type of an object directly describes its imperative or functional com-
position. This is purely static, locally determinable, object-based information. This property is
extended even to functions where closure types are added to function types in order to describe
the data captured within the closure environment. This is very appealing because at any given
moment, all the relevant information about an object is available from its type wherever that
object (and hence its type) travels. We say that this approach is data-driven since it keeps the
relevant properties directly attached to the types of the data objects.

On the other hand, in an effect-based system the object themselves are not classified as
imperative or functional. We collect the operations performed on various kinds of objects in
a separate effect. Such effects are carried over object manipulators (functions) as their latent
effect. At any given moment, the properties of an object can be ascertained indirectly by
examining the kind of effects it is participating in. Such a system is very good in summarizing
dynamic properties of program fragments rather than describing the data itself. We say that
this approach is control-driven since it keeps the relevant properties attached to types of control
objects (functions).

For our purpose, the data-driven approach is more direct and natural, since we are interested
in determining and manipulating the imperative or functional nature of data objects directly.
We need not separately keep track of the dynamic properties of the functions manipulating
these objects. A sound, functional abstraction of an object can be built simply by changing
the type of the object regardless of the way it is computed. Additional user information about
an object should also be easy to incorporate into this system as long as we can show that such
information preserves the type-safety of the static semantics. Due to these reasons we have
chosen this type system as the basis of our extensions for converting imperative objects into
functional ones, which we refer to as "closing" the imperative objects.

2.3 Closing Imperative Data-Structures

In this section we will informally describe what we mean by "closing" an imperative object and
discuss several technical issues arising out of it.

2.3.1 A Proposal for "Close"

We observed in Section 2.1 that the returned array from Example 2.2 is mutable and must be
assigned a restricted form of polymorphism. This restriction is necessary to achieve the desired
type-safety in the following example:

Example 2.12:
def fill n = identity;

a = make_vector fill (l,u); a :: (i_vector (to -+ to))
a[i] = square; % a :: (i_vector (int -+ int))

= a[j] true; % Static Type Error!

The Hindley/Milner type of the returned array is shown on the right where the type variable
to occurs free and is not generalized. The assignment "a[i] = square;" refines the type of
the array a as shown which correctly generates a type-error on encountering the subsequent
application to true. This is necessary because the indices i and j may be turn out to be
the same at run-time, in which case this application would lead to a run-time type-error. All
imperative type systems in the literature [Dam85, Tof90, AM89, LW91, Ler92, TJ92, Wri92]
catch this type-error at compile-time by restricting the polymorphism of imperative objects in
one way or another.

"Close" as a Type Converter

Although the above behavior for make_vector is correct, ultimately, we want it to behave like
a functional array constructor that returns a non-mutable, polymorphic array. The interesting
observation is that if we convert the type of the returned array from makevector to be the
functional type constructor vector, then all mutation operations on it are automatically made
illegal since it must now be viewed as a functional object. In this case, we would have flagged
a semantic error at the assignment "a[i] = square;". Since no more mutations are allowed
on the array a, we may be able to safely generalize its type with respect to to. Henceforth,
we will call this type conversion and subsequent type generalization operation as "closing" an
imperative object.

We can rewrite the make_vector implementation to reflect the above strategy:

Example 2.13:
make_vector :: Vto.(int -+ to) -4 (int, int) -+ (vector to)
def make_vector f (l,u) =

close { a = i_vector (l,u);
= {for i <- 1 to u do

a i] = f i };
in a };

The close construct in this implementation is intended to be a special form that captures
our notion of closing an imperative object. It provides an alternate "functional view" for the
imperative object. Users may use this construct in their programs to convert an imperative

data-structure (like the array a above) into a functional one. Or, such conversions may be
issued automatically by a compiler while desugaring high-level functional constructs into low-
level imperative program fragments. In either case, the type of the object being closed is
converted from a mutable to a non-mutable type constructor that permits its subsequent type
generalization.

"Close" as an Encapsulator

An important point to observe in Example 2.13 is that the close construct encapsulates the
entire computation that allocates, fills, and returns the array a rather than acting merely as
a marker for the array to be closed. Treating the close construct as an encapsulator clearly
identifies the "scope" of the imperative operations being performed on the array a. Within this
scope, imperative operations on the array are permitted, while outside this scope, the array
is viewed functionally. This notation is useful both to the user, by providing a clear visual
separation between the imperative and functional parts of the program, and to the compiler,
that may need to compile these parts differently as well as verify the correctness of the close
operation automatically. This implies that the following two expressions are not equivalent:

close exp 0 { x = exp; in close x }

Here, exp stands for an imperative program fragment that allocates and prepares an imperative
object for closing. The close construct on the left-hand-side behaves like an encapsulator: it
encapsulates the entire program fragment that builds the object imperatively and then returns
it with a functional view. There is a clear separation between the imperative and the functional
views of the object. While, the close construct on the right-hand-side identifies the object to
be closed but it does not clearly identify the program region where the close operation should
take effect. Thus, it becomes difficult for the type system to verify the correctness of the close
operation. The importance of this distinction will become clear shortly.

As a matter of notation, when only some of the objects being returned from an expression
are to be closed, we specify it in a type annotation for the entire expression, where some of the
components are only partially supplied:

Example 2.14:
close { a = i_vector (1,n);

b = i_vector (1,n);

in a, b } :: (vector _),_;

The underscore (_) within the annotation implies that the close operation does not apply to
that particular component of the result. All other components of the result are closed according
to the type specified. Thus, in the above example, the array a is closed into a functional vector
while the array b remains open. The contents of the array a also remain unaffected. The exact
details of this specification appear in Chapter 4.

2.3.2 Guaranteeing Type-Safety

The problem of closing imperative objects is not simply a matter of type conversion as it might
appear from the above discussion. Note that the closing operation is type-safe only if the object
does not escape the scope of the imperative implementation in any other way except via some
controlled, safe paths. We saw above that if the only access to a polymorphic imperative object

is through the returned result, then a type conversion allows us to do a type-safe generalization
later on. But there are several other ways in which an object might escape a given scope,
some of which are shown in the following example. Note that using the close construct as an
encapsulator helps in identifying the escaping objects clearly:

Example 2.15:
def escape-_ n =
close { a = i_vector (1,n);

b[1] = a; X Storing into an external data structure
in a };

def escape_2 n =
close { a = ivector (1,n);

in a, a } :: (vector -),_; % Returning unconverted object directly

def escape_3 n =
close { a = i_vector (1,n);

def g i v = % Returning a write handle within a closure
{ a[i] = v; in v };

in a, g } :: (vector 2),_;

In function escapel, a reference to the locally allocated imperative array a is stored into an
external array b. The type of the array b is constrained to be (iLvector (ivector to)) implying
that the array a is still accessible in its open form through this indirection. In function escape.2,
two references to the same array are returned: one is closed and the other is left open according
to the specified annotation pattern. Mutations via the open reference will affect the type-safety
of the closed version. The same effect is achieved in the function escape3, although it is
disguised in the form of a function that provides a write handle to the array being closed.

The essential problem in the above examples is that it is safe to close a polymorphic mutable
data-structure only if it is guaranteed that no write handle pointing to that object remains
accessible to the user after it has been closed. Otherwise, the subsequent functional behavior
implied by the close operation and its possible type generalization will both be unsound.

All the imperative type systems in the literature automatically take care of such cases by
avoiding generalization of imperative objects at all times. The trouble arises when we wish
to force the type system to accept a functional, polymorphic type for an imperative object as
implied by the close construct in the above examples. Then, either the user must be held
responsible for the type-safety of the resulting program, or it becomes the responsibility of the
type system (the compiler) to automatically verify the soundness of this transformation and
reject the unsafe cases.

2.3.3 Guaranteeing Non-Mutability

Note that type-safety is an issue only for polymorphic imperative objects, i.e., imperative objects
that have some potentially generalizable type-variables in their type. This is because the usual
typing rules would ensure that all values assigned to monomorphic mutable objects would have
compatible types. For example, all the functions in Example 2.15 would be type-safe if assumed
monomorphic even if the array being returned was subsequently mutated.

However, our intended meaning of the close operation is more than simply ensuring safe
type generalizations. We want to enforce non-mutability of the returned data-structure which
is a much stronger property of dynamic semantics compared to the weaker property of merely
avoiding run-time type-errors (type-safety). For polymorphic objects, non-mutability implies
type-safety and vice versa, but that is not the case for monomorphic objects. As the preceding
discussion shows, ensuring non-mutability involves a simple form of escape analysis on the
part of the compiler which is conventionally performed using dataflow analysis or abstract
interpretation [GP90, GPG91, HI89]. Indeed, all the imperative type systems in the literature
concentrate on the issue of type-safety alone.

In our case, we intend to model such simple form of escape analysis for free using the
existing machinery of our type system that is already required to ensure its type-safety. Our
machinery ensures true functional semantics for successfully closed objects, i.e., such objects are
guaranteed to be side-effect free and can participate in compiler optimizations such as common
sub-expression elimination and code-hoisting that depend upon the objects being functional.
Thus, the close construct serves as a true interface between the low-level, imperative layer and
the high-level functional layer of the language.

2.3.4 Efficiency and Parallelism

Consider the following example adapted from [BNA91] that builds a n-bucket functional his-
togram of objects stored in a binary search tree. The search tree datatype is also shown below
for convenience:

Example 2.16:
type tree t = leaf I node t (tree t) (tree t);

def histogram t n =
close { a = m vector (1,n);

= { for i <- i to n do
a! [i = 0);

= accum t a n;

in a };

def accum leaf a n = ()
I accum (node x 1 r) a n=

{ i = hash x n;
a![i] = a!Ei] + 1;

= accum 1 a n;
= accum r a n; };

The histogram function allocates an empty mutable vector with n buckets and initializes
each of the buckets to zero. The accum function uses pattern-matching to traverse the tree
structure recursively and increments the count in the appropriate bucket.'

A couple of important observations can be made about the above example. First, all ac-
cumulations are made to the same mutable array which is closed and returned at the end. No
copying is involved during accumulations or at the time of returning the final array. Most

9The notation "a! [i]" in Id denotes M-take/M-put operations on mutable arrays with read-and-lock/write-
and-unlock semantics. The notation "---" denotes a local barrier. All the computation above the barrier must
terminate before any of the computation below the barrier is allowed to proceed. See [BNA91, Bar92] for details.

strongly-typed systems would only allow creating an internal mutable array to which accumu-
lations are made, then copy the final tallies to a functional array which is returned. Hence,
overall functional behavior is achieved at the cost of copying the final data-structure which
may be quite expensive. The close construct automatically achieves the functionality without
sacrificing the efficiency in such cases.

Second, all computations in Id are performed in parallel by default, constrained only by
data-dependencies. In the above example, the histogram initialization and the entire tree ac-
cumulation can potentially be done in parallel. The close construct places no restrictions on
the kind of parallel activities that can occur within the encapsulated expression - it simply
closes and returns the final result. In a purely functional setting, some compilers would per-
form extensive destructive update analysis, linearity analysis, use linear type systems, abstract
datatypes or monadic language constructs [Blo89, Wad90, Hud92, PJW93, LPJ94] to deter-
mine that the histogram may be safely single-threaded through the computation and hence
modified in place. Not only does this require a lot of compiler analysis, but single-threading
the computation completely destroys the parallelism inherent in the problem.

2.3.5 Termination of Side-Effects before "Close"

Example 2.16 illustrates another important point. Given the parallel execution model of Id,
we must wait until all the accumulations have completed before closing and returning the his-
togram array in order to guarantee that the returned array is not updated anymore. This is
ensured by inserting a local barrier (---) before returning the histogram which waits for all the
computations before the barrier (issued in the current scope) to terminate before proceeding
to the computations after the barrier. The barrier may be considered as an independent syn-
chronization operation necessary for closing mutable objects in the presence of parallel updates

(as shown here), or it could be taken as part of the close operation itself. In the latter case,
the close construct would behave like a strict encapsulator that releases the closed object
only when the encapsulated computation has completely terminated, rather than as a mere
type-converter.

The readers may have noticed that we did not use barriers in Examples 2.13 and 2.15.
This is because of the different underlying memory access protocols being used for the objects
in those examples. Examples 2.13 and 2.15 use I-structure arrays, while Example 2.16 uses
an M-structure array. A barrier may be necessary when the memory access protocol used for
implementing an imperative object is not the same as that of the corresponding closed object.
We discuss the various memory access protocols below.

Memory Access Protocols

Id defines three classes of data-structures at the language level: Functional, I-structure, and
M-structure. Functional data-structures are read-only, I-structures are write-once, and M-
structures allow multiple updates. At the architecture level, these data-structures map into the
following three kinds of memory access protocols:

Unsynchronized Memory Access - This is the ordinary load/store memory access used
in conventional architectures. Each memory transaction is assumed to be exclusive and
non-blocking. There is no synchronization of any kind between readers and writers.

I-Structure Synchronization - The I-structure protocol [ANP89] enforces producer-consumer
synchronization between a single writer and multiple readers using full/empty presence

bits on memory locations. A location is deemed empty initially. Multiple readers may
issue I-fetches all of which block until the single writer performs an I-store changing the
state of the location to full. The stored data is then distributed to all the blocked and
subsequent readers. Multiple writes to the same location are considered to be an error.

M-Structure Synchronization - The M-structure protocol [BNA91, Bar92] enforces mutual-
exclusion synchronization among multiple readers and writers. Readers issue M-take op-
erations on full memory locations that read the location and leave it empty. A subsequent
M-put on the location restores the status to full and makes the data available to other
readers. It is possible to allow only one outstanding M-put operation and several M-takes
waiting to succeed as done in Id, or one could queue up both M-takes and M-puts and
match them up.

I-structure and M-structure objects are implemented using their respective memory access
protocols, but functional objects may be implemented using either unsynchronized or I-structure
access protocol. However, intuitively it should be clear that a given object cannot be accessed
using two different protocols simultaneously - that would lead to a run-time error. Therefore,
it becomes necessary to ensure that all in-flight imperative operations on an object have ter-
minated before it is closed and accessed as a functional object. A barrier may be inserted just
before the close operation in order to guarantee this.

Note that we only have to wait for the termination of all memory operations issued from
within the scope of the close construct because we already ensure that no imperative handle to
the object being closed can escape this scope. Of course, no barrier is needed if the underlying
memory access protocol remains the same when changing from an imperative to a functional
view of the same object. For instance, currently the Id compiler uses the I-structure protocol
to implement all functional objects. Therefore, no barrier is needed when closing I-structure
objects into functional objects (Examples 2.13 and 2.15), whereas a barrier is required when
closing M-structure objects into functional objects that use the I-structure protocol (Exam-
ple 2.16).

Protocol Conversions

Figure 2.1 depicts all possible protocol conversions at the time of closing an object. An imper-
ative object may be implemented using any one of the three memory access protocols, while
a functional object may use either the unsynchronized read protocol or the I-structure read
protocol. The arrows depict the protocol conversion implied by the close operation. The
annotations on the arrows summarize the kind of barrier required, if any, for the underlying
protocol conversion. We discuss the various cases below.

When closing an unsynchronized mutable object into an unsynchronized functional object

(refer to Figure 2.1), we need to make sure that all previously issued write operations have
terminated. Otherwise, the closed object may get updated after being closed. This is enforced
by using a write-barrier before closing the mutable object.

Although, the Id compiler uses the I-structure protocol to implement all functional objects,
it is possible to implement functional objects that are known to be strict without any synchro-
nization. It is also possible to introduce unsynchronized objects as another primitive data class
within the language that need not pay the significant overhead of I-structure synchronization,
especially when it is emulated in software. In this situation, a write-barrier is necessary when
closing an I-structure object into an unsynchronized object. Otherwise, subsequent unsynchro-
nized read operations would not see the effect of any outstanding I-store operations. However,

Mutable Object Synchronization Protocols
Unsynchronized I-Structure M-Structure

Write-Barrier
Write-Barrier

Full Barrier

No Barrier
Single Outstanding Put - Take-Barrier

Multiple Outstanding Puts - Full Barrier Do

Functional Object
Sync. Protocols

Strict, Unsynchronized

I-Structure

Figure 2.1: Conversions among Synchronization Protocols at the time of Closing.

any outstanding I-fetch operations can always be satisfied using the data that is already present,
therefore we need not wait for any outstanding I-fetch operations to terminate before closing
the object.

When closing M-structure objects into unsynchronized functional objects, it is clear that
we must wait for both M-take and M-put operations to terminate before accessing the object
with unsynchronized read operations. This is because both M-take and M-put may modify the
actual contents of the memory location and all such modifications must complete before it is
safe to use the object functionally.

We already mentioned that the I-structure protocol is currently used within the Id compiler
to implement both functional and I-structure objects. The only difference between the two
at the language-level is that functional objects are allocated and completely defined at the
same time and then subsequently used in a read-only fashion, while I-structure objects may be
allocated and then independently filled via assignment anywhere within the program. Since the
underlying synchronization protocol is the same in both cases, no barriers are necessary when
closing an I-structure object into a functional object.

Finally, while closing M-structure objects into functional objects that are implemented using
the I-structure protocol, if only one outstanding put is allowed, then it is possible to use only a
take-barrier [Bar92] instead of the usual full barrier. This is because once a location is empty
after a successful M-take operation, multiple functional I-fetches may be allowed to queue up
and the ensuing M-put can be made to satisfy them just like an I-store would.

Discussion

Since there are so many possibilities due to variations in data classes, synchronization proto-
cols and their implementations, henceforth, we shall assume that the close construct is always
explicitly or implicitly accompanied with the appropriate barrier where necessary. The main
thrust of our research is to guarantee type-safety and dynamic non-mutability via static anal-
ysis which is orthogonal to the issue of guaranteeing dynamic termination of parallel update
operations upon closing an object. Therefore, in the rest of this thesis, we will only concen-

trate upon strict, sequential, unsynchronized accesses to memory as done in most conventional
languages.

2.4 Sound Typings for Imperative/Closed Objects

As discussed in the last section, our overall strategy for closing imperative objects can be
summarized as follows:

1. First, we have to model the "imperativeness" of objects within the type system.

2. Next, we develop sound verification criteria for the type system under which an object
can be safely closed.

3. Finally, we apply the criteria to each object being closed at compile-time, verify the safety
of closing and convert the type of the object appropriately if the verification succeeds.
Otherwise, we raise a static "close-error".

Following the above outline, in this section we informally discuss the typing machinery
required for describing and closing imperative objects and present a set of closing strategies
under which this operation can be done safely. These strategies form the basis of the formal
static and dynamic semantics presented in the next chapter. We also touch upon some language
design issue that will be discussed in greater detail in Chapter 4.

2.4.1 Modeling "Imperativeness" in Types

In Section 2.2.7, we motivated our choice of closure typing system of Leroy as a starting point
for the typing extensions being proposed in this thesis. We also mentioned that we will need
some sort of region-based analysis in order to distinguish among various kinds of imperative
and functional objects. In this section, we informally describe this type representation.

Our approach takes a middle ground between the effect and the closure typing system of
Leroy. We model the "imperativeness" of an object using parameterized type constructors where
a simple region expression is attached to each type constructor that identifies whether or not
that constructor is imperative. A region expression p is either a region variable r, or the null
region c. The intuitive idea is that a type constructor with a null region is considered to be
functional, while the presence of a region variable identifies it to be imperative (c.f. closure
typing system) as well as provides an abstraction for a set of locations associated with that
object (c.f. effects system with regions). Another way to look at this is that a non-null region
expression associated with a type constructor ensures a read/write capability over the objects
of that type, while a null region provides a read-only capability over the objects of that type.

As an example, the type of the application (mkref identity) (Example 2.3) is shown
below under various type systems: 10

10Standard ML notation [MTH90] uses postfix type constructors in type expressions, as in (u -+ u) ref. We will
follow that notation in Chapter 3 when discussing formal semantics. For now, we use prefix type constructors
since they are more intuitive.

Type System Type of (mkref identity)

Standard ML ([MTH90, Tof90]) ref (u -+ u)
Standard ML/NJ ([AM89, HMV93]) ref (uo - o u°)
Simple Effects ([Wri92]) ref (t - t) with effect {alloc(t, f))

Effects with regions ([TJ92]) ref (t -f t) with effect {allocr(t + t)}
Closure Type ([Ler92]) ref (t --- t)

Closure Type with regions (this work) ref(r) (t -u-+ t)

In our representation (the last row), the type constructor ref is accompanied by a new
unique region variable at every application of mkref within the program. These region variables
participate in type unification thereby abstractly keeping track of the set of statically aliased
reference locations and their scope of accessibility rather than relying on various classes of type
variables or a separate set of effects.

The advantage of this representation is that it allows us to close the type of an imperative
object by simply replacing the appropriate region variables in a type constructor by the null
region E under suitable conditions. The "imperativeness" of an object can still be determined
syntactically by examining its parameterized type constructor, so we are still following the
closure typing system; no separate effects need to be collected.

Furthermore, a direct correspondence can be established between a user-defined imperative
type constructor that is parameterized by one or more non-null regions and a completely func-
tional version of the same type constructor by simply erasing all its qualifying region expressions
without disturbing the type constructor itself. For instance, now we can define just a single
parameterized array datatype vector(p) where a region p = r represents an I-structure array
and a region p = E represents a functional array.'1 The functional type constructor vector is
now considered to be a type synonym for vector(E).

Having independent region variables also separates the issue of type polymorphism from non-
mutability quite well. The imperativeness of an object is reflected in the regions associated with
its type constructor and not in its polymorphic type variables. Indeed, imperative properties
of a monomorphic type such as point given below can also be accurately represented and
manipulated:

Example 2.17:
type point = pt !float !float;

The type constructor point will be parameterized by two region variables point(ri, r 2) rep-
resenting the fact that it has two mutable fields that can be closed independently. The exact
association of region variables to mutable fields can be specified explicitly within the type dec-
laration or defined implicitly. We will come back to these language design issues in Chapter 4.
Now, let us look at some sound verification strategies for closing imperative objects.

2.4.2 Handling the Environment

Once an imperative object is created and is made accessible as part of the environment at a
particular scope, it is nearly impossible to close it safely at that scope or at any scope lexically
inside it because many other objects may already hold a write handle to it. That is why we

"However, M-structure arrays would still require a separate type constructor in order to distinguish them
from I-structure arrays. We will come back to this issue in Chapter 4.

specified the close construct as an encapsulator of the entire program fragment that constructs
the imperative object (Section 2.3.1) rather than as a mere type-converter. This situation is
further complicated by the fact that the scope of accessibility of a mutable object is not always
the same as the scope of its allocation because a locally created object may be made accessible
non-locally by storing it into a global data-structure. The function escape_1 of Example 2.15
illustrates this problem. A write handle to the locally allocated object a is made accessible by
storing it into the global object b. Now anybody looking at b could get hold of a and assign
into it. Therefore, it is not safe to close or generalize a when it is returned from the function
escapel.

Fortunately, modeling the imperativeness of an object using region variables allows us to
detect this situation statically. The region variable associated with the type of an imperative
object becomes visible in the enclosing type environment when that object is exported into the
enclosing value environment. This is illustrated below:

Example 2.18:
b = ivector (1,1); x b :: (vector(ri) (vector(r2) t))
def escape_l n =

close { a = i_vector (1,n);

b[1] = a; a :: (vector(r2) t)
in a }; % Unsafe close detected.

The assignment (b [1] = a) causes the region variable r2 contained within the type of the
array a to become visible in the type environment enclosing the close construct through the
type of array b. This fact may be used as a static test while typing the close construct to
detect such escaping objects. This is summarized in the following typing strategy:

Closing Strategy 1 An object may be safely closed at the lowest lexical scope higher than the
scope of its creation at which none of the region variables contained in its type occur free in the
type environment.

Sometimes, the type of a mutable object can escape into the type environment without
actually leaving a write handle around. This may happen if the type of the mutable object
is shared with some other global object due to type-unification. This phenomenon is called
region-aliasing and is illustrated in the following example:

Example 2.19:
a = i_vector (1,1); x a :: (vector(ri) t)
b = close { c = i_vector (1,2); x c :: (vector(r2) t)

d = if ... then a else c;
in c }; % Cannot close due to region-aliasing.

In the above example, the typing of the conditional expression unifies the region variables
rl and r2 of the arrays a and c respectively. Now, according to Strategy 1, the array c cannot
be closed because its region variable is visible in the enclosing type environment even though
the array itself does not escape into the enclosing scope in any way. Such cases are unavoidable
in a conservative, static type inference system.

2.4.3 Handling Structured Results

Until now we were considering cases where a single, flat, local data-structure is closed and
returned. The function escape_2 in Example 2.15 illustrates the case when the mutable object

to be closed is returned as part of another object. In general, multiple objects could be closed
and returned from a scope and all of them would have to be verified for safety simultaneously
because they may refer to each other.

In function escape.2 of Example 2.15, the returned object is a 2-tuple both of whose
components point to the same shared array a. Since, the second component of the return tuple
provides a write handle to the same array, closing its first component should be illegal. We
reproduce the example below:

Example 2.20:
def escape.2 n =

close { a = i_vector (1,n); / a :: (vector(r) t)

in a, a } :: (vector _),_;

In terms of types, we observe that the region variable r in the type of array a would get
erased in the type of the first component (due to close) but would still be present in the type of
the second component. This fact can be used to detect such escaping write handles as expressed
in the following typing strategy:

Closing Strategy 2 Local data returned from a scope is allowed to be closed only if none of
the region variables being closed occur free in the remaining type of the returned data.

The above strategy stresses two important points. First, we must specify exactly which
occurrences of region variables we are interested in closing. In some sense, this requires us to
specify exactly which fields or locations in a mutable object are we interested in closing.

Second, there should not be any way to access the open version of the object being closed
via the contents of the object itself. Since the structure of an object is reflected in its type, this
check can be performed statically by testing whether any of the region variables being closed are
visible in the type of the rest of the object. Note that this does not preclude the possibility of
closing recursive or cross-referenced mutable objects. The only restriction is that all references
to the same mutable object must be closed simultaneously, otherwise the close operation will
not be safe.

Note that the function escape_2 would be acceptable if both the write handles being re-
turned were closed at the same time. The following example would also be acceptable since the
region variables associated with the types of a and b are unrelated:

Example 2.21:
def escape_2' n =

close { a = i_vector (1,n);
b = ivector (1,n);

in a, b } :: (vector _),_;

Here a may be closed successfully and converted into a functional data-structure while b
remains mutable and is typed in the usual way.

2.4.4 Handling Functions

The simple Strategy 2 works well with explicitly nested, first-order data-structures like tuples
and arrays. Function closures present a different problem as illustrated by the definition of
escape3 in Example 2.15. Here, a write handle to the array a escapes within the definition of

the function g. The ordinary Hindley/Milner type of the function can not capture this fact at
all since it only records the types of arguments and the result of the function.

This is where Leroy's closure typing information carried on the function type proves useful.
Using the closure type, we can easily determine if the region variable being closed is present
within the returned closure. If so, then the close operation fails. With this addition, the
Strategy 2 will be able to detect the escape of the write handle to array a from escape_3 within
the closure type of the function g.

Note that in the closure typing system, there is no way to distinguish between a function
reading from a mutable object and another that writes to it. Therefore, all such functions are
conservatively considered to be potential writers and the region variables contained within their
closure types should never be closed. This is expressed in the following strategy:

Closing Strategy 3 Region variables occurring within the closure type of a function are never
allowed to be closed.

In a more expressive effect-based system [TJ92], one might be able to separate functions
that only read from a mutable object from those that both read and write the object. In that
case, only the latter class is a candidate for potential type-safety violation, the functions that
only read from a mutable object may be allowed to close those objects.

2.5 Summary

To summarize, we have informally shown above how to extend a state of the art imperative
type system [Ler92] with a type abstraction mechanism that can be used to convert imperative
objects into functional objects in a type-safe and transparent manner without the loss of storage
efficiency or parallelism. Specifically, we have proposed a new type-domain construct called
close that controls this type abstraction as a program encapsulator. We have informally
shown several typical uses of such a facility, discussed its implications on efficiency, parallelism
and dynamic memory access protocols, and outlined possible strategies to verify its correctness
within the type system. Finally, we have also given a flavor of the kind of syntactic and semantic
machinery that may be required to express, propagate and analyze such information. The next
chapter formalizes these ideas in the context of a polymorphic, strict, sequential language and
shows a soundness theorem guaranteeing that closed objects verified by our type system cannot
be updated during evaluation.

Our guiding principle behind this approach has been to engineer a practically useful notion
of encapsulating imperative programs and data-structures into functional abstractions. Our
ideas are geared more towards simplicity and run-time performance of user programs (space
efficiency and preserving parallelism) rather than towards sheer expressive power of the type
system.

Chapter 3

Semantics of "Close"

In this chapter, we describe the semantics of the close operation. This semantics is presented
in the framework of a small kernel language that supports recursive functions, tuples, and
simple reference locations. In Chapter 4, we will extend this system to handle more general
data-structures such as arrays and algebraic types. Our type system is a direct extension of
the Closure Typing system presented in Chapter 3 of Xavier Leroy's Ph.D. thesis [Ler92].

We present the static and the dynamic semantics of our kernel language and show a corre-
spondence between the two in the form of a soundness theorem (Theorem 3.16). This is our
main result. It gives us the guarantee that well-typed terms do not run into run-time type-
errors. The theorem also implies that mutable objects can be safely considered to be functional
once they are successfully closed, i.e., in a type-correct program it is impossible to update an
object that has been closed by the type system (Corollaries 3.17 and 3.18). Finally, we use the
same type inference algorithm as described in [Ler92] that infers the correct and most general
type of every expression in the program.

As far as possible, we have kept the same mathematical notation as used in [Ler92].
Throughout this thesis, all symbols appearing in typewriter font are taken verbatim. They
denote syntactic entities that stand for themselves. Symbols appearing in SMALL CAPITALS
denote classes of objects. Unless specified otherwise, Greek symbols and symbols appearing
in italics stand for meta-variables that can be replaced with specific object instances in their
class.

3.1 Kernel Expression Language

3.1.1 Expression Syntax

The EXPRESSION language is defined below:

EXPRESSIONS: a ::= c constant

x identifier
op(a) primitive application
f where f(x) = a recursive function
al a2 application
let x = al in a2 let-binding
I (al,...,an) n-tuple
close a close expression

In this grammar, x and f range over an infinite set of IDENTIFIERS. c ranges over a prede-

fined set of CONSTANTS including unit (()), boolean (true, false) and integer (...,-1,0,1,...)
constants.

In the expression op(a), op ranges over a predefined set of OPERATORS including the usual
arithmetic and comparison operators, ith element projection operators for n-tuples, and a
ternary conditional operator. This set also includes the primitive operators to allocate (ref),
dereference (!) and assign (:=) mutable reference locations that will be described later in more
detail. In general, arguments of multi-arity operators are supplied as tuples,* but we will
freely use special syntax for some common operators, for example (if...then...else...) for the
conditional operator, (x:=v) for reference assignment, and simple pattern matching for tuple
projection.

The expression f where f(x) = a denotes user-defined recursive functions. The identifier
f can occur inside the expression a. This makes our small language more realistic and allows
us to provide meaningful examples. The let construct is the source of polymorphism in this
language. In some of our Id examples, we represent several let-bindings together in a block
enclosed within braces ({}). Finally, we have added the close construct that enforces functional
behavior on the data-structure being returned from the expression a.

The set of FREE IDENTIFIERS of an expression a is denoted by .(a) and is computed in the
usual manner as shown below:

F(c) = .F(f where f(x) = a) = F(a) \ {f, x}

.F(x) = {x} F(let x = a, in a2) = F(al) U (F(a 2) \ {x})
_F(op(a)) = .T(a) ,T(al,...,an) = Ul<i<n T(ai)
.F(a a2) = (a1) UF(a2) F(close a) = F(a)

3.1.2 Dynamic Semantics

The dynamic semantics of the above language is defined using relational semantics. We define a
predicate relation between syntactic expressions and results that tells whether a given expression
can evaluate to a given result. This relation, called EVALUATION JUDGMENT, is of the following

form:

e - a/s =: r

Here e is an ENVIRONMENT, s is an initial STORE, and r is the RESULT of evaluating the expres-

sion a under the environment e and the initial store s. Evaluation judgments are established
using a system of axioms and inference rules. This technique is also known as "Structured
Operational Semantics" (SOS) [Plo81].

Semantic Objects

First, we define the semantic objects used in the dynamic semantics:

'Primitive operators are not allowed to be curried.

RESULTS: r ::= V/s value and result store
err error

VALUES: V ::= c constant

S (n-tup v, ... , Vn) n-tuple
(clsr f, x, a, e) function closure
I store location

STORABLE VALUES: w ::= v,rw read/write value
v,ro read-only value

ENVIRONMENTS: e ::= X1 F-+ V1 ,...,Xn -+ Vn

STORES: S ::= ({l4 W, W .. ., n Wn)

An evaluation can either result in a type-error or it produces a well defined value along with
the final store. A well defined value is either a constant base value, a tuple of values, a function
closure, or a store location.

Environments bind free identifiers of an expression to values. Stores map locations to
storable values that consist of a value and a tag that denotes whether that location has
read/write or read-only semantics. This flag is used in defining the semantics of the close
construct. We assume selector functions value(w) and tag(w) that select the value and tag
respectively from a storable value.

Both stores and environments are finite mappings that support the following operations:

Notation 3.1

1. For any mapping F, we denote the DOMAIN of F by Dom(F) and its RANGE by CoDom(F).
2. The extension of a mapping F at the domain point p with a range value q is written as
F + {p '-+ q} and is defined in the usual way:

{p q})(q if x = p
F(x) otherwise

3. The restriction of a mapping F to the domain A, where A C Dom(F), is denoted by F (A.
4. A finite mapping F = {Pl '-4 ql,...,Pn F-+ qn} is considered to be undefined outside its
domain {P ... P, } unless specified otherwise.

Given a value v, we inductively define L(v) to be the set of all locations directly contained
within it:

L(c) =(
L((n-tup V1,..., Vn)) = Ui<i<n C(vi)

£((clsr f,x,a,e)) = _(e)
C(1) = {1)

For an environment e = {x 1 + v, .. ., ,n - v,), we define £(e) = Ul<i<n£ (vi).

We define the set of locations reachable from a given object with respect to a given store as
follows:

Definition 3.2 (Reachability) Given a value v and a store s, we define Reachable(v, s) to
be the set of all locations within the domain of s that are either directly contained within v or
transitively contained in a value stored at such a location via the store s. This extends naturally

(pointwise) to values present in an environment e.

Reachable(c, s) = €
Reachable((n-tup v, ... , vn), s) = Ul<i<n Reachable(vi, s)

Reachable((clsr f, x, a, e), s) = Reachable(e, s)
Reachable(1, s) = ¢
Reachable(l, s) = {l} U Reachable(v', s)
Reachable(e, s) = U i<;, Reachable(vi, s)

1 (Dom (s)
value (s(1)) = v'

e = {Xt1 ý V1...,x, i v,}

Although the above definition is correct, it does not lead to a well founded induction on
the structure of values because we may have circularly defined data-structures. However, at
any given step of evaluation, the size of a value and the number of locations reachable from it
are both finite, so we can easily compute the reachable locations using the following recursive
algorithm that is guaranteed to terminate:

GATHER-LOCATIONS(V, s, L)
case v of

c : return L
(n-tup v1,..., vn): for i +- 1 to n do

L +- L U GATHER-LOCATIONS(vi, s, L)

return L
(clsr f, ,a,e): let {x1 -vi,...,xn, vn} = e

for i +- 1 to n do
L - L U GATHER-LOCATIONS(vi, s, L)

return L
1 : if IE L VI V Dom(s) then return L

else let v' = value(s(l))
return GATHER-LOCATIONS(v', s, {l} U L)

The above algorithm traverses the given value v in a depth-first recursive fashion and ac-
cumulates the set of all its reachable locations in the variable L. If the current value is a valid
location of the given store, then its contents are recursively traversed at Line 12 only if it is not
already in the set L. Thus, no object accessible from the given value is traversed more than
once and the algorithm is guaranteed to terminate.

The reachability function given in Definition 3.2 can now be computed as follows:

Reachable(v, s) = GATHER-LOCATIONS(v, s, €)

Evaluation Rules

Figure 3.1 shows the axioms and inference rules for establishing evaluation judgments e I-
a/s =j r. An axiom P allow us to conclude that the proposition P holds. An inference rule is
of the form:

P1 ... P,
P

All the antecedents P1 ,..., P, must hold in order for us to conclude the consequent P.

The inference rules given in Figure 3.1 provide a strict, sequential, call-by-value seman-
tics for our kernel language. This can be seen from the fact that the store is sequentialized

CO N ST:
e F- c/s =~'- c/s

x e Dom (e)
IDENT: e -xs =ý- e(x)/s

Y = F(f where f(x) = a)ABS:
e F- (f where f(x) = a)/s := (clsr f, x, a, e Iy)/s

e ý al/s = (clsr f, x, ao, eo)/sl

e F- a2/S1 =4 v 2 /82
APP: eo + (f f (clsr f, X, a0o, eo), x '+ v2) F- ao0/2 VIS/3

e ý (a1, a2)/s v/83

e F- a1/s =€, v1 /s 1 ... e - an/sn_1 Vn/sn

e l- (a,,... , an)/s . (n-tup vI,..., vn)/Sn

e -e al/s =- v1 /s 1 e + {x I vi} F- a2/ls = v2 /S 2LET:
e F- (let x = al in a2)/s =: V2/82

Ae a/s = v/si 1 Dom(si)
e F ref (a)/s = 1/(s, + {l ý-+ v, rw})

e F- a/s = ll/s I E Dom(si) value(si(l)) = vDEREF:
e- !a/s =: v/si

e F- a/s => (1, v)/sl I E Dom(si) tag(sl(1)) = rw
e e :=(a)/s= (O/(si + {lI v, rw})

e F a/s * 1/s si (l) = v, rw
CLOSE: L = Reachable(l, sl) U Reachable(e, si) U UUteDom(s) Reachable(l', si)

e F- (close a)/s = 11(si IL +•{ 1- v, ro})

Figure 3.1: The Dynamic Semantics of the Kernel Expression Language.

through various computations (APP, TUPLE, and LET rules) and that function and let bodies
are evaluated in an environment where arguments are bound to values (APP and LET rule).

Figure 3.1 only shows the inference rules that lead to the computation of a well defined value.
Our convention for the generation or propagation of the err result is as follows. Some rules
have antecedents that require pattern matching: the operator in the APP rule must evaluate to a
closure value, the expression in the CLOSE rule must evaluate to a location with a read/write tag,
the expression in the DEREF rule must evaluate to a location, and the location to be assigned in
the ASSIGN rule must have a read/write tag. We add an err generating inference rule for every
case of mismatch between any of these patterns and the actual values and tags found during
their evaluation. Similarly, err propagating inference rules are added for each antecedent in
an inference rule that may generate an err result. In all these cases, the consequent simply
evaluates to the err result and all propositions following the error generating antecedent are

e - c/s j clsCONST:

ignored.
Most of the axioms and inference rules shown in Figure 3.1 for the various kernel language

constructs are fairly standard and self explanatory. We have shown the primitive operator rules
for reference operators only. Usual arithmetic and structural operators (tuple projection) are
defined in the usual way. The ALLOC rule initializes new reference locations with a value and
a read/write tag. We assume that an infinite set of new locations is available. The DEREF rule
reads the value out of an existing location regardless of its tag. The ASSIGN rule only assigns
to locations which have a read/write tag.

The CLOSE rule requires a little more explanation. This rule is the only place where the
read/write tag of a location is explicitly changed to a read-only tag. This makes that reference
object non-mutable. We have also restricted the domain of the final store to the reachable
locations of the location being closed, the current environment and the locations of the initial
store. This operation removes some non-reachable garbage locations from the final store that
may contain references to the location being closed. Although this operation seems somewhat
artificial, it is of immense help in reducing the complexity of the soundness proof later on. We
motivate the reasons for doing so below.

A more intuitive semantic rule for the close construct would be:

CLOSE': e - a/s =: I/s si(l) = v, rw
e F- (close a)/s = 1/(81 + {l ý- v, ro})

This rule does not restrict the domain of the resulting store. Why would we want to do
that operation anyway? The following example brings out the issue:

Example 3.1:
a = close {

b = ref 1;
c = ref b;

in b };

Within the scope of the close block, a freshly allocated reference c points to another fresh
reference b. Both these references are present in the store that is returned from the block
although there is no way to access the reference c once that block is exited. The unreachable
reference to b via c creates technical problems while showing the correspondence between the
static and dynamic semantics2 therefore we would like to get rid of it. One direct way of
achieving this is to restrict the domain of the final store to contain just the reachable locations,
as we have done in the CLOSE rule above.

The alternate CLOSE' rule is not wrong. We just have to do more work while showing its
soundness restricting our attention to just the reachable locations of the current value and
the current environment with respect to the current store at every step of the proof due to
the presence of garbage locations such as c scattered in its domain. In technical terms, this
would imply that all our proofs must be carried out using the method of co-induction (due to
the possibility of having cyclic data-structures within the store) rather than a straightforward
induction on the structure of the current value and a separate induction involving all the
locations in the domain of the current store. Therefore, we have opted for the somewhat non-
intuitive CLOSE rule in order to avoid the complex semantic machinery required to show the
soundness of the alternate CLOSE' rule.

2 Since we have not yet shown the static rule for close or the semantic machinery used to show soundness,

we request the reader to bear with us for the time being.

3.1.3 Properties of the Evaluation Rules

In order to convert read/write store locations into read-only locations in a safe manner, we
need to characterize the allocation, reachability, and manipulation of store locations during an
evaluation. In this section, we show two important properties: locations reachable through the
result of an evaluation are either new locations or reachable through the evaluation environment
(Proposition 3.5), and old locations that get updated during an evaluation are always reachable
through the evaluation environment (Proposition 3.6). Both these propositions will be used
later in proving the soundness of the close construct. But, first we show some auxiliary
propositions.

It is evident from the evaluation rules presented in Figure 3.1 that the domain of the store
keeps growing during an evaluation. We do not model storage reclamation in these rules. This
allows us to state the following:

Proposition 3.3 let a be an expression, v be a value, e be an environment, and so, sl be initial
and final stores respectively such that e - a/so =. v/sl. Then Dom (so) C Dom (si).

Proof: by induction on the length of evaluation derivation for a. A simple examination of the
evaluation rules shows that in all cases except the CLOSE rule, either the domain of the store
grows or it remains unchanged. In the case of the CLOSE rule, the domain of the final store
is possibly smaller than that of the intermediate store due to the domain restriction, but it
still includes the entire domain of the initial store by construction. O

Next, we show that a given property applicable to all locations of a store extends inductively
to all values and environments that refer to the locations in that store.

Proposition 3.4 Let e be an environment and so, si be stores such that Dom(so) C Dom(s 1),
and for all locations I E Domr(so)

l' e [Reachable (, si) \ Reachable (l, so)] == ' € Dom(so) Vl' E Reachable (e, so)

Then, for any value v' and environment e' we have,

1' E [Reachable(v', si) \ Reachable(v', so)] == l' 0 Dom (so) Vl' E Reachable(e, so)
l' E [Reachable(e', s5) \ Reachable(e', so)] l 1' _ Dom(so) Vl' E Reachable(e, so)

As a corollary, for e' = e we have,

1' e Reachable (e, s5) = 1' 0 Dom (so)V l' E Reachable (e, so)

Proof: by structural induction on v' and the values contained in the environment e'. We show
the various cases for values.
Case 1: v' is c - Trivial, since there are no reachable locations from a constant.
Case 2: v' is (n-tup vl,..., vo) - By definition of reachability for tuples we have,

Reachable((n-tup vl,..., vn), s) = U Reachable(vi, s) (3.1)
l<i<n

The result follows from above using the induction hypothesis for each individual vi and the
following algebraic identity for arbitrary sets:

1<i<n (I<i<n 1<i<n

Case 3: v' is (clsr f, x, ao, eo) - Same as above.

Case 4: v' is 1 - If 1 V Dom(sl) or 1 V Dom(so) then we have nothing to prove. Otherwise
the result follows from the given relation regarding locations.

The environment hypothesis follows from the value hypothesis using the definition of reach-
ability for environments and Equation 3.2. oE

Now we prove the proposition that partitions the locations reachable from the result of a
evaluation into those that are freshly allocated and those that are reachable from the evaluation
environment.

Proposition 3.5 (Fresh Locations) Let a be an expression, v be a value, e be an environ-
ment, and so, sl be initial and final stores respectively such that e I- a/so =j v/s1. Then,

1' E Reachable(v, sl) -== l' V Dom (so) V 1' E Reachable(e, so)

and for all locations l E Dom(so),

I' E [Reachable(l, si) \ Reachable(l, so)] == 1' V Dom (so) V l' E Reachable(e, so)

Proof: by induction on the length of evaluation derivation for a. We consider the various cases
for the last evaluation rule in the derivation.
Case 1: CONST - Trivial, since Reachable(c, s) = q and so = sl.

Case 2: IDENT - Trivial, since Reachable(e(x), si) C Reachable(e, si) and so = si.

Case 3: ABS - Trivial, since Reachable((clsr f,x,a,e Iy), s) = Reachable(e ly, s) C
Reachable(e, s1) and so = sl.

Case 4: APP - The evaluation rule is:

e F- al/s => (clsr f, x, ao, eo)/sl
e -a2/81 =s v2/s 2

eo + {f -+ (clsr f, x, ao, eo),x x-+ v2} t- ao/S 2 =ý v/S 3
e - (a, a2)/S v/s 3

Let el = eo + {f f-+ (clsr f, x, ao, eo), x -+ v2}. First, we show the value hypothesis for this
case, i.e., we show:

1' E Reachable(v, s3) == l1' ý Dom (s)V l' E Reachable(e, s) (3.3)

Applying the induction hypothesis for values to the last premise we obtain:

1' E Reachable(v, s3) == l' V Dom (s2) V l' E Reachable(el, s2) (3.4)

Note that 1' V Dom(s 2) implies 1' V Dom(s) because Dom(s) C Dom(s 2) from Proposi-
tion 3.3. If l' E Reachable(el, s2), then using the definition of reachability and el we have
the following two cases:

* I' E Reachable(eo, s2) - In this case, we use the induction hypothesis for locations on
the second premise in Proposition 3.4 with environment e' = e0o to obtain:

1' E [Reachable(eo, S2) \ Reachable(eo, si)] ==> l' V Dom(sl) V l' E Reachable(e, s1)
(3.5)

To eliminate Reachable(eo, sl), we use the induction hypothesis for values on the first
premise to obtain:

1' E Reachable(eo, si) ==- 1' 0 Dom(s) V I' E Reachable(e, s) (3.6)

Also, we simplify 1' E Reachable(e, si) on the right hand side of Equation 3.5 by
applying the corollary in Proposition 3.4 for the first premise:

1' E Reachable(e, Si) == l1' ý Dom(s) V l' E Reachable(e, s) (3.7)

Combining Equations 3.5, 3.6, and 3.7 we obtain the following as desired:

I' E Reachable(eo, 82) -== 1' 0 Dom(s) V 1' E Reachable(e, s) (3.8)

* I' E Reachable(v2, 82) - In this case, we use the induction hypothesis for values on
the second premise and then simplify as above using Proposition 3.4 to obtain,

1' E Reachable(v2, 82) - 1' 0 Dom(sl) Vl' E Reachable(e, sl)

-- l' 0 Dom(s) Vl' E Reachable(e,s) (3.9)

Combining statements 3.8 and 3.9 proves the statement 3.3 as desired.
Now we show the location hypothesis, i.e., for all locations 1 E Dom(s) we show that:

1' E [Reachable(l, S3) \ Reachable(l, s)] ==> l' 0 Dom (s) V l' E Reachable(e, s) (3.10)

We use the following algebraic identity that is true for arbitrary sets:

X \ Y c (X \ Z) U (Z \ Y) (3.11)

Using this identity, we obtain:

[Reachable(l, 83) \ Reachable(l, s)]

C [Reachable(l, s3) \ Reachable(l, s2)] U [Reachable(l, 82) \ Reachable(l, s)]

C [Reachable(l, ss3) \ Reachable(l, s2)] U [Reachable(1, s2) \ Reachable(l, si)] U

[Reachable (, si) \ Reachable(1, s)] (3.12)

Now we use the induction hypothesis for locations for each of the three clauses on the right
and simplify using Propositions 3.4 and 3.3 to obtain the desired result.

Case 5: TUPLE - The location hypothesis is shown exactly like the case above. We give the
argument for the value hypothesis. The evaluation rule is:

e - all/so =: v1/s 1 ... e ý- an/s, ~ => v/sn
e - (al,...,an)lso => (n-tup vl,..., Vn)/s

We have to show that:

1' E Reachable((n-tup v l ,..., v), sV) == l' 0 Dom(so) V ' E Reachable(e, so) (3.13)

Applying the induction hypothesis for values to each premise (1 < i < n) and simplifying
using Propositions 3.3 and 3.4 we obtain:

l' E Reachable(vi, si) == l' ý Dom(so) V l' E Reachable(e, so) (3.14)

In order to show Equation 3.13, we need to strengthen Equation 3.14 to 1' E Reachable(vi, s,)
(1 < i < n). We use the algebraic identity 3.11 repeatedly to obtain the following:

[Reachable(vi, sn)\Reachable(vi, si)] U [Reachable(vi, sj)\Reachable(vi, sj-1)] (3.15)
n>j>i

We use the induction hypothesis for locations and Proposition 3.4 to simplify each of the
clauses on the right in the above statement and plug in Equation 3.14 to obtain the desired
result of Equation 3.13.

Case 6: LET - Same argument as in the APP case.

Case 7: ALLOC - The result follows from the induction hypothesis and the fact that the
allocated location is in fact chosen to be a new location that is not present in Dom(si) and
hence not present in Dom(s).

Case 8: DEREF - The result follows directly from the induction hypothesis and the definition
of reachability for locations.

Case 9: ASSIGN - The evaluation rule is:

e ý a/s j= (1, v)/si I E Dom(si) tag(si(1)) = rw

e - :=(a)/s = ()/(si + {1 ý v, rw})

The value hypothesis follows immediately since no locations are reachable from (). For
the location hypothesis, note that the final store s2 = Sl + {l - v, rw} differs from the
intermediate store si only at location 1. Furthermore, using the induction hypothesis for
values we know that:

1' E Reachable(v, si) P '0 ' Dom (s) V ' E Reachable(e, s) (3.16)

Thus, the location hypothesis will be valid for the location I as well which is assigned the
new value v.

Case 10: CLOSE - By construction, the final store contains all the reachable locations from
the location being closed, the current environment, and the old store. Thus, both value
and location hypotheses follow directly from the induction hypothesis since changing the
tag of a location does not affect its reachability.

Finally, we show the proposition that characterizes the set of locations that may get updated
during an evaluation.

Proposition 3.6 (Updated Locations) Let a be an expression, v be a value, e be an envi-
ronment, and so, sl be initial and final stores respectively such that e F- also =i v/sl. Then for
any location I E Dom(so),

value (so (1)) # value(si(1)) == E Reachable(e, so)

That is, pre-existing locations that get updated during an evaluation are reachable from the
environment.

Proof: by induction on the length of evaluation derivation for a. We consider the various cases
for the last evaluation rule in the derivation.
Case 1: CONST, IDENT, and ABS - Trivial, since so = s1.

Case 2: APP - The evaluation rule is:

e ý al/s =: (clsr f, x, ao, eo)/si
e F- a2/sl =: v2 /s 2

eo + {f f (clsr f, x, ao, eo), x - v2} F- ao/s 2 =i v/83
e F- (a, a 2)/S V v/s 3

Three possibilities arise for value(s(l)) $ value(s3(l)):

1. value(s(l)) : value(sl(l)) - The result follows immediately by applying the induction
hypothesis to the first premise.

2. value(s(l)) = value(si(l)) but value(si(l)) $ value(s 2 (l)) - Using the induction hy-
pothesis on the second premise we obtain that l E Reachable(e, sl). Using Proposi-
tion 3.5 together with Proposition 3.4 for environments we obtain that

1 E Reachable(e, sl) == 1 _ Domra(s)V 1 Reachable(e, s) (3.17)

Since we know that l E Dom(s), the result follows.
3. value(s(l)) = value(si(l)) = value(s 2 (l)) but value(s2(l)) : value(s 3 (1)) - Using in-

duction hypothesis on the third premise we obtain that l E Reachable(el, 82) where
el = eo + {f -+ (clsr f, x, ao, eo), x ý-+ v2}. This can be simplified to the desired result
just as in the proof of Proposition 3.5.

Case 3: TUPLE and LET - Same argument as above.

Case 4: ALLOC and DEREF - The result follows directly from induction hypothesis.

Case 5: ASSIGN - The evaluation rule is:

e F- a/s =€ (1, v)/sl 1 E Dom(si) tag(si(l)) = rw
e - :=(a)s = ()/(si + {(1 v, rw})

For all locations other than 1, the result follows from the induction hypothesis. In case of
location 1, we apply Proposition 3.5 to the first premise and obtain that,

i' E Reachable((l, v), sl) == l1' _ Dom (s) V l ' E Reachable(e, s) (3.18)

It is clear that 1 is reachable from the pair (1, v). The result follows from the above
statement and the induction hypothesis that l E Dom(s).

Case 6: CLOSE - All locations reachable from the initial store s are included in the final
store by construction. Furthermore, the values present at these locations are the same as
those in the store sl. Thus, the result follows from induction hypothesis.

3.2 A Closure Typing System

Now we will describe our extension to Xavier Leroy's closure typing system [Ler92].

3.2.1 Type Syntax

The type grammar is defined below:

TYPE VARIABLES:

TYPES :

CLOSURE TYPES:

REGIONS:

TYPE SCHEMES:

a, ::

7 ::

p

t
U

r
t
t

71 -(7r- T2
Ti, .. ., Tn

r ref(r)
T ref(c)
U

i, 7r

r

Val ... an- 7

regular type variable
closure extension variable
region variable
regular type variable
base type
function type
n-tuple type
mutable reference type
non-mutable reference type
closure extension variable
closure type
region variable
null region

In this grammar, a function type (-+) is decorated with a CLOSURE TYPE which is a set

of type schemes together with a closure extension variable u. The closure type of a function
corresponds to the type schemes of the free identifiers of the function that are stored in its
closure environment. The order of occurrence of the type schemes in a closure type does not
matter. Note that the above grammar does not allow more than one closure extension variable
in a closure type.

A reference type is parameterized by a REGION expression which could be a region variable
r or the null region constant E. Regions serve to model the mutability of store locations, while
types serve to model the structure of dynamic values. That is why the domain of regions is
much simpler than the domain of types.

A region variable parameter r on a mutable reference type serves two purposes. It identifies
the reference type as being mutable and it also serves as an abstract static label for the corre-
sponding dynamic mutable location (and any other locations aliased to it) that has that type.
This abstraction is useful in tracking the dynamic mutable locations reachable from a given ob-
ject by statically observing the region variables present within its type. We will formalize this
correspondence between regions variables and mutable locations in Section 3.3. Non-mutable
or "closed" references are identified by a fixed null region constant (E) because there is no need
to keep track of locations that have been closed. Note that ref(r) and ref(e) are considered to
be distinct type constructors; they have a similar form only for syntactic uniformity.

For any type object T, where T may be a type, a closure type, a region, or a type scheme,
its FREE VARIABLES F•(T) are defined inductively as follows: 3

7(t) = {t}
() =)

YT(7- -(7r)-+ 7 2) = .F(T 1) U F(7r) U F(T 2)

.•(T1,..., Tn) = Ul<i<n -F7(7)
.T(7- ref(p)) = Y(r)U .(p)

Y(u)
.F((i, r)

Y(r)

{u}

() \
7(7-)\ \(1

In a type scheme a = Voal ... an. 7, the variables {xi ... an} are called the BOUND VARIABLES

denoted by B(a). For any type object T, we also define the DANGEROUS VARIABLES D(T) and

the DANGEROUS REGION VARIABLES R•(T) inductively as follows:

3Note that we are using the same notation here as that for computing the free identifiers of an expression
because it represents the same concept. The meaning is always clear by context since we never mix types and
expressions.

V9(t) = 1(u) =
1('t) = 1 (a, 7r) = (a) U 19(7r)

(71(-()7r)-72) = D9(7) D(r) =
V(-ri,...,,,) = Ul<i<n1(•i) D(E) =E
7(r ref (r)) = .F(r ref(r)) D(Val ... Oan. r) = D(r) \ {OI ... Cn}

D)(r ref(E)) = D(Tr)

Z(t) = R(u)
S(t) = R(o, 7r) = (a) U R(7r)

R(7- -r)-• 7•2) = R(w) 1(r) =
S("r T-• = Ul<i<n,7(r-) R(E) =
R(Z ref (p)) = R()U (p)() (Vaw ...an. -) = R(Z) \ {~a...a }

Specifically, for a mutable reference, the region associated with that type and all type vari-
ables contained within it are considered to be dangerous. The variables occurring inside a
non-mutable reference type are not considered to be dangerous. For a function closure, the
typing rules shown later ensure that the types of all objects reachable from the closure environ-
ment are recorded in its closure type. Therefore, the types of mutable references accessible via
the closure environment are also visible in its closure type and are considered to be dangerous.

Using the type abstractions shown above, we can accurately capture and control the static
(type polymorphism) and the dynamic (mutability) properties of imperative data-structures.
The basic idea of our type system is to use the type of a composite object as a clue to the
reachable mutable reference locations contained within it. Dangerous variables provide this
clue directly from the overall type of an object. Intuitively, dangerous type variables model the
polymorphic values stored within mutable objects and the dangerous region variables model
the mutable locations contained within such objects.

3.2.2 Static Semantics

The static semantics of our kernel language is defined in the same manner as its dynamic
semantics. We define a predicate relation between syntactic expressions and types that tells that
a given expression elaborates to a given type. This relation, called ELABORATION JUDGMENT,
is of the following form:

E a:r

Here E is a TYPE ENVIRONMENT which is defined below as a finite mapping from identifiers to
type schemes.

TYPE ENVIRONMENTS: E ::= {x-4 O ... , Xn ý+ O n}

TYPE SUBSTITUTIONS over this type algebra are finite mappings from regular type variables
to types, from closure extension variables to closure types, and from region variables to other
region variables. We do not allow substituting region variables with the null region (E) because
that would convert a mutable reference type into a non-mutable reference type. This operation
should only be performed when it is determined to be safe and is explicitly done using the
close construct.

TYPE SUBSTITUTIONS: 0, ýp ::= t -+ 7",..., U • - , ... , r ý r',.. .}
Type substitutions are taken to be the identity mapping outside their specified finite domain.

They also extend naturally over types, closure types, and type schemes, being applied to their

free variables in each case. For a type scheme a = Val ... an. 7, it may be necessary to rename
some its bound variables ai so that they are OUT OF REACH for the type substitution ýp, i.e.,
no ai is in Dom(p) and no ai occurs free in any type, closure type or region in CoDom((p).
Then, the substitution is defined by:

,(Voal...a,,,. ,) = Va1 ... a,. (-,')

The INSTANTIATION of a type scheme a = Val ... a. To to a type r, written as a > 7, is
defined if there exists a type substitution W with Dom(p) C {f a... a,} such that r = cp(ro).

In order to simplify our notation for computing free and dangerous variables of sets of
objects, we use the following convention:

Notation 3.7 Given a set of objects P,

1. UpEP cp(p) = cp(P).
2. UpEP Y(p) = T(P).
3. Upep 6D(p) = V(P).

The effect of type substitutions on the free and dangerous variables is now captured in the
following proposition:

Proposition 3.8 Let Wp be a type substitution. For any T, where T could be a type 7, a closure
type 7r, a region p, or a type scheme a, we have:

r(W(T)) = Y(W(r(T)))

rT(W•1((T))) _ D((p(T)) _ Jr(Wp(*(T)))U E1(•(Jr(T)))

Proof: Both these relations follow directly from the definitions of YF(T) and 'D(T) by a simul-
taneous structural induction over the appropriate type object T. O

The first equation provides an exact relationship between the free variables of a type before
and after applying a type substitution to it. On the other hand, the second pair of inequalities
provide only an approximation to the set of dangerous variables of a type after applying a
type substitution to it. This is so because the substitution images of dangerous variables of a
type (T((•p(D(r)))) may not cover all the dangerous variables of the substituted type (V(c(r))).
Some non-dangerous variable may get substituted with a type containing dangerous variables
that must also be counted as dangerous in the final type.

Typing Rules

Figure 3.2 shows the axioms and the inference rules for establishing elaboration judgments
E F- a : T. The CONST and the PRIMAPP rules establish the elaboration judgment for a constant
or a primitive operator application according to a predefined relation typeof that provides the
type scheme associated with them. All such predefined type schemes are fully-quantified: there
are no free variables in these type schemes. Most constants and operators have the obvious type
schemes. We only show the predefined type schemes of the three reference operators below:

typeof(ref) = Vt, u, r. t -(u-t ref (r)
typeof (!muable) = Vt, u, r. t ref (r) -(u)- t

typeof (! non-muable) = Vt, u. t ref(E) -(u- t
typeof(:=) = Vt,u,r. (t ref(r),t) -(uý- unit

CONST: typeof (c) > 7
EFc:r

PRIMAPP: typeof(op) 71 -(7r)-+ 72 E F- a:
E F- op(a) : T2

ENT E Dom(E) E(x) > 7IDENT:

{jY ... y} = T(f where f(x) = a)
ABS: E+ {f -7"1 --(E(yl), ., E(y,), r--" T2,x • 71 a 72

E F (f where f(x) = a) : rl -E(yl),.., E(yn), 7r- 7"2

APP: E-a : T --ýr)- 2 E - a2 : 71
E - al a2 : 72

E aEl : 71 ... E F- an : T
E - al, ... , an " 71, • •.. 7-n

ET: - al : 1 E + {x + Gen(E, ri)} - a2 : T2

E - (let x = al in a2) : 72

E F- a : r ref(r) r ' (Y(E)U -(r))
E F- (close a) : r ref ()

Figure 3.2: The Static Semantics of the Kernel Expression Language.

There are two different types for the dereference operator (!), one for mutable references
and the other for non-mutable references. This is because we consider mutable reference types
as distinct from non-mutable reference types. Essentially, we overload the use of the dereference
operation with these two types. This does not create any problem since the exact type to be
used is always clear from context. Moreover, in our kernel language, the underlying dynamic
dereferencing operation is the same in both cases.

The IDENT rule instantiates the type scheme of an identifier stored in the type environment.
The ABS rule shows how closure types are created in this system. The type schemes of all the
free identifiers of the function are stored in its closure type. This is necessary to keep track
of the mutable locations accessible through the closure environment. The APP and the TUPLE
rules are self explanatory. The APP rule also handles primitive operator applications.

The LET rule allows a type to be quantified and added to the type environment as a type
scheme. The GENERALIZATION operation in the LET rule is defined as follows:

Gen(E, 7) = Val ... a,. T where {a, ... a,n} = _T(r) \ D(7r) \ .F(E)

Finally, the CLOSE rule converts a mutable reference type into a non-mutable reference type
by erasing its region variable and replacing it with the null region (E). This is an explicit type
conversion operation on the mutable reference type. The side condition ensures the soundness of
this operation by checking that the region being closed does not escape from the current scope.

This is the exact formalization of the informal closing strategies described in Section 2.4.

3.2.3 Properties of the Typing Rules

In this section, we will present some syntactic properties of the typing rules presented above.
The most important property is the following proposition that states that typing is stable under
type substitution. This property is essential for performing type inference (Section 3.4) because
it guarantees that all incremental type refinements (via type substitutions) to a given typing
of an expression yield legal typings of that expression. Thus, the typing of an expression can
be automatically refined to match that of its enclosing context.

Proposition 3.9 (Stability under Type Substitution) Let a be an expression, 7 be a type,
E be a type environment, and ýp be a substitution. If E - a : r, then p(E) - a : p(r).

Proof: by structural induction over a. For completeness, we show all the cases.
Case 1: a is c - The CONST rule applies:

typeof (c) 7T
E[c:r

Let typeof(c) = Val ... an. To and 0 be its instantiation substitution such that 7 = b(ro)
with Dom() C {ai ... a,}. After renaming if necessary, assume that ai are out of reach
for p. Now define a substitution 0' with domain {al ... a,} such that /'(ai) = p(O(aj)).

Since the type scheme typeof(c) is assumed to be fully-quantified, there are no free
variables in r0 other than the ai. Thus 0'(ro) = (0((rTo)) = P(T), which implies that

typeof(c) _ P(rT). The desired result follows using the CONST rule.

Case 2: a is op(a) - We proceed exactly like the previous case to show that typeof(op) Ž
W(7r --(7r-+ r 2). The desired result follows from the induction hypothesis on the second
antecedent.

Case 3: a is x - The IDENT rule applies:

x E Dom(E) E(x) _ r
E F- x :r

Let E(x) = Val ... a. r0o and , be its instantiation substitution such that r = 'O(Tr) with

Dom(O) C {ja ... a&}. After renaming if necessary, assume that ai are out of reach for W,
so that ýp(E(x)) = Val ... a. (p(ro). Now define a substitution 0' with domain {ai ... an

such that 0'(ai) = p(#(ai)). We have,

'(W(ai)) = 0'(ai) = p(O(ai)) Vi, since ai are out of reach of W

='~(()W) = (((= 0(A)) V :A ai

Thus 0'(p(ro)) = c(I(ro)) = p(r), which implies that ýp(E(x)) _> ((r). This allows us to
conclude W(E) - x : :(r) as desired.

Case 4: a is (f where f(x) = a), (al,..., an), or (a, a2) - All these cases follow immediately
using the induction hypothesis on their respective antecedents.

Case 5: a is (let x = al in a2) - The typing derivation ends in the LET rule:

E - al : r1 E + {zx '- Gen(E, rl)} - a 2 : 72
E - let x = al in a2 : 72

By definition of generalization we have,

Gen(E, r1) = Val ... a,. 71 and {aL ... a,} = TF(r1) \ D(r1) \ F(E) (3.19)

Let 01 ... P/, be new variables that are out of reach of ýp and are not free in E. Define a
new substitution dp' = W o {aci -+ 3Oi}. Using induction hypothesis we have,

Vo'(E) - a, : W'(71) (3.20)

cp(E) + {x (o(Gen(E, rT))} I- a2 :(-72) (3.21)

Since no ai is free in E, we have p'(E) = cp(E). Therefore, in order to apply the LET rule
to the induction judgments 3.20 and 3.21 we need to show the following:

W(Gen(E, ri)) = Gen(p'(E), p'(r1)) (3.22)

We show this in two steps. Define V = FT(p'(rl)) \ Z(p'(rl)) \ .F(p'(E)).
SubCase 5.1: {/1 ... Pn} C V - We follow the definition of V given above. We have,

1. Pi E .T(p'(r7)) - From Proposition 3.8 we obtain F(so'(rl)) = Y(p'(Y(rl))), and for
ai E .T(ri) we have T(ýp'(ai)) = FT(i) = Oi.

2. oi V DZ)(P'(ri)) - From Proposition 3.8 we obtain D(c'(ri)) C UF(p'(D(rl)) U
D(~p'(F(7r1))). Now we have,

* /3Ai T(cp'()D(r))) - From Equation 3.19 ai 0 D(-rl) and for all a : ai, fi 4
YF(p'(a)) since oi are chosen to be out of reach of p.

* /3i 0 D(o'(F(mT))) - By definition V(p'(ai)) = D(Oi) = ¢ and for all a # ai,
oi 4 E (W(a))

3. oi 0 F(p'(E)) - From Proposition 3.8 we obtain F(p'(E)) = .F((p'(}(E))). Now
from Equation 3.19 ai 0 .T(E) and for all a A ai, /i 0 F(p'(a)).

SubCase 5.2: V C {31 ... ,} - Suppose we have a / E .F(cp'(r1)) such that #/3 P. We
wish to show that/3 V.

From Proposition 3.8 we obtain 3 E Y(-'(Y(r1)). Let a E .F(r1) be such that
SE F(V'(a)). Now a 5 ai, otherwise 3 = F(Qo'(ai)) = .F(3i) = /i. Using Equation 3.19

we must have one of the following situations:

1. a E D(r 1) - This implies that / E (.(po'(D(rl))) == 3 E D(ýp'(r7)) using Proposi-
tion 3.8. It follows from the definition of V that/3 V.

2. a E F(E) - This implies that / E e (p'(.F(E))) ==*-o E e Y(p'(E)) using Proposi-
tion 3.8. Again, it follows from the definition of V that/3 V.

Combining the above two cases we obtain V = {/31.../3n}. Now we have,

Gen (p'(E), p'(r1)) = V 1l ... P·.n. '(ri) by definition of generalization
= ýp(Val ... an. r1) by substitution over type schemes
= cp(Gen(E, ri))

This is the desired result of Equation 3.22, so the LET rule can now be applied on the
induction hypotheses 3.20 and 3.21.

Case 6: a is (close a) - The typing derivation ends in the CLOSE rule:

E F- ar ref (r) r ((F(E) U F(r))
E F- close a : r ref(e)

Just as in the last case, let r' be a new region variable out of reach of p and not free in E
or r. Define a new substitution Y' = p o {r {- r'}. Now we have,

p'(E) - a: c'(r ref(r)) by induction hypothesis
W cp(E) - a : (s(r)) ref(r') since r ý (F(E)U .F(r)) (3.23)

It is also clear that r' ý (jF(p'(E)) U F(('(r))) since r ý (.F(E) U F(r)) and r' was
chosen to be out of reach of p. Therefore, we can apply the CLOSE rule to the induction
hypothesis 3.23 to obtain the desired result.

The following proposition states that a typing remains valid under a more general typing
environment.

Proposition 3.10 Let a be an expression, r be a type, and E, E' be two typing environments
such that Dom(E) = Dom(E'), and E'(x) > E(x) for all x free in a. If E I- a : 7, then
E'- a : Tr.

Proof: by simple structural induction over a. The base case for the IDENT rule follows directly
from hypothesis, since E'(x) 2 E(x) > r. That is, any instance of E(x) is also an instance
of E'(x). For the LET and CLOSE rules, we observe that F(E') C F(E). In the LET rule,
this implies that Gen(E', rT) > Gen(E, rT) and the result follows by applying the induction
hypothesis to the second antecedent. For the CLOSE rule, this implies that r ý F(E') and
the result follows directly. O

3.3 Type Soundness

3.3.1 Semantic Model

In order to show the soundness of the typing judgments generated by the above type system
with respect to its evaluation rules, first, we must precisely characterize a "consistent" semantic
relationship between value-domain entities and their corresponding type-domain entities. Since
values may contain reference locations from the store, we need to define STORE TYPINGS which

are finite mappings from store locations to types:

STORE TYPINGS: S ::= {l1 - T1,...,ln, , - Tn}

Note that we do not allow type schemes in store typings. This clearly separates the modeling
of type generalization which is handled entirely via type environments, from the modeling of
closing a mutable object which is handled entirely via type conversion within the store typing.
Two store typings may be related by extension:

Definition 3.11 A store typing S' extends another store typing S if Dom(S) C Dom(S') and
S(I) = S'(l) for all 1 E Dom (S).

Now, we define the following consistency relationships between value-domain entities and
type-domain entities:

Definition 3.12 (Semantic Model) Let s be a store, S be a store typing, e be an environ-
ment, E be a type environment, v be a value, 7 be a type, and a be a type scheme. Define the
following relations:

Case 1: S [v : r - The value v belongs to the type 7 under the store typing S. The various
cases are as follows:
SubCase 1.1: S H c : typeof(c), where typeof is a predefined relation between predefined

constants and their types.

SubCase 1.2: S = (n-tup vi,..., v,) : (rI,..., ,) , if for all i, S H vi : ri.

SubCase 1.3: S = (clsr f, x, a, e) : r-(i r)--72, if there exists a type environment E such
that S H e : E and E F- (f where f(x) = a) : 1 -(r)-+r2.

SubCase 1.4: S 1 l: r ref(r), if l E Dom(S) and S(l) = r ref(r).

SubCase 1.5: S 1 : r ref(E), if 1 E Dom(S) and there exists a substitution p with
Dom(ýp) C F(S(1)) \ D(S(1)) such that cp(S(I)) = r ref (E).

Case 2: S H v : a - The value v belongs to the type scheme a = Val... a,.r under the
store typing S, if none of xai belong to V)(r) and if S H v : vp(r) for all substitutions ýp with
Dom(ýp) C {al ... an}.

Case 3: S H e : E - The values contained in the environment e belong to the corresponding
type schemes in the type environment E (pointwise) under the store typing S, if Dom(e) =
Dom(E) and for allx E Dom(E) we have S H e(x) : E(x).

Case 4: H s : S - The values contained in the store s belong to the corresponding types in the
store typing S (pointwise), if Dom (s) = Dom (S) and for all 1 E Dom (S) we have,
SubCase 4.1: If S(1) = T ref(r) then s(1) = v, rw and S v: T.

SubCase 4.2: If S(1) = r ref(E) then s(l) = v, ro and S v : 7.

The primary motivation of "closing" a mutable object is to be able to generalize its type to
a type scheme and use it like any other functional value in a safe manner. This is modeled in
Case 1.5 by defining a closed location to be consistent with any type obtained via a substitution
over the non-dangerous variables of the type present in the store typing. On the other hand
in Case 1.4, a mutable location is defined to be consistent only with the exact type present
in the store typing, modeling the fact that it is allowed to have only a monomorphic type.
The one-to-one correspondence between dynamic mutability of a reference location and its type
is reflected in Cases 4.1 and 4.2. Only the locations with a read/write tag are defined to be
consistent with a mutable reference type and vice-versa.

3.3.2 Properties of the Semantic Model

During the course of evaluation of a program, the values contained within the store locations
may change but the types of those locations remain the same (except for the types of locations
that are currently being closed). This fact is useful in showing that a semantic relation such as
S H v :7T that holds true at some point during evaluation, remains true afterwards under any
extension of the current store typing:

Proposition 3.13 (Store Typing Extension) If S' extends S, then S H v : r implies S' H
v : 7. Similarly, S k e : E implies S' H e : E.

Proof: by a simple induction over v. The only interesting case is that for locations. The
definition of extension ensures that S and S' must agree exactly on the types of the locations
that are present in S. o

3.3.3 Type Soundness

Before we establish the consistency of the static and the dynamic semantics in terms of a
soundness theorem, it is useful to characterize the semantic meaning of the generalization and
the closing operations in terms of the above semantic definitions.

The following proposition establishes the fact that it is semantically safe to generalize the
non-dangerous variables of a type.

Proposition 3.14 (Semantic Generalization) Let v be a value, r be a type and S be a store
typing such that S = v : r. Let al, ... , a m be type variables such that for all i, ai _ V (r). Then,
for all substitutions W with Dom(W) C {ai ... am}, we have S k v : p(r). As a consequence,
S v : Val ... am.T.

Proof: by structural induction over v. Only the case for a closed location is different from
[Ler92], but we show all cases for the sake of completeness.
Case 1: v is c - By definition, S k c: typeof(c) and therefore we must have typeof(c) > r

using the hypothesis S k c: r. Also by assumption, all predefined constants possess fully
quantified type schemes, i.e., their type schemes do not contain any free type variables.
This implies typeof(c) _ W(r) and the result S H c: p(r) follows immediately.

Case 2: v is (n-tup v ,..., v) and T is 71,..., -n - Since V(rl,..., rT) = UI<j_•,)(T-),
we must have for all i,j that ai Trj. By induction hypothesis it follows that for all j,
S ý vj : ý(rj). The result follows from the definition of = for tuples.

Case 3: v is (clsr f, x, a, e) and r is rl --(r-+ r2 - Applying the definition of = for closures,
let E be the type environment such that,

S e e:E (3.24)
E (f where f(x) = a) : ri -(•- T2 (3.25)

We will show that,

S e: p(E) (3.26)

p(E) H- (f where f(x) = a) : W(r1 -(7r-+ Tr2) (3.27)

Equation 3.27 follows directly from Equation 3.25 using Proposition 3.9 that typing is
stable under substitution. Also note that Dom(E) = Dom(e) = .T(f where f(x) = a)
from Equation 3.24 and the dynamic ABS rule in Figure 3.1.

In order to show Equation 3.26, we must show S [e(y) : p(E(y)) for all y E Dom(E).
For a given y, let E(y) = Vol ... 3k. r' where pj are taken out of reach of P and distinct
from ai. Using substitution over type schemes, we obtain p(E(y)) = V/ 1 ... Ok. p(r7').
Thus, in order to conclude S = e(y) : p(E(y)), first we have to show S H e(y) : O(W(r'))
for any substitution 0 with Dom('C) C {fl... /k}. This is done as follows.

From Equation 3.24 we obtain S = e(y) : E(y) which implies S = e(y) : r' using the
definition of H over type schemes. Now consider the substitution ' o a. Its domain is

{a, ... , an, 00,..., ik}. We claim that none of these variables are dangerous in 7':

* ai _ D((r') - We know that y E .F(f where f(x) = a), so its type scheme E(y)
is included in the closure type 7r of r = rl -- 7)-+ r 2 . This implies that D(E(y)) =

V)(r') \ {P1 ... k} is included in D(r) = V)(r). Since ai ý D(r) by hypothesis, it
follows that ai ý D(r') for all i.

*j 0 D(r') - S ý= e(y) : E(y) from Equation 3.24 immediately implies 6j 0 D1(r') for
all j.

Now we can apply the induction hypothesis to the value e(y), the type 7', the variables
Ol,..., On, 31,..., Ok and the substitution 0 o c to obtain S k e(y) : 4(c(r')). This
holds for any substitution 0 over {•i ... Pk}. Moreover, none of pj are dangerous in O(r')
since they are not dangerous in r' and they are out of reach of p. Therefore we obtain
S ý e(y) : V, ... Pk. r' by definition of = over type schemes, that is, S j- e(y) : p(E(y)).
This holds for all y E Dom(E). Hence Equation 3.26 is satisfied and we obtain the desired
result.

Case 4: v is I and r is 71 ref (r) - Here, D(r) = YT(r). Since no ai is dangerous in 7 by
hypothesis, it follows that no eai can be free in r. Thus, ýp(r) = r and the result follows
immediately from the hypothesis that S j= v : r.

Case 5: v is I and r is Tr ref(E) - Applying the definition of [for non-mutable locations,
let 47 be the substitution with Dom(C) C .(S(l)) \ D(S(l)) such that r = O(S(()) thereby
implying ýp(r) = p(O(S(l))). Also, no ai E Dom(p) is dangerous in S(l). Otherwise,
it would surely be dangerous in r = O(S(l)) from Proposition 3.8 which contradicts the
hypothesis.

Consider the substitution p o 4 restricted to the domain X = T(S(l)) \ D(S(l)). From
the above remarks it is clear that we still have (p o 4) Ix (S(l)) = ýo(r). Thus, we can
apply the definition of = for the location I using the substitution (W o 4) Ix to conclude
S 1 I : W(r) as desired.

The following proposition establishes a correspondence between the dangerous regions of
a type and the mutable locations that are reachable from a value possessing that type. This
allows us to use dangerous regions as a safe static abstraction for mutable locations.

Proposition 3.15 (Region Abstraction) Let s be a store, and S be a store typing such that
s : S. Then we have,

S ý- v : r = U ([(.J) C_ 7(r)
\IEReachable(v,s)

That is, the dangerous regions contained in the types of reachable locations of a value are
dangerous in the type of the value. Using pointwise extension to environments we also have,

S I=- e : E == U R (S(1)) C R(E)
IE Reachable(e,s)

Proof: by induction on the depth of reachability of a location I in the value v. First, we define
a family of reachability functions Reachable'(v, s) as follows:

Reachableo(v, s) = £(v) (3.28)

Reachablei+'(v, s) = Reachable (v, s) U U L(value(s(l))) (3.29)
\lEReachable' (VS)

By definition, Reachable(v, s) is the limit of the increasing chain of sets Reachableo(v, s) C
Reachable' (v, s) C - -. Since the number of locations reachable from a value is finite, this
chain is guaranteed to reach the limit at a finite i. We will show that for all i,

(JZ(S(1)) _ IZ(r) (3.30)

IEReachablei (v,s S))

Base Case: Using Equation 3.28, we need to show that for all locations l E £(v), we have
RZ(S(l)) C IR(r). This is shown by induction on the structure of v using the definition of
S v : r.
Case 1: v is c - Trivial, since there are no locations reachable from a constant.
Case 2: v is (n-tup vl,..., vn) and r is 71,..., 7, - Follows immediately from the defini-

tion of = for tuples and the induction hypothesis for each vi.
Case 3: v is (clsr f, x, a, e) and r is r1 -(r)-r -2 - From the definition of H for closures

we obtain that there exists a type environment E such that,

S [e: E and E H- (f where f(x) = a) : T --(r)-+ - 2 (3.31)

Applying the definition of reachability for (clsr f, x, a, e) and the induction hypothesis
for environments we obtain:

(U (s()) U IZ(S(l))) Z(E) (3.32)

1IReachable(v,s)
l(IEReachable(e,s)

/

The desired result follows by noticing that RZ(E) C R(r) since Dom(E) = Dom(e) =
.F(f where f(x) = a) and all the type schemes in CoDom(E) are included in the closure
type of r by construction.

Case 4: v is I and T is ri ref(r) - Follows immediately from the definition of = for
mutable locations since S(1) = T.

Case 5: v is I and T is ri ref(E) - From the definition of H for non-mutable locations
we have p(S(1)) = r. But, the domain of W does not include any dangerous variables of
S(l), so we must have RZ(S(l)) C R((p(S(l))) = RI(T) as desired.

Induction Case: We assume the hypothesis for i,

U 1Z(S(1))) 7Z (T) (3 .3 3)

(IEReachable (v,s))) (3.33)

From Equation 3.29, the locations in Reachable'(v, s) are already covered via the above
hypothesis. Given a location l E Reachablei(v, s), let value(s(1)) = v' and S(1) = r' ref(p).
Using hypothesis k s : S, we have S k v' : T7 . Therefore, we can apply the base case in-
duction as above and obtain for all 1' E £(v'), IZ(S(l')) _ RI(r'). This immediately extends
to R7(S(l')) C R(I-), since r' is contained in S(l) and RZ(S(l)) C R7(r) from Equation 3.33.

The semantic consistency between the static and the dynamic semantics can now be stated
in the form of the soundness theorem given below. It is proved using induction on the size of
evaluation derivation, doing a case analysis on a and hence on the last rule used in the typing
derivation.

The soundness of the close operation relies on the fact that it only closes fresh and
non-escaping locations, i.e., locations that are neither present in the initial store, nor are
accessible from the current environment or the returned result. The former is a property of the
dynamic rules (Proposition 3.5) and the latter is ensured by the side condition on the static
CLOSE rule and Proposition 3.15.

Theorem 3.16 (Type Soundness) Let a be an expression, r be a type, E be a type envi-
ronment, e be an evaluation environment, s be an initial store, and S be a store typing such
that:

E - a: T and S e : E and s:S

If there exists a result r such that e F- a/s =ý r, then r - err, instead r = v/s' for some value
v and a resulting store s', and there exists a store typing S' such that:

S' extends S and S' ý v : r and W s' : S'

Proof: by induction on the size of evaluation derivation. We argue by case analysis on a and
hence on the last rule used in the typing derivation. Again, only the case for the CLOSE rule
is different from [Ler92], but we show all cases.
Case 1: Constants - The typing rule is:

typeof(c) > r
E-c:r

The only possible evaluation is e I- c/s =t c/s. By definition of ý= for constants, we have
S ý= c: typeof(c) which implies S c: r since typeof(c) > r. We conclude with S' = S.

Case 2: Variables - The typing rule is:

x E Dom(E) E(x) T r
E -x :r

From hypothesis S =- e : E it follows that x E Dom(e) and S ý e(x) : E(x). Thus,
the only possible evaluation is e t- x/s =j e(x)/s. By definition of [- for type schemes,
S k e(x) : E(x) implies S ý e(x) : T. We conclude with S' = S.

Case 3: Function Abstraction - The typing rule is:

{yl ... Yn,} = F(f where f(x) = a)
E + {f f- r- -(E(y1), ... , E(y.), 7r)-+ 2 , x - 71} a : 72

E F- (f where f(x) = a) : ri -(E(y),..., E(y,), rr)-+ 7

The only possible evaluation is e I- (f where f(x) = a)/s =- (clsr f, x, a, e Iy)/s where
Y = ({l ... Yn}. Using the definition of =- for closures, we have S ý- (clsr f, x, a, e y) :
r1 -(r-+ r 2 taking E ly to be the desired type environment. We conclude with S' = S.

Case 4: Function Application - The typing rule is:

EF- a, : r --(7r)-+ T2 E- a2 : r1

E F- al a2 : 72

We claim that evaluations leading to err are not possible and that the following evaluation
rule applies:

e I- al/s = (clsr f, x, ao, eo)/si
e ý- a2 /81 = v2/s 2

eo + {f - (clsr f, x, ao, eo), xF V- 2 vF- ao/s 2 = v/s'
e - (al a2)/s = v/s'

This is shown as follows:

Using the induction hypothesis on al, we obtain that it cannot evaluate to err, instead
it must evaluate to a closure, e I- al/s =i (clsr f, x, ao, eo)/sl with a store typing S1 such
that:

S ý= (clsr f, x, a0o, eo) : Ti -(r)-+ 72 and si : S1 and S extends S (3.34)

Since S1 extends S, we have S1 = e : E from Proposition 3.13. Thus, we can use the
induction hypothesis on a2 with store sl : S1 and obtain that it evaluates to a proper value
as well, e t- a2/sl =, v2 /S 2 with a store typing S2 such that:

S2 2 : 71 and k 82 : S2 and S2 extends S1 (3.35)

Applying the definition of = to the first clause in Equation 3.34, we obtain that there
exists a type environment Eo such that:

S1 = e :Eo (3.36)

and Eo0 (f where f(x) = ao) : Ti --(7•T 72
==- Eo + {f 71 -(lr -+T 2 , x •71l a0 : 2 (3.37)

Now consider the following environments:

e2 = eo+{f i-+ (clsr f, ao, eo), •- vz2} and E 2 = Eo+{f -- 71 T -(Tr)-- 72 , -+ 71}

Using Proposition 3.13 and Equations 3.34, 3.35, and 3.36, we obtain S2 H e2 : E 2.
Therefore, we can apply the induction hypothesis to the typing judgment 3.37 and the
store s2 : S2. We obtain the evaluation e2 F- ao/s2 =: v/s' with a store typing S' such that:

S' v : T 2 and s' : S' and S' extends S2 (3.38)

This shows that a0o in the third premise of the evaluation rule given above also evaluates
to a proper value and we obtain the desired result since S' extends S by transitivity.

Case 5: Tuple Construction - Same argument as above.

Case 6: let-binding - The typing rule is:

E I- a, : r1 E + {x -+ Gen (E, T•) } - a2 : 72
E I- let x = a, in a2 : 72

Again, we claim that evaluations leading to err are not possible and the last step in
evaluation derivation is:

e ails = v1/s1 e + {x '-+ vi} H a2/si = v2/s'
e I- (let x = a, in a2)/s =S v2 /S'

This is shown as follows:

Using the induction hypothesis on al, we obtain that it does not evaluate to err, instead
e F- al/s =/ vi/sl with the store typing S1 such that:

S1 vl : Tr and 81~ : S1 and St extends S (3.39)

Using Proposition 3.14, we have S1 ý vi : Gen(E, Tl) since the Gen operator does not

generalize any dangerous variables in 71. Now, consider the following environments:

el = e + x-+ vi} and El = E + { -+ Gen(E, 71)}

Since S1 extends S, we obtain S1 $ el : El. Therefore, we can apply the induction
hypothesis to the second premise of the typing rule and the store sl : S1 to obtain el I-
a2/81s = v2/s' with the store typing S' such that:

S' v2 : 72 and s': S' and S' extends S1 (3.40)

This is the desired result.

Case 7: Reference Creation - The PRIMAPP typing rule instantiates to:

Vt, u, r. t -u t ref(r) 7r --(ýr)--r ref (r) E a: T
E F- ref(a) : 7 ref (r)

The evaluation must end up with:

e ý- a/s •4 v/sl 1 Dom(s1)
e ref (a)/s = l/(s, + {lf v, rw})

By induction hypothesis applied to a, we obtain a store typing S1 such that:

S1 v v :r and si :S1 and S1 extends S (3.41)

Let us define,

s'= si + {l - v, rw} and S' = S1 + {l -* ref(r)}

Since Dom(si) = Dom(S 1), we have 1 0 Dom(Si). Hence, S' extends S and therefore S.
Using this fact on the first clause of Equation 3.41, we obtain S' = v : r, which allows us
to conclude from the definition of [that S' [: : (r ref(r)) and k s': S'.

Case 8: Dereferencing - We show the case for dereferencing a non-mutable location. The
case of dereferencing a mutable location is similar. The PRIMAPP typing rule instantiates
to:

Vt, u. t ref () -(u)-+ t > r ref (E) -(7r)- E- a :r ref (c)
El- !a:r

By induction hypothesis applied to a, we obtain that it must evaluate to a location e -
a/s =j 1/s1 with a store typing S1 such that:

S 1: r ref (E) and = s1: S1 and S1 extends S (3.42)

Also, 1 E Dom(s1) because the first clause above implies that 1 E Domr(S 1) and Dom(si) =
Dom(SI) from the second clause. Thus, the only possibility for evaluation is:

e F- a/s 1/si e Dom(sj) value(si(l)) = v
e F- !a/s =: v/si

Applying the definition of = for non-mutable locations to the first clause in Equation 3.42,
we obtain that there exists a substitution 0 with Dom(ip) C F(S (1)) \ V (S (1)) such that
4(S1(I)) = r ref(E). Thus, SI(1) must be of the form:

S (1) = r' ref (E) with 0(r') = T

This is because all locations must have reference types and we never substitute the null
region for region variables. From the definition of [s, : S1 for location 1 it follows that
S1 ý v : r'. Since Dom(0) does not include any dangerous variables in S(1) and hence in
7', we can apply Proposition 3.14 to substitution 0 and obtain S1 k v : 4(r'). This is the
desired result taking S' = S1.

Case 9: Assignment - The PRIMAPP typing rule instantiates to:

Vt, u, r. (t ref (r), t) -(u)-- unit > (r ref (r), r) -(r-+ unit E F- a : r ref(r), 7
E - :=(a) : unit

As in the previous case, the evaluation must end up with:

e ý- a/s = (1, v)/sl l E Dom(si) tag(si(l)) = rw

e - :=(a)/s = ()/(si + { -+ v, rw})

By induction hypothesis applied to a, we get a store typing S1 such that:

S1 H (1, v) : T ref (r), r and H sl : S1 and S1 extends S (3.43)

This implies S1 H v : r and Si(1) = - ref(r) from the definition of H for tuples and
mutable locations. Letting S' = S1 and s' = si + 1 {l- v, rw}, we therefore obtain H s' : S'
using the definition of H. Finally, we check that S' = : unit and obtain the desired
result.

Case 10: close expression - The typing rule is:

E ý a: ref(r) r ý (Y(E) U -(T))
E I- close a : T ref(E)

Using the induction hypothesis on a, we obtain e I- a/s = 11/si with the store typing Si
such that:

Si H 1: 7 ref(r) and = sl : S1 and S1 extends S (3.44)

From the first two clauses above and the definition of H for mutable locations, we obtain,

1 E Dom(Si) Si(1) = r ref (r) si(l) = v, rw and S v : r (3.45)

Thus, the CLOSE evaluation rule applies:

e F a/s = I/s1 si (1) = v, rw

L = Reachable(l, si) U Reachable(e, si) U Ule Dom(s) Reachable(l', si)

e F- (close a)/s => 1/(sl IL +{l - v, ro})

Let us now define,

s= 81 IL +{l - v, ro} and S' = S 1 IL +'{l ý r ref (E)} (3.46)

Now, we have to show the following:

S' H : T ref(E) and s'/: S' and S' extends S (3.47)

The first clause follows directly from the definition of H for non-mutable locations since
we have chosen I E Dom(S') and S'(1) = - ref(E).

Next, we show that S' extends S. Note that S1 extends S from Equation 3.44 and
Dom(S) C Dom(S') by construction. Therefore, S' will extend S if 1 . Dom(S), since
that is the only location at which S1 and S' differ. This is shown as follows.

Suppose for the moment that l E Dom(S). Since k s : S by hypothesis, we have
1 E Dom(s). Applying Proposition 3.5 to the evaluation e F- a/s = I/si we conclude that
l E Reachable(e,s). Also, since S extends S, we obtain that S(1) = S (1) = r ref(r).
Finally, using Proposition 3.15 for the hypothesis S e : E, we must have r E R7(S(1)) C
7R(E) C YF(E) which contradicts the condition r O .F(E) in the typing rule.

As the final step in proving Equation 3.47, we have to show k s' :S'. By construction,
we have Dom(s') = Dom(S') and at location 1, s'(l) has the read-only tag which is consis-
tent with S'(1) pointing to a null region. At locations l' E Dom(S') other than 1, the tags
in s' are already consistent with the corresponding regions in S' since they are directly
copied from s, : S1. Next, we have to show that for all locations 1' E Dom(S') such that
value(s'(I')) = v' and S'(I') = r' ref(p), we have,

Slk v' : r' -_ S' [v' : - r (3.48)

This can be shown by a simple structural induction on v'. Only the case for locations
is interesting. By construction, the store s' is closed under reachability so there is no
possibility of encountering undefined locations within v', and for locations other than 1, we
already have S'(l') = S (l').

The only problem is if v' contained I (the location being closed), then r' would still
contain the region variable r because S1 (l) = r ref(r). But this region has been closed in
S', making S' v' : r' inconsistent. Thus, I should not be contained in v'. This is where
the domain restriction on the store s' proves useful. We show below a stronger condition
that the location 1 is not reachable from any value v' present in the store s'. Specifically,
we will show that 1 _ Reachable(v', si) which implies 1 0_ Reachable(v', s').

Let us assume for the purpose of contradiction that 1 E Reachable(v', sl). Looking at
the components of Dom(s') given by Equation 3.46, the following possibilities arise for
I' E Dom(s'):

1. 1' = 1 -- Then v' = v and hence I E Reachable(v, sl) by assumption. Now, we
apply Proposition 3.15 to S 1 ý= v : r taken from Equation 3.45 to conclude that
r E R4(Si(1)) C R7(r) C Y(r) which contradicts the condition r Y(7r) in the typing
rule.

2. 1' ý I but 1' E Reachable(l, sl) - This immediately implies 1' E Reachable(v, sl) since
the location 1 contains the value v in both s, and s'. Together with the assumption
l E Reachable(v', si) and transitivity of reachability, we obtain 1 E Reachable(v, Sl)
which leads to a contradiction as shown in the previous case.

3. 1' E Reachable(e, si) - Using the assumption l E Reachable(v', sl) and the fact that
l' contains v' in si, we obtain by transitivity that l E Reachable(e, si). Applying
Proposition 3.15 to S1 k e : E derived from Equation 3.44 and Proposition 3.13, we
conclude that r E R7(S1 (1)) C R(E) C .(E) which contradicts the condition r O .F(E)
in the typing rule.

4. 1' E Reachable(Dom(s), si) - We know that I was not reachable from any value present
in the domain s initially, i.e., 1 _ Reachable(Dom(s), s) because we have already shown
that I _ Dom(s) while showing that S' extends S. Thus, the only way 1 could be-
come reachable from Dom(s) after the evaluation e I- a/s =, v/si is if some location
in Dom(s) was assigned a new value from which I was reachable. Without loss of
generality, let us assume that location is 1' and the newly assigned value is v', i.e.,

3 1' E Dom(s) : value(s(l')) $ value(si(l')) = v' and l E Reachable(v', sl) (3.49)

Since location 1' was modified during the evaluation e I- a/s =j v/s1, we can apply
Proposition 3.6 to conclude that 1' E Reachable(e, s). Applying Proposition 3.15 to
hypothesis S ý e : E, we obtain that RZ(S(I')) C RI(E) which extends to RZ(SI(1')) C
RZ(E) since S1 extends S.
On the other hand, from Equation 3.48 we already have Si k v' : r' where S (1') =
r' ref(r') for some region variable r'. Applying Proposition 3.15 in this case for the
location l E Reachable(v', si) we obtain r E R7(SI(1)) C R(1r') C TZ(S 1(l')). Combining
this with the result obtained in the last paragraph, we conclude r E R(E) C F(E)
which contradicts the condition r V .F(E) in the typing rule.

This proves that 1 is not contained in any value v' present in the store s' which implies
that k s' : S'. Thus, all the clauses of claim 3.47 are true and we have the desired result.

The soundness theorem immediately leads us to the following corollary that guarantees that
closed reference locations are never updated.

Corollary 3.17 (Non-Mutability of Closed Locations) Let a be an expression fragment
within a type correct program p such that E F- (close a) : r ref () and e F- (close a)/s =€ l/s'.
Then, the location I is never updated during the evaluation of the rest of the program.

Proof: The dynamic CLOSE rule (Figure 3.1) ensures that tag(s'(l)) = ro. The ASSIGN rule

requires a rw tag for the location to be updated, and there is no other rule that converts the
tag of a location from ro to rw. Thus, as long as the program p does not illegally attempt to
update the location 1 and runs into a dynamic error, the location 1 cannot be modified. This
condition is guaranteed by the soundness theorem since the program is well-typed. EO

Corollary 3.17 may be generalized to arbitrary objects with a completely closed type. This
allows us to conclude that mutable objects, once successfully closed, can no longer be modified
and therefore behave functionally.

Corollary 3.18 (Non-Mutability of Closed Objects) Let a be an expression fragment within
a type correct program p such that E a : r where R(r) = 0 and e F- a/s =i v/s'. Then, no
location 1 E Reachable (v, s') is updated during the evaluation of the rest of the program.

Proof: Using the soundness theorem we know that the evaluation of p (and hence a) does not
lead to error and there exists a store typing S' ý v : r and [s' : S'. We claim that for all
locations l E Reachable(v, s') we must have tag(s'(1)) = ro. Otherwise, from Definition 3.12
Case 4 it follows that there exists a region variable rl such that S'(1) = ri ref(r1). Then,
using Proposition 3.15 it follows that ri E R(r), which contradicts the hypothesis R4(r) = 0.

Now, sound uses of the ASSIGN rule in Figure 3.1 require that the tag of the location being
assigned should be rw. Furthermore, there is no rule that converts the tag of a location from
ro to rw. Therefore, no assignments are possible on any location 1 E Reachable(v, s') during
the evaluation of the rest of the program. o

Note that Corollary 3.17 is not a special case of Corollary 3.18 because Corollary 3.17
guarantees the non-mutability of a single closed location even if the locations reachable from
within it are mutable. On the other hand, Corollary 3.18 only deals with objects that have
completely closed types in order to guarantee that none of the locations reachable from them
are mutable.

3.4 Type Inference

Finally, our type system admits a type inference algorithm Infer that infers principal types for
expressions. This algorithm is a direct extension of the one described in Leroy's thesis [Ler92]
to region variables. We only need to ensure that region variables are allowed to be unified only
with other region variables and never with the null region (e). This guarantees that we do not
accidentally "close" a mutable reference type by unification. That operation should only be
performed explicitly using the close construct.

We will not discuss the details of the inference algorithm here since it is a trivial extension
of that in [Ler92]. We only state the following propositions that characterize the soundness
and the completeness of the inference algorithm with respect to the type system described in
Section 3.2:

Proposition 3.19 (Soundness of Type Inference) Let a be an expression and E be a type
environment. If (r, ý) = Infer(a, E) is defined then we can derive p(E) - a : r.

Proposition 3.20 (Completeness of Type Inference) Let a be an expression and E be a
type environment. If there exists a type r' and a substitution W' such that cp'(E) - a : 7',
then (r, ýp) = Infer(a, E) is defined and there exists a substitution / such that r' = 0(r) and
l= o0 ..

The proof of these proposition follows exactly as described in [Ler92].

Chapter 4

Closing Data-Structures

So far, we have shown how to close a single mutable reference location. In this chapter, we show
how to extend the use of the close construct to complex, multi-level data-structures involving
tuples, arrays, and general algebraic datatypes. First, we discuss some alternatives for specifying
the dynamic and static semantics of closing multiple locations and regions simultaneously in
a multi-level data-structure. This leads us to devise a type-annotation based specification
mechanism within the source language that permits the user to specify exactly which regions
and their corresponding locations are to be closed. Next, we discuss the strategies for verifying
the correctness of this scheme for arrays and general algebraic datatypes. We also briefly discuss
how this work may be applied to conventional languages such as C, Pascal, or Fortran. Finally,
we present the summary of Part I and directions for future work based on this research.

4.1 Specification of "Close" for Multi-Level Data-Structures

The static and dynamic CLOSE rules shown in Chapter 3 (Figures 3.2 and 3.1 respectively) only
apply to a single mutable location being returned as the only result from an expression. These
rules clearly need to be extended for the diverse range of data-structures available in a modern
programming language. Id offers tuples, arrays, and general algebraic datatypes (including
recursive datatypes), any of which could be implemented in an imperative manner and may
need to be closed. Furthermore, the exact mutable locations to be closed may be embedded
anywhere inside a complex, structured result returned from a computation. Therefore, we need
a systematic way of closing structured results which involves the following tasks:

1. Given an expression that returns a structured result, we need to specify which locations
to close in the dynamic semantics, and the corresponding regions to close in the static
semantics.

2. We need to statically verify the soundness of the close operation by clearly identifying
the scope of the imperative operations taking place on the locations being closed.

As discussed in Section 2.3.1, treating the close construct as an encapsulator clearly delineates
the scope of the imperative operations dynamically taking place on the returned result and it
also statically identifies the type environment against which to verify the closing operation. In
this section, we discuss the first issue of specifying the semantics of closing multiple locations
and regions simultaneously within a structured result.

4.1.1 Dynamic Semantics Issues

A simple and natural way to extend the dynamic semantics of the close construct to multi-
level data-structures is to take the "all-or-nothing" approach. That is, closing an arbitrary
data-structure recursively closes all its subcomponents and failure to close any one of the sub-
components results in the failure to close the entire data-structure. This generalized semantics
may be expressed in the following dynamic rule for the close construct:

e ý a/s =' v/s 1

DYNAMIC-CLOSEl: (11...*n} =1 Reachable(v, si) si(li) = vi, rw 1 < i < n

e - (close a)/s = v/(si + {li - vi, ro}) 1 < i < n

In the light of the remarks made in Section 2.4.2, we have to be careful not to close locations
that are reachable from the enclosing environment. Otherwise, we would be able to write a
universal closing function such as the closeall function shown below that would incorrectly
close arbitrary mutable objects that are still being used imperatively:

Example 4.1:
def closeall x = close x;

a = ref 1;
b = closeall a;

a : = 2; % Dynamic Write Error!

Clearly, such functions should be disallowed because they create spurious dynamic "write-
errors", i.e., writing to a location that has been closed unintentionally. We would like to avoid
such spurious errors or at least detect the possibility of creating such errors at the time of
closing an object rather than at the time of using it. So we modify the DYNAMIC-CLOSE1 rule
to reflect this strategy:

e - a/s = v/s1
{l 1... 1,n = Reachable(v, si) \ Reachable(e, sl)

DYNAMIC-CLOSE2: r
sl(li) = vi, rw 1 < < n

e k- (close a)/s = v/(si + {li - vi, ro}) 1 < i < n

The above rule simply excludes all the locations reachable from the environment from being
closed. This makes the closeall function of Example 4.1 behave like the identity function
since no external location can now be closed. Alternately, we could introduce a side condition
on the above rule to produce a dynamic "close-error" if any of the locations being closed was
present in the environment.

The above rule is still not entirely free of spurious write-errors. In the light of the remarks
made in Section 2.4.4, we should not close locations that are captured within a function closure
because such locations may be modified by the function. The following example illustrates this
scenario:

Example 4.2:
g = close { b = ref 1;

def f x = { b := x; };
in f };

g 2; X Dynamic Write Error!

In the above example, an internal mutable location b is captured within a function closure f
which is subsequently closed and returned. If the function body modifies the captured location
(as it does here) then any application of the function would generate a spurious write-error.
We can modify the DYNAMIC-CLOSE2 rule to omit closing such locations:

e I- a/s = v/s1
DYNAMIC-CLOSE3{l1,} = Closable(v, si) \ Reachable(e, si)

sil(l) = vi, rw 1 < < n
e -(close a)/s 4 v/(s, + {li * vi, ro}) 1 < i < n

The closable locations of a value v with respect to a store s, written Closable(v, s), are
defined to be all the reachable locations from the given value except those that are reachable
via an embedded function closure. A simple way to compute this set would be to modify the
algorithm GATHER-LOCATIONS given in Section 3.1.2 to collect the locations reachable through
a function closure at Line 8 in a separate set. This set would then be subtracted from the set
of all reachable locations of a value to yield the set of closable locations of that value.

The DYNAMIC-CLOSE3 rule given above seems fairly reasonable as far as the dynamic se-
mantics of close is concerned for general, multi-level data-structures.

4.1.2 Static Semantics Issues

The static semantics for the DYNAMIC-CLOSE3 rule above could be given as follows:

E a: r {r ... rn} = C(r) \ (E)
STATIC-CLOSE1:

E I (close a) : {r -4 E}r 1 < i < n

The above rule erases only closable regions C(7) from the given type r which consists of
the set of all dangerous region variables of the given type except those that occur within the
closure type of a function. It also excludes all regions visible in the type environment.

Although the rules DYNAMIC-CLOSE3 and STATIC-CLOSE1 seem plausible at first glance,
unfortunately they cannot be shown to be sound with respect to each other. Intuitively, static
semantics should provide a conservative approximation of what happens dynamically. As far
as the close construct is concerned, this intuition is captured in Proposition 3.15 where we
always maintain a correspondence between the reachable locations of a value and the visible
regions variables in its type. Any semantics we give to the close construct must respect
this correspondence, otherwise we will not be able to statically model the dynamics of closing
an object properly. Unfortunately, the rules DYNAMIC-CLOSE3 and STATIC-CLOSE1 do not
correspond to each other in this respect. Consider the following example:

Example 4.3:
x = ref (ref 1);
y = close { a = ref 2; % a~-l

b = ref 3; % b 12
c = if true then a else b; . 11 and 12 are region aliased.
x := c; % 11 escapes.

in b };
y := 4; % Dynamic Write Error!

In the above example, a and b point to two independent reference locations, say 11 and
12. The conditional statement for c unifies the static region variables corresponding to these

locations, therefore 11 and 12 become region aliased. This means that statically we cannot
distinguish between these two locations. Assuming dynamically that the predicate resolves to
true and c gets bound to 11, we export 11 into the environment by storing it into an external
location and attempt to close 12 by returning it as a closed result. Dynamically, 12 is not
visible in the environment so the DYNAMIC-CLOSE3 rule would close it. On the other hand,
statically there is no difference between 11 and 12, and since 11 is being exported, the static
rule STATIC-CLOSE1 would not close the corresponding region variable creating a discrepancy
between the static and the dynamic status of the location 12. This would ultimately lead to a
write-error on the 12 location as shown.

Note that this write-error is generated not because the dynamic semantics for close was clos-
ing a location inappropriately as was the case for rules DYNAMIC-CLOSE1 and DYNAMIC-CLOSE2.
This error came about because the static semantics was not sufficiently powerful to model the
dynamic semantics accurately. One way to solve this problem is to classify such write-errors
as static "close-errors" by making the static semantics little more conservative. This can be
accomplished by causing the static rule to fail when a region variable cannot be closed rather
than ignoring it. The following rule embodies this idea:

STATIC-CLOSE2: E - a:r {r...}rn C(r) ri J(E) 1 < i < n

E - (close a) : {ri + E}r 1 <i < n

Using this rule, Example 4.3 would be classified as a static close-error and would be rejected,
since an attempt was made to close a region (corresponding to locations 11 and 12) which could
not be statically verified for correctness.

Unfortunately, the above rule still suffers from a rather technical problem that stems from
our desire to perform type inference. It turns out that the above rule is not stable under type
substitution (Proposition 3.9). In particular, the set of region variables C(p(r)) may turn out
to be larger than the set p(C(r)) = {p(ri) ... W(rn)} for a general substitution p. This implies
that new closable region variables may get introduced into a type by substitution that may not
have been properly verified for correct close semantics previously.

Stability of substitution is used in showing semantic generalization (Proposition 3.14) as
well as the soundness of type inference (Proposition 3.19). The former could be attributed
to the specific style of relational semantics we have decided to follow in this thesis but the
latter is fairly standard machinery in the literature and, if possible, we would like to retain
it. Intuitively, failure of stability of substitution means that it may not be possible to show
the soundness of a type inference algorithm based on this rule using standard unification and
substitution machinery.

4.1.3 Combining Type Generalization and Closing

One way to devise a stable static rule for the close construct is to combine polymorphic
generalization and object closing into a new language construct letclose x = al in a2 that
behaves exactly like let x = al in a2 except that it erases all closable regions in the type of
the expression al and then immediately generalizes that type before binding the resulting type
scheme to x. Intuitively, type generalization protects a typing derivation from later substitutions
by quantifying its free type variables. Subsequent substitutions are then applied to polymorphic
instantiations of the resulting type scheme which does not affect the original typing derivation.

A possible dynamic and static semantics of the letclose construct is shown below:

e F- ails = v 1/s {li ... In} = Closable(v, s1) \ Reachable(e, sl)

DYNAMIC-LETCLOSE: si(li) = vi, rw s' = sl + {li -+ v, ro} 1 < i < n
e + {zx -+ vl} - a 2 /Sl1 =U v2 /s 2

e I- (letclose x = al in a2)/s = v2/S2

E - a, : "r E + {x 1 GenClose(E, rl)} ý- a2 :72
E F- letclose x = a, in a2 : 72

Where,
{ri...rn} = C(r) \F(E)

r' = {ri-+E} 1<i<n
{&t ... am} = (T') \ D(r') \T(E)

GenClose(E,r) = Val...am. r'

These rules formalize what we have informally stated in the above paragraph. In this
formulation, closing an object does not fail, instead, the definition of GenClose given above
simply ignores such non-closable regions and does not generalize them. This property stems
from the desire to keep type generalization as a non-failing property: if the type of an object
cannot be generalized at a given scope, it is best left as a monomorphic type rather than flagging
a "polymorphism-error".

Unfortunately, the above formulation suffers from the same region aliasing problem as dis-
cussed earlier in the context of the STATIC-CLOSE1 rule. Dynamically closable locations may be
aliased to statically non-closable regions, and this discrepancy is silently ignored in the above
rules. We can fix this problem as in the case of rule STATIC-CLOSE2, by flagging a static close-
error if we fail to close a region that we were expected to close. Unfortunately, this conflicts
with the requirement of non-failing type generalization.

4.1.4 Discussion

We have seen above that the problem of devising a sound static and dynamic semantics for a
close construct for multi-level data-structures and functions is sufficiently tricky and has many
potentially conflicting requirements. This warrants a re-inspection of our approach towards this
problem.

Extending the static and dynamic semantics of a language to handle additional complexity
and/or language constructs must fulfill the following requirements:

1. The dynamic semantics of a new language construct should be able to accurately model
what that construct is intended to do in a simple and intuitive manner. The semantics
should also take into consideration what is efficiently implementable on a machine. This
conflict among what we intend, what we can model, and what we can efficiently implement
is very important to resolve in the design of a new language construct.

2. Similarly, the static semantics machinery should be intuitive, efficiently implementable,
internally stable, and externally consistent with respect to the dynamic semantics. The
consistency requirement places a lot of constraints on the static machinery and it may
not always yield the most general solutions.

3. Finally, we should also pay attention to other requirements on the design of a new lan-
guage construct such as simple and understandable syntax, type inference etc. that may

not directly affect its semantics or the efficiency of implementation but may affect its
widespread acceptability as a useful construct.

In the light of the above remarks, we have decided to abandon the search for a universal
CLOSE rule. Below, we present our proposal for a family of CLOSE rules for closing a fixed set
of regions and locations depending on the structure of the object at hand.

4.1.5 Closing a Fixed Set of Regions/Locations

The important point to realize is that closing a known set of locations that are characterized by
a statically fixed set of region variables is perfectly sound. In the above examples, we ran into
trouble when we tried to close an arbitrary set of locations for which we could not determine a
statically fixed set of region variables.

In some sense, closing only a fixed set of region variables at a time gives us more fine grain
control over what locations are being closed dynamically. In order for this strategy to work
with multi-level data-structures, the following requirements must be met:

1. We need to specify statically which region variables we want to close.

2. We should be able to verify the soundness of closing these region variables against the
type environment and other region variables that have not been closed.

3. The locations corresponding to the regions being closed must be similarly identifiable and
closable in the dynamic semantics.

4. Finally, all the locations and the regions being closed and those that are left aside must
jointly satisfy the region abstraction Proposition 3.15, i.e., we cannot close a region vari-
able statically without closing all its corresponding locations in the dynamic semantics
and vice versa (region aliasing).

The above requirements directly lead us to an approach where we do not have universal
static and dynamic semantics rules for the close construct. Instead, we have an algorithm
to synthesize an exact static and dynamic semantics rule for each multi-level data-structure
pattern that we wish to close. This would give rise to a family of rules depending on the
structure of object at hand and the particular set of locations we wish to close within that
object. For example, closing a n-tuple consisting of n reference locations can be accomplished
using the following rules (c.f. single reference CLOSE rules in Figures 3.1 and 3.2):

e I- a/s = (n-tup li ...ln)/sl si(li) = vi, rw 1 < i < n
L = Reachable((n-tup 11 ... In), si) U Reachable(e, sl)U

DYNAMIC-TUPCLOSE: Ul'eDom(s) Reachable(l', si)

e I- (close a)/s =- (n-tup 11 ... I,)/(si IL +{/i ý vi, ro}) 1 < i < n

E - a : (ri ref (rl)), . . ., (rn ref(r,))

STATIC-TUPCLOSE: ri ý ((F(E) U F(ri) U ... U .- (rs)) 1 < i < n

E t- close a : (ri ref()),. . ., (rn ref ())

Similar rules may be constructed for any subset of tuple fields containing reference values.
Extending the above rules for closing tuples of references and vectors, we can easily handle the
following example that combines their use in a non-standard way:

Example 4.4:
def polar2rect n =

close { xs = i-vector (1,n);
ys = ivector (1,n);
rsum = ref 0.0;

= { for i <- i to n do
rad,theta = ... some large computation ... ;
xs[i] = rad * sin theta;
ys[i] = rad * cos theta;
rsum := !rsum + rad; }

in !rsum/n, xs, ys };

Here, two vectors are closed and returned along with the accumulated average of a third
quantity, all arising out of the same large shared computation. It is important not to repeat
the computation and keep the storage space to a minimum. The use of an imperative style
protected by the close construct makes the computation efficient and understandable without
sacrificing overall functional behavior.

Steps in Synthesizing CLOSE Rules

In general, given an arbitrary program expression a that returns a structured result, synthesizing
a specialized static CLOSE rule involves the following steps:

1. A group of region variables to be closed are identified from the type of the expression a
using some appropriate language syntax.

2. These region variables are then verified for soundness. This requires that none of these
region variables should occur in the type environment and in the type of the closed result
being returned. Furthermore, none of these region variables should occur inside the closure
type of an embedded function type as pointed out earlier.

3. If all the region variables pass the verification, they are erased from the type of the result,
and the closed type is returned. Otherwise a static close-error is flagged.

Similarly, synthesizing a specialized dynamic CLOSE rule involves the following steps:

1. A group of locations to be closed is identified from the given value that correspond to the
static region variables being closed.

2. These location are verified for possessing the read/write tag within the current store.
Otherwise, a dynamic close-error is raised.

3. If all the locations pass the verification, their tags are flipped to read-only and the closed
value is returned along with the current store with a slightly restricted domain as shown
in Chapter 3 dropping any region-aliased handles to the locations being closed.

4.1.6 Type Annotations as "Close" Specifications

A simple way of specifying which regions to close in an arbitrary expression is to match it
against a separate pattern and mark certain regions to be closed in that pattern. Note that
this pattern matches the type of the expression and not its value. This is because several
locations may be aliased to the same region variable by definition and we must close all of them

simultaneously. Then, it makes sense to specify them once using their type rather than specify
each of the locations individually.

A type pattern may be specified in a type annotation for the close expression as shown
below:

EXPRESSIONS: a

I (close a) :: rnn close expression

Here, the expression a would usually be a program block which returns a structured result.
The annotation type ,,,nn would explicitly show the various type constructors present within
the expression's type along with their region parameters. The precise regions parameters to be
closed are specified using the null region (e). The syntax used for specifying the annotation
type is the full type grammar shown in Section 3.2.1 with the addition of a "don't care" type
pattern (_) that may be used in place of any type, region, or closure type expression within the
annotation. The scope of the free type, region, and closure extension variables of the annotation
type is taken to be that annotation itself; annotation types in different parts of the program do
not share variables.

Examples of this specification have already appeared in Chapter 2 within Examples 2.15,
2.20, and 2.21. The static typing rule for such type-annotated expressions may now be given
as follows:

E a: Tn {ri ... r} = n) ri (YJ(E)U rann) 1 < i < n
E t- (close a :: Tann) : ann

The type r'in stands for the inferred type of the expression a. The operation (Tinf - Tann)

matches the annotation type against the inferred type to determine the exact set of region
variables being closed. Unlike the STATIC-CLOSE2 rule, this set remains stable under type
substitution because the annotation type never changes. Below, we outline the mechanism of
type and region matching and the subsequent verification of the close operation:

1. The types r;nf and rann must match exactly1 except that some region variables in -inf may
be closed in rann. For each parameterized type constructor T(pi...Pn) the number of
regions in the inferred and annotated type must also match. For syntactic convenience,
we may allow a parameterized type constructor to appear without any region parameters
in the given annotation, in which case all its region parameters are assumed to be the
null region.

2. Each inferred region parameter is positionally matched with the corresponding annotated
region parameter in order to determine the precise set of region variables being closed:

* A null region in the inferred type must match a null region in the annotation type.
These represent previously closed regions that cannot be opened again.

* A region variable r in the inferred type matches a null region in the annotation type
and is considered as being closed unless it occurs within the closure type of a function
(Section 2.4.4). In the latter case, a static close-error is flagged.

* A region variable r in the inferred type also matches a region variable r' in the anno-
tation type as long as all occurrences of r in the inferred type match the same region

'Each occurrence of the "don't care" type pattern (-) within the annotation type is always assumed to match
the corresponding type, region, or closure type expression present in the inferred type.

variable r' in the annotation type. For convenience, we may allow this matching
to behave like a region variable constraint on the inferred region parameters rather
than a mere renaming of variables. A unification substitution {r V-4 r'} may need to
be generated in this case.

3. Finally, all region variables determined as being closed are collected in a set taking region
variable constraints and variable renaming into account. This set of region variables, say

{rl ... r}), can then be verified for soundness as shown in the above rule ANNOTE-CLOSE.

Checking that no region variable ri being closed appears anywhere within the current
type environment E or within the annotation type rann ensures that the corresponding
closed locations are not reachable from the dynamic environment or the returned value.
This is similar in spirit to the simple CLOSE rule shown in Figure 3.2.

The above scheme achieves both our original goals of specifying the regions to be closed
and pinpointing the type environment to verify them against with a single, familiar language
construct. Moreover, it specifies multiple regions to be closed at various levels of a struc-
tured result simultaneously, and it does this without adding additional semantic or syntactic
complexity than was already present in the kernel language of Chapter 3.

This scheme also identifies the dynamic locations to be closed quite easily. The structure
of tuple types directly reflects the structure of the tuples themselves. Therefore, the static
distribution of regions variables to be closed within a structured type annotation directly leads
us to the locations that need to be closed in the corresponding structured result. Locations
within embedded function closures must never be closed, which is why the corresponding region
variables are caught and flagged as a static close-error.

In the next two sections, we describe the semantics and close specification for arrays and
general algebraic datatypes based on the above strategy.

4.2 Closing Arrays

4.2.1 Dynamic Semantics

We can easily generalize a single mutable reference location introduced in Chapter 3 to an array
of indexed locations all of which belong to the same region. In fact, the ref construct may be
viewed as a special case of a 1-dimensional array with length 1. Indexed locations effectively
model consecutive memory addresses on which index computations may be performed, although
the starting location of the array would still remain abstract. This treatment of locations is
a little more concrete than that in Chapter 3 where every location was considered to be an
independent abstract label.

We represent a 1-dimensional array as a pair (vect 1, n) giving the starting location 1 and
its length as a positive integer literal n. These are added to the set of dynamic values:

VALUES: v ::= ...

I (vect 1, n) vector of length n

The values associated with the slots 0 < i < n of a vector (vect 1, n) are stored at the
locations 1, ... , 1 + n - 1 within the store s. All these locations are assumed to be directly
accessible from the vector value:

,C((vect 1, n)) = {l,..., + n- 1}

VECT-ALLOC:
e - a/ls .n/si (1+ i) _ Dom(si) 0 < i < n

e I- allocvect(a)/s =• (vect 1, n)/(si + {l + i + 1, rw}) 0 < i < n

VECT-DEREF:

e V- ails = (vect , n)/si
(l+ i) E Dom(s 2)

I e F- a2/s 1 =ý i/s 2
value(s 2(l + i)) = v

e -ai[a2l]/ =: V/S2

VECT-CLOSE:

e - ails = (vect l, n)/si e-
(l + i) E Dom(s83)

e ý- (al[al] = a3)/s =*

a2/81 = i/s82 e H a3/s 2 = v/s 3
tag(s3 (l + i)) = rw

O/(s3 + { + i - v, rw})

e ý als = (vect l, n)si si(l + i) = vi, rw 0 <i < n
L = Reachable((vect 1, n_), sl) U Reachable(e, si)U

UVEiDom(s) Reachable(l', sl)
e I- (close a)/s = (vect 1, n)/(si IL +{ i+ vi, ro}) 0 < i < n

Figure 4.1: Dynamic Semantics of Arrays.

We also extend reachability (Definition 3.2) for vector values:

Reachable((vect 1, n),s) =
Reachable((vect 1, n((vect 1£((vect 1, n)) U Uo<n<n Reachable(value(s(l + i)), s)

1 _ Dom (s)
Otherwise

The algorithm GATHER-LOCATIONS is correspondingly extended to collect such locations.
Figure 4.1 shows the dynamic semantics rules for 1-dimensional arrays. These are straight-

forward generalization of the corresponding rules for the ref construct. The primitive opera-
tor rules for vector allocation (allocvect), vector dereference (a[i]), and vector assignment
(a[il=v) operate as expected. During vector allocation, n fresh locations are added to the
domain of the store each of which is initialized to a special "undefined" constant (1).2 The
domain validity test in dereference and assignment rules simulates bounds checking because only
the indices within the bounds ... I + n - 1 would be present within the domain of the store
for a given vector value (vect 1, n). Finally, the VECT-CLOSE rule closes all the locations of the
vector simultaneously.

Multi-dimensional arrays may be modeled in a similar fashion or may be linearized into 1-
dimensional arrays. In the latter case, the linearized vector value may need to keep additional
information to translate a multi-dimensional index into a linearized index.

4.2.2 Static Semantics

Since arrays are considered to be homogeneous data-structures, all values contained in it must
have the same type and all its locations must belong to the same region. This means that a
single region variable suffices to represent the imperative properties of the array. Therefore, a
mutable vector containing values of type r is typed as (r vector(r)) just like a mutable reference
type (r ref(r)). The free and dangerous variables of the vector type are also computed just like
those for a reference type.

2This formulation is useful for synchronized arrays (I-structures and M-structures); conventional unsynchro-
nized arrays as shown here may in fact be initialized with any constant of the appropriate type.

VECT-ASSIGN:

The types of the primitive array operators are shown below:

typeof (allocvect) = Vt, u, r. int --(u- t vector(r)
typeof (_[_] mutable) = Vt, u, r. (t vector(r), int) -(u)-+ t

typeof (_[-1 non-mtable) = Vt, u. (t vector(E), int) -- u-+ t
typeof (_ [] =_) = Vt, u, r. (t vector(r), int, t) --(u)- unit

The static semantics rule for closing arrays operates exactly like that for the ref construct
and is shown below:

E - a : 'r vector(r) r ' (F(E) U .F(r))
VECT-CLOSE:

E - close a : r vector(E)

All the proofs for the ref construct given in Sections 3.1 and 3.2 extend naturally to arrays
since all the locations contained within an array are simply an extension of its starting location
1. We never create "internal" pointers into the middle of an array and operate on individual
locations of the array. For instance, all indexed references on vectors operate on the value

(vect 1, n) and an index offset i, I + i by itself is not taken to be a valid value. For the purpose
of reachability, this ensures that all locations of an array are always taken together in a group
which is similar in spirit to the treatment of the ref construct.

4.2.3 Semantic Model and Soundness

The store typing S carries the type (r vector(p)) at every location of the vector just like it
carries the full reference type at a ref allocated location. Thus, we can extend the semantic
model (Definition 3.12) in the obvious manner:

Definition 4.1 (Extended Semantic Model) Let s be a store, S be a store typing, e be an
environment, E be a type environment, v be a value, T be a type, and a be a type scheme.
Define the following relations:
Case 1: S v: -- ...

SubCase 1.6: S = (vect 1,n_) : -r vector(r), if (1 + i) E Dom(S) and S(1 + i) = r vector(r)
for all 0 < i < n.

SubCase 1.7: S = (vect 1,n_) : T vector(E), if (l + i) E Dom(S) and S(1 + i) = r' for all
0 < i < n. Furthermore, there exists a substitution p with Dom(p) C F((r') \ VD(r') such
that cp(r') = r ref(E).

Case 4: s : S - ...

SubCase 4.3: If S(l) = r vector(r) then s(1) = v, rw and S = v : 7.

SubCase 4.4: If S(l) = r vector(c) then s(l) = v, ro and S v : r.

Proofs for semantic soundness from Section 3.3 also extend naturally to vectors using this
extended semantic model. A simple reference value 1 is replaced by a vector value (vect 1, n)
and statements about the store typing of that location S(l) are replaced by those applying to
the group of locations S(l+i) for all 0 < i < n. Proofs that do not directly depend on structure
of values or of evaluation rules such as the region abstraction Proposition 3.15 do not change
at all.

The above machinery allows us to finally answer the problem we posed at the beginning of
Section 2.1 about implementing functional arrays in Id. The solution proposed in Section 2.3
for implementing function makevector (Example 2.13) can now be automatically verified for
correctness by the type system and is reproduced below:

Example 4.5:
i_vector :: Vt, u, r.(int, int) -(u}-- (t vector(r))

make_vector V:: t, u.(int --(u)-± t) -+ (int, int) -(int -(u)- t)-+ (t vector(E))
def make_vector f (1,u) =
close { a = ivector (1,u);

= { for i <- 1 to u do
a[i] = f i };

in a };

The ivector primitive allocates an empty vector between bounds (1, u) and initializes it to
contain the "undefined" value (1) everywhere. The region variable in the type of the allocated
vector shows that it is assignable. On the other hand, the null region (E) in the type of the
returned vector from make_vector shows that it has been safely closed into a functional vector.

4.2.4 Modeling I-Structure and M-Structure Arrays

Readers may have noticed that the above description only presents unsynchronized mutable
arrays that are closed into unsynchronized functional arrays. A few words are appropriate here
regarding the modeling of synchronized (I-structure and M-structure) arrays present in Id.

As discussed in Section 2.3.5, a mutable array may be implemented using any one of the
three underlying memory access protocols: unsynchronized, I-structure, or M-structure (refer
Figure 2.1). Similarly, a functional array may be implemented using one of the two protocols:
unsynchronized, or I-structure. However, the static typing machinery presented above allows us
to only distinguish between a single mutable vector type vector(r) and its corresponding func-
tional vector type vector(E). It does not matter which underlying protocol each type represents
as long as we use the appropriate kind of barrier during the close operation (see Section 2.3.5),
and that objects belonging to the two types are represented in the same way. The latter con-
dition is required so that the close construct can simply change the view of an object from
mutable to functional without requiring any data layout conversion.

In a conventional language such as C or Fortran, with only one kind of memory access proto-
col (unsynchronized), the simple two-way classification described above is sufficient. However,
in Id we use two memory access protocols: I-structure and M-structure, giving rise to two types
of assignable arrays and one type of functional arrays. Since, in Id functional objects are also
implemented using I-structures, it is natural to use the I-structure protocol for objects with
either the assignable type vector(r) or the functional type vector(E). This way, the underlying
data layout is guaranteed to be the same in the two cases and no barrier is needed during the
corresponding close operation. This leaves us with the question of how to type M-structure
arrays and close them into functional arrays. Below, we discuss some possibilities.

One possibility is to assign M-structure arrays a separate mutable type constructor, say
m_vector(r), and then somehow convert the type constructor m_vector into vector when closing.
Semantically, this is not very clean because it requires an additional type conversion during the
close operation. Moreover, this scheme does not express the language constraint that the
layout of M-structure and functional objects is expected be the same. That constraint is buried
under the semantics of the type conversion operation from M-structure objects to functional
objects, which is left unspecified. Unsuspecting compiler writers may choose different data
representations for M-structure and functional objects which would make the close operation
on M-structure objects incorrect (or extremely inefficient).

Another possibility is to expand our region algebra to accommodate two different kinds

of mutable objects: I-structure and M-structure. This is easily accomplished by using two
kinds of region variables: r' denoting I-structure regions, and rm denoting M-structure regions.
No implicit conversions would be allowed between the two kinds of region variables via type
substitution or instantiation. The close construct would be used to explicitly close either kind
of region variable into a null region. It is easy to see that all the semantic machinery presented
in Chapter 3 would extend trivially to this scheme.

Under this scheme, a single parameterized type constructor may be used to denote all
three kinds of arrays: vector(rm) for M-structure arrays, vector(ri) for I-structure arrays, and
vector(E) for functional arrays. The uniform type constructor used in all cases denotes the
language constraint that the underlying data layout should be the same in all three cases. This
scheme clearly separates the semantic modeling of the layout of an object which is denoted by
its type constructor, from the modeling of its mutability and synchronization properties which
is denoted by its region parameters.

It is easy to see that the region algebra may be enriched even further in order to accom-
modate unsynchronized objects within the same framework. This ability provides a natural
extension to our type system when adding unsynchronized objects to Id, or adding I-structure
and M-structure objects to conventional languages such as C or Fortran.

4.3 Closing General Algebraic Datatypes

4.3.1 Specification Issues

General algebraic datatypes introduce yet another dimension in the syntactic specification of
closable regions and locations. In this section, we informally present some of the issues via
examples that are formalized in later sections.

Multiple Region Parameters

Consider the functional list datatype declaration shown below:

Example 4.6:
type list t = nil I cons t (list t);

There are two fields in the cons constructor, either or both of them could be made mutable
and closed independently. When a field of a datatype becomes mutable, it has to be tagged
with a region variable which is reflected in the datatype constructor as a region parameter (e.g.,
the type constructors ref (p), or vector(p)). There is some flexibility in deciding whether to add
additional region parameters to a type constructor for each mutable field or tag several mutable
fields with the same region variable.

One possibility is to always require the user to specify the distribution of region parameters
explicitly. On the other hand, it may be possible for the compiler to automatically add the
region parameters to a mutable datatype declaration according to some fixed strategy. The
question of whether two mutable fields should be modeled using the same region variable or not
depends on how the fields are manipulated and closed within the rest of the program, although
a fixed, compile-time heuristic is probably more desirable. For instance, the compiler could
simply assign a single region variable per datatype or it could determine the largest independent
set of region variables that would characterize a given datatype, subject to recursive typing
constraints. Thus, either of the following declarations for mutable lists would be acceptable,
although each provides a different degree of flexibility and approximation:

Example 4.7:
type list(r) t = nil I cons (r)!t (r)! (list(r) t);

type list(rl, r2) t = nil I cons (rl)!t (r2)! (list(rl, r2) t);
In the above declarations, we have prefixed a region variable to each of the mutable fields. 3

The first declaration identifies the entire spine of the list with the same region, while the second
declaration classifies heads and tails separately. Whether the first or the second declaration
should be used depends on whether we wish to close heads of a list without closing the tails
or vice-versa. In general, it is useful to have as much flexibility as possible, especially if the
heads and tails employed different memory synchronization protocols (see Section 2.3.5), so the
second declaration appears to be a better choice. However, note that both fields share the same
type variable (t), so we will not be able to generalize objects of this list type unless both regions
are closed. Therefore, if we are only concerned about converting mutable lists to completely
functional lists, then collapsing the two regions into a single one may be more desirable since
it simplifies the datatype representation.

Inherited Region Parameters

Embedded parameterized types within another algebraic datatype forces the type constructor
being defined to inherit the region parameters of the embedded type, otherwise there would be
no way to generalize such region variables in a Hindley/Milner type system. For example:

Example 4.8:
type keyref(r) t = mkkeyref I (ref(r) t);

Although, none of the fields of the type keyref itself is mutable, it still must inherit the region
parameter r of the embedded type ref, otherwise this parameter could never be generalized and
would always point to the same region. This information can easily be taken into account within
the compiler while computing the region parameters of a datatype declaration automatically.

Closure Type Parameters

An interesting problem occurs with general algebraic datatypes that may hide function closures
inside them. The closure typing system described in Section 2.2.6 works well with higher-order
functions since we have a way of expressing, propagating, and generalizing over closure types
directly as they are defined while typing a A-abstraction or instantiated at a function reference.
But, if a function is carried indirectly by storing it within a data-structure, we must still not lose
its closure typing information because of such indirection. Otherwise, write handles embedded
inside such functions could escape undetected. To illustrate this subtle point, consider the
following example:

Example 4.9:
type capture to = capt (int -(uo-+ to -(ul -*to);

def escape_5 n = % escape_5 :: Vto.int - (vector to, capture to)
close { a = i-vector (1,n);

def g i v = % g :: Vu2u 3.int -(u2)-4 to -(vector(r) to, U3)-+ to
{ a[i] = v; in v };

3A dot (.) in front of a field denotes that it is an I-structure field, while a bang (!) denotes that it is an
M-structure field.

in a, capt g } :: (vector _),_;

As shown above, the datatype capture has a single type parameter to and its sole con-
structor capt stores a polymorphic function closure. It is necessary to parameterize this type
with the closure extension variables u0o, ul of the hidden function type so that these variables
can also participate in type generalization and close verification. With the declaration shown
above, the type system will be unable to detect that a write handle to the array a being closed is
escaping via a function closure since that function is hidden inside a data-structure. We should
point out that this parameterization is necessary for the closure typing system itself to work
properly, this is not specifically related to the close construct. Without such parameterizations
one would be able to launder functions with complicated closure types by simply storing them
into a data-structure and then fetching them back. The correct declaration for the datatype
capture is shown below with additional closure type parameters:

Example 4.10:
type capture to uo ul = capt (int-(uo)-+to -(u)-+to);

The closure type parameters on datatypes behaves exactly like closure extension variables
within closure types of function. For example, the type of capt g now instantiates the extension
variable ul of the datatype capture with the closure type (vector(r) to, u 3) of the function g,
thereby exposing the hidden region r embedded within the closure type. This would allow the
subsequent close verification process to flag the escaping region as a static close-error.

4.3.2 Syntactic Specification of Algebraic Datatypes

Now, we are ready to show the full machinery for the specification of general algebraic datatypes.
A general algebraic datatype declaration is shown below:

type T(rl...i) tl...j Ul...k = C1 (11)7"11 ... (Plai)Tlal

I Cm (Pm) Tmi ... (Pmam)Tmam

This declares a type constructor T, with ri ... r as region variable parameters, t1 ... tj as
type variable parameters, and u1 ... Uk as closure extension variable parameters. This datatype
has m constructor disjuncts C 1 ... Cm each with its own arity al... am any of which could be
zero. Each field of a non-nullary constructor Cp has an independent type rp, and a region
expression ppq. The type rpq may use region, type, and closure variables from the declared
parameters of the datatype T. The region expression ppq either consists of exactly one region
variable parameter denoting that this field is mutable or it is the null region c denoting that
this field is functional.4

The above declaration may be supplied by the user, or the compiler may automatically
augment an ordinary datatype declaration containing only type variable parameters with addi-
tional region and closure extension parameters. In order to do so, the user must at least specify
which fields are expected to be mutable and which ones are functional. Then, a maximally
independent set of region variable parameters and a set of closure extension parameters may be
computed for each datatype T declared within the program using the following steps:

1. First we assign region expressions Ppq to each field of each datatype T declared within the

4Additional syntax may be used to distinguish between I-structure and M-structure fields.

program as follows:

T rqpq rpq is new and the pq-th field in the datatype T is mutable
Ppq E Otherwise

Each datatype T is initially assigned the region parameters R T = UPTq and the closure
extension parameters UT = U Closure- Variables(r T).

2. Now we construct a datatype reference graph consisting of all the datatypes declared
within the program, where there is an edge from a datatype T1 to another datatype
T2 if T2 occurs within some field type Tpq of T1. We partition the nodes of this graph
into strongly connected components (SCC) [AHU74] according to this (directed) edge
criterion. This puts mutually recursive datatypes into the same component. We will use
this information to assign the same region and closure extension parameters to mutually
recursive datatypes.

3. Now, proceeding in a topologically bottom-up fashion on each SCC of the above refer-
ence graph, we compute the final set of region and closure extension parameters for each
datatype as follows. If two datatypes T1 and T2 belong to the same SCC, then all occur-
rences of one inside the other use the same variables. If T1 refers to T2 and they belong
to different SCCs, then for each occurrence of T2 within the declaration of T1 we rename
the parameters associated with T2 (RT2 and UT2) to fresh variables and recompute the
parameters of T1 (RT1 and UTi).

4. Finally, each datatype T within the same SCC is assigned the region parameters UTEsCCR T

and the closure extension parameters UTESCCUT.

Intuitively, the above algorithm assigns a new region variable to each statically distinguish-
able mutable field keeping track of inherited and recursive regions. In this sense, it computes a
maximally independent set of region variables for each datatype. For example, this algorithm
would automatically compute the region assignment (list(ri, r2) t) shown in Example 4.7 for
the following type declaration which specifies both heads and tails as being mutable:

Example 4.11:
type list t = nil I cons !t !(list t);

4.3.3 Dynamic Semantics

Dynamically, each constructor disjunct C, gives rise to a value (Cp vl ... v-a,) where Cp denotes
a tag that identifies the disjunct and v ... vap are its field values. The value corresponding
to a mutable field is a unique location lpq whose contents are accessible through the store.
This generalized representation subsumes the functional n-tuples ((n-tup v, ... , vn)) and single
mutable reference cells (1) used in Chapter 3 because it permits individual locations of a tuple
itself to be mutable. In order to avoid confusion, we now represent individual mutable reference
cells such as those used in Chapter 3 using the following datatype declaration:

Example 4.12:
type ref(r) t = ref (r)!t;

A mutable reference cell would now be represented as (ref 1) instead of a bare location 1
which by itself is no longer considered to be a proper value and may only appear as a mutable
field value within a constructor value.5

The locations directly contained in a constructor value L((Cp vi ..- v,,)) are naturally de-
fined to be the set of field values that are locations. Similarly, the reachable locations of
a constructor value (with respect to a store s) are the set of locations directly or indirectly
reachable from all the fields of the constructor.

The primitive operations of allocation, dereference, and assignment extend naturally to con-
structor disjuncts and their embedded mutable and non-mutable fields. The reader is referred
to [Nik91] for details of the exact syntax used in Id. The dynamic semantics of these operations
is given by a family of allocation, dereference, and assignment rules on the lines of those shown
for reference cells in Chapter 3.

The dynamic semantics of closing a constructor value follows the discussion in Section 4.1.
The main problem is to identify the set of dynamic locations to match the specified region
variables that are being closed in a general algebraic datatype. For non-recursive datatypes,
the locations to be closed are exactly those carried directly within the constructor value at the
field position corresponding to the region variable being closed. As an example, we reproduce
the point datatype from Example 2.17 below with explicit region parameters. Both fields of
the point ptl are closed while only the second field of pt2 is closed:

Example 4.13:
type point(r, r 2) = pt (ri)!float (r2)!float;

ptl = close (pt 1.2 3.5) :: point; / Abbreviation for point(E, E)
pt2 = close (pt 2.2 4.7) :: point(_,E);

For recursive datatypes, the value contained within each field that recursively refers to the
region variable being closed must also be traversed and closed. Consider the following example
using mutable lists:

Example 4.14:
type list(r, r2) t = nil I cons (r)!t (r 2) !(list(r1, r 2) t);

11 = close (1:2:3:4:nil) :: (list(E,_) int);

The dynamic implication of closing the first region parameter rl of the list 11 is that all
head fields on the spine of the list get closed, although the tail fields still remain mutable (since
r 2 is not closed). This is because after closing the head field of the first cons-cell, we must
recursively traverse its tail field in order to close the region parameter rl in the remaining list.
This process continues until we hit nil in the tail field since there are no more fields to recurse
into.

Now, we show a real example involving recursive datatypes that shows the usefulness of the
close construct in building functional objects from the corresponding mutable ones. We present
an efficient implementation of the maplist function that does not even require reversing the
final list (c.f. function imp-map in Example 2.6) because the list is generated from left to right
using a technique known as "open-lists" [ANP89]:

"We abuse our notation slightly by calling locations embedded inside a constructor value as field values just
like the other values present directly within the constructor, although bare locations are no longer considered to
be proper values. They only serve to define the domain of the mutable store.

Example 4.15:
def maplist f nil = nil

I map-list f (x:xs) =
close {

hd = cons _ _; % The expression (cons _ _) allocates a (cons 1, 1)

hd.cons_l = f x;
tl = hd;
finaltl = { while not (nil? xs) do

newtl = cons - _;

next x : next xs = xs;
newtl.cons_l = f x;
tl.cons_2 = newtl;
next tl = newtl;

finally tl };
finaltl.cons_2 = nil; % The expression nil allocates a (nil)

in hd } :: (list _); % Abbreviation for (list(E, c) _)

Finally, observe that the set of locations that need to be examined for closing a given region
variable in a general algebraic datatype depends solely on its type declaration. For instance,
we know at the time of declaring the list datatype (Example 4.14) that the region variable
rl occurs inside the type of its tail field. Therefore, we need to examine all the cons-cells on
the spine of the list in order to close the region variable rl. But we do not have to examine
the objects contained within the head fields in order to close the region rl. If rl occurred
inside the type of the objects contained within the head fields, then the static semantics for the
close operation described below would generate a static close-error and such a program would
be rejected. Thus, an exact dynamic CLOSE rule can always be constructed for each region
variable of a polymorphic, user-defined datatype at the time that datatype is declared without
regard to how it is instantiated at various places within a program.

4.3.4 Static Semantics

The free variables of a general algebraic datatype are defined as follows:

.(T(pi...i) T1... 3 7rl...k) = UiF(pi) UUjy(Tj) Uuky(7k)

The dangerous variables of a general algebraic datatype may either be dangerous within one
of its argument types rj or closure types 7rk, or they may occur within the type of a mutable
field of one of its constructors. In the latter case, all the type variable parameters occurring
within that field are inherently dangerous much like the type of an object contained within a
mutable reference cell. Therefore, we define:

D(T(pi...i) li...j 7rl...k) = UiF(pi) Uuk rk) Uu (j)
D 7j

If tj occurs inside a mutable field
Otherwise

Finally, the dangerous region variables of a general algebraic datatype are defined as follows:

R(T(pi...i) Tr...3 .rl...k) = UiT(pi) U Uj R(Tj) U UkIZ(7k)

The types of the primitive operators for allocation, dereference, and assignment of construc-
tors and their fields are defined as expected.

The static CLOSE rule also follows the discussion of Section 4.1. We only need to show how
to perform the verification for flagging a static close-error for algebraic datatypes. This is done
as follows:

1. Given an type-annotated expression, (close a) :: T(pl...i) 71...j 7rl...k, along with an
inferred type T(p 1) r...i r... k, first we match the regions pl...i specified in the annotation
against the corresponding regions p...i of the inferred type. Null regions in the inferred
type must exactly match the corresponding regions in the annotation type. While some
region variables in the inferred type may be constrained to be closed (mapped to e),
other region variables are simply renamed/unified to the region variable specified in the
constraint.

2. The candidate region variables so determined to be closed, say {ri ... r.), must not occur
inside a function closure type within the inferred type parameters r 1...j or within the
inferred closure parameters 7r...k. This ensures that we do not close region variables that
are captured inside function closure types.

3. Finally, the region variables being closed must satisfy the following test with respect to
the annotation type:

Vr {ri...r,} r [(E) Uuj(Tr) UukF (k)]

If any of the above tests fails, we flag a static close-error. Otherwise, the close operation is
considered to be successful.

4.3.5 Soundness

The static and dynamic CLOSE rules for general algebraic datatypes described above are direct
extensions of the formal machinery shown for reference cells in Chapter 3. It is reasonably
straightforward to see that we follow the same idea of specifying a fixed set of static regions
to be closed for an identifiable set of dynamic locations. Therefore, all the semantic machinery
given in Chapter 3 extends naturally to this framework.

4.4 Functional Encapsulation in Conventional Languages

We mentioned in Section 1.3 that the functional encapsulation mechanism presented in this
thesis would also be quite useful in a monomorphic, first-order language such as C, Pascal, or
Fortran. However, adding this mechanism to a conventional language may require a few changes
in the language and its type system, a possible change in the programming style, as well as
possible simplifications within the proposed type system itself. In this section, we outline how
all this might be achieved using C as an example.

It is clear that in order to make any kind of guarantees based on the type system, we
must have a strongly-typed language. C is not strongly-typed because it allows unrestricted
type conversion among object at the discretion of the user via type-casting [KR88]. Using
this facility the user may convert pointers to closable objects into non-pointer datatypes and
vice-versa, thereby completely throwing off our type analysis. Therefore, no type-casting may
be allowed in order to ensure sound, verifiable functional encapsulation.

The type system of C would obviously need to be extended with regions, although with
suitably chosen syntactic defaults regions may not appear explicitly in many cases. For in-
stance, the compiler may automatically assign region parameters to all struct and union type

declarations as discussed in Section 4.3.2. The compiler would also need to define a unique
memory allocation function for each declared datatype. This is necessary because, as discussed
above, we have to eliminate the use of type-casts which is most often used to fix the type of a
freshly allocated object using the only available memory allocation function malloc.

The most important simplification in our type mechanism would be that we would no longer
need closure types. Although, C allows passing function pointers as arguments and results,
functions are only declared at the top-level and they may only have free identifiers that are also
declared at the top-level. Therefore, the types of such free identifiers would always be visible
within the global type environment and can never be closed accidentally. In other words, we
do not need to keep track of the types of the free identifiers of a function because such types
would always be present in its enclosing type environment anyway.6 This greatly simplifies our
typing machinery and makes its even more intuitive and easy to use.

Finally, we must point out that functional encapsulation is useful only if we localize the
allocation and construction of objects to nested program blocks. This facility encourages a
programming style where we dynamically allocate and update an object in a deeply nested
block, and then close and return that object into the enclosing block where it may be used
functionally. This style is certainly possible in C and Pascal but may preclude some earlier
versions of Fortran due to the lack of block-structure and dynamic memory allocation.

4.5 Conclusions

4.5.1 Summary of Part I

In the preceding chapters we have presented a powerful type system that fulfills our goal for
providing a sound and verifiable type abstraction mechanism between the high-level functional
layer and the low-level imperative layer of a polymorphic programming language. We started
with the problem of implementing functional array constructs present in our high-level language
in terms of low-level imperative program fragments written in a small kernel language without
sacrificing storage efficiency or parallelism. In the process, we introduced a new construct
within the kernel language called "close" that changes the view of a mutable data-structure
from imperative to a functional one. The type system statically verifies the soundness of
such a change and guarantees that successfully closed objects are never updated again during
execution.

We also showed how to extend the use of the close construct to complex data-structures
within the language including arrays, tuples, functions, and general algebraic datatypes. We
discussed issues of language design and specification of closing such data-structures and its
effect on other language features such as type polymorphism and dynamic memory synchro-
nization protocols. Our proposal for syntactically specifying closable objects blends nicely with
already existing mechanisms of specifying type declarations and type annotations for program
expressions.

The type abstraction mechanism described in this thesis helps both compiler and language
designers as well as the end-users. On the one hand, it helps to reduce the size of the compiler
by permitting efficient implementations of high-level, functional constructs (e.g., make_vector
in Example 4.5 and maplist in Example 4.15) to be pushed into system libraries rather than
being implemented within the compiler as primitives. On the other hand, it provides a tool

6 This is also true in Pascal and Fortran even though Pascal allows internal function declarations [JW75]. This
is because in all these languages functions are never passed outside the scope of their definitions.

100

for the end-user to design arbitrary new functional data-structures more efficiently using im-
perative kernel constructs and then safely close them (e.g., histogram in Example 2.16 and
polar2rect in Example 4.4). In this sense, our type system provides a safe and controlled ab-
straction mechanism for the end-user to exploit the power and efficiency of low-level, imperative
constructs without destroying the clean semantics of high-level constructs.

4.5.2 Implementation Status

The type system described in this thesis is currently unimplemented. Therefore, our claims of
displacing wired-in implementation of functional data constructors within the Id compiler in
favor of system libraries, and user-level flexibility in implementing new functional abstractions
are yet to be tested. Currently, the Id compiler uses several internal "hacks" to provide these
functional abstractions which would clearly be unsound if exposed to the user directly.7 Our
typing machinery would have the effect of cleaning and legitimizing these hacks into proper
kernel language features. Our type system would also combine three different type declara-
tions used for M-structure, I-structure, and functional data objects into a single declaration as
discussed in Section 4.2.4.

Currently, the Id language is undergoing major revisions and in its next incarnation as pH
[NAH93] we hope to include some of the ideas embodied in this thesis.

4.5.3 Future Work

As mentioned above, the obvious first task for us is to implement this type system fully and
study its usefulness not only in terms of the semantic cleanliness but also its implementation
efficiency and ease of use. We would like to implement this system both for Id (and pH) as
well as a restricted subset of the C language as outlined in Section 4.4. Below, we discuss some
alternate directions for future research.

Theoretical Improvements

There are several aspects of the current research that need more detailed scrutiny. Throughout
in this thesis, we have used a strict, sequential dynamic semantics for our kernel language.
We were able to do this because the problem of closing imperative data-structures is largely
orthogonal to the issues of parallelism and synchronization which would have only made the
formalization of the soundness proofs much harder. But it would be useful to show the sound-
ness proofs directly in a parallel setting. This would also allow us to directly model the different
closing strategies required with different memory synchronization protocols as discussed in Sec-
tion 2.3.5. We feel that a graph rewriting framework such as [AA93] would be more appropriate
for this purpose than the relational semantics approach taken here.

Applications to Other Compiler Analyses

This type system may also be used to infer useful static information that is conventionally
determined using dataflow analysis or abstract interpretation. For example, we know that the
static verification strategy for the close construct provides a limited form of object escape
analysis. It guarantees that there are no additional references to the object being closed other

7The current version of the Id compiler uses typeconverter declarations that simply change the type of an
object without any semantic verification. It also uses internal pragmas to "fix" the functional polymorphism of
array and list comprehension desugaring.

101

than the reference being returned from the close expression. This implies that the enclosing
program fragment that receives the closed object has exclusive access to that object. If we do
not make the object read-only upon closing, then this type mechanism effectively provides a
static way for verifying exclusive dynamic access to a mutable object without using any syn-
chronization primitives (such as semaphores) or single-threading the object through the entire
program. The enclosing program fragment could make exclusive, unsynchronized read/write
accesses to the object for some time then pass out multiple references to other sub-programs.
All such references may again be brought together and again checked for escape in an enclosing
scope.

Another important observation is the dynamic life-time of an object that is shown to be
closable at the boundary of a close expression and is actually not returned from that expression,
is guaranteed to be bound to the scope of that close expression. This is because no references
to that object may escape this scope. This information may be used to allocate such objects
on stack instead of the heap as shown in [TT93], or insert additional code at compile-time to
reclaim that storage automatically on the lines of [HJ92].

102

Part II

Types in Run-time System Design:
Type Reconstruction

103

Chapter 5

A Typed Run-time System

5.1 Introduction

Traditionally, programming environments of dynamically-typed languages such as Lisp or Small-
talk maintain type information in the form of run-time type descriptors on every object. This
information may be used, for instance, to detect run-time type-errors, to dispatch to different
handlers for a given operation based on the type of the arguments, and to distinguish pointer
data from non-pointer data for the purpose of garbage collection. Although very flexible in
design, such language implementations pay the price of managing type-tags either in the form
of complex specialized hardware or in the form of extra space and time requirements in software.

Languages geared towards high performance computation such as C or Fortran take the
other extreme. They aim for a very simple and efficient run-time system with no type informa-
tion to be maintained at run-time. The user is made directly responsible for complex tasks that
may require run-time type information such as ensuring type consistency and automatic storage
management. If necessary, the compilers for these languages can be explicitly instructed to gen-
erate static type information to be used for specific run-time applications such as source-level
debugging.

Several important questions arise at this point. What is the advantage of having type infor-
mation available at run-time? What specific applications may use run-time type information?
How much type information is desired, complete source-level types or a partial specification?
What language design features may help or complicate the task of making run-time type in-
formation available? How much of this type information can be pre-computed by the compiler
and how? Do we need to carry the type information throughout execution or can it be recon-
structed on demand? What is the run-time cost of such type maintenance or reconstruction?
And finally, how does a typed language and its run-time system compare in terms of overall
performance, program reliability, and user flexibility to other systems?

In Part II of this thesis, we attempt to answer some of the above questions in the context of
the Id programming language and its run-time environment. We study how source-level type
information can be propagated through the compiler and made available during the execution
of a program. We also discuss specific applications that use this information at run-time.

5.2 Design Issues for a Typed Run-time System

Several language design features affect the availability and the accuracy of type information
during the execution of a program. Likewise, run-time system design decisions affect the overall

105

Strongly-typed

Statically-typed

Lisp

Pascal

ia OlVIl.

Figure 5.1: Design Issues for a Typed Run-time System.

cost of computing and propagating this type information. Figure 5.1 shows several such design
issues and classifies some existing programming languages on their basis. We discuss these
issues below.

5.2.1 Strong vs. Weak Typing

Strongly-typed languages such as Pascal, Lisp, or Standard ML provide a consistent model of
assigning a type to every data object and every sub-computation in a program. Computations
are allowed to proceed only if provided with objects of the right type. Enforcing type consistency
allows run-time type information to serve as a reliable description of the computation being
performed at any time. Therefore, it makes sense to use this information, if available, for
applications that operate on a wide variety of run-time data and need some mechanism to
identify and distinguish among them. Applications such as displaying objects in a source
debugger, marking objects in a garbage collector, and object I/O fall into this category.

Weakly-typed languages such as C or Fortran permit the user to arbitrarily coerce the type
of an object to another type. This makes the currently assigned type of an object to be a poor
description of its actual contents. It is still possible to view an object according to its currently
assigned type, but there is no guarantee that it provides the complete and accurate description
of the object. Therefore, providing reliable type information at run-time is possible only in a
strongly-typed system.

5.2.2 Static vs. Dynamic Typing

Compilers for statically-typed languages such as Pascal, or Standard ML enforce the type
consistency expected from a strongly-typed program at compile-time. This frees up the system
from the responsibility of checking for type consistency at run-time. Some modern languages
like Haskell also provide systematic mechanisms to resolve overloading of operators and selection
of methods at compile-time based on the static types of their arguments [WB89]. Therefore,
static typing offers many of the advantages of dynamic availability of type information without
actually carrying that information at run-time. Moreover, all the static type information may
be saved and used in optimizations during the compilation phase itself or in other run-time

106

)ed

applications during program execution. Although, additional work may be needed to reproduce
the desired information at run-time when demanded.

5.2.3 Tagged vs. Untagged Object Model

A simple way to provide type information at run-time is to tag every object: a few bits (usually
one or two) in every word may be used as a tag to distinguish scalar objects from pointers to
heap objects. More information about the type and size of objects may be kept in an object
header. All dynamically-typed languages such as Lisp and Smalltalk use extensive tagging of
objects in order to perform type consistency checks at run-time. Some implementations of
statically-typed languages such as the Standard ML of New Jersey [App90] also make use of
object tagging, usually for the benefit of the garbage collector.

Tagging every object is costly. Keeping tag bits in every word reduces the range of repre-
sentable scalars and pointers in conventional architectures, and the user application also pays
the additional cost of tag maintenance. Sometimes, scalar values (usually floating point num-
bers) may be boxed in a heap data-structure in order to preserve their full range. This incurs
the additional cost of allocating the box and accessing it indirectly.

Keeping objects untagged simplifies the memory model and eliminates the space and time
overheads, but no type information is directly available at run-time. In weakly-typed languages
such as C or Fortran, the user is directly held responsible for generating and propagating
consistent type information at run-time. In statically-typed languages such as Pascal or Id, the
compiler and the run-time system may share the responsibility for carrying the type information.
The compiler may generate detailed symbol tables for each function in the program. The run-
time system may load and process the information before program execution or upon request
from another application.

5.2.4 Type Maintenance vs. Type Reconstruction

Recently, several type reconstruction schemes have been proposed for statically-typed poly-
morphic languages that do not incur the run-time tag management overhead [App89, Gol91,
GG92]. In these schemes, static type information may be combined with clues from the dy-
namic state of the machine (the call stack) to automatically reconstruct the run-time type of
most run-time objects. Therefore, with a small cost of type reconstruction, the type-tags on
such objects may be safely dropped without compromising the ability to determine their exact
run-time types.

If the semantics of a language necessitates a tagged or boxed representation for objects, or
if special hardware support for tags is available, then run-time type reconstruction is probably
not the right choice. For example, compiler-directed type reconstruction is impossible in a
dynamically-typed language such as Lisp because the language does not enforce sufficient static
type restrictions on user programs in order for a compiler to gather all the necessary type
information for later reconstruction. Maintaining tags on every object is the only way to ensure
dynamic type consistency. Similarly, in the implementation of lazy languages such as Haskell
[PJ92], all objects are boxed into closures to ensure lazy evaluation semantics. These closures
can easily identify themselves and the object they contain via their code pointers. Independent
type reconstruction does not provide any advantage in this situation.

However, for the class of statically-typed languages that follow applicative-order evaluation,1

1By applicative-order evaluation, we mean languages that evaluate function arguments before or in parallel
with the invocation of the function.

107

type reconstruction enables substantial representational savings without sacrificing any run-
time information. The object representations can be made clean and simple just like in C
and Fortran, without compromising type consistency or the ability to use type information at
run-time. Of course, we need to ensure that complete type reconstruction is possible for all
run-time objects under all circumstances. However, the existing schemes [App89, Gol91, GG92]
do not guarantee complete type reconstruction for all run-time objects under all circumstances.
In particular, polymorphism and higher-order functions pose significant problems as discussed
below.

5.2.5 Polymorphism and Higher-order Functions

Language features such as polymorphism and higher-order functions significantly complicate
the problem of making exact type information available in a run-time system with untagged
objects. Polymorphic functions are designed to be reusable with various types of data objects,
therefore no clue about the type of an object may be associated with the definition of such
a function. The exact run-time type of a particular application of a polymorphic function is
usually an instantiation of its static type and must be derived from the use of the function at
that application site. The run-time system needs to compute such instantiations upon a type
reconstruction request.

Similarly, higher-order functions take function closures as arguments and produce closures
as results. These function closures may encapsulate hidden objects that are bound to the free
identifiers of the function. Unfortunately, even an exact instantiation of the type of a function
closure may not reflect the types of the objects captured within its environment. Therefore, the
types of objects hidden within higher-order function closures may be impossible to reconstruct.
We will examine some of these problems and their possible solutions in Chapter 6.

5.2.6 Type Inference vs. Type Declaration

Type inference is a convenient mechanism that frees the user from the task of declaring every
identifier in the program with an appropriate type. Most modern programming languages such
as Standard ML, Haskell, and Id use a systematic type inference system [Mil78]. Even languages
favoring type declaration such as Pascal and C perform some ad hoctype inference in order to
support automatic type coercions.

Type reconstruction may be thought of as run-time type inference on the dynamic state of
the computation, although, a large amount of that information is pre-computed statically within
the compiler. The use of type reconstruction at run-time is orthogonal to whether the compiler
uses type inference or type declarations in order to collect the necessary static type information.
Providing the type information within the program in the form of type declarations does not
reduce the complexity of making that information available at run-time. The compiler still
has the task of saving all the necessary information in the appropriate form and making sure
that complete type reconstruction is possible for all objects at run-time due to the problems
discussed above.

5.3 Our Approach

Id is a strongly and statically-typed language. Furthermore, it supports a polymorphic type
inference system and uses an untagged run-time system. Our goal is to use run-time type
reconstruction in order to determine the exact type of all objects within the Id run-time system.

108

As mentioned earlier, the existing schemes [App89, Gol91, GG92] are unable to reconstruct the
types of some objects. We would like to fix this situation so that the exact type of all run-time
objects may be reconstructed automatically.

Our proposed scheme lies somewhere in-between the two extremes of complete run-time
tagging of objects (i la Lisp, Standard ML) and carrying no type information at all (a la C)
without compromising the goal of complete run-time type reconstructibility. We do not tag
every run-time object, although a small amount of explicit type information may have to be
carried within some higher-order, polymorphic functions in order to allow complete run-time
type reconstruction. We analyze the user program at compile-time to detect such cases and
insert the additional type information automatically. Essentially, our scheme can be viewed
as compiler-directed explicit tagging for such run-time objects. We also provide a type re-
construction algorithm and prove its correctness. The success of our scheme depends on the
fact that the explicit type information needs to be inserted in very few cases that essentially
plug the informational holes in the previous schemes and that it can be set up by the compiler
automatically with little run-time support and overhead.

The main contribution of this work is that we guarantee complete type reconstruction. As
we will see in Chapter 7, our current system slightly restricts the acceptable set of type-correct
programs in order to provide this guarantee. On the other hand, this guarantee opens the way
for a universal framework for supporting various language and system applications that need to
use exact object type information at run-time. We discuss some of these applications below.

5.4 Applications of Complete Run-time Type Reconstruction

5.4.1 Polymorphic Source Debugging

A Source debugger for a statically-typed, polymorphic language is an ideal application for run-
time type reconstruction. In a debugger, it may be necessary to display the values of any or
all of the variables associated with a given procedure activation. Without any help from the
run-time system, the static type signatures of polymorphic objects are usually insufficient to
traverse and display their full contents. For example, the append function on lists has the
polymorphic static type Vto. (list to) -+ (list to) -+ (list to). The function may be used in
various contexts to append various kinds of lists. In each case, we need to reconstruct the full
run-time type of its arguments in order to display their contents appropriately to the user.

Another interesting property of source debugging is that type reconstruction is required only
for those objects (or function activation frames) that are requested by the user for displaying.
The entire state of the machine need not be reconstructed at once. Moreover, debugging does
not impose any serious performance constraints for type reconstruction. Users are generally
willing to tolerate a reasonable cost for displaying an object which would now also include the
cost of reconstructing its type.

5.4.2 Tagless Garbage Collection

Type reconstruction may also be used within a run-time system in order to perform garbage
collection without maintaining any type information on the heap objects themselves. Ab-
stractly, a garbage collector performs two functions: it distinguishes live objects from those
that are garbage (live-object detection), and it reclaims the storage allocated to objects that
are garbage (dead-object reclamation). For live-object detection, the garbage collector must be

109

able to distinguish scalar objects from heap-allocated objects and determine their sizes (object
identification). The actual type of an object is very useful for this purpose.

Conventional techniques for object identification operate with a very simple memory model
and make little or no use of language and compiler-specific information. Pointers may be tagged
using one bit to distinguish them from scalars values and objects may be provided with header
tags or may be allocated in separate areas of memory to keep track of their size. The reader is
referred to a recent such techniques in [Wil92].

Unlike source debugging, garbage collection does not require complete source type infor-
mation per say, but additional type information may be helpful in optimizing the marking of
live objects. For instance, it may be possible to entirely skip the traversal of large arrays while
searching for embedded pointers to heap objects, if the exact run-time type of their elements
turns out to be a scalar. Clever compilers and run-time systems that tag every object [App90]
may sometimes be able to encode such information within the header of the array if its type
is statically known to be a scalar, but this is not possible with polymorphic array construc-
tors such as the makevector function of Example 2.1 which could be used in both scalar and
structured array computations.

An alternative solution for object identification is to use complete run-time type reconstruc-
tion. This technique enables garbage collection to be performed in an untagged run-time system,
saving valuable application time and space spent in continuous tag maintenance. Complete type
information also paves the way to type-based optimizations in marking flat data-structures as
discussed above. But, one has to weigh these advantages against the cost of performing type
reconstruction whenever garbage collection is requested.

As an example, a simple "mark-and-sweep" tagless garbage collector would work as follows.
When garbage collection is initiated, the first step would be to reconstruct the types of the
root set of heap objects that are either stored in global variables or pointed at from within the
function activation frames. The reconstructed type information would then be used to guide
the garbage collector in identifying and traversing the reachable heap objects and marking them
as live. Finally, unmarked objects would be reclaimed as garbage. We describe such a scheme
in Chapter 8.

5.4.3 Object-based I/O

Another application that may benefit from run-time type information is I/O. Most program-
ming languages offer either stream-based or continuation-passing I/O primitives for a few basic
datatypes that may used to build more complex read/write functions explicitly (e.g., C, Pascal,
Haskell). Typically, I/O formats and styles for complex objects are directly controlled by the
user. Polymorphic objects are handled using explicitly parameterized I/O routines. With run-
time availability of type information, I/O handling for complex (even polymorphic) objects can
be made automatic. The structure of an object may be directly determined from its type. For
fixed sized objects, the size of the object may also be ascertained from its type. For dynamically
sized arrays, the size information may be kept within the object itself. Given this information,
an entire complex object may be read or written easily using its type to select and guide the
output format.

The run-time systems of dynamically-typed polymorphic languages such as Lisp or Smalltalk
usually offer such I/O capability automatically for each user-defined data-structure within the
program. This is possible because all objects in such languages carry type-tags which may be
used to guide the generic I/O functions according to the structure of that object. With type
reconstruction, this capability may also be provided in a statically-typed languages with an

110

untagged object model. Moreover, just like tagless garbage collection, it may also be possible
to generate object-based I/O routines that are specialized to a given object type and hence are
more efficient than generic I/O routines that interpret the reconstructed type at run-time.

Another possible use of complete run-time type reconstruction and object-based I/O is
in periodic check-pointing of the entire machine state for long-running programs. Complete
type reconstruction would enable traversal and recording of all the dynamic data-structures
participating in the computation including the activation stack, the global environment, and
all the accessible objects residing on the heap.

5.5 Outline

In the rest of Part II we study the problem of complete run-time type reconstruction for Id
programs in detail and describe some of its applications implemented within the Id run-time
system. In Chapter 6, we intuitively analyze the problem of polymorphic type reconstruction
by means of examples, describe the compiler and run-time system support required and outline
a reconstruction algorithm. Chapter 7 formalizes these ideas in the context of the Kernel Id
intermediate language, presents a complete reconstruction algorithm, and proves its correct-
ness. Finally, in Chapter 8 we present tagless garbage collection as an application of complete
type reconstruction and compare its performance with a conservative garbage collector and a
compiler-directed explicit allocation/deallocation scheme.

111

112

Chapter 6

Compiler-directed Polymorphic
Type Reconstruction

In this chapter, we informally present the problem of complete run-time type reconstruction for
higher-order, polymorphic languages such as Id and discuss some of its solutions. In Section 6.1,
we briefly describe the problem via examples and discuss why the existing approaches are
insufficient to guarantee complete run-time type reconstruction. In Section 6.2, we provide the
basic framework for doing complete type reconstruction, characterizing the analysis required at
compile-time and the reconstruction strategy to be followed at run-time. Next, in Section 6.3
we present a compilation scheme that identifies and inserts the necessary type information
within the user program to guarantee complete type reconstruction at run-time. Subsequently,
Section 6.4 walks through a reconstruction example. In Section 6.5, we show a series of compiler
optimizations and variations on our compilation scheme that may further reduce the book-
keeping overhead of the current scheme. Finally, in Section 6.6 we point to two implementations
of our type reconstruction strategy.

6.1 Type Reconstruction Problem

The problem of type reconstruction for Id can be described as follows. At some point during the
execution of a program, we wish to take a snapshot of the state of the machine and determine
the type of every object accessible within the computation. We assume that the program is
typed statically and that the run-time environment does not maintain any type information
implicitly. In particular, Id run-time objects do not carry any type-tags.

Clearly, only polymorphic objects and functions pose some challenge; complete type infor-
mation can be obtained at compile-time for monomorphic objects. Also note that the exact
nature of the desired information depends on the application that uses it. For example, a
source debugger may wish to inspect any particular object from the current run-time state of
the machine whereas a garbage collector only needs to traverse those that are still in use. Also,
most garbage collectors only need to differentiate between scalars and pointers to structures
while a source debugger needs exact type information in order to display the object properly.
In general, we would like to devise a flexible strategy that can be optimized according to the
level of information desired.

113

6.1.1 Basic Type Reconstruction Scheme

Usually, the compile-time type of an object is a good starting point for the reconstruction
of its run-time type. In case of polymorphic functions, the types of the objects contained
within the function body would depend on the types of the arguments that it receives at a
given application site. Appel [App89] first noted that if the exact types of the arguments of
a polymorphic function were known at run-time, then its entire body could be instantiated
appropriately using its compile-time typing. The exact types of the arguments present at an
application site may, in turn, be determined by reconstructing the type of the parent's body
containing that application site and so on.

Goldberg [Gol91] made the above ideas more concrete in the context of tagless garbage
collection for strongly-typed, sequential languages. Although his scheme applied specialized
garbage collection routines to heap objects directly without explicitly reconstructing their types,
the basic mechanism of type reconstruction remains the same and may be described as follows
in the context of parallel program execution:

Compile-time support:

1. The program is type-checked completely.

2. For each user-defined function within the program, the types of all its arguments and
the types of its local and free variables are recorded in a type-map. This type-map
serves as a static template for the function's run-time activation frame.

3. For each function application site, the full static type instantiation of the function
being applied is also recorded within the type-map of the enclosing function defini-
tion.

Program invocation and execution:

1. The top-level expression is type-checked and the types of its command-line arguments
are recorded.

2. The top-level expression is now executed, expanding the run-time state of the ma-
chine into a tree of activation frames (a stack of activation frames in a sequential
language). Each function application evaluates in the context of its own activation
frame which stores its actual arguments and saves the values of temporary local
computations.

3. The machine may be halted at any point during execution and type reconstruc-
tion may be requested for a particular frame present within the current dynamic
activation tree (the activation stack in a sequential language).

Run-time type reconstruction:

1. First, the function corresponding to the current activation frame is identified and its
static type-map is obtained.

2. If the current function is not polymorphic then no type reconstruction is required.
Otherwise, its parent activation frame and application site are identified using the
return address information in the current frame.

3. If the parent activation frame is the root of the dynamic activation tree then the
exact types of the arguments supplied to the current function are already known.
Otherwise, the process of type reconstruction is repeated for the parent frame by
going back to Step 1.

114

A -j_!._ _-.L. ! - _-- -... .

(list int)

tO

to Type Reconstruction: tO = t1 = int

Figure 6.1: The Run-time State of Computation in Example 6.1.

4. Given the exact types of the arguments of a function, its static type-map is fully
instantiated by matching the actual types of the arguments to their static types.
This reconstructs the current activation frame and also provides the exact types of
the arguments present at any application sites within the body of that function.

As shown above, the reconstruction process may continue possibly up to the root of the
activation tree where the run-time types of the user-supplied arguments are available. At that
point, all polymorphic functions in the call chain can be correctly instantiated revealing the
run-time types of their internal objects. In the context of sequential execution, Goldberg [Gol91]
also showed that the entire state of the machine may be reconstructed in one pass by starting
from the root frame at the bottom of the activation stack and working towards the most recent
frame at the top of the activation stack.

We illustrate the above reconstruction scheme with a small example: 1

Example 6.1:
def enlist xto = x:nil;
def map f nil = nil

I map f (y:ys)(listtt) = (f yt,):(map f ys);

map enlist (1:2:nil)(listint);

'All the examples in this chapter use the Id language syntax [Nik91]. Briefly, functions are introduced with
a def keyword and allow pattern-matching on their arguments. (:) is the infix cons operation.

115

,ddmr-

5 1- __

The function enlist has a static type Vto.to -+ (list to) and map has a static type Vtlt 2.(tl -+

t2) -+ (list t 1) -+ (list t 2). We also show the type instances of some internal identifiers as

subscripts. The evaluation of the top-level expression (map enlist (1:2:nil)) dynamically
unfolds into a tree of activation frames as shown in Figure 6.1.

If we wish to examine the x argument of enlist during one of these calls, then the run-time
instantiation of its static type to may be determined by following up the dynamic chain of
activation frames into its application site within the map function. Here, to may be related to
the static type tl of the actual argument y at that application site. This relates to the type of
the second argument (list tl) of map which is found to be (list int) at the root application site.
Then, both tl and to can be instantiated to int giving the actual type of x as desired.

6.1.2 Problems with Closures and Free Variables

Unfortunately, the above scheme is incomplete. Goldberg and Gloger [GG92] noted that some-
times types of objects hidden inside a closure are impossible to reconstruct. Consider the
following example:

Example 6.2:
def f2 Xto Yt, = Y;
g2 = if ... then f2 li,,t else f2 "foo"string;

g2 2;

Here, f2 has a type Vtotl.to - tl -+ t1 , and therefore g2 gets bound to a partially applied

function closure with type Vt2 .t 2 - t2 that says nothing about the type of the data hidden inside
it. In fact, this type cannot be determined at compile-time because it depends on the value of
the predicate (...). Besides, during the evaluation of (g2 2) the return address information on
the call stack would point to the application site of g2, which does not help in determining the
contents of that closure either. Thus, we cannot reconstruct the type of the argument x within
the activation of f2 because the computation that created its closure is no longer available as
part of the dynamic activation tree.

It may appear that this problem arises only when an argument of a function is never used
within its body, but the following example adapted from [GG92] shows that this is not the
case:2

Example 6.3:
def f3 x(listo)

{ def h3 zt, = if length x(lisito) == 1
then z:nil
else z:z:nil;

in h3 };
g3 = if ...

then f3 (1:nil)(liti,,t)
else f3 (true:nil) (list bool) ;

g3 2nt ;

Here, the type of the function f3 is Vtotl.(list to) -+ tl - (list t 1), and therefore the type of

the computed closure g3 is Vt2.t 2 -+ (list t2). During the evaluation of the application (g3 2),

2In Id syntax, a block-expression (bounded by {}) encloses a set of identifier bindings. The result of such a
block is the value of the expression following the keyword in evaluated within the scope of the bindings.

116

no information is available in the activation tree whether this closure contains a list of booleans
or a list of integers. Goldberg and Gloger argue in [GG92] that since h3 does not use the
elements of its free variable list x but only its spine (to compute its length), a garbage collector
can ignore these elements and copy just the spine. But this approach creates problems if these
structures were shared in many places and is quite unsatisfactory for a source debugger that
needs to display the full object.

The problem of not being able to reconstruct the exact type of an object as shown above
does not appear all the time. For instance, the type of argument z within h3 in the above
example may be reconstructed to the type int by traversing up the call stack to its application
site (g3 2). In fact, functions like map in Example 6.1 never have this problem:

Example 6.4:
g4 = (map
enlist) (list to)q(list (ist to));
g4 (1:2:nil)(listint);

Even though here map is partially applied to enlist to yield a closure g4 with type
Vto.(list to) -+ (list (list to)), we have not lost any type information. Instantiation of to to
int at the call site of g4 yields complete type information about all the internal identifiers of
both map and enlist. The problem with Examples 6.2 and 6.3 is that sometimes the types
of closures do not have any connection with the types of objects hidden inside them. In such
cases, we are in danger of losing type reconstruction information because the closure creation
site may no longer be available on the call stack.

Another interesting point is that polymorphic objects with universally quantified types do
not pose this problem. The run-time type of such an object cannot be more specific than its
compile-time definition type. For instance, in the following example the variable x within the
body of f5 has the universally quantified type Vto.(list to).

Example 6.5:
def f5 y =

{ x = nil;
def h5 zt, = if length x(listto) == 1

then z:nil
else z:z:nil;

in h5 };

Now, there is no question about the contents of the closure formed by h5 over its free
variable x. It can never contain an object whose type is more specific than Vto.(list to). For
our purposes, this means that the compile-time type of a polymorphic object provides sufficient
information for its run-time type reconstruction.

6.1.3 Discussion

The examples presented above attempt to provide an intuitive understanding of the process of
type reconstruction. It appears that for some polymorphic functions we are able to infer type
reconstruction information from the parent-child relationships embedded in the activation tree
while for others we need additional information at run-time for complete type reconstruction.
Now we can characterize the problem of type reconstruction more concretely:

1. First, we need to identify and record all the compile-time type information necessary for
type reconstruction. We also need a criterion to identify what additional type information,

117

if any, needs to be carried at run-time for complete type reconstruction of polymorphic
functions (Section 6.2).

2. Next, we need a compilation scheme that transforms the given program into one that
generates and propagates the additional type information (Section 6.3).

3. Finally, we need a type reconstruction algorithm that uses the explicit and implicit type
information at run-time and reconstructs the exact type of all run-time objects (Sec-
tion 6.4).

6.2 Type Reconstruction Framework

In this section, we discuss the general framework for run-time type reconstruction. First,
we describe the run-time execution model of Id programs. Using this model, we formulate
a strategy for reconstructing the complete run-time machine state. Finally, we identify the
essential information that needs to be recorded at compile-time and establish a type conservation
criterion that guarantees complete run-time type reconstruction.

6.2.1 Run-time Model of Program Execution

Id is a non-strict, implicitly parallel language with an eager evaluation strategy. Below, we
summarize the execution model of a Kernel Id program.

A program in Kernel Id consists of an expression query to be evaluated within the scope of
a set of top-level value bindings and type declarations. Typically, this evaluation is carried out
in several phases as described below:

Compile-time - First, the top-level bindings and type declarations are type-checked giving
rise to the global static environment. This environment records the exact types of all
global identifiers. Subsequently, all top-level value bindings, datatype constructors, and
internal function definitions are compiled into independent code-blocks.

Link/Load-time - All code-blocks are loaded and linked into the program memory giving
rise to the global dynamic environment.

Invocation-time - The top-level expression query is type checked in the global static en-
vironment and then compiled into a root code-block. At this point, exact types for all
local and free identifiers used in the query expression are known. The global static and
dynamic environments together with the typed root code-block for the query expression
constitute the complete initial state of the machine.

Run-time - A code-block always executes in the context of an activation frame which
records the actual arguments bound to its formal parameters, the run-time objects bound
to its free identifiers, and the values of all its local identifiers during execution. An
activation frame is allocated at the time of a function application and it is deallocated
when that function terminates. In a sequential system, an activation frame corresponds
to the stack frame of the currently executing function. In the parallel execution model of
Id, the run-time stack generalizes to a tree of activation frames as shown in Figure 6.2.

The program starts execution by allocating an activation frame for the root code-block
recording its actual arguments and local identifiers. Subsequent function invocations
extend the dynamic activation tree with their own activation frames, executing in parallel

118

Tree of Activation Frames
(Spread across Computation Nodes)

Global Heap of Shared Objects
(Spread across Memory Nodes)

11111111

gk

Ic

Elk

Figure 6.2: The Parallel Execution Model for Id.

with their parent activation. Shared objects are allocated on a separate global heap
and are accessible via pointers from the activation frame (see Figure 6.2). Thus, at any
time during execution, the complete run-time state of the machine consists of the global
dynamic environment, the tree of active or suspended activation frames, and all the heap
objects accessible through the global identifiers or the activation frames. This is the state
of the machine we are interested in reconstructing.

6.2.2 Type Reconstructibility

Starting from the initial state of the machine as described above, we can view type recon-
structibility as an invariant condition to be maintained at each subsequent evaluation step
that modifies the run-time state of the machine. We identify two kinds of state modifications:
intra-procedural, and inter-procedural.

The intra-procedural modifications to the state of the machine are due to the computation
within a code-block: accessing values of function parameters and free identifiers to compute
local values, allocating heap objects, modifying global or heap objects etc. Since our language
has a sound type system, type-correct programs are guaranteed not to produce run-time type-
errors or to compute values that are type-inconsistent. This implies that any value bound to
an identifier in a given code-block must be consistent with the exact type of that identifier,
otherwise it could lead to a run-time type-error. This is true even for identifiers bound to
mutable objects. In other words, the actual values of mutable identifiers and heap objects could
change due to side-effects, but the types of those values would remain the same. Therefore,
once the exact types of all identifiers present within a code-block are determined, they serve to

119

identify the exact types of all the values computed and the heap objects allocated within the
code-block over its entire life-time.

The inter-procedural modifications to the state of the machine take place at a function
application or return. A function application introduces a new activation frame that binds a
new set of local identifiers and points to the heap objects allocated within the function. We need
to ensure that the exact types of these new local identifiers and heap objects are reconstructible
on the basis of the existing state of the machine before the function application.

The above discussion suggests that an activation frame is an appropriate unit of type recon-
struction. The entire state of the machine may be reconstructed by induction on the structure
of the dynamic activation tree. As the base step, the exact types of all objects in the root
activation frame are already known at the start of the program. The inductive step is to ensure
that at every function application site that expands the dynamic activation tree, the type of
every slot in its activation frame can be identified and correctly instantiated. Below, we analyze
the compile-time information required to achieve this.

6.2.3 Recording Compile-time Type Information

In Section 6.1.1, we informally introduced the concept of the type-map of a function that was
used as a static template during its type reconstruction. Below, we make that definition more
concrete:

Definition 6.1 (Type-map) Given a function f = Ax 1E with free identifiers {z1 .zm} =
(Ax1 ... x z,.E) and locally bound identifiers {YI ... yl} = B(E), its type-map denoted by TMf

records the following information:

1. The function type, f : rT -+ -- -r, -+ r,+1.
2. The types of all the function parameters xl : 71,..., x : n.

3. The type-schemes of all the free identifiers of the function, zl : Uz, ... , zm : azm.

4. The type-schemes of all the locally bound identifiers yl : ay, ... , yl : ay,.
5. The type-instance of the function identifier g at all application sites (g al ... ak) within
the function body E. We also record whether an application site has been statically deter-
mined to be a full-arity application site.

A type-map records the static types of all the parameters, the free identifiers, and the local
identifiers of a code-block along with some additional type information about its internal call
sites. It is essentially a mapping from the frame slots of a code-block's activation frame to
their static types. The type-map TMf is parameterized by the set of all its free type-variables
FT(TM1). This set exactly captures the missing information in the static type environment of
a function that needs to be instantiated at run-time.

We generate static type-maps for all code-blocks within the program at compile-time. These
templates are then linked together with the compiled object code and may be accessed at
run-time using the name of the code-block. As an example, Figure 6.3 shows the Kernel Id
translation and the type-map for the map function of Example 6.1.

6.2.4 The Principle of Type Conservation

Consider a first-order application site for a function that does not have any free identifiers. We
can reconstruct the types of all objects in its activation frame using the basic type reconstruction
scheme described in Section 6.1.1. We assume that the name of the callee function can be
identified from its current activation frame which also identifies its static type-map. The return

120

Typemap

def map f 1 =
{ p = nil? 1;

11 = if p then nil
else

Sx =hd 1;
xs = tl 1;
y = f x;
ys = map f xs;
12 = y : ys;

in 12);
in 11);

map (tO -> ti) -> (list tO) -> (list ti)

f (tO -> ti) Arguments
1 (list tO)
p bool Local Frame Slots
11 (list tl)
x tO
xs (list tO)
y ti
ys (list tl)
12 (list tl)

f (tO -> ti) Internal Call Sites

map (tO -> tl) -> (list tO) -> (list tl)

Figure 6.3: Kernel Id definition and the Type-map of map function.

address information stored within the frame identifies the caller's activation frame and the exact
application site within the caller's body that gave rise to the call. Assuming that the caller's
frame has been reconstructed recursively, the exact type instantiation of the callee function
recorded within the type-map of the caller (Item 5 in Definition 6.1) provides the exact types
of all the arguments passed to the callee at this application site. Now, the callee function's
type-map may be instantiated by matching the types of the actual arguments with the types
of the parameters recorded in the callee's type-map.

Unfortunately, not all application sites are first-order, since our language allows higher-order
functions and partial applications (currying). As shown in Figure 6.4, partial applications create
function closures that simply record the supplied argument in a closure data-structure instead
of creating a new activation frame right away. The type of such closures may not provide
sufficient information regarding the type of the arguments captured within the closure (e.g.,
closure g2 of Example 6.2). Some functions refer to free identifiers that must also be recorded
in a closure at the point of their definition3 (e.g., function h3 of Example 6.3). The types of
such free identifiers may not be reflected in the overall type of the function closure either.

In a higher-order language such as Id, function closures are first-class objects, i.e., they may
be stored into heap data-structures, passed as arguments to other functions, and returned as
values from the function that created them. Therefore, the function definition site or the partial
application site that creates a closure is not guaranteed to be accessible when that closure is
used in further computation. As shown in Figure 6.4, such application sites are termed as

3 Lambda-lifting transformation [Joh85] may be used to lift nested functions with free identifiers into top-level
super-combinators that refer to only top-level identifiers. But, this transformation restricts the type polymor-
phism of free identifiers and does nothing to change a higher-order program into a first-order program. Therefore,
we choose to deal with the problem of free identifiers directly.

Invisible Partial Applications
Closure

Activation Tree

Figure 6.4: Visible and Invisible Application Sites.

invisible. A function closure expands into an activation frame only when all its arguments have
been accumulated. This final application site of the closure is termed as the visible application
site because its position may be determined by examining the return address stored within the
expanded activation frame.

The type reconstruction scheme outlined above for first-order function applications would
work with higher-order function closures only if the closure type instantiation recorded at the
final application site has sufficient type information to instantiate the types of all the free
identifiers and previous arguments accumulated within the closure. Such a function is called
type-conserving. This is a static property of a function's type signature and is characterized in
the definition given below. On the other hand, if a function does not satisfy the above property,
then some type information may be lost at its definition site or its invisible partial application
sites. We also identify such information in the following definition for each of the invisible
application sites:

Definition 6.2 (Type Conservation) Given a function f with arity k, type-map TMf, and
type-scheme Val ... a n . 71 - ... k -4 Tk+l

1. The type-variables F (TM) \F(-r • -... T k -r+ Tk+1) are defined as not being conserved
at the function definition site.

122

Closure
plication

rt o @ =.... - @..

2. The type-variables .T(ri) \ F(ri+I -- ' .. 7k --4 7k+l) (1 < i < k) are defined as not being
conserved at its i-th application site.

3. The type-variables F(rk -+ rk+1) are defined as being conserved at the final (k-th)
application site.

4. The function f is said to be type-conserving if all the type-variables in its type-map are
being conserved, i.e., F(TMf) = -F(rk -4 rk+1).

Informally, a type-conserving function can correctly instantiate its entire type-map with just
the run-time type of its final application closure. It is easy to check that map and enlist from
Example 6.1 are type-conserving, while f2 from Example 6.2, and f3 and h3 from Example 6.3
are not, which is why we were losing type information in those cases.

Definition 6.2 may be used by a compiler to detect functions that are not type-conserving.
Furthermore, the definition shows exactly how much type information is lost at each application
site. The next question is what type reconstruction strategy should be devised for such func-
tions? Our scheme is to make every function closure self-sufficient, which means that a closure
for a non-type-conserving function must carry exact run-time encodings of its non-conserved
types. We describe our compilation scheme in the next section.

6.3 Compiler Support for Type Reconstruction

In this section, we informally describe a compilation scheme that analyzes every function in
the program and transforms it to generate and propagate exact run-time type instantiations of
its non-conserved type-variables where necessary. These encoded type-hints are inserted at the
partial application sites that otherwise do not preserve this information and are deposited into
the function's activation frame at the time of its final application. These type-hints may then
be used to reconstruct the exact type instantiations of the non-conserved type-variables for the
current activation frame of the function.

It is interesting to note that the propagation of type information from closure creation
sites to their final application sites for non-type-conserving functions may be formulated as
an overloading resolution problem which may then be handled using well-known techniques in
the literature [Gup90, PJW92, WB89]. These techniques systematically translate overloading
into parametric polymorphism by replacing unresolved instances of overloaded identifiers in a
function with additional parameters that are supplied at its application site. In our scheme,
these parameters are the explicit type-hints that are used by the type reconstruction algorithm.

Below, we intuitively describe our compilation strategy by means of examples. We also
provide a simplified but self-contained description of overloading resolution and translation
mechanism as applied to type reconstruction. The full details of this transformation and the
subsequent reconstruction process appear in Chapter 7.

6.3.1 Detecting Violations of Type Conservation

The first step in our compilation process is to identify the functions in the program that
may require additional type-hints for the non-conserved type-variables in their type-map. This
is straightforward given the test for type conservation in Definition 6.2. First, we type-check
each function f in the program and generate its type-map TM1 according to Definition 6.1.
Then, using Definition 6.2 we determine which type-variables in its type-map, if any, are not

123

length x;
(= =) yO 1;
if yl then
{ y3 = z:nil;
in y3 }

else
(y4 = z:nil;
y5 = z:y4;
in y5);

Typemap to,ti

h3 ti -> (list ti)

z ti

x (list tO)
length Vt2. (list t2) -> int

yO int
yl bool
y2 (list tl)
y3 (list tl)
y4 (list tl)
y5 (list tl)

length (list tO) -> int

Figure 6.5: The Kernel Id definition and type-map of function h3 from Example 6.3.

being conserved. For example, the type-map for function h3 from Example 6.3 is shown in
Figure 6.5. Its type signature is Vtl.tl -+ (list tl). Comparing these two together we get,

JF(TMh3)
F(tl -4 (list ti))

= {to, t}

= {t}

Therefore, the type-variable to is not being conserved in the function h3 and it requires a
run-time type-hint for proper type reconstruction.

6.3.2 Propagating Non-Conserved Type Information across Functions

In general, additional type-hints may need to be propagated within the body of a function not
only to reconstruct its own non-conserved type-variables but to pass them on to other functions
within its body that require those type-hints. Also, some of the non-conserved type-variables
at these internal application sites may get partially or completely instantiated. We need to
record these instantiations so that appropriate type-hints may be generated at those sites.

Both the above problems may be addressed by viewing the reconstruction of the non-
conserved type-variables as an overloaded operation trec? that must be resolved within the body
of the given function. Standard overloading resolution mechanism picks up such unresolved
overloaded identifiers and arranges the required information to be passed in as a parameter to
the function. Subsequent uses of the function ensure that the additional information can be
instantiated from the enclosing environment, thereby propagating the requirement outwards, if
necessary. We illustrate this process for the function h3 of Example 6.3:

Example 6.6:
def f3(trectto) x(listto)

{ def h3 (trecto) Ztl = if length x(listt o) == 1

124

def h3
(yO
yl
y2

in y2);

Type Parameters

Fn. Signature

Fn. Arguments

Free Identifiers

Local Frame Slots

Internal Call Sites

then z:nil
else z:z:nil;

in h3(trecto) ;
g3 = if ...

then f 3 (trec?int) (1 :nil) (listint)

else f 3 (trec? bool) (true:nil) (listbool);

g3 2 int;

Here, we have added a predicate4 (tree? to) as an annotation on the function h3. In general,
a predicate is added to a function's type signature for every non-conserved type-variable in
its type-map at the precise argument position where that information is being lost according
to Definition 6.2. Subsequently, the standard overloading resolution mechanism automatically
propagates this predicate to the place where h3 is referenced and to the enclosing lexical function
f3 because it remains uninstantiated (and hence unresolved) in its body. Finally, this predicate
propagates to the application sites of f3 where it is completely instantiated according to the
types of the arguments being supplied to f3 and is considered to be resolved.

Intuitively, the propagation of a predicate associated with a function represents a lack of
type information locally which must be supplied from the application site where this predicate is
instantiated. Note that the predicate need not provide the full type of the argument or the free
identifier of the function that requires such information (e.g., the identifier x in Example 6.6).
It only identifies the instantiations of the non-conserved type-variables present in that type.
This is sufficient to fully instantiate the type stored in the function's type-map corresponding
to that identifier. This scheme allows us to share the type instantiations of the non-conserved
type-variables across several identifier types that contain that type-variable. Thus, the number
of external type instantiations needed by a function is limited by the number of non-conserved
type-variables and not by the number of its actual parameters or free identifiers present in its
type-map.

Another interesting observation is that predicate instantiations involving polymorphic type-
variables are always considered as resolved and are not propagated outwards in the light of the
discussion in Section 6.1.2. For instance, g3 in the above example might have been defined as:

Example 6.7:
g3 = if ...

then f3(frec (list t)) (nil:nil)
else f 3 (tre? bool) (true:nil);

Here, (trec? (list t)) is an instantiation of f3's predicate according to its polymorphic
argument (nil:nil). Even though this predicate has an uninstantiated type-variable t, it is
not propagated any further because it is polymorphic at this point. It follows immediately that
there can be no unresolved predicates at the top-level because there are no free type-variables
in the top-level type environment by construction.

6.3.3 Program Translation

The final step in our compilation process is to add extra hint parameters to the function
definitions that have non-conserved type-variable predicates of the form (trec? t). Likewise,

4We follow the terminology of [Gup90, WB89] where the usual Hindley/Milner type of a function is extended
with predicates to model overloaded identifiers. In Haskell [HWe90] these are known as contexts. The predicate
name trec? in our scheme stands for type-reconstructible?.

125

a predicate (trec? r) appearing at a function application site is transformed into a type-hint
encoding r that is passed as an explicit argument at that application site.

It is possible to either add one hint parameter for each non-conserved type-variable or
group the hints together in a single hint-record from which the individual hints may be fetched.
Our current scheme adds one hint parameter per type-variable at the position specified by
Definition 6.2. This is because passing a small number of additional parameters is currently
cheaper in our system than allocating and fetching from heap data-structures.

The compiler keeps a record of the mapping between the non-conserved type-variables of
each function and its additional hint parameters. This mapping, also called the hint-map, is
shown below:

Definition 6.3 (Hint-map) Given a function f = Axl ... x..E with non-conserved type-
variables p = {a1,..., am} , its hint-map is the mapping HMf = {(a ý yi),..., (am ý- Ym)},
where yl,..., Ym are its new additional hint parameters.

As an example, below we show the hint-map for the function h3 from Example 6.6:

TYPE VARIABLE HINT PARAMETER

to h3hint _1
The actual type-hints may now be generated using an encoding of the type constructors

and their type arguments. The encoding should permit type-hint construction and propagation
from within the user program. Although not necessary, we may view the encoding as an Id
datatype as shown below:

type typelhint = none I tc string (list typehint);

The disjunct none encodes polymorphic type-variables that do not require any hint. The
disjunct tc encodes a type-constructor by its name and a list of encoded type-parameters. The
free type-variables of a type-hint r are encoded using the corresponding additional parameters
of the enclosing function definition recorded in its hint-map.

Continuing with Example 6.6 above, the following translation is obtained:

Example 6.8:
def f3 f3_hint1 x =

{ def h3 h3_hint_1 z = if length x == 1
then z:nil
else z:z:nil;

in h3 f3_hint_1 };
g3 = if ...

then f3 (tc "int" nil) (1:nil)
else f3 (tc "bool" nil) (true:nil);

g3 2;

Notice how the hints generated within g3 propagate into h3 via the hint parameters of f3
and h3. The appropriate hint will now be available in a dynamic activation of h3 where it may
be used along with its type-map to reconstruct the exact run-time type of x.

6.4 Run-time Type Reconstruction

Now, we have all the necessary information to reconstruct the entire run-time state of the
machine. As discussed earlier in Section 6.2.1, the global dynamic environment and the tree of

126

Activation Tree Heap

L
h3 f3_Mhint_ 1)

Type Reconst
Pf t -i

F0N

LI - II IL

tO = Decode[[h3_hint_ 1]] = bool

Figure 6.6: The Run-time State of Computation in Example 6.8.

activation frames constitute the root set of the run-time state of the machine. All the relevant
heap objects may be accessed through this root set. The types of the global identifiers are
already available in the global static environment. Therefore, we only need to reconstruct the
types of all the activation frames in order to obtain the types of all the objects in the root
set. The type of any accessible heap object may then be reconstructed by examining the fully
instantiated type of an appropriate pointer within the root set that leads to the given heap
object.

The detailed algorithm for complete type reconstruction of an activation frame will be
presented in Chapter 7. Here, we describe a type reconstruction example to illustrate the
modifications to the basic scheme presented in Section 6.1.1. These modifications use the type-
hints inserted by the compilation scheme of Section 6.3 to account for the type information
that is otherwise lost.

6.4.1 A Type Reconstruction Example

Figure 6.6 shows a snapshot of the state of the machine during the execution of translated
Example 6.8. Let us suppose that the predicate (...) in the definition of g3 evaluates to false
at run-time. The computation of g3 expands into an activation frame for f3, returning a
closure for the function h3 with the appropriate type-hint and the second argument hidden
inside. We assume that this computation has terminated and the activation frame for f3
has been deallocated (shown with dotted lines in Figure 6.6) so that there is no trace of the
application site where g3 was constructed. The evaluation of the application (g3 2) unfolds
the computation into an activation frame for h3 as shown in Figure 6.6. Let us also suppose
that the program is halted when h3 has just been invoked. The problem is to reconstruct the
types of the objects in h3.

The type-map of the function h3 given in Figure 6.5 shows that it needs the exact type

127

instantiations of the type-variables to and tl for proper type reconstruction. From the hint-
map given in Section 6.3.3, we know that the additional parameter h3_hint_1 encodes the exact
type instantiation for the type-variable to which is decoded to produce the type bool. The type
of the free identifier x within h3 may now be reconstructed to be (list bool) as given by its
type-map. The remaining type-variable tl is instantiated to the type int as described earlier
in Section 6.1.1 by matching the application site type instance recorded in the root type-map
with the full type signature of the h3. This completely instantiates h3's type-map yielding the
exact types of its function parameter z and its other local identifiers.

As noted in Section 6.1.2, the type reconstruction schemes described earlier [App89, Gol91,
GG92] would fail to reconstruct the type of x in the body of h3. The reason is that these schemes
only use the type information derived from the current stack of activation frames. When higher-
order closures such as g3 are invoked and type reconstructed, the function producing it, f3,
may not be present on the current stack. Any clues that f3 might have provided regarding the
types of free identifiers of g3 are therefore not accessible during reconstruction.

6.5 Compiler Optimizations

It might appear that our compilation scheme incurs a lot of run-time overhead due to additional
parameters and encoding and decoding of types but our experience has been that realistic
programs contain very few (if any) non-type-conserving functions, so the overhead of generating
and propagating their type-hints is reasonably small. Although our current performance is
adequate, we hope to be able to improve our scheme through several compiler optimizations
that are discussed below.

6.5.1 Rearranging the Hint Parameters

Currently, additional type-hint parameters required by a function definition are placed just
in front of the regular parameter that would otherwise lose that information according to
Definition 6.2. This is not strictly necessary. We can place a hint parameter either before
or after the first regular parameter whose type contains the non-conserved type-variable that
is encoded by the hint parameter. This rearrangement does not affect program translation
(Section 6.3.3) since the regular parameter and the associated type-hint parameter are still
supplied together at the same application site. Of course, the hint parameters corresponding
to the non-conserved type-variables in the types of the free identifiers of a function must still
be place right up front.

The benefit of such rearrangement is that it may sometimes reduce the propagation overhead
of type-hints by removing some extra parameters altogether via qr-reduction. For example, the
following alternate translation for Example 6.6 is also valid (compare with Example 6.8):

Example 6.9:
def f3 x =

{ def h3 h3_hint_1 z = if length x == i
then z:nil

else z:z:nil;

in h3 };
g3 = if ...

then f3 (1:nil) (tc "int" nil)
else f3 (true:nil) (tc "bool" nil);

128

Here, the parameter f3_hint_1 of f3 was pushed after its parameter x which made this
,r-reduction possible.

6.5.2 Arity Analysis

Definition 6.2 conservatively prescribes that the only type-variables that are conserved in a
multiple-arity function are those present in its final application type because the function could
be curried over its initial arguments. This definition can be specialized to include the types
of all the arguments present at an application site, if that site is guaranteed to be accessible
through the dynamic activation tree. That is, all arguments at an application site that leads
to a full application may be treated as being conserved at that application site. For example:

Example 6.10:
def f 11 12 13 = (length 11)+(length 12)+(length 13);
g = f (1:2:nil);
...(g (true:nil) ("foo":nil))...

Definition 6.2 predicts that the types of lists 11 and 12 are not conserved by the definition
f. But at the final application site for closure g, 12 is also available immediately which implies
that its type is conserved at this application site.

In general, at compile-time, it may not be possible to recognize the application of an arbi-
trary function closure as its final application site. But it is easy to recognize the special case of
first-order (or full-arity) application of a function where all its arguments are supplied at once.
In such cases, the types of all the actual arguments and the type-variables present in them may
be instantiated from its application site, although the function may still require type-hints in
order to reconstruct the types of its free identifiers.

In our current scheme, it is not possible to optimize away the type-hints prescribed by
Definition 6.2 for a function at its first-order application sites because the function definition
may still require type-hint parameters due to higher-order application sites present elsewhere.
This is simply a consequence of our choice to provide type-hints by adding extra parameters
to a function's definition. Alternatively, we can either generate a specialized first-order version
of the function that does not carry any type-hints and use it wherever possible, or choose
another mechanism for hint propagation that is transparent to the usual parameter passing
conventions. Then, we would be able to tailor the type-hints according to the information
available at a particular call site without affecting the function's definition.

6.5.3 Escape Analysis

Together with first-order call site information, if the types of the free identifiers of a function
are also known to be reconstructible via the currently visible activation tree, then no extra
types-hints are necessary at all, even if the function was determined to be non-type-conserving
by Definition 6.2. Escape analysis of function closures offers this information. Specifically,
if analysis shows that a function closure does not escape from the lexical scope where it was
defined, then the correct instantiations of its free identifiers would still be available from the
activation frame of this ancestor in the activation tree. In that case, we do not need to set
up extra type-hints to reconstruct these instantiations within the given function's activation
frame.

It is possible to use the region-based closure typing system described in Part I of this thesis
to undertake such escape analysis for internal function closures. We simply need to associate a

129

fresh region variable with each internal function definition that statically tracks the movement
of its closure data-structure. Presence of this region variable in the type environment of the
enclosing control block, or in the type of the returned value from that block would indicate that
the function closure is escaping the scope of its definition.

6.5.4 Tail Calls

Our current scheme does not deal with tail calls where the usual caller-callee relationship is
violated. A tail call removes the caller's activation frame from the activation tree and connects
the callee to the parent of the caller directly. In such a situation, the application site information
for the callee is lost. Consider the following example:

Example 6.11:
def f x = I + length x;
def g n = if n == 1

then f (1:2:nil)
else f (true:nil);

g ... ;

Without tail calls, the type of x in an activation of f can be determined by locating its call
site within the then or the else branch of the conditional inside g. But, if these applications
were compiled as tail calls, then the f's activation will get directly connected to the top-level
and the call site information will be lost.

It is easy to extend our scheme to deal with this situation. We simply modify Definition 6.2
to reflect the fact that no call site information is available for f and therefore explicit type-hints
may be needed for all of its free type-variables. This leads to the following translation:

Example 6.12:
def f fhint_1 x = 1 + length x;
def g n = if n == 1

then f (tc "int" nil) (1:2:nil)
else f (tc "bool" nil) (true:nil);

g ... ;

Now, all the type information is available from within the activation of f. Of course, this

scheme is not optimal because it ignores the call site information even when it is available using
regular calling conventions. In order to incorporate that flexibility, we need to generate several
application site specific versions of the function definition as discussed earlier.

6.5.5 Type Specialization

Our current scheme generates and interprets encoded type information in order to reconstruct
the types of all local and free identifiers of a function. We do not take any position on what
to do with these types. This strategy is adequate and desirable for a source debugger because
it may wish to manipulate an object in many different ways. Once the type of the object is
reconstructed, it can be interpreted to traverse and manipulate the object in any desired way.

It is possible to apply the principle of type conservation (Definition 6.2) and the program
analysis and translation strategy (Section 6.3) in any specific context to allow complete analysis

of run-time objects in that context. For instance, in order to display objects in the Id debugger,
we could compile a parameterized display routine for every datatype occurring in the program.

130

Run-time type reconstruction would be used to compose these display routines appropriately
and then display the given object directly by passing it to its display routine without any type
interpretation.

Similarly, it is possible to generate specialized garbage collection routine(s) for every func-
tion instead of its type-map, parameterized by GC-routines that correspond to the free type-
variables in its type-map. Then, we can generate and propagate closures of GC-routines instead
of type-hints as described in Section 6.3. These parameter routines would be picked up auto-
matically by the GC-routine(s) of the function from its activation frame at the time of garbage
collection. This scheme would operate in the same way as the tagless garbage collection mecha-
nism proposed by Goldberg [Gol91] where function-specific and site-specific garbage collection
routines are generated that understand the structure and the liveness properties of the local
identifiers of a function. Moreover, no additional hash-tables would be necessary in order to
keep track of partially traversed polymorphic shared objects as shown in [GG92] because com-
plete type reconstruction ensures that the entire traversal of a shared object can be completed
the very first time it is encountered.

6.6 Implementation Status

The type reconstruction scheme described in this chapter has been implemented in two different
applications within the Id programming environment. We briefly discuss these implementations
below.

6.6.1 Type Reconstruction in a Polymorphic Source Debugger

The need to solve the problem of type reconstruction initially arose while attempting to display
polymorphic object within a source-level debugger for Id. A preliminary version of the type
reconstruction scheme described in this chapter was implemented during the fall of 1992 in
the context of the Id source debugger [Car93] for the Monsoon dataflow architecture and was
reported in [AC93].

The Id compiler [Tra86] was modified to perform the type analysis and hint generation for
every function within the user program as shown in Section 6.3. A simple Id datatype encoding
was used for type-hints as shown in Section 6.3.3. The compiler also generated the type-map
and the hint-map for every function. In order to reduce the book-keeping within the debugger,
the types of temporary, internal identifiers were dropped from the type-map of a function; only
source-level, user-defined identifiers were kept together with their position in the function's
activation frame.

The Id debugger [Car93] was written in Lisp and executed on the host processor in the
front. It allowed a user to stop the Id program executing on the Monsoon processor in the back
when certain pre-specified events were triggered. The user could then traverse the current tree
of activation frames within the Monsoon memory and request function arguments and local
identifiers to be displayed along with any heap objects that they pointed to. Objects within
the Id run-time system did not carry any type-tags, therefore, complete type reconstruction
was needed in order to decipher the run-time object structure. The debugger reconstructed the
object types one frame at a time using the run-time type-hints and the type-map and the hint-
map information provided by the compiler. These types were then interpreted to traverse and
display the contents of the requested identifiers properly. Objects hidden inside higher-order
function closures were not displayed, although such objects could be displayed once the closure
was applied and gave rise to an activation frame.

131

The entire Id programming environment called "Id-World" containing an editor-based in-
cremental Id compiler, a simulator for the Monsoon architecture, and the Id source debugger
with complete polymorphic run-time type reconstruction was successfully demonstrated during
the ACM Conference on Functional Programming Languages and Computer Architecture held
in Copenhagen, Denmark, in June 1993.

In [AC93], we presented a preliminary compilation and type reconstruction scheme which
omitted some of the formal details. The complete compilation scheme and the type reconstruc-
tion algorithm now appears in Chapter 7 along with a proof of its correctness.

6.6.2 Type Reconstruction for Tagless Garbage Collection

During the fall of 1993, full support for run-time type reconstruction was integrated into the
Id compiler for the *T multi-threaded architecture and its run-time system [CCF+93] for the
purpose of performing tagless garbage collection. Naturally, this required complete type recon-
struction for every slot of every function activation frame and all the heap objects reachable
from them including higher-order function closures.

We conducted a feasibility study involving the design and implementation of a simple "mark-
and-sweep" garbage collector for the *T architecture based on the run-time type reconstruction
mechanism. We compared the performance of this scheme against a conservative garbage col-
lector and a compiler-directed explicit allocation/deallocation scheme, all implemented within
the same framework. The results of this study were first reported in [AFH94] and are presented
here in Chapter 8. The study showed that tagless garbage collection based on type reconstruc-
tion was not only feasible but also beneficial for scientific programs with large scalar arrays.
The study also indicated that the type reconstruction cost was a small fraction of the overall
garbage collection cost. Complete details appear in Chapter 8.

132

Chapter 7

Formal Framework for Run-time
Type Reconstruction

In this chapter, we formalize the reconstruction strategy outlined in the last chapter. Section 7.1
presents the complete grammar for our intermediate language Kernel Id. In Section 7.2, we
describe a compilation scheme that analyzes the source program to identify the additional type
information necessary for complete type reconstruction and then transforms the program to
propagate this information at run-time. Section 7.3 presents the run-time type reconstruction
algorithm and discusses its complexity. Finally, in Section 7.4 we show the correctness of our
algorithm.

7.1 The Kernel Id Intermediate Language

Our description of type reconstruction is based on the Kernel Id intermediate language Kernel
Id as shown in Figure 7.1. This language supports a rich set of datatypes including typi-
cal scalar basetypes, general algebraic (sum-of-products) datatypes, n-dimensional arrays, and
curried functions. Records and tuples are a special case of algebraic datatypes with a single
product disjunct. We also assume a rich set of primitive functions for basetypes and array
construction/selection/modification, as well as standard predefined algebraic datatypes such as
list and bool.

Kernel Id allows multi-arity function definitions and general algebraic type declarations.
Every sub-expression in this language is given an explicit name that permits accurate repre-
sentation of data-sharing. In particular, we assume that every A-expression has an identifier
name associated with it, i.e., A-expressions are only allowed to occur on the right hand side
of a binding. Simply nested let-bindings are generalized to a recursive letrec-style block of
bindings. Similarly, a 2-way conditional operator (if ... then... .else...) is generalized to an
m-way Case dispatch operator. The semantics of this language has been given directly in terms
of graph rewriting rules as shown in [AA91, AA94]. Although, we will use the operational
machinery described in Chapter 3 while showing the correctness of our type reconstruction
algorithm.

Kernel Id is a more realistic abstraction of actual intermediate form used in the Id com-
piler [AA91, Tra86] than the tiny expression language used in Chapter 3. The Id source lan-
guage supports special syntactic constructs such as list and array comprehensions, complex
pattern matching, and nested function and type declarations [Nik91]. During compilation,
the Id source program is translated into a Kernel Id program using standard front-end analy-

133

EXPRESSIONS
c

f,x,y, z...
SE
E
PF"
Casem _T
Ckm

Constant
SE
E

Block
Binding
Declaration
Type-Decl

Program

Constant
Identifier
Simple Expression
Expression
Primitive Fn. with n arguments
m-way Case Dispatch for type T
m-th Constructor Identifier with km arguments

Integer I Float
Identifier I Constant
SE I PF" (SE1,...,SE,) Casem-T SE (El'"- Em)

IAxi ... n. EI SE1 SE2 Block
{ [Binding;]* in SE }
Identifier = E
Binding I Type-Decl
type T al -... a n = 1 7r11 " " T1kl

ICrm Tm1 ... 'Tmkm
::= [Declaration;]* E

Figure 7.1: The Kernel Id Intermediate Language.

ses and transformations such as comprehension-desugaring, scope-analysis, type-checking, and
pattern-matching compilation [AA91, Gup90, Tra86]. These transformations result in a Kernel
Id program where every sub-expression has a unique name and a well-defined Hindley/Milner
type, so that all internal type declarations can be lifted to the top-level. Although, we use
source Id syntax in our examples, their correspondence to a Kernel Id program should be easy
to follow.

7.2 Compiler Support for Type Reconstruction

7.2.1 A Type System for Computing Type-hints

Figure 7.2 shows a systematic way of performing type-hint analysis and propagation discussed
informally in Chapter 6 within the context of the Kernel Id intermediate language. We have
modified the usual Hindley/Milner typing rules [Mil78] to compute and propagate additional
type-hint information. In this system, the conventional Hindley/Milner type of a function
closure (r, -4 r2) is prefixed with the set of type-variables p that are not conserved in its
immediately previous partial application. 1

Definition 6.2 identifies the exact set of non-conserved type-variables at each argument
position of a multi-arity, user-defined function. Type-conserving positions are assigned the
empty set €. Each type-variable t E p may be taken to represent the overloading predicate
(trec? t) as shown in Section 6.3.2. Type schemes a generalize and instantiate such augmented

1Although, p is defined here to be a set, the ordering of the type-variables within the set would become
important when we translate their type instantiations into actual type-hints parameters.

134

TYPES

a, / E Type-Variable
T n E Type-Constructor with n type arguments
r E Type

p E Type-hint Set = POWER-SET(Type)
a E Type Scheme
TE E Type Environment = Identifier -+ Type Scheme

::= I int I float I (nd_array r)
I (Tn 71 . 7n) 71 -+ 72 1 p.r

:: Vl" .'. n.T

CONST: typeof (c) 2 .r7
TE - c : r, 7

typeof (PF") >2 0.(ri 71 - n -+ 7n +l),
PRIMAPP: TE - SEi : r, pi 1 < i < n

TE F- PF (SE1, ... , SE,) : 7+l, Ul << n Pi

TE - SE : (T r71 .. r), Po
CASE: TE Ei r,Pi 1 < i < m

TE I- Casem_T SE (Ei ... Em) : 7, Uo<i<m Pi

TE(x) > p.r
IDENT:

TE F- x : r, p

TE F- SE, : (r' --+ p.), pl TE F SE2 : 7', P2
TE - SE1 SE 2 : r, (p U p1 U P2)

TE + {X1 ý 71i ,..., , T,-} - E : 7n+1, p

Let TM be the type-map of Axl ... xn.E

ABS: Po = F(TM) \ (rT -+7Tn4T7n+1))
Pi = F(7i) \F(i(7+1 -+ .- -4 rn+1) 1< i< n
p' = -(p)\ (po U U Pn-1)

TE F AXzl . .zn.E: Po.(71 -+ pl.(72 - - -Pn-1- (7n -+ p'.-n+l) ")), 7

TE + {xi ý4 i} I Ei : ri, Pi
TEb, = TE + {xi ý- Gen(TE, i)} i b

TEb, + xi ý-4 } [- Ei : T, Pi
BLOCK: TEb2 = TEbt + fxi s+ Gen(TEbt , i)} iT b2

TEbk F- SE : o70, Po
TE - { x1 = E1; ' " ; •n = En in SE} : 70ro, Uo<i<n Pi

Figure 7.2: Rules for computing Non-Conserved Type Information for Kernel Id Programs.

135

types as usual. We derive typing judgments of the following form:

TE l- E : -r,p

Here, TE is a type environment mapping identifiers to type schemes, r is the type assigned to
the expression E, and p is the set of type-hint instantiations within E that are needed during
its type reconstruction. These type-hints are required when a non-type-conserving function
is referenced or is applied inside the expression E. All such type instantiations are collected
and propagated up to the nearest enclosing function definition where they become part of that
function's type-hint requirements.

Looking at Figure 7.2, predefined constants and primitive functions (CONST and PRIMAPP
rule) do not give rise to any non-conserved type-variables since they always execute within
the current activation frame and never create any partial applications. The CASE rule is
also straightforward. It simply collects the type-hint instantiations inductively from its sub-
expressions while ensuring that all branches have the same type.

The IDENT rule instantiates the augmented type of a user-defined function, exposing the
exact instantiations of its non-conserved type-variables that need to be provided at that point.
The augmented type instantiation is immediately split into the actual type r and the set of type-
hint instantiations p. Note that the size of the set p remains fixed during its type instantiation.
In particular, an empty set of type-variables € can never be instantiated to a non-empty set of
type instantiations and vice-versa. 2

New type instantiations may also be introduced by the APP rule, where the augmented type
of the result closure exposes the exact instantiations of the non-conserved type-variables at
that application site. All such instantiations are collected and propagated to be resolved at the
nearest enclosing A-expression.

The ABS rule computes the set of non-conserved type-variables of a A-expression and records
them within its augmented type so that they may be instantiated later by the IDENT rule or
the APP rule. The type-hint sets P0o ... Pn-1 are computed for each argument position of the
function as given by Definition 6.2. These sets are placed along the type signature of the
function just after the argument position where that type information would otherwise be lost.
Type-variables that are conserved at the various argument positions are excluded from the
corresponding type-hint sets. The final type-hint set p' computes the additional type-variables
for which type-hints are required by internal sub-expressions of the A-body.

The BLOCK rule is a generalization of the usual Hindley/Milner LET rule as applied to the
more complex syntax of the Kernel Id language. The type generalization operation Gen (TE, r)
generalizes the augmented type r (which may contain embedded type-hint sets) into a type
scheme Val ... an,.r. We assume that the bindings in a block, numbered 1... n, are partitioned

into k groups of mutually recursive bindings bl ... bk (bl + - - - + bk = n), and these groups

are topologically sorted such that definitions occur before their uses. Each group of mutually
recursive bindings is type-checked within a type environment that assigns polymorphic type
schemes to the identifiers bound in previous groups and monomorphic types to the identifiers
bound within the same group. This transformation maximizes Hindley/Milner polymorphism
for an unordered sequence of bindings [Gup90, HWe90].

2This property ensures that each type-variable instantiation may be treated as an independent parameter
to be inserted at that site during translation, although it may introduce some subtle typing discrepancies as
discussed in Section 7.2.4.

136

7.2.2 Type Inference

The type system shown in Figure 7.2 may be directly used as a basis for automatically inferring
augmented Hindley/Milner types along the lines of the standard Hindley/Milner type inference
algorithm [Mil78]. The type-hint sets are considered to be ordered and of fixed size, and may
be treated as part of the type signature of a function. In particular, note that a non-empty
set can never be unified with an empty set. Therefore, the usual structural term unification
algorithm [Rob65] would suffice for matching types.3

The type inference algorithm would be similar to the infer algorithm cited in Section 3.4 with
minor modifications. We need to do some book-keeping in order to collect and propagate type-
hint instantiations from within expressions and process them at the enclosing function definition.
The modified type inference algorithm would return the possibly augmented Hindley/Milner
type (r) of an expression along with the set of type-hint instantiations (p) gathered from within
the expression. Type generalization, instantiation, and substitution would now take place on
augmented types. In case of a user-defined function, the algorithm would also compute its
type-map as given by Definition 6.1 and the type-hint sets po ... n-l, p' as shown in the ABS
rule. These sets would then be attached to their appropriate argument positions within the
type signature of the function.

7.2.3 Program Translation and Type-Hint Generation

The final step in the compilation process is to add explicit parameters to functions with non-
trivial augmented types and to provide appropriate type-hints at their application sites.

Generation of type-hints uses a run-time encoding and decoding scheme as shown in Fig-
ure 7.3. The encoding is performed under a Translation Environment F that maps free type-
variables of a given type r to value-domain identifiers encoding those type-variables. The
encoding scheme TEncfl produces a Kernel Id expression which when executed at run-time
generates the type-hint encoding for the given type scheme; it does not generate the encoded
type scheme itself. This is so because the encoding scheme is used as part of the source-to-
source compilation process that translates a Kernel Id program into another Kernel Id program
with explicit type-hint propagation.

For each type constructor T n , we denote its run-time encoding by a new constant T n . A
bound type-variable ai in a type scheme Val ... an.r is encoded as a special constant type-
constructor TO,. A family of Kernel Id primitive functions packn with arity n are used to pack
an encoded type constructor and its arguments into a run-time data-structure.

The decoding scheme TDecj is used at run-time to convert the encoded type-hints into
actual type schemes used during run-time type reconstruction. Although this mechanism is
described as the logical inverse of encoding type schemes, the actual decoding format depends
on the data format used within the run-time system for type reconstruction. 4

The program translation and hint generation scheme TExpf is shown in Figure 7.4. This
translation is guided by the typing judgments derived from the typing rules shown in Figure 7.2.
The translation rules operate under a Translation Environment F that maps free non-conserved
type-variables of a function definition to its type-hint parameters.

3The careful reader might note that performing structural type matching on the type-hint sets may reject
some programs that would be considered to be type-correct in the original Hindley/Milner type system without
such sets. We will discuss this issue in Section 7.2.4.

4In our current implementation discussed in Chapter 8, the data format used for encoding type-hints is the
same as that used within the run-time system for type reconstruction, therefore no decoding is necessary.

137

F E Translation Environment = Type-Variable -+ Identifier
5 e Encoded Type Scheme

TEnc[] E Type Scheme -+ Translation Environment -+ EXPRESSION
TDec[] E Encoded Type Scheme -+ Type Scheme

TYPE SCHEME ENCODING

TEnc[ca] = F(a)

Let z, zl, ... , Zn be new identifiers,
TEnc[(Tn rl. r)] F = { zl = (TEnc[IrI] r);

z, = (TEncI[r7] F);
z = packn+l (Tn, zl, . .. , z,) ;
in z }

TEnc[Val ... n-.] r = TEnc[r] (r + {ai - TO,}) 1 < i < n

TYPE SCHEME DECODING

TDec[H] = Val ..- an.TDec'[•]J
where {al, ... , a,} = F(TDec'[a])

TDec'I[T]I = a

TDec'[(T, -•..., 7 -)] = (Tn TDec'[•-] ... TDec'[T])

Figure 7.3: Encoding and Decoding of Type Schemes.

Most of the translation rules are straightforward. Constants do not require any translation.
The rules for primitive application, Case-expression, and block recursively translate their sub-
expressions.

The translation of a function identifier converts the exact instantiations of its non-conserved
type-variables into explicit type-hint arguments using the encoding shown in Figure 7.3. Simi-
larly, the translation of a function application inserts appropriate type-hints at that application
site as directed by the function signature.

The translation of a A-expression adds explicit hint parameters yl ... ym at the appropriate
position corresponding to each non-conserved type-variable obtained from its typing judgment.
We also record this mapping as the hint-map of the A-expression and use it to extend the
translation environment for the body of the given A-expression.

We assume that the type-map (Definition 6.1) of a A-expression is updated to reflect the
new type-hint parameters that are added to its type signature and the new local bindings that
are created within its body during the translation. This change does not affect the set of
free type-variables of the type-map because encoded type-hints have a fixed, pre-defined non-
polymorphic type, and the types for all other additional identifier bindings are already present
within the type-map.

After this program transformation, all the type information needed to fully instantiate the
type-map of a function is available at run-time within its function activation frame, either
directly as run-time type-hints or indirectly via instantiations of conserved type-variables in
its type-map. In the next section, we will show a type reconstruction algorithm that uses this
information at run-time to reconstruct the complete dynamic state of the machine.

138

F
TExpD

CONST:

TExp [c] F

Translation Environment = Type-Variable -+ Identifier
EXPRESSION -+ Translation Environment -4 EXPRESSION

- C

PRIMAPP: Let z, zl, ... , zn be new identifiers,
TExp[PF" .. I.. SEn] F = { zl = (TExp[SEI] F); ...

Zn = (TExp[SEn]1 F);
z = PFn zl ... z,;
in z }

CASE: Let z, zo
TExp[Case m_T

be new identifiers,
SE (E"l Em)] F = { zo = (TExp[SE]

z = Casem•T zo (
r);
(TExp[SE1] F) ...
(TExp[SEn] F));

in z }
IDENT: Given typing judgment TE F- x r, p where p = {ri -7 ,r},

Let z, zl , ... , z be new identifiers,
TExp[x] F = { zl = (TEnc[rJl F); ...

z, = (TEnc[rn] F);
Z = X Z 1 .'. Zn;

in z }
APP: Given typing judgment TE F SE1 SE2 Tr, (pU pi U P2) where p = {r .. n}),

Let z, z', zi", z, ... , zn be new identifiers,
TExp[SE, SE2] F = { z' = (TExp[SE]J F);

z"= (TExp[SE2] F);
Z1 = (TEnc[ri] F); ...

Zn (TEnc[rn] F);
Z = z' Z"t Z1 . Zn;

in z }
ABs: Given typing judgment TE F- Axl ... xn.E : po.(rl -+7 "Pn-1.(Tn -+ p'.Tr+1) .),

where (P U ... U P-1 Up') = {ai ...am,
Let yl,..., y, be new parameters with hint-map HM = {al - yl,..., m - Ym,)

TExp[Axz ..- xn.E] F = AypXzyP -yp,_, Xnyp,. (TExp[E] (r + HM))

BLOCK: Let z be a new identifier,
TExp[{xz = El; ... ; xn = En in SE}] F = { x1 = (TExp[Ei] F); ...

Xn = (TExp [E,] F);
z = (TExp[SE] F);
in z }

Figure 7.4: Program Translation and Hint Generation Rules.

139

7.2.4 Discussion

Type Mismatch in Curried Functions

The augmented type system presented in Section 7.2.1 above is a straightforward modification
of the standard Hindley/Milner type system, but it has one drawback that it restricts the
set of type-correct programs to those that are also type-reconstructible. In particular, this
system may reject some programs that would have been considered type-correct in the usual
Hindley/Milner type system without any type-hint sets. The following example illustrates this
point:

Example 7.1:
def fi x y = y; % fl :: Vtot 1.0.(to -+ {to}.(t 1 -+ 1.t1))

def f2 x = % f2 :: Vtotl.0.(to - q.(tl -+ $.tl))
{ def h2 y = y;
in h2 };

gi = (if ... then fl else f2); % Static Type Error!

g2 = if ... then fi 1 (int) else f2 1; X No Static Type Error.

The functions fi and f2 have the same type signature in the usual Hindley/Milner type
system but they have different type signatures in the current system because f 1 requires a type-
hint for its first argument, while f2 does not. This is because the type of the first argument
of the function fi is not conserved according to Definition 6.2, while both f2 and the internal
function h2 are considered to be type-conserving. This type mismatch shows up in the binding
for gi which is flagged as a type-error in our augmented type system. However, the binding for
g2 may be typed without any problem because the type-hint required by the function fi has
been already inserted.

The above example shows that our type system makes a subtle distinction between implicitly
curried multi-arity functions such as f 1 and their explicitly curried counterparts such as f2. To
be precise, this difference shows up only in non-type-conserving functions as shown in the above
example; type-conserving functions would always have empty type-hint sets. This difference
exposes an important run-time characteristic of such functions: the number of applications
after which a function closure expands into an activation frame, which is controlled by their
syntactic arity and not by their semantic typing.

In a way, this difference is to be expected because f 1 and f2 carry different objects within
the closures resulting from their first application and hence require different amount of type
reconstruction information. Since fl is implicitly curried, it simply records its first argument
within its closure. This forces the type conservation mechanism (Definition 6.2) to insert
additional type information in order to ensure subsequent type reconstruction of this argument
even if it was never used within the function's body. On the other hand, f2 produces an entirely
new closure h2 on its first application that is completely independent of its first argument. So,
there is no need to preserve its type within the returned closure.

It should be noted that the type mismatch between fl and f2 is generated not merely
because we have chosen to represent the type-hint information explicitly within the type sig-
natures of these functions. This type mismatch is actually a consequence of the underlying
compilation mechanism that treats additional type-hints just like any other function parame-
ters. In particular, it would not be possible to correctly compile the binding for gi even if the
type-hint analysis was done after the type-checking phase. This is because under our current
compilation strategy, only fi requires a type-hint which is determined only after it is applied

140

to a particular argument.

Multiple Type Signatures

Another interesting difference between this type system and the usual Hindley/Milner type
system shows up with higher-order functions that take other functions as arguments. Consider
the map function shown earlier in Example 6.1 which is reproduced below:

Example 7.2:
def map f nil = nil % map :: Vtot l .q.(to -4 0.t1) -+).((list to) -4 .(list tl))

I map f (y:ys) = Y. map :: Vtotl.o.(to -4 {to}.t 1) --+ .((list to) --+ to}.(list ti))
(f y):(map f ys);

def enlist x = x:nil;
gi = map enlist (1:nil); % No type-hint needed.

def ignore x y = y;
g2 = map ignore (1:nil) (int); % Type-hint needed internally by ignore.

Two possible types for the map function are shown. The first type assumes that the input
function f is type-conserving and therefore would not need any type-hints when it is applied
within the body of map. This permits type-conserving functions such as enlist to be passes
to map as usual. The second type signature assumes that the incoming function would not be
type-conserving and would need a type-hint at its application within the body of map. This
type-hint propagates up to the definition of the map function and shows up in its type signature
after the second argument. This allows non-type-conserving functions such as ignore to be
passed as arguments to map.

It may be a little disconcerting to note that the map function no longer has a single type.
On the other hand, the two versions of map are truly different functions and must be compiled
as such-one that propagates type-hints and the other that does not. One can think of the
original Hindley/Milner type signature of the map function as being overloaded with the various
intended versions. The compiler may selectively produce these specialized versions according
to the type of the arguments supplied to map.

Alternate Compilation Scheme

Both the problems presented above may be fixed by making the type-hint compilation more
uniform and transparent to the standard parameter passing mechanism. In this section, we
briefly examine one such compilation scheme.

Instead of inserting type-hints required at a given argument position as additional parame-
ters, we may put them in a separate record and pass a single pointer to that record to a fixed
entry point identified by that argument position. Effectively, this adds one additional parame-
ter for every argument position whether or not any type-hints are needed at that position. The
advantage of this compilation scheme is that it completely dissociates propagation of type-hints
from regular parameter passing, although it takes additional frame space and time overhead in
allocating type-hint records. In this scheme, Empty type-hint records need not be propagated
at all, while non-empty type-hint records may be passed to even type-conserving functions that
do not require this information. The latter property fixes the problem of compiling gi shown
in Example 7.1. Now, a type-hint record would be created for each application site of gi which
would be used by f 1 during type reconstruction but would be simply ignored by f 2.

141

This scheme also makes the compilation of higher-order functions such as the map function
of Example 7.2 more uniform. Now the map function may be compiled to always propagate the
type-hint record it receives from its first argument position to its internal application site. If
no actual type-hint record is supplied from outside then this mechanism essentially propagates
an empty type-hint record to the internal application site. However, specialized version of map
that do not pay this overhead may still be compiled as an optimization.

7.3 Run-time Type Reconstruction

7.3.1 Type Reconstruction Requirements

Before we describe our type reconstruction algorithm, we summarize the requirements for full
type reconstruction as discussed in previous sections. We use both compile-time and run-time
information.

1. The compile-time information consists of the type-map (Definition 6.1), the hint-map
(Definition 6.3) and the arity of each function that is stored in the symbol table entry for
that function.

2. Furthermore, every function in the program must be transformed as shown in Section 7.2
to propagate explicit type-hints for its non-conserved type-variables.

3. The run-time information consists of the global dynamic environment and the root frame
of the activation tree that remain live and are assumed to be accessible throughout the
computation (Section 6.2.1). The activation tree hangs from the root activation frame
and is modified dynamically, as the program executes, by the procedure linkage code.

4. At program invocation time, complete type information is available for the user query
expression and the root activation frame (Section 6.2.1). Therefore, the root frame should
already be marked as reconstructed.

5. Given any activation frame, we should be able to identify the function associated with
it, its parent activation frame, and the application site in the parent frame that created
this activation frame.5 Typically, the conventional return address information within the
callee is sufficient for this purpose.

6. Proper decoding mechanism should exist for types and type schemes encoded as type-
hints (Figure 7.3). A run-time mechanism for type unification is also required, although
it can be simplified considerably since static type-checking guarantees that unifications
performed within the reconstruction algorithm cannot fail.

7.3.2 The Reconstruction Algorithm

Figure 7.5 shows the pseudo-code for the reconstruction algorithm RECONSTRUCT-FRAME
which is invoked at run-time to reconstruct the types of all variables in a given activation
frame. RECONSTRUCT-FRAME takes an activation frame as a parameter and returns a fully
instantiated type-map for that frame. For ease of presentation, the algorithm makes use of
several auxiliary functions which we will explain as we go along.

5We ignore the issue of "tail calls" whose compilation was discussed in Section 6.5.

142

RECONSTRUCT- FRAME (activation-frame)
t> Return if already reconstructed.

1 if FRAME-RECONSTRUCTED(activation-frame)
2 thenreturn FRAME-TYPE-MAP(activation-frame)

t> Otherwise, start reconstruction.
3 activation-fn +- ACTIVATION-FN(activation-frame)

t> Copy the function's type-map.
4 type-map +- TYPE-MAP(activation-fn)
5 ({a, ... , an} - F(type-map)
6 Scop +- {aoi ý- Oi} where P/,..., n, are new.

L> Process the type-hints.
7 hint-map +- HINT-MAP(activation-fn)

8 Shi•a - { forall (a F-+ x) in hint-map
9 <- FETCH-ARGUMENT(x, activation-frame)

10 a o-- TDec1[2]
11 collect (Scopya + a) }

> We are done if the type-map is fully instantiated.
12 if-T(ShintScopy (type-map)) = =

13 thenFRAME-TYP-TYPE-MAP (activation-frame) +- ShintScopy(type-map)
t> Otherwise, obtain call site information from the parent.

14 else { parent-activation-frame +- PARENT-ACTIVATION-FRAME (activation-frame)

15 parent-type-map e- RECONSTRUCT-FRAME(parent-activation-frame)
16 rse -- USE-TYPE(activation-frame, parent-type-map)
17 Tdef 4-- DEF-TYPE (activation-fn, Scopy(type-map))
18 if FULL- APP (activation-frame, parent-type-map)
19 then Sdef-use - UNIFY(rdef, rse)
20 else { k +- ARITY(activation-fn)
21 71 - ''' Tk -- 7k+l - 7def
22 Sdef-•se +- UNIFY(rk -4 Tk+1, 7use) }
23 FRAME-TYPE-MAP(activation-frame) +- Sdef-ueShintScopy(type-map) }
24 FRAME-RECONSTRUCTED(activation-frame) +- true
25 return FRAME-TYPE-MAP (activation-frame)

Figure 7.5: The Type Reconstruction Algorithm.

143

RECONSTRUCT-FRAME is divided into several sections. We begin at Line 1 by checking if

the given activation frame has already been reconstructed. If so, the previously recorded frame
type-map is returned immediately. Otherwise, we initiate the reconstruction process.

The first section, Lines 3-6, initializes the data-structures used in the reconstruction. We
extract the name of the current activation function from the given frame using the selector
function ACTIVATION-FN and instantiate its type-map with fresh type-variables by building a
type substitution Scopy for its free type-variables. This is necessary so that types from multiple
activations of the same polymorphic function do not inadvertently interfere with each other.

The next section, Lines 7-11, builds a type substitution Shine for all the non-conserved
type-variables of the function as prescribed by its hint-map. The type-hint corresponding to
each hint parameter present in the hint-map is fetched from the activation frame and then
decoded according to Figure 7.3. The resulting type schemes are the run-time instantiations of
the non-conserved type-variables present in the hint-map.

Following this, Line 12 checks to see if all free type-variables of the type-map have been
instantiated to either ground or polymorphic types. If so, the reconstruction is complete and
the fully instantiated type-map is recorded at Line 13. The FRAME-RECONSTRUCTED flag is

set at Line 24 and the reconstructed type-map is returned at Line 25.
If the test fails at Line 12, Lines 14-22 obtain the remaining information from the activation

tree as follows. First, the type-map of the parent of the current activation is reconstructed by
calling RECONSTRUCT-FRAME recursively with the parent's activation frame. Using this type-

map and the current activation, the auxiliary function USE-TYPE obtains the reconstructed
type-instance of the call site responsible for invoking the current function (see item 5 of Defini-
tion 6.1). This type-instance, T,,,, is then unified with the defined type of the current function,
rdef that is available within the current type-map. This unification fully instantiates all the
remaining type-variables in the current type-map which is recorded at Line 23 and is returned
at Line 25 as before.

The matching of rdef to rTse is slightly complicated by the fact that the current activation
could either be a full application of a k-arity function to all its arguments or it could simply
be the final (k-th) application of a curried function closure that has already accumulated k - 1
arguments in previous partial applications. The recorded application site type instance 7~,,

would be different in these two cases and therefore it must be properly aligned before matching
with the function's full type signature Tdef. 6 This application information is also recorded within
the parent's type-map and is obtained at Line 18 using the auxiliary function FULL-APP. In
case of a full application, T·se is directly unified with rdef recorded in the current function's
type-map at Line 19. In case of a curried application, r,,, must be unified with just the final
application type Tk -+ Tk+1 of the defined type Tdef as shown at Line 22.

7.3.3 Reconstruction Complexity

A few observations about the reconstruction algorithm are worth pointing out. First, the entire
activation frame of a function is reconstructed at once. This is possible because the types of all
the objects present in an activation frame share the same set of free type-variables which are
precisely captured and instantiated using its type-map. This obviates the need to traverse the
activation tree multiple times in order to reconstruct the types of various identifiers belonging
to the same frame.

Second, we cache the reconstructed type-maps of all activation frames for future references
by their child frames. Therefore, no activation frame may need to be reconstructed more than

61n our earlier paper [AC93], this operation was abstracted into the auxiliary function UNIFY-ALIGNED.

144

once. Furthermore, since the root frame is already marked as reconstructed at the start of
the program, the algorithm is guaranteed to terminate properly as it recursively climbs the
activation tree at Line 15.

Finally, the algorithm climbs the activation tree from the current activation frame only as far
up as necessary. The climbing process terminates at the first ancestor frame that has already
been reconstructed, or earlier if sufficient information is available via the type-hints. This
avoids traversing the activation tree from the root activation frame to all its leaves as suggested
in [Gol91] which would involve reconstructing all the activation frames within the dynamic
activation tree. Our algorithm pays only incremental cost for each request for reconstruction,
which is a very useful feature for interactive applications such as a source debugger.

The cost of the algorithm RECONSTRUCT-FRAME shown in Figure 7.5 depends on the
following factors:

1. The number of ancestor frames reconstructed due to recursive calls to the algorithm
RECONSTRUCT-FRAME at Line 15.

2. The cost of decoding the type-hints at Lines 7-11.

3. The cost of unification at Line 19 or Line 22.

The maximum number of ancestor frames reconstructed in a given call to the algorithm
RECONSTRUCT-FRAME is bounded by the number of frames occurring between the current
activation frame and the root frame. In a sequential system, this is all the frames sitting on
the stack. In a parallel system, this is the number of frames on any path from a leaf to the
root in the dynamic activation tree which is only the depth of the dynamic activation tree and
not its overall size. Of course, since all reconstructed type-maps are cached, the overall cost of
reconstructing every frame within the dynamic activation tree is still linear in the total number
of activation frames, assuming a unit cost for type unification and type-hint decoding.

The cost of decoding the type-hints depends on the number of non-conserved type-variables
in the type-map and the size of their run-time type instantiations. Similarly, the cost of unifi-
cation is proportional to the size of the function's instantiated type. Although it is possible to
write functions whose Hindley/Milner types are exponentially large compared to the size of the
function itself [Mai90], such cases are rare. Typically, functions possess small type signatures
that can be efficiently manipulated using graphical representations. Non-conserving functions
are rare as well and run-time type instantiations of non-conserving type-variables are also small.

The interesting observation here is that the cost of reconstructing a type-map for a given
activation frame does not depend on the number of slots in the activation frame or the total size
of the type-map itself, but only on the size of the type signature of the corresponding activation
function. This is because we never need to examine or copy the type of every identifier recorded
in the type-map during its reconstruction. We only instantiate its free type-variables. 7

7.4 Correctness of the Type Reconstruction Algorithm

In this section, we will show that the type reconstruction algorithm given in Figure 7.5 is correct,
i.e., it infers the exact type for every object at any time during the execution of a program.
We will define the notion of the exact type for an object shortly, but for the time being it
may be viewed as the type that would have been attached to the object had we computed and

7An independent program such as a debugger or a garbage collector may ultimately need to examine the
reconstructed types of every element in the activation frame. That cost is not included in reconstruction.

145

propagated source type information all through the execution of the program. In dynamically-
typed languages such as Lisp, this is exactly how dynamic type-checking is performed. Every
object is tagged with its type and that information is carried through each computation step.
The type of every new object (including scalars such as integers and floats) is computed along
with its value and is attached to the value as its tag. Of course, computing types is a substantial
overhead during program execution which is why we have chosen to perform dynamic type
reconstruction instead of dynamic type maintenance.

The Kernel Id language (Figure 7.1), its run-time execution model (Figure 6.2), and the
type reconstruction algorithm (Figure 7.5) are all quite complex. In order to be able to argue
about the correctness of the algorithm, we make several theoretical simplifications. These
simplifications allow us to model these concepts cleanly and distill the basic characteristics of
the reconstruction algorithm.

7.4.1 Simple Expression Language and its Semantic Model

As the first step, we restrict ourselves to the simple expression language described in Chapter 3.
This is because we have already made a considerable effort to rigorously define the static and
dynamic semantics for this language. We already have an operational semantic model for
this language (Definition 3.12) and we have shown the consistency between the static and the
dynamic semantics (Theorem 3.16). This consistency is the main tool using which we will show
the correctness of our type reconstruction algorithm. It may be noted that the problem of
complete type reconstruction is independent of the issue of parallel or sequential execution.
Therefore, restricting ourselves to a strict, sequential language instead of dealing with the fully
parallel execution model of Id does not affect the reconstruction algorithm or the issue of its
correctness.

It is easy to see the correspondence between the Kernel Id language shown in Figure 7.1 and
the simple expression language shown in Section 3.1.1. Most Kernel Id expressions have direct
analogue in the simple expression language. The important simplifications are that mutually
recursive functions must be combined into a single self-recursive function, Case-expressions
must be broken up into a series of conditional expressions and blocks must be converted into
nested let-bindings of mutually recursive definitions.

7.4.2 Partial Execution and the Dynamic Activation Tree

The second step is to model the state of the machine at the moment when type reconstruction
is requested. In the relational formulation of the dynamic semantics shown in Section 3.1.2,
an evaluation of a top-level query expression may be described by a logical derivation tree of
evaluation judgments of the following form:8

e -als =- v/s'

The evaluation derivation tree for the top-level query provides a logical proof of how eval-
uations of sub-expressions contribute towards the final result of the entire program according
to the dynamic inference rules shown in Figure 3.1. We will now treat this derivation tree of
evaluation judgment relations as representing the computation itself. The complete derivation
tree for the top-level query corresponds to the entire program computation. Each judgment

8We assume that the result of the evaluation is not err. This is because we assume that the entire pro-
gram including the top-level query expression is type-correct. Therefore, by the Soundness Theorem 3.16, the
evaluation can never run into a run-time type-error.

146

..

e0+{f3_hint_1 -> ... , x -> ...}=e3 I- A f3:
(h3 = ...; h3 f3_hint_l)/sO => <clsr h3...,e3>/sO

* ~ r- .

e3+{z -> 2}=e4 I- h3
(if length x ==1 then ... else ...)/sO => J

Figure 7.6: The Evaluation Derivation Tree for Example 7.3.

in this tree may be considered as a providing a place-holder for the initial store and the final
result (value and a new store) computed within that judgment. The store is sequentialized
through the entire tree in a predictable depth-first fashion, while the values propagate from
the leaves of the tree towards the root-the value of the top-level query being the value of the
whole computation. Values may also be passed from one branch of the tree to the other via
the environment.

The overall process of evaluation may be viewed as a step-wise unfolding of the evaluation
derivation tree. We start with the top-level query evaluation judgment using the initial dynamic
environment, the initial store, and an empty place-holder for the result. In order to compute
the overall result, the top-level evaluation judgment unfolds into a set of antecedent judgments
needed by the dynamic inference rule that is selected according to the immediate structure of
the query expression. Each such unfolding creates empty place-holders for the results of inter-
mediate evaluation judgments. On reaching the leaves, values are created spontaneously using
CONST, IDENT, or ABS rules, and are used to fill the place-holders for the leaf judgments. On
each successive computation step, these values fill the place-holders of their parent judgments,
until they reach an inference rule with multiple antecedents such as APP, TUPLE, or LET rules,
in which case a new sub-tree of evaluation judgments is spawned.

As an example of this process, consider the computation shown in Example 6.8 which is
reproduced below:

Example 7.3:
def f3 f3_hint_1 x =

{ def h3 h3_hint_1 z = if length x == 1
then z:nil

147

eO I- (f3 = ...; g3 = ...; g3 2)/sO => _ Root

eO I- (f3 f3_hint_l x = ...)/sO => <clsr f3...>/s0
eO+{f3 -> <clsr f3...>)=el I- (g3 = ...; g3 2)/sO => _

- -- -------- -~~~~~~

el I- (if ... then ... else ...)/sO =-> <clsr h3...>/sO

el--false/s false/s el+{g3 -> <clsr h3...>}=e2 I- (g3 2)IsO => I
el I- false/s0 => false/s0

el I- f3 (tc "bool" nil) (true:nil)/sO => <clsr h3...>/sO

el I- f3/sO => <clsr f3...>/s0 >* e2 I- g3/sO => <cisr h3...,e3>/sO

el I- (tc "bool" nil)/sO => <tc "bool" nil>/s0 , e2 I- 2/sO => 2/sO
el I- (true:nil)/sO => <cons true nil>/sO

else z:z:nil;
in h3 f3_hint_1 };

g3 = if ...
then f3 (tc "int" nil) (1:nil)
else f3 (tc "bool" nil) (true:nil);

g3 2;

This program has been translated according to the scheme presented in Section 7.2 with the
appropriate type-hints added. The evaluation derivation tree for this computation is depicted in
Figure 7.6. Each incomplete evaluation judgment in the derivation tree is expanded downwards
into its antecedent judgments according to the dynamic inference rules of Figure 3.1. Not all
branches of the derivation tree have been expanded yet. An empty place-holder (-) is used to
represent an unknown value or a store within incomplete or unexplored judgments. In addition,
we also collapse the sub-trees that have been fully evaluated (shown in light typeface) up to
the highest completed evaluation judgment.

Such a partially expanded evaluation derivation tree may be used to model the exact state
of a computation at any given point in time:

Definition 7.1 (Partial Execution Tree) A partial execution tree is a structural tree-prefix9

of the complete evaluation derivation tree for the top-level query expression with the following
characteristics:

1. Each node consists of a possibly incomplete evaluation judgment of the form e I- a/s =
v/s'.

2. Sub-trees consisting entirely of complete evaluation judgments are collapsed into a leaf
judgment e I- a/s =:- v/s' corresponding to the highest evaluation judgment that has
received its value. These nodes represent terminated computation.

3. Internal evaluation judgments e I- a/s = _/_ that have been expanded but not yet fully
evaluated contain empty place-holders (.) to receive their values. These nodes represent
the active machine state.

4. Unexpanded judgments e F- a/ _ = _/ are also represented by a leaf with empty place-
holders. These nodes represent the computation to be spawned in the future.

Note that if we model the store independently as an external data-structure rather than
threading it sequentially through the judgments, we can model parallel computation within
this framework by spawning several branches of the partial execution tree in parallel. The only
modification needed in the current dynamic semantics to model this situation would be to use
a least-upper-bound (U) operation on stores that would combine stores from various branches
of the execution tree into a single store.

It is useful to draw a correspondence between the actual dynamic activation tree at any given
time during the execution of a program and its partial execution tree as described above. This
may be seen by comparing Figure 6.6 that shows the dynamic activation tree for Example 7.3
with Figure 7.6 that shows its partial execution tree. The following correspondences emerge:

9 A sub-tree starting at the root of the original tree with some of its branches clipped is called a tree-prefix of

the tree.

148

1. The root frame of the dynamic activation tree corresponds to the root judgment of the
partial execution tree which is evaluating the top-level query expression provided by the
user.

2. The type of the query expression is completely known at the beginning of the computation
which corresponds to the fact that the root frame in the dynamic activation tree is always
marked as reconstructed.

3. Each activation frame present in the dynamic activation tree corresponds to a subset of
evaluation judgments within the partial execution tree that belong to the body of the
applied function and hang from its application evaluation judgment. In other words,
each application evaluation judgment within the partial execution tree may be viewed as
initiating a, new activation frame for the applied function.

4. Collapsing evaluation sub-trees for completed evaluation judgments corresponds to the
fact that the activation frames within that branch of the computation have been deallo-
cated and just the final value is available within the current frame.

With the above correspondence in mind, the partial execution tree serves as an accurate
logical model of the actual dynamic activation tree.

7.4.3 Type Reconstruction

Given the definition of the dynamic state of the machine as a partial execution tree, type
reconstruction may be viewed as the process of computing the exact type of each value present
in the partial execution tree at any given time. Using the formal machinery at hand, this
corresponds to generating a type derivation tree using the static semantics inference rules
shown in Figure 3.2, that parallels the structure of the given partial execution tree. This is
captured in the following definition:

Definition 7.2 (Type Reconstruction) Type reconstruction of a given partial execution tree
is defined to be a type derivation tree with the same structure as the partial execution tree with
the following characteristics:

1. For each evaluation judgment in the partial execution tree of the form e I- a/s =:' v/s',
where s, v, and s' may be empty place-holders, the type derivation tree has a corresponding
valid elaboration judgment of the form E F- a : T. Furthermore, the type 7 is the most
general type satisfying this elaboration.

2. For each completed evaluation judgment of the form e t- a/s =: v/s' and the corresponding
typing judgment E F- a : r, there exists a store typing S such that S = e : E and = s : S.

Using the Soundness Theorem 3.16, the second condition in the above definition immediately
allows us to conclude that the computed value v is consistent with the type r under a suitably
constructed new store typing. In addition, the first condition ensures that this is the most
general type of the value v. Therefore, this type r is taken to be the exact reconstructed type
of the value v.

149

7.4.4 The Type Reconstruction Algorithm

The reconstruction algorithm shown in Figure 7.5 reconstructs one activation frame at a time,
although it may be applied to each frame within the current dynamic activation tree to re-
construct the whole state of the machine. The actual order in which frames are reconstructed
is not important, nor is the fact that we cache the reconstructed type-maps. Therefore, we
will assume that all frames in the dynamic activation tree are reconstructed in one sweep that
starts at the root frame and works its way downwards towards the leaf frames. This does not
change the correctness problem because we are interested in showing the correctness of what
the algorithm computes, not necessarily how it computes it.

As shown earlier, we have modeled the dynamic activation tree as a partial execution tree
(Definition 7.1), and the process of type reconstruction as constructing a type derivation tree
for it (Definition 7.2). Therefore, all we need to do now is to show that our type reconstruc-
tion algorithm given in Figure 7.5 indeed constructs a valid, most general type derivation tree
according to Definition 7.2. To accomplish this, we need to abstract the reconstruction algo-
rithm in terms of traversing the partial execution tree and constructing the corresponding type
derivation tree.

The first observation to be made about the reconstruction algorithm shown in Figure 7.5
is that it reconstructs an entire frame at a time by instantiating the static type-map of the
function corresponding to that frame. The static type-map of a function corresponds to the
most general, static type derivation tree of its body. This is because the static type-map records
the compile-time type of every sub-expression and free identifiers occurring within the body of
the function (Definition 6.1). Furthermore, these types are computed using the type inference
algorithm Infer mentioned in Section 3.4. The soundness of this algorithm (Proposition 3.19)
ensures that we can construct a valid type derivation tree for the entire body of the function,
while its completeness (Proposition 3.20) ensures that we obtain the most general type for each
sub-expression.

Thus, instantiating the static type-map of a function with a substitution can be viewed as
instantiating the entire static type derivation tree of the function body with that substitution.
The validity of the derivation tree after substitution is ensured by the stability of typing judg-
ments under substitution (Proposition 3.9). Note that the structure of the instantiated type
derivation tree matches the portion of the partial execution tree that corresponds to the activa-
tion frame being reconstructed. Sub-trees that are completely evaluated and hence have been
collapsed to a leaf in the partial execution tree may also be collapsed in the typing derivation
tree.

The second observation about the reconstruction algorithm is regarding the construction
of the instantiating substitution Sdef-useShintScopy for the callee's type-map. The purpose of
this substitution is to fully instantiate the static type-map of the callee according to the types
of its actual arguments and the result, so that the corresponding type derivation tree for the
callee's body matches the application site in the caller's derivation tree. The two independent
components'o Sdef- 8se and Shint are responsible for two different sets of arguments supplied to the
callee. The substitution Sdef-ue conveys the type instantiation information due to the arguments
and the result present at the final application site, while the substitution Shint provides the
instantiation information due to the arguments supplied at previous partial application sites.

The compiler support for type-hint generation and propagation (Section 7.2) provides the
mechanism by which we make the relevant type information available at the final application

10The third component Scopy simply serves to make a copy of the type-map and therefore does not provide
any additional information.

150

site. The most important property of this mechanism is type conservation (Definition 6.2)
which ensures that the exact type instantiation for every type-variable within a function's
type-map is preserved at each of its application sites. For non-conserved type-variables, the
type-hint generation and propagation phase described in Section 7.2.3 encodes their dynamic
type instantiations at each partial application site and stores them within the returned closure.
This ensures that these type instantiations would remain accessible in encoded form even when
the computation that produced the closure has terminated. The substitution Shiat during type
reconstruction represents these type-variable instantiations. For conserved type-variables, the
type of the arguments present at the final application site within the type derivation tree of
the caller provides their exact instantiation. The substitution component Sdef-use captures
these instantiations. Type conservation (Definition 6.2) guarantees that together these two
substitutions fully instantiate all the type-variables present within the callee's type-map in
accordance with the types of the actual arguments and the result of the function application.

As discussed above, the reconstruction algorithm ensures that the instantiated type deriva-
tion tree computed for the callee's body matches its application site within the type derivation
tree of the caller's body. This process effectively "glues" the instantiated type derivation tree
of the callee's body at the APP rule within the caller's type derivation tree, producing a single
typing derivation tree that structurally corresponds to the partial execution tree across this ap-
plication. Below, we formalize the construction of the type derivation tree in the above manner
and show its consistency with respect to the current partial execution tree.

7.4.5 Correctness of the Algorithm

We model the entire computation including the initial program loading/linking phase using a
partial execution tree given by Definition 7.1. The program loading and linking phase construct
the static and the dynamic environment within which the top-level query expression is evaluated.
This is not part of the real reconstruction process because it is performed before initiating the
execution of the top-level query expression. But, in our theoretical formulation it is simpler
to start with empty static and dynamic environments, and an empty store that are consistent
with each other by definition.

Each loading/linking step adds a new let-binding to the partial execution tree and the
type derivation tree, adding its type and value to the static and the dynamic environments
respectively. Since each binding is well typed, it follows from the Soundness Theorem 3.16 that
we end up in a store typing So such that each top-level binding value is consistent with its
corresponding type, and that the static environment Eo, the dynamic environment eo, and the
store so obtained after loading/linking are also consistent:

So eo: Eo and k so : So (7.1)

Now we are ready to show that the reconstruction algorithm of Figure 7.5 is correct, i.e.,
given a logical partial execution tree as given by Definition 7.1, it computes the corresponding
logical type derivation tree as given by Definition 7.2.

Theorem 7.3 (Correctness of Type Reconstruction) The reconstruction algorithm shown
in Figure 7.5, when applied to the complete dynamic activation tree at any time during program
execution, produces the exact types for every value computed until that time.

Proof: by induction on the size of the partial execution tree (Definition 7.1). Since the top-
level query is guaranteed to be well-typed, we start with its type derivation tree. Looking

151

at the static inference rules shown in Figure 3.2 and the dynamic inference rules shown in
Figure 3.1, it is clear that the structure of the type derivation tree must correspond to the
partial execution tree except possibly at the APP or the ABS rules where the number of
judgment antecedents differ between the static and the dynamic rules. We recurse down the
partial execution tree and the current type derivation tree simultaneously in a depth-first,
leftmost-first manner, arguing by case analysis on the inference rules that lead to completed
evaluation judgments.
Case 1: Rules other than ABS or APP - Equation 7.1 shows that we start with a consistent

set of environments and an initial store. For each sub-expression that has been evaluated
in sequence, the Soundness Theorem 3.16 guarantees that its value vi present in the partial
execution tree would be consistent with the corresponding type ri present in the type
derivation tree. Furthermore, we can construct a chain of extensions to the initial store
typing, Si extending Si-1 extending ... So, each of which would be consistent with the
corresponding store si, si-1, ... , so. If any of these intermediate values entered the dynamic
environment through a let-binding, then the static environment Ei and the dynamic
environment ei so obtained would also be consistent by construction. Therefore, for each
sub-expression evaluation judgment we have,

Si vi: i Si ei : Ei si : Si (7.2)

Case 2: ABS Rule - Here, we simply clip the type derivation tree at the abstraction typing
judgment in order to emulate the structure of the partial execution tree which produces a
function closure immediately. The type-correctness of the function body ensures a consis-
tent static type for the closure by definition of = (Definition 3.12).

Case 3: APP Rule - This is the interesting case of type reconstruction. By induction hy-
pothesis, the function and the argument expressions evaluate to a closure and a value
respectively that are consistent with their types present in the type derivation tree. Fur-
thermore, suppose the base function f present within the closure" has arity k with formal
parameters X1 ... Xk. We need to consider two cases-partial application of the closure to

one more argument, and the final application of the closure that generates a new activation
frame.

If the current application is a partial application of a closure (clsr fi, Xk-i+l, af, e -) to

the value vk-i+1, then it immediately produces another closure (clsr fi-l, k-i+2, af, ek- i +) ,

where ek - i+ 1 ek - i + {xk-i+l -+ vk-i+l}. The type consistency of this value with respect

to the result closure type recorded in the type derivation tree follows directly from induc-
tion hypothesis. The important point to note is that if some type-variable in the resulting
closure type was not being conserved at this application site, then its exact type-hint would
also have been supplied at this application site and stored within the closure environment
ek-i+l

ef
Now suppose the function has already undergone k - 1 partial applications before this

application to produce a function closure (clsr f 1, Xk, af, ek-l). Therefore, the dynamic

11The simple expression language of Chapter 3 does not deal with multi-arity functions directly. Therefore,
we assume that each multi-arity function f with arity k in the user program gives rise to a set of functions
fk fI-l1, ... , fl that represent partially applied closures of f accumulating one argument at a time within their

environments e f * ef -1 The superscript i on the function f' denotes how many more arguments are needed
before the evaluation of the body of the function f is initiated. Likewise, the superscript j on the environment
e' denotes the number of arguments it has accumulated.

152

APP rule in the caller's partial execution tree looks like,

ei F- all/si (clsr f 1, Xk af, ek-1)/si+i
ei F a2 /8i+1 • Vk/Si+2

ek-1 + Xk 4 Vk, f - (clsr fk, x1, af, e) afs+ -/-
ei - (a a2)/si = -/-

While the static APP rule in the caller's type derivation tree constructed so far looks like,

Ei ý a, : rk • rk+1 Ei b a 2 : 7k

Ei F- a a2 : Tk+1

We wish to construct an appropriate type derivation sub-tree that models the evaluation
of the callee's body.

From the induction hypothesis on the first two clauses and the Soundness Theorem 3.16,
we obtain new store typings Si+ 1 and Si+2 such that,

Si+1 = (clsr f 1 , xk, a, ek- 1) rTk - Tk+1 Si+1 extends Si si+1 : Si+1 (7.3)

Si+2 ýVk : Tk Si+2 extends Si+1 Si+2 : Si+2 (7.4)

Looking at the definition of H (Definition 3.12), the first clause of Equation 7.3 guaran-
tees that there exists a suitable type environment Ek- 1 that is consistent with the closure

environment ek - 1 and provides a proper typing for the function body. That is,

Si+1 ek-- 1 : Ek-1 (7.5)

and Ek- (fl where f(x 1 ... Xk) = ao) : Tk - Tk+1

-+ E-+ k {k - Tk} ao:rk+1 (7.6)

The job of the reconstruction algorithm is to construct the type environment Ek- 1 and
hence build the exact type derivation tree of the function body as given by Equation 7.6.

At compile-time, the static type-map of the function TMf has already recorded the
static type of all the parameters and free identifiers of the function f (Definition 6.1). The
reconstruction algorithm simply needs to instantiate this compile-time type environment
E"atic to compute the actual type environment E - 1 as discussed in Section 7.4.4 above.
In particular, the algorithm uses the exact type rk of the final argument Xk from the
application site as well as type-hints contained within the closure environment ek- 1 that
allow it to compute the exact types of all the non-conserved type-variables in the type-
map TMf. This completely instantiates the types of all the accumulated arguments l :
r 1,..., Xk-1 Tk-1 and the free identifiers contained within the closure environment ek- 1

Having constructed the type environment Ek- 1 as above, we can now instantiate the
type derivation tree of the body af as shown in Equation 7.6. Now it remains to be shown
that this type derivation tree is consistent with the evaluation tree of the function body
a1 .

We have the following environments,

ek ek - 1
{k 0 k } Ek- = Ek

- 1
k Tkef = e1 +{XkI-4Vk} f -E=E + {Xki-Tk}

Note that all argument and free identifier values contained within the closure en-
vironment ek - 1 must be consistent with the type present within the instantiated type

153

environment E - 1 under the store typing Si+l, i.e., the constructed environment Ek- 1

satisfies Equation 7.5. This is because these values have been computed in the earlier
part of the evaluation tree which we have already type reconstructed and verified for
consistency (Equation 7.2). Since the current store typing Si+2 extends Si+1, we have

Si+2 e - 1 : Ef - 1 which is combined with Equation 7.3 and Equation 7.4 to give

Si+2 ek : Ek. Together with Equation 7.4 and Equation 7.6, we obtain via the Sound-
ness Theorem 3.16 that the evaluation of the function body af will be consistent with its
type elaboration.

Thus, we have successfully reconstructed a consistent type derivation tree shown in
Equation 7.6 for the expansion of the partial execution tree due to an arity-satisfied function
application within the current frame.

O3

154

Chapter 8

Application Study: Tagless
Garbage Collection

In this chapter we study an important application of type reconstruction: Tagless Garbage
Collection. We describe the compile-time and run-time support needed to perform garbage
collection for a polymorphic language without any type-tags. We have implemented our scheme
for the Id language running on a simulator for the *T multi-processor architecture. We describe
this implementation and compare its performance with two other storage management schemes:
first, a conservative garbage collector that does not use any type information, and second, a
compiler-directed storage reclamation scheme that explicitly deallocates objects based on static
life-time analysis.

8.1 Introduction

Dynamic memory management is an integral component of modern programming languages
such as C, Common Lisp, Standard ML, and Haskell that support the notion of a globally
shared heap of objects. It is possible to manage the heap memory manually by means of
explicit allocation and deallocation calls, though manual storage reclamation is often a difficult
and error-prone process. Usually, it is more convenient to use some automatic mechanism for
storage reclamation such as an independent garbage collector that reclaims storage periodically
once it is no longer in use.

Traditionally, run-time systems geared towards automatic garbage collection use a tagged
object representation model [App90, Wil92]. This enables the garbage collector to distinguish
between scalar objects and pointers to heap objects without any support from the user or the
compiler, although the user application has to pay the price of tagging and boxing objects and
performing continuous tag maintenance.

Recently, storage reclamation techniques with an untagged object representation model
have received much attention. The motivation comes from a desire to use the full pointer
addressability and native representation for scalars rather than a tagged representation, and
to avoid the overhead of continuous tag maintenance. Some techniques, such as conservative
garbage collection [Bar88, BW88] and compiler-directed storage reclamation [HJ92, Hic93], do
not use any run-time type information. While, garbage collection based on type reconstruc-
tion [App89, Gol91, GG92] or explicit type propagation [To194] use source type information for
identifying and traversing live heap objects. In this chapter, we will study and compare the
performance of some of these techniques with a scheme based on full run-time type reconstruc-

155

tion.

8.1.1 Storage Reclamation without Run-time Type Information

In an untagged run-time system, no explicit type information is available at run-time in order
to identify and traverse live objects. Still, it is possible to perform garbage collection using
a conservative object identification strategy as shown by Boehm and Weiser [BW88]. In this
scheme, the garbage collector guesses whether a given value is a scalar or a pointer to a heap
object. Typically, the guess is based on certain assumptions about the location and alignment
of actual pointer data. Since the guess is conservative, the garbage collector may assume some
objects to be live when they are dead and fail to collect them. It may also be possible to
compact or copy part of the live data that is definitely known to reside on the heap as shown by
Bartlett [Bar88]. The feasibility and efficiency of such schemes depend crucially on the object
representation convention used within the run-time system and the possibility of obscuring
pointer/non-pointer information within the source language and the compiler.

In another scheme proposed by Hicks [HJ92, Hic93], the compiler performs life-time analysis
of objects and automatically inserts explicit deallocation calls for an object that is determined
to be dead at a particular point in the program. The compile-time cost of this analysis is
substantial since the proposed scheme performs abstract interpretation over the entire program
in order to determine the reference patterns of dynamically allocated objects and to approximate
their life-times statically. Although, once an object has been determined to be garbage, the run-
time cost of deallocating it at an appropriate program point is minimal. Since static analysis
is necessarily approximate due to undetermined control flow and sharing or aliasing of objects,
this technique is also unable to reclaim all the garbage generated within the program.

8.1.2 Garbage Collection using Run-time Type Reconstruction

The primary motivation for a type-reconstruction-based garbage collection scheme is to take
advantage of the enormous compile-time type information available in a statically-typed lan-
guage in optimizing its run-time performance. In particular, it is possible in such a system to
use an untagged and unboxed representation for scalar objects and eliminate type headers for
heap objects without compromising the ability to perform complete object identification. All
the desired type information may be automatically reconstructed when necessary. Although
the cost of type reconstruction may be significant, it needs to be paid only when garbage col-
lection is initiated. Therefore, such a scheme may work very well for scientific applications
where numerical performance is of prime concern and garbage collection is expected to happen
infrequently and is used in conjunction with explicit storage management. Keeping tagless
data also permits easy inter-operability with conventional C and Fortran libraries that do not
support tags.

Full run-time type reconstruction also offers some unique advantages that are not present
in other schemes for storage reclamation. Having the exact run-time types of objects allows the
garbage collector to examine and traverse objects selectively. For example, the collector need
not search for heap pointers inside a large array of floating point numbers. Similarly, the scalar
fields of a record may be safely skipped. For scientific applications manipulating large numeric
arrays, this may constitute a substantial saving in identifying the set of all live objects.

It is also quite easy in this scheme to generate specialized traversal and marking functions
for user-defined objects and function activation frames that understand their type and control
structure. These functions selectively traverse the fields that point to heap objects as determined

156

by their types, and mark those objects as live. Since these functions are specialized to the type
of a particular object, they may be more efficient than interpreting the run-time reconstructed
types of the objects.

8.1.3 Related Work

Goldberg and Gloger used type reconstruction to garbage collect a polymorphic language
[GG92]. But their system did not guarantee complete type reconstruction. In a situation
where a polymorphic function accessed only part of a complex object (see Section 6.1.2), say
the spine of a linked list, their system could not determine the full type of the object and
therefore could not traverse it completely. The authors argued that the inaccessible parts of
the object were garbage anyway and therefore need not be marked as live. Unfortunately,
the object could have shared references from other sources that access it farther than the first
reference. To deal with such cases, the authors proposed maintaining hash tables of partially
traversed data-structures as a way of identifying the extent to which an object was live and
therefore should not be garbage collected. This scheme was both cumbersome and costly. On
the other hand, our scheme of full type reconstruction allows the garbage collector to traverse
the whole object the very first time without using any additional data-structures.

Another interesting scheme has been proposed by Tolmach [To194] where type instantiation
and propagation is made explicit in the program by converting it into an intermediate form based
on the second-order A-calculus [Rey74, HM93]. Under this transformation, every polymorphic
object is parameterized with explicit type parameters for each of its polymorphic type-variables
that are instantiated at the time of application to actual type arguments. This explicit run-time
type information is used during garbage collection in much the same way as in our scheme. A
minor problem in using this scheme is that in order to preserve the call-by-value semantics of
ML-like programs, the polymorphic objects appearing on the right-hand-side of a let-binding
must be restricted to syntactic values, i.e., identifiers, constants, or A-expressions. Wright
showed [Wri93] that this restriction is not too serious in practice.

The explicit type parameters used in Tolmach's system are similar in spirit to the explicit
type-hints of our type reconstruction scheme, although we add explicit type parameters only
for non-conserved type-variables. Our scheme can be considered as an optimal trade-off point
between Goldberg's scheme where no explicit type information is propagated at run-time, and
Tolmach's scheme where all polymorphic type-variables are instantiated using explicit run-time
parameters. We insert explicit type parameters only where necessary assuming that the cost of
reconstructing the remaining information at run-time is small.

8.1.4 Goals and Scope of the Study

The main goal of this study is to establish the feasibility of a type-reconstruction based tagless
garbage collection scheme (TRGC) and to compare its performance with a conservative garbage
collection scheme (CGC) and a compiler-directed storage reclamation scheme (CDSR) that does
explicit deallocation.

In order to make a reasonable performance comparison, we have implemented all the three
schemes for the same source language, compiler, and the target architecture. Our source lan-
guage is Id, which is a polymorphic, strongly-typed, implicitly parallel programming language
[Nik91]. We are compiling Id for the *T multiprocessor architecture [NPA92, PBGB93] and
executing it on an emulator for that machine.

We have chosen a very simple "mark-and-sweep" garbage collection algorithm so that the

157

cost of object identification can be clearly identified during the mark phase. The wall clock
performance of the garbage collection algorithm is not our major concern, we are primarily
interested in the relative cost of type reconstruction and marking vs. the cost of conservative
marking. Explicit allocation/deallocation scheme serves as a calibration point representing the
essential cost of managing the storage.

8.1.5 Outline

The outline of the rest of the chapter is as follows. Section 8.2 describes the object represen-
tation model in Id and summarizes the overall strategy for mark-and-sweep garbage collection
based on run-time type reconstruction. Section 8.3 describes the compiler support required.
In Section 8.4, we describe the run-time object marking schema based on complete type re-
construction. In Section 8.5, we briefly describe the *T multi-threaded architecture and our
implementation of the various storage management schemes on it. Section 8.6 discusses our
benchmarks and presents the performance results. Finally, Section 8.7 presents the conclusions.

8.2 Framework for Tagless Garbage Collection

8.2.1 Object Representations and the Memory Model

The Kernel Id intermediate language as shown in Figure 7.1 is an abstract intermediate form
that does not take a position on the underlying representation of objects. However, a concrete
implementation of a language must specify a representation of objects, which to a large extent,
determines its run-time performance and the garbage collection strategy. In this section, we
describe the concrete representation of Id objects for our current implementation.

The object representation used in the Id run-time system is independent of the target
architecture and only relies upon the assumption of a logically flat, shared, global address space.
In order to keep the representation simple and efficient we avoid making any assumptions about
boxing and explicit tagging of objects as much as possible. The only assumption necessary to
support polymorphism is that we use the same basic unit of memory for all scalar objects and
pointers to heap objects which in our case is a single 64-bit word.

Examples of various Id object representations appear in Figure 8.1. Scalar objects are by
definition untagged and unboxed in Id. n-dimensional arrays are linearized in row-major order
into a flat data-structure that also keeps the bounds in each dimension (11, ul),...,(ln, u,)
and a set of linearization constants co,..., c,-1 that are used to compute the linear offset into

the array given a n-dimensional index. For an algebraic datatype, depending on the total
number m and the arity km of its various disjuncts, we may choose one of product, enumerated,
implicit, or explicit representation. In all cases except when there are more than one non-
nullary disjuncts present, we are able to choose an unboxed and untagged representation for
the datatype. In particular, when there is exactly one non-nullary disjunct present, as in the
case of the list datatype, we assume that heap pointers can be distinguished from a small fixed
range of integers (say, 0-255), sufficient to represent all the nullary disjuncts of the datatype
and no explicit tag is necessary. For some applications, this may save a lot of space and time.

There are two more kinds of objects that are created and manipulated indirectly at run-
time by Id programs. These are function closures and activation frames. In an implementation
without lambda-lifting and currying, function closures keep the values of the free identifiers
of a function obtained from its lexical environment. In our implementation, all functions are
already lambda-lifted, so the closures carry just the curried arguments accumulated under

158

Scalar: 6847 3.14 (Unboxed ar

Bounds Elements
2d_array: cOcl 11 lul 12lu2 - I
Algebraic Type:
Product:
(1 disjunct)

type point = Pt int int;

Enumerated: type bool = False True;

(All nullary disjuncts) 0 1

Implicit: type list *0 = Nil

(1 non-nullary disjunct)

Explicit: type token = Eof

(> 1 non-nullary disjuncts) 0

Function Closure:
def F xl ... xn = E;

Cons *0 (list *0);

I Tkl int I Tk2 float;

W7 D

(F xl...xk)

Activation Frame:
Size Args Locals

IF - -- xn l
Return Cont.

Figure 8.1: Run-time Object Representations for Id.

partial applications. We use the structure depicted in Figure 8.1 which permits sharing of
intermediate closures.

An activation frame is a temporary storage area used by an executing function as a scratch
pad keeping its input arguments and temporary intermediate values. In Kernel Id, the bound
variables of a function constitute the intermediate values that need to be kept within its acti-
vation frame for future use.' The frame also keeps the return continuation, consisting of the
caller's activation frame and the return instruction pointer. In a sequential system, activation
frames are usually allocated on a stack. In our parallel execution model, the linear stack of
activation frames generalizes to a tree and is managed explicitly by the run-time system.

1An intelligent compiler back-end may be able to share some frame slots based on live-variable analysis, but
we are ignoring that issue here for simplicity.

159

d Untagged)

(Linearized)

8.2.2 Overall Strategy

The overall strategy for a simple mark-and-sweep garbage collection based on run-time type
reconstruction is summarized below and described in the following sections:

1. At compile-time, we ensure that every object manipulated by the user program (including
function closures and activation frames) is assigned a static, possibly polymorphic, datatype
that accurately describes the structure of that object (Section 8.3).

2. When the garbage collector is invoked at run-time, first we reconstruct the type of every
activation frame present within the current dynamic call tree using the algorithm described
in the last chapter. The reconstruction mechanism instantiates the compile-time type de-
scription of each activation frame to its exact run-time type.

3. Next, within the mark phase of the garbage collector, each slot of a reconstructed frame
is examined and its reconstructed type is used to mark the heap objects reachable from
that slot as live. This may be done in two ways: the reconstructed types may be directly
interpreted to identify and traverse the heap objects, or the compiler may automatically
generate specialized traversal and mark routines that are appropriately composed at run-
time in order to mark the live objects (Section 8.4).

4. Finally, the unmarked heap objects are reclaimed as garbage by sweeping the entire heap.

8.3 Compiler Support for Object Identification

8.3.1 Visible and Invisible Datatypes

The scalar basetypes, algebraic datatypes, and array types in Kernel Id correspond to pure data-
objects whose types are directly visible at the source language level. There is a direct, fixed
mapping from the source types of these objects to their internal representations as described in
Section 8.2.1. This mapping may be directly used in traversing these objects at run-time once
their exact source type is determined.

On the other hand, arrow types (-+) correspond to two different run-time objects: function
closures which behave like data-objects that must be garbage collected, and activation frames
which are control-objects consisting of the live object root set. Neither of these is modeled
completely by the source-level arrow type. This is because the visible type signature of a
function does not provide any clue regarding the types of the arguments hidden inside its
closure, nor does it provide any information about the local variables kept within the function's
activation frame. In order to treat all Id run-time objects uniformly in terms of Id source
types, we define invisible source-level datatypes for function closures and activation frames
that provide an exact description of their contents.

8.3.2 Modeling Function Closures

In order to simplify the type reconstruction analysis, we model the closures corresponding to
partial applications of a function as disjuncts of an invisible algebraic datatype that is auto-
matically derived at compile-time from the corresponding function signature. This derivation is
shown in Figure 8.2. The various disjuncts of this hidden datatype represent successive partial
applications of the function and identify the number and the types of the accumulated argu-
ments. This indirect model captures all the necessary type information required to traverse the
actual run-time representation of a function closure as shown in Figure 8.1. Given a run-time
closure object, we can map it to an algebraic disjunct in this model by examining its function

160

code-block pointer and the remaining arity slot. Then, given the exact algebraic type of the
closure, the arguments contained within the closure can be traversed using the argument types
of the mapped disjunct.

As an example, below we show a function eqlen that compares the length of two lists. We
also show its Hindley/Milner visible source type and its automatically derived hidden closure
datatype:

Example 8.1:
def eqlen 11 12 = % eqlen :: Vap.(list a) -+ (list 3) - bool

{ leni = length 11;
len2 = length 12;
p = lenl == len2;

in p };

type eqlen_closure a 3 = % Hidden Closure Type
eqlen_apo

I eqlen_apl (list a);

f = eqlen (1:nil); % f :: VO.(list P) -+ bool
% f :: V.(eqlen_closure int 3)

The constructor eqlen_apo models the closure representation of the eqlen function itself,
while eqlen-apl represents the closure formed by a partial application of the eqlen function
to one argument. The example also shows the source type and the invisible type of a partial
application of the eqlen function. 2 Note that the invisible type records the fact that the hidden
first argument within the closure is a list of integers while this information is not present in the
source type.

There is no need to make a closure for eqlen with two arguments since at that point its
arity is fully satisfied and the application gives rise to an activation frame instead of a function
closure.3 Finally, note that the invisible closure datatype is parameterized by all the type-
variables present in the source type of the function. This is necessary in order to model the
exact run-time types of all the arguments contained within the closure.

8.3.3 Modeling Activation Frames

Function activation frames are modeled using an automatically derived, invisible datatype
called the function framemap as shown in Figure 8.2. This is simply a record datatype with
a field for every actual frame-slot (c.f. Figure 8.1). Besides the scalar datatype fields for the
code-block entry point, the frame size and the return continuation, the framemap record the
types of the function arguments and the local identifiers used within the function body.

Abstractly, the framemap of a function provides a logical subset of the type information
recorded within its type-map (Definition 6.1) and is parameterized by the same type-variables.
The framemap simply provides a concrete static image of a function's dynamic activation frame
and therefore may depend on its actual implementation on a given platform. After type recon-
struction is complete, each activation frame is associated with a fully instantiated type-map
from which an appropriate framemap instance can be derived in order to traverse the heap
objects accessible through each frame-slot.4

2 c.:" is the infix cons constructor for lists.
3However, under delayed or lazy evaluation, we may need to keep track of such thunks.
4In our current implementation, the type-map produced by the Id compiler is tailored to the structure of

161

INVISIBLE DATATYPES

Given a Function Declaration: def F xl ... x, = E
F :: Val .. a,.71 -- --4 Tn -l Tn+l

Let (zl :: alT) ... (zm :: am) be the locally bound identifiers of E.

1. Define Function Closure Datatype:
type F-closure a, ... m a = F.apo

I Fap, 71

SFapn-1 rTI Tn-1;

2. Define Function Framemap Datatype:
type F..framemap a, ... a,:

{record (F :: code)
(N :: int)
(R :: cont)
(x1 :: 7r1)

(zz :: Tx)

(z1 :: ci)

(ZM };

% Code-Block Entry Point
% Frame Size
% Return Continuation
% Arguments

% Local Identifiers

Figure 8.2: Automatic Derivation of Invisible Datatypes.

As an example, we show the framemap datatype for the eqlen function given above:

Example 8.2:
type eqlen_typemap ao =

{record
(eqlen :: code)

(size :: int)

(retcont :: cont)

(11 :: (list a))
(12 :: (list))
(lenl :: int)
(len2 :: int)

(p :: bool) };

8.3.4 Run-time Type Encodings

Run-time type reconstruction requires an encoding of all the visible and invisible datatypes of a
program that is used to encode type-hints and to represent the exact run-time types of objects
during type reconstruction. We showed such an encoding and decoding scheme in Figure 7.3 in
Chapter 7. In this scheme, each algebraic datatype Tn is encoded into a corresponding static

the activation frames used in the *T run-time system. Therefore, we directly use the type-map of a function to
traverse its activation frame.

162

type descriptor T n that contains all the necessary compiler information about its arity, internal
field structure, and its representation.

Our compiler generates static type descriptors for all the user-defined algebraic datatypes
and the automatically derived closure and framemap datatypes (Figure 8.2) for each declared
function within the program. These static descriptors are linked together with the object
program and are used by the run-time system during type reconstruction. Run-time types
are encoded as a flat array of static type descriptors using back-pointers to preserve sharing.
This representation permits very efficient copying, unification, and instantiation operations on
encoded types. The packing and unpacking of these encoded types is carried out on the fly
within the run-time system.

8.4 Run-time Object Traversal and Marking

In this section, we describe our scheme for object traversal and marking assuming complete
type reconstruction has been performed. We present two mechanisms:

Interpreted Marking - In this mechanism, the encoded types generated by type reconstruc-
tion are directly used to guide the traversal and marking of the heap objects.

Compiled Marking - In this mechanism, the compiler automatically generates marking func-
tions for each datatype in the program based solely on the static type information. These
functions are appropriately composed at run-time using the reconstructed types and then
directly applied to the corresponding objects.

Both mechanisms are specified as a set of mark functions, one for each basetype, array type,
and algebraic datatype present in the program. The algebraic datatype could be a user-defined
datatype (Figure 7.1) or an invisible datatype defined by the compiler for function closures and
activation frames (Figure 8.2).

8.4.1 Interpreted Marking

The Interpreted Marking Schema M for a type Tn is shown in Figure 8.3. In this schema,
for each type Tn with n type parameters al ... an, we define a mark function markT that is
parameterized by n corresponding encoded type arguments z -... z,. At run-time, this function
is supplied with the exact encoded type instantiation of its type parameters, say F ... ·- , which
produces an appropriate marking function for an object with type (Tn 71 ... rn).

The internal structure of the mark functions closely follows the structure of their corre-
sponding datatypes. The polymorphic, bound type-variables of a type-scheme are mapped to
dummy mark functions because polymorphic objects contain no information. Similarly, all our
base types are scalars, so the mark functions for them do nothing. The mark function for ar-
rays and algebraic datatypes first mark the object itself and then proceed to mark their internal
components. This is achieved by first computing the exact run-time type encoding for each of
the components and then interpreting that encoding. The code to compute the exact type
encoding is directly compiled into the mark functions using the TEncn] scheme shown earlier
(Figure 7.3).

The overall process of interpretive marking is governed by the top-level type-code interpre-
tation function shown in Figure 8.4. Here, we have generalized the type-code interpretation
scheme Interpret[for an arbitrary datatype schema 7Z such as the marking schema M of
Figure 8.3. This process unpacks the encoded type and invokes the schema function for the
appropriate type descriptor passing it the rest of the encoded type arguments. In the present

163

MARKING SCHEMA M

Given a polymorphic type-variable ai, define MJ[TO,] = markiTa, where
def markfTa, () = Ax.()

Given a Type Tn, define M j[Tn = mark_T, where

1. TO is a BaseType (int I float):
def markT () = Ax.()

2. T1 is an ArrayType (ndarray a):
def marknd_array (z) =

Aa.{ Mark(a);

(li, U), ... , (In, Un) = bounds(a);
for il +- 11 to u1 do

for in +-- In to un do
Interpret[M] (TEnc[la] {ja - z}) a[il,..., in];

}
3. T n is an Algebraic DataType (Tn a, . an):

def markfT (zl, ... ,z) =
Ax.{ Mark(x);

CaseT x of

C1 X1 Xl. xk, = { Interpret[M] (TEnc[Ti-] {ai j zi}) xl;

InterpretIM] (TEnc[rlkl1 {ai - zi) xk,; }

Cm X1 " Xkm = { Interpret[M] (TEncj[rml] {afi -+ zi}) xl;

Interpret[M] (TEnc[Tmkm] {ai -+ zi}) xkm; }
}

Figure 8.3: Generating Mark Functions for Datatypes.

Given a Datatype Schema 1?, define

Interpret[RJI 7 = { Case head(Y) of
T7= (MiTf]) argsn(-)
T, = (R[T2m]) argsm (Y)

Figure 8.4: Type-code Interpretation at Run-time.

164

Given a Datatype Schema 1R and a Translation Environment PR, define

C om pile[7~] r a = r (a)

Compile[R] Fr (T n ri - - -r) = (1R[T]J) (Compile[R~] R ri, ... , Compile[1]I rR rn)

Compile•R] FR Val ... aan.r = Compile[R•] r (r[T°,/ai])

Figure 8.5: Type-based Translation at Compile-time.

case, (Interpret[M] 7 x) traverses and marks the object x according to its exact run-time
type encoding T by recursively instantiating and invoking the mark functions associated with
the type descriptors in r. Other structured datatype schema such as a printing schema or an
I/O schema may also be defined and interpreted in a similar manner.

In our current implementation, the type-code interpretation mechanism of Figure 8.4 is built
into the run-time system. The marking process is invoked for each type-reconstructed activation
frame present in the dynamic activation tree. The run-time system constructs the exact run-
time type encoding of every frame-slot in the given activation frame and then directly dispatches
to the appropriate marking function based on the datatype class as specified in Figure 8.3. The
marking process is further optimized based on the actual representation chosen for a particular
class of datatypes as shown in Figure 8.1. For example, the marking function for linearized
arrays computes the total size of the array and marks each of its elements in a single loop. In
case of algebraic types, nullary disjuncts under enumerated or implicit representation are never
marked, a product disjunct is always marked, and a tag dispatch is made for explicitly tagged
disjuncts. Finally, the hidden arguments inside function closures are traversed and marked
according to their reconstructed hidden closure types.

8.4.2 Compiled Marking

Rather than interpreting type encodings as in the interpreted marking schema, it is also pos-
sible to generate compiled marking functions for each datatype that know how to traverse the
object directly without any type interpretation. In this Compiled Marking Schema M', for each
datatype Tn the compiler automatically generates a mark function mark'_T that is parameter-
ized by n mark function arguments fi ... f, instead of encoded type arguments. This alternate
marking schema M' can be directly obtained from our interpreted marking schema M shown
in Figure 8.3 by replacing the recursive call for interpretation:

Interpret[M] (TEnc[7r] {fi -+ zi))

by a type-based function composition:

(Compile[M'A] {ai ý fi} -r)

This transformation expresses the fact that building the exact run-time type encoding of an
object and then interpreting it to guide the traversal and marking is functionally equivalent
to directly traversing it using a compiled marking function that knows the structure of that
object.

The general mechanism of type-based function composition (Compile[ZJ R]R r) for an
arbitrary schema 7Z (such as the compiled marking schema M') is shown in Figure 8.5. Gen-
erating compile-time type encodings as shown in Figure 7.3 may be thought of as a special

165

case of this mechanism. This mechanism translates a given static type r into a composi-
tion of schema functions specified by 7Z under a translation environment FR that maps free
type variables of r to schema-dependent values. For the case of compiled marking schema,
(Compile[M'I {ai -+ fi} r) creates a function composition that is capable of marking an
object whose type is a run-time instance of the static type r. Note that the marking function
so generated does not contain any type-code interpretation. Its execution directly results into
the appropriate traversal and marking of the given object.

The compiled marking process is initiated by converting the reconstructed type-map of each
activation frame into a composition of compiler-generated marking functions. This translation
is similar to the type-based function composition shown in Figure 8.5 except that it operates
on type encodings rather than static types. The resulting function composition may be directly
applied to the given activation frame to mark all heap objects reachable from that frame. The
compiled marking schema is currently unimplemented.

8.4.3 Variations on Marking Schemes

The interpreted and the compiled marking schemes described above are just a few among a
full spectrum of possible marking schemes that depend on the degree of type specialization
performed at compile-time and degree of type interpretation performed at run-time. For in-
stance, it is possible to have a marking schema that takes an intermediate position between the
completely interpreted schema M and the completely compiled schema M'. In this schema,
calls to the top-level interpretive dispatch (Figure 8.4) may be statically specialized to call the
marking functions of schema M directly, although dynamic type-hints may still have to be
interpreted at run-time.

It is also possible to specialize the type-hint propagation and the type reconstruction mech-
anism described in the last chapter (Section 7.2 and Section 7.3) for the explicit purpose of
object marking. In this scheme, the compiler would insert code to generate and propagate
type-hints (Section 7.2.3) that consist of compositions of mark functions rather than run-time
type encodings. The type reconstruction algorithm (Section 7.4.4) would also be modified to
deal with such type-hints and the algorithm would return a higher-order composition of mark
functions for the given activation frame rather than a reconstructed type-map. The mark func-
tion so obtained would be directly applied to the activation frame to mark all heap objects
accessible from it. 5

An independent variation for any of the compiled marking schemes is to generate as many
specialized marking functions as possible at compile-time for every static type occurring in the
program rather than generating compositions of a fixed set of datatype marking functions as
shown above. This would clearly reduce the overhead of using higher-order marking functions.

8.5 *T Implementation

*T is a parallel, distributed-memory machine with a high performance interconnection net-
work [NPA92, PBGB93]. The *T architecture extends a basic RISC instruction set with
low-overhead, user-mode communication and synchronization primitives. The details of the
architecture may be found elsewhere [Bec92]. In this section, we briefly summarize some of the

5Readers familiar with Haskell's type classes [HWe90, WB89] would immediately recognize that in Haskell,
we can accommodate all variations of type reconstruction and its applications by declaring a universal class trec
that provides type encodings, mark functions, print functions etc. as independent methods.

166

design features and the terminology of the *T architecture that are relevant to the implemen-
tation of Id on *T and then describe our implementation of distributed garbage collection on
this machine.

8.5.1 Multi-threaded Execution: Processor View

In our study, we used a simulator for the *T architecture based on Motorola's 88110MP pro-
cessor. The 88110MP is a super-scalar RISC processor extended with an on-chip message and
synchronization unit (MSU) which provides hardware support for scheduling microthreads. A
microthread is a compiler-defined sequence of instructions executing within the context of an
activation frame. A microthread descriptor identifying a microthread consists of an instruction
pointer (IP) and a frame pointer (FP) (refer Figure 6.2). A microthread, by definition, executes
to completion once it has been invoked. It may send messages or fork other microthreads that
are deposited in a stack of ready-to-run microthreads.

*T processors communicate with each other by sending messages via the network. Messages
consist of 4 to 24 32-bit words. Due to the on-chip message unit, *T messages may be dis-
patched and handled very quickly using the general-purpose processor registers directly (6 and
12 instructions respectively for a full-sized message). Messages always contain a microthread
descriptor as the first two words of payload. Normally, messages are handled by invoking the
microthread described within the message, so these microthreads are termed message handlers.

A microthread's last operation is to schedule the next microthread of the highest priority
which is selected from a simple priority queue consisting of handlers of incoming messages, the
microthread stack, and several microthread registers. Message handlers have higher priority
than computation microthreads.

8.5.2 Multi-threaded Execution: System View

*T runs a Unix-like operating system. A parallel job running on *T consists of a separate
process, or a player, on each processor. Players belonging to the same parallel job are scheduled
at the same time on their respective processors by the operating system. The players have
independent 32-bit virtual address spaces, but may refer to a global 64-bit address space through
the MSU by sending messages to each other.

The Id compiler and its run-time system for *T provide the high-level abstraction of a
single, implicitly parallel program running within a shared, global address space as shown in
Figure 6.2. The Id compiler statically partitions the user program into several microthreads that
are scheduled dynamically during execution. Microthreads communicate and synchronize with
each other via messages. Microthreads belonging to a single Id procedure execute within the
context of a shared activation frame and may also communicate with each other via the frame.
Since successively scheduled microthreads on a processor may be completely independent, the
general-purpose registers within the processor are kept local to a microthread and are not
used to communicate data across microthreads. However, registers may still be used to pass
parameters to C functions called within a single microthread.

The Id run-time system consists of the frame manager, the heap manager, and protocol
handlers for I-structure and M-structure memory operations [CCF+93]. All run-time system
calls are initiated and serviced as split-phase transactions. A microthread sends a message to a
run-time system request handler passing it the descriptor of a microthread that would receive
the reply. The request handler services the request and returns the result in a message to the
reply handler provided with the request. This scheme ensures that computation microthreads

167

never block the processor pipeline and can always run to completion. 6 This invariant guarantees
that run-time system exceptions such as running out of frame or heap memory always happen
at the boundary of a computation microthread. At that moment, none of the general-purpose
registers contain any live data and the complete root set of heap objects is available within the
tree of activation frames.

The Id run-time system sets up the players participating in a parallel job to continuously
execute a microthread dispatch loop where microthreads are scheduled according to the priority
scheme described earlier. One of the players (processor 0) is setup to allocate the root activation
frame and launch the first microthread along with its user-supplied arguments. It also receives
the final result and coordinates the termination of the parallel job.

8.5.3 Memory Organization

For the purpose of executing Id programs, the *T machine is logically divided into two
kinds of nodes: computation nodes and memory nodes (see Figure 8.6). The computation
nodes manage the dynamic tree of activation frames and execute computation microthreads
while the memory nodes manage the heap memory and handle various protocols for memory
references.

The address space of a player running on a *T processor is divided into several areas that
are themselves distributed or replicated across the nodes as shown in Figure 8.6.

The code and static data areas are replicated on all nodes - each node gets a copy of the
whole program and all of its constants. Each node also has a stack that is used for calling into
C procedures from Id. The Id run-time system is implemented in C and may also use the C
stack.

The frame area on the computation nodes contains the activation frames for every Id pro-
cedure invocation. When a procedure is invoked, the run-time system chooses a processor on
which to allocate its frame according to a built-in load balancing strategy. Then, the run-time
system sends a frame allocation request to that processor in a split-phase transaction, which
allocates a frame in its own frame area and returns a pointer to it to the calling routine. This
mechanism distributes the dynamic tree of activation frames across all the computation nodes.

An activation frame is deallocated by the last microthread of its associated procedure and
may be reused subsequently. In order to avoid confusion due to stale data lying around from
previous allocations, the Id compiler arranges the first microthread of each procedure to clear
all frame-slots that may contain pointers. This helps in identifying valid data within the frame
during garbage collection.

The heap area on the memory nodes contains all of the heap-allocated Id objects. The heap
area is further divided into the interleaved and the non-interleaved area. The non-interleaved
area is used for small sized objects contained wholly within the same node, while the interleaved
area is used to allocate large objects that are spread across all the memory nodes to avoid
allocation imbalance and reduce memory contention. In order to simplify our study, we only
used the non-interleaved heap area.

In our implementation of Id on *T, all scalar objects and pointers to heap objects are 64
bits in size. Furthermore, these pointers are always aligned on 8-byte boundaries when stored
in memory. Each 64-bit double word in the heap has an associated 2-bit presence value in the
presence-bit area. These presence bits are used to implement Id's I-structure [ANP89], and
M-structure [BNA91] synchronization operations.

6 If the network is blocked, the message is buffered and is tried again at a later point. Thus, the currently
executing microthread is guaranteed to terminate without blocking.

168

Memory Nodes
ISO

C Stack

Presence bits
Non-Interleaved

Heap

Interleaved
Heap

Code

IS1

C Stack

Presence bits
Non-Interleaved

Heap

Interleaved
Heap

Code

i..

ISn

C Stack

Presence bits
Non-Interleaved

Heap

Interleaved
Heap

Code

Computation Nodes

PEO PE1 PEn

C Stack

Frames

Code

C Stack

Frames

Code

i..

C Stack

Frames

Code

Figure 8.6: The Organization of Computation Nodes and Memory Nodes in the *T machine.

We also use the non-interleaved heap area to keep any deferred-read and locked-take con-
tinuations for the I-structure and M-structure operations respectively. These continuations
represent incomplete split-phase memory accesses whose second phase would complete when
the corresponding heap data becomes available. Therefore, the heap objects carrying these
continuations are always considered to be live and should never be garbage collected. On the
other hand, since our system does not perform tail-calls, pointers to activation frames con-
tained within such continuations are always accessible through the dynamic tree of activation
frames. Therefore, these continuations do not have to be scanned for live pointers. Currently,
our run-time system permanently marks such objects as live and manages their allocation and
deallocation separately. Also, the garbage collector treats their contents as scalar data. A
cleaner solution would have been to designate a separate heap area for allocating such deferred
continuations so that the garbage collector never sees them.

Our compiler and run-time system never store a pointer to the interior of an object in a

169

I

frame-slot or another Id object. Therefore, a pointer found within a frame or a heap object
always points to the head of the active area of the object. The active area of the object is
actually preceded in memory by some information managed by the run-time system including
the object's size (used for deallocation), a mark-bit (used by the garbage collector), and the
time when it was allocated (in instruction cycles - for statistics collection).

8.5.4 Garbage Collection on *T

Garbage collection on *T can be initiated either by request from the Id program or by the
run-time system when one of the processors finds out that it is running out of heap storage.
Our current policy is to initiate garbage collection when the allocated storage on a node reaches
a specified fraction (say, 0.75) of its total storage.

Since the heap is shared globally, all processors must participate in a global garbage collec-
tion. Therefore, when one processor decides to do garbage collection, all other processors are
informed about it. Currently, we have implemented a simple stop-and-collect garbage collection
scheme.

First, the computation nodes stop processing computation microthreads and drain all mes-
sages out of the network because the messages may carry live pointers to heap objects. As
messages are drained from the network, their handlers are invoked. Our compiler ensures that
the computation message handlers may modify memory locations or fork other microthreads,
but they are not allowed to send more messages. 7 We can handle all messages and eventually
reach quiescence, as long as we do not run any threads scheduled by the message handlers.
Since we invoke message handlers as the network drains, there are no queues of messages to
consider as part of the root-set during garbage collection.

Once the network is drained, all processors synchronize and then initiate the mark phase.
In this phase, all live and reachable objects residing on the memory nodes are marked according
to one of the object identification techniques starting from the distributed tree of activation
frames residing on the computation nodes. This process requires global communication among
processors to mark objects distributed across the machine. After global marking is completed
on all nodes, the processors synchronize again and then each memory node begins a local sweep
phase. A final synchronization is performed after sweeping is completed on all nodes, and then
the Id threads are allowed to resume computation on the computation nodes.

Type-Reconstructed Garbage Collection

The mark phase of the Type-Reconstructed Garbage Collection (TRGC) follows the compiler-
directed object identification scheme described earlier. Currently, we have only implemented
the interpreted marking scheme with full type reconstruction as described in Section 8.4.1.

During the mark phase, the frame memory of each computation node is traversed locally
to find the activation frames that belong to the current dynamic activation tree. Each activa-
tion frame that is currently in use is type-reconstructed according to the algorithm shown in
Figure 7.5. Since the dynamic activation tree is distributed across processors, this process may
require sending messages to non-local parent activation frames in order to obtain their use-type
instantiations.

Once a frame is reconstructed, its slots are searched for heap objects to be marked using their
fully reconstructed types. We directly follow the type-code interpretation scheme of Figure 8.4

7The run-time system message handlers are still allowed to send reply messages, but the number of such
messages is fixed.

170

by examining the type constructor for the current frame-slot to see if it refers to a structured
datatype. If so, the value in the frame-slot is parsed as a pointer and a request for marking the
corresponding object is sent to its home node along with its fully reconstructed type packed
within the requesting message. At the home node, the object and its contents are marked
according to the marking schema shown in Figure 8.3.

Note that, although type reconstruction of a frame must precede marking within that frame,
it may be overlapped with type reconstruction or marking of other frames or heap objects.

Conservative Garbage Collection

The mark phase of the Conservative Garbage Collection (CGC) requires no source type infor-
mation. Conservative garbage collectors use a simple, conservative test to determine whether
a value in a frame or a heap object is a pointer to another object. Since pointers are identified
conservatively, CGC may assume that there are live references to an object when there are none,
therefore some objects may remain uncollected. Also, CGC cannot compact or copy all objects
because conservatively identified pointers cannot be updated. However, there are some more
sophisticated schemes that allow compaction and/or copying of a large fraction of the heap
objects [Bar88]. Finally, CGC has no knowledge of the source types, therefore it must examine
every slot of every reachable object and no short-circuiting based on scalar-type information is
possible.

As in the case of TRGC, the mark phase of CGC begins on the computation nodes by
traversing their frame memory and identifying the activation frames currently in use. For each
activation frame in use, we apply the conservative pointer test on each of its frame-slots as
follows:

1. First, we check to see if the 64-bit value contained within the frame slot is non-zero and
is aligned to a 64-bit boundary. If not, then the value is a scalar.

2. Next, we parse the value as a potential global pointer and determine its home node. If
the node address falls outside the known range of addresses for memory nodes, the value
is a scalar.

3. Finally, we send a message to the home node to check if the value is a valid pointer. At
the home node, we test whether the value points within the allocated heap area and that
it points to the head of an actual heap object. The latter test is made possible because
the run-time system marks the head of each allocated object with a special presence-bit
pattern. Furthermore, the system guarantees that actual pointers never point to the
interior of objects. Therefore, this test may be carried out by simply checking for the
special presence-bit pattern at the head of the pointer value. If this test succeeds then
the value is considered to be an actual pointer and the object is marked, otherwise the
value is taken to be a scalar.

The test may mark some objects that are not actually reachable because a value in memory
happens to look like a pointer to that object. However, the test is guaranteed to mark only
actual heap objects because it checks for the special allocation presence-bit pattern.

Once a value has been determined to be a pointer, the fields of the object it points to are
scanned for potential references to other objects in a similar fashion.

171

Compiler-Directed Storage Reclamation

For comparison purposes, we have also implemented the explicit, compiler-directed storage
reclamation scheme (CDSR) within the same compiler and run-time system framework. In
this scheme, no separate garbage collection needs to be performed: the compiler inserts code
to deallocate an object when it can determine the object to be garbage. This analysis has a
substantial compile-time cost compared to the other two storage management schemes. Also,
the static analysis may not be able to reclaim all the garbage that is generated by the program.

The run-time costs of this scheme may be divided into a small synchronization cost that
schedules the deallocation of an object when all its references are dead and the actual cost of
deallocating the object. The former cost is negligible and is also hard to separate from the user
program because it is built into the microthread partitioning and synchronization of the user
program. The second cost is the same as the basic cost of sweeping the unused objects as in the
other garbage collection schemes and therefore forms the basis of our comparison with those
schemes.

We use the CDSR scheme to compare its relative storage management efficiency to that
of the garbage collected schemes. It is also possible to simultaneously use the explicit storage
management scheme to get most of the large objects along with a garbage collector that catches
the smaller, harder to analyze objects. We believe that a mixed approach may yield better
performance than either scheme on its own.

8.6 Performance Results and Analysis

We are interested in two aspects of the performance of the type-reconstructed garbage collection
(TRGC): how long it takes to garbage collect, and how much garbage it reclaims. We compared
several programs running with TRGC, conservative garbage collection (CGC), and compiler-
directed storage reclamation (CDSR).

In preparing a uniform execution platform, we naturally had to accommodate the require-
ments of each storage management scheme within the same run-time system. This resulted in
a system that was not tuned to any particular storage management scheme. For instance, a
copying or compacting garbage collector could not be used for TRGC since our simple-minded
scheme for conservative garbage collection would not work in that setup. Similarly, the run-
time system had to maintain free-lists for reclaimed objects since we wanted to perform explicit
storage management within the same framework.

Thus, the results we obtained cannot be treated as an absolute measure of performance for
any particular scheme. On the other hand, they provide a good measure of relative performance
of the object identification mechanisms studied and also characterize systems where more than
one storage management strategy is used.

8.6.1 Benchmark Runs

We used four different benchmarks. Quicksort is the standard recursive algorithm for sorting
N list elements parameterized by a polymorphic comparison predicate. Paraffins generates and
counts the number of distinct paraffin isomers of up to N carbon atoms. Gamteb is a Monte
Carlo simulation of N photons impinging on a carbon rod divided into two cells. Finally,
Wavefront consists of 10 iterations of a successive over-relaxation kernel of a N x N matrix
containing floating-point data.

172

Quicksort Instruction Cycles (x 1000)

Mode Input Heap GCs Id Id RTS Idle Total

N (Wds) Basic Mark Sweep TREC Total

TRGC 25 5628 2 488 209 109 17 22 372 3 863
CGC 25 5640 2 488 208 137 16 0 367 5 860
()CDSR 25 5236 0 519 193 0 0 0 195 7 721
TRGC 50 8640 2 1121 513 201 30 43 812 8 1942
CGC 50 8628 2 1113 497 179 30 0 714 5 1833
CDSR 50 10936 0 1185 466 0 0 0 469 7 1661
TRGC 75 15000 2 1736 810 492 51 129 1549 7 3293
CGC 75 15004 2 1717 783 179 48 0 1019 7 2743
CDi)SR 75 17328 0 1852 747 0 0 0 748 11 2611

TRGC 100 18752 2 2348 1106 436 62 95 1747 8 4103
CGC 100 18756 2 2309 1057 414 63 0 1548 11 3868
CDSR 100 25272 0 2490 1012 0 0 0 1013 14 3517

Paraffins Instruction Cycles (x 1000)
ut Heap GCs Id Id RTS Idle Total
N (Wds) Basic Mark Sweep TREC Total

10 8870 2 678 352 123 30 11 528 20 1225
10 8870 2 681 354 89 30 0 481 16 1177
10 10690 0 700 308 0 0 0 311 40 1051
11 15760 2 963 538 286 52 19 905 40 1908
11 15760 2 964 538 185 52 0 782 38 1784
11 17572 0 1000 462 0 0 0 465 87 1553
12 28144 3 1482 900 620 93 38 1660 45 3187
12 28148 3 1487 902 387 93 0 1389 43 2920
12 30722 0 1523 749 0 0 0 752 107 2383
13 46884 3 2521 1607 2765 234 145 4763 121 7405
13 46884 3 2528 1608 1726 234 0 3576 114 6218
13 58682 0 2566 1299 0 0 0 1302 292 4160

Figure 8.7: Performance Results for Quicksort and Paraffins.

For each of the programs we tested, we ran three versions: TRGC, CGC, and CDSR. The
TRGC version is the program running with type-reconstructing garbage collection. The CGC
version is running with conservative garbage collection, and the CDSR is the automatically
annotated version running with no garbage collection. Both garbage collectors used the mark
and sweep algorithm, and used the same implementation of sweeping and inter-processor syn-
chronization. Using a simple GC algorithm allowed us to separate the basic heap management
cost (allocation and deallocation) from the overall cost of garbage collection. Thus, the cost
of object traversal and marking of TRGC and CGC can be truly ascribed to their respective
object identification strategies.

In all three cases, actual heap storage management and statistics collection was performed by
the same Id run-time system. Although statistics gathering was mildly intrusive, it constituted
a tiny fraction of total cycles executed. Online statistics processing (re-sampling profiles) was
not counted.

173

Gamteb Instruction Cycles (x1000)

Mode Input Heap GCs Id Id RTS Idle Total

N (Wds) Basic Mark Sweep TREC Total

TRGC 25 5634 3 1948 289 59 15 6 381 65 2394

CGC 25 5634 3 1950 291 102 15 0 417 58 2425

CDSR 25 1780 0 2000 313 0 0 0 316 56 2371

TRGC 50 11278 3 3837 586 73 30 8 709 123 4668

CGC 50 11278 3 3824 584 117 30 0 739 119 4682

CDSR 50 1780 0 3929 627 0 0 0 631 111 4671

TRGC 75 16812 2 5485 836 35 34 4 919 191 6594

CGC 75 16812 2 5490 840 62 34 0 942 172 6604

CDSR 75 1712 0 5628 906 0 0 0 913 173 6714

TRGC 100 22506 2 7150 1096 70 46 7 1228 246 8624

CGC 100 22506 2 7159 1101 97 45 0 1250 227 8636

CDSR 100 1840 0 7355 1191 0 0 0 1198 222 8775

Wavefront Instruction Cycles (x1000)
Mode Input Heap GCs Id Id RTS Idle Total

N (Wds) Basic Mark Sweep TREC Total

TRGC 10 1726 3 495 22 21 1 2 56 50 601

CGC 10 1726 3 495 22 49 1 0 79 50 624

CDSR 10 1078 0 518 21 0 0 0 23 48 589

TRGC 20 5256 5 1772 41 41 2 3 100 224 2096

CGC 20 5316 5 1769 41 242 2 0 295 224 2288

CDSR 20 1300 0 1821 40 0 0 0 42 211 2074

TRGC 30 10500 5 3922 65 41 2 3 124 523 4569

CGC 30 10500 5 3921 65 462 2 0 540 524 4985

CDSR 30 6548 0 4064 64 0 0 0 66 494 4624

TRGC 40 20680 5 6946 113 41 2 3 172 945 8064

CGC 40 20740 5 6934 113 832 2 0 957 947 8839
CDSR 40 12692 0 7191 112 0 0 0 114 893 8198

Figure 8.8: Performance Results for Gamteb and Wavefront.

We simulated several problem sizes on a single processor with each program and storage

management scheme. Figure 8.7 and Figure 8.8 show the performance results for each of the

benchmarks. The first two columns identify the storage management scheme (Mode) and the

input size (N). The next two columns show the maximum heap size used (Heap) during each run

measured in 32-bit words, and the number of garbage collections performed (GCs). Subsequent

columns record timing information for various categories of instructions measured in Kcycles.

In each of the garbage collected runs, the run-time system initiated the garbage collection when

the currently allocated space exceeded 75% of the total heap space. Garbage collection was

switched off for CDSR runs.

The timing information for each benchmark run is broken up into several categories. The

amount of time spent in Id computation threads (Id) includes basic computation work, math-

library subroutine calls, split-phase memory referencing and program I/O. The time spent in

the run-time system (Id RTS) is classified into the time spent in basic storage management

174

10000-

8000-

6000-

4000-

2000-

-

40 60

List Size

10000-

8000-

6000-

4000-

2000- -

80 10
80 100

Gamteb

40 60

Particles
80 100

Paraffins

,0

U

3---- A'

A-- -

11 12

Carbon Atoms

Wavefront

10 20 30

Matrix Size

Figure 8.9: Total Cost and Run-time System Cost for the Benchmarks.

(allocation/deallocation), frame and object marking during garbage collections, object sweep-
ing, and type reconstruction. The remaining time is spent idling through the scheduling loop
waiting for messages to arrive through the network.'

8.6.2 Performance Analysis

Time Analysis

The total instruction cycles and the cycles spent in the run-time system (including garbage
collection) for all the runs are summarized in Figure 8.9. These curves give an idea of the

growth of run-time system cost of the various schemes as a function of problem size and as a
fraction of the total cost.

Several trends are apparent from Figure 8.9. The CDSR scheme consistently has the lowest
run-time cost since it does not perform any garbage collection and only incurs the basic heap
and frame management cost (allocation and deallocation). The fraction of time spent in the

Quicksort
-- * TRGC Total

-- CGC Total
-- CDSR Total
- TRGC RTS

- e- CGC RTS
- - CDSR RTS

r ----- --

IV

It I"W'WX

1 IJ000

8000

6000

4000

2000

0

ArVI
1

I

8Even if only a single processor is used out of a multi-processor *T configuration, all messages are sent out
to the network and received after some delay. This may cause idle cycles on the processor if it does not have
anything else to do.

175

Tvye-Rec.

~ Sweep
g Mark-Object
7 Mark-Frame

F • ..

_)VVV-

4000-

0

o 3000-
X

2000

1000

-A--
O rr O O n"
r3 cl) rC C)
o 0 CT O 0

O I- O

Quicksort 100 Paraffins 13 Gamteb 100 Wavefront 40x40

Figure 8.10: Run-time System Cost Breakup.

run-time system varies widely depending upon the nature of the application and the cost and
the number of garbage collections performed. For example, Paraffins allocates a lot of small-
sized data-structures keeping them live until the very end. Thus, each mark phase has to do a
lot of work. Similarly, Quicksort rapidly unfolds into a tree of activation frames each of which
holds onto a substantial amount of storage, so the cost of marking is high there as well. On
the other hand, for Gamteb, the size of the live heap is quite small so the garbage collected
schemes incur very little overhead.

Comparing the relative run-time costs of TRGC and the CGC, we find that for Quicksort
and Paraffins, TRGC does worse than CGC, while for Wavefront TRGC performs better. This
wide variation can be explained by examining the run-time cost breakup shown in Figure 8.10
for the largest sized runs. We split the basic storage management cost shown in Figure 8.7 and
Figure 8.8 between the cost of managing the frame area and the cost of managing the heap.
The marking cost is similarly split between the cost of marking the frames and the cost of
marking the live heap objects.

Looking at Figure 8.10, TRGC spends a significant amount of time in the type reconstruc-

176

CAAA

M Heap-Mgmt.
m Frame-Mgmt.

o o or o o 1
CD CD Cl) CD CD Clm 0C 0

I- 0 -

MR

T

_J
m

J

m

tion phase for both Quicksort and Paraffins. This is because both these benchmarks contain
several polymorphic functions. Thus, the type reconstruction mechanism has to generate and
propagate the exact run-time type instantiation down from the root to each polymorphic frame
in the dynamic call tree. On the other hand, the type reconstruction cost is hardly visible in
Gamteb and Wavefront that are not polymorphic and largely consist of first-order functions.
Furthermore, during type reconstruction and interpreted marking, the run-time types are rep-
resented as C data-structures and are currently managed using conventional malloc and free
system calls. This cost can be substantially reduced by using a specialized version of malloc.

The marking cost of TRGC is also about 1.5-2.2 times higher than that of CGC in case
of Quicksort of 100 elements and Paraffins of 13 carbon atoms. Our current implementation
interprets the type structures at run-time in order to traverse and mark the corresponding run-
time objects. This interpretation overhead could be eliminated by using the compiled marking
schema as described in Section 8.4.2 where the compiler generates a specialized marking routine
for each source type parameterized over its polymorphic variables. Furthermore, these routines
can be inlined to produce highly optimized traversal and marking functions for each user-defined
function activation frame.

In the case of Wavefront, TRGC takes much less time than CGC, and very little more
time in total than CDSR, where no marking at all took place. For Wavefront of 40 x 40, the
marking cost of CGC is 25 times higher than that of TRGC. TRGC did so well because it
could determine that the arrays contained only scalar data by inspecting their run-time type.
Therefore, it only marked the arrays themselves and did not scan for pointers inside them, as
CGC did. This scanning cost depends on the total size of the arrays and was responsible for
the quadratic growth in run-time cost for CGC as shown in Figure 8.9. However, sweeping took
the same amount of time for both TRGC and CGC.

The wavefront example shows that in an ideal situation, the time to mark the heap for TRGC
is proportional to the total number of live object references, rather than the total amount of live
storage as it is for CGC. TRGC can use the reconstructed type information to avoid scanning
elements of scalar arrays and scalar fields within records and algebraic types.

Space Analysis

In terms of space usage, both TRGC and CGC perform identically. As shown in Figure 8.7 and
Figure 8.8, both TRGC and CGC perform the same number of garbage collections in all runs
and use roughly the same amount of heap storage. Both TRGC and CGC runs were provided
with the same amount of initial storage. Although, the size of the initial storage was kept
sufficiently large to avoid thrashing. This accounts for the small number of garbage collections
performed.

Each garbage collected run also performed a final GC at the end of the run to reclaim all the
uncollected garbage. Due to this final garbage collection, the TRGC and CGC runs actually
reclaimed more storage than the CDSR runs, because the compiler could not insert deallocation
commands for all of the temporary storage.

CGC is able to reclaim all the garbage because of our restrictive compilation model and
support from the run-time system. As mentioned earlier, in our system all actual pointers
directly point to the head of a heap object. This not only reduces the overhead of guessing
whether a given value is a valid heap pointer or not but also avoids creating many more am-
biguous pointers for the garbage collector to check for. The run-time system further eliminates
the chances of making the wrong guess by marking the head of every object with a special
bit-pattern.

177

The performance of CDSR varies with the application. For Gamteb and Wavefront, CDSR
is able to insert deallocation commands to reclaim all the garbage automatically. Therefore,
these benchmarks are able to run under CDSR without leaking any storage. The garbage
collected versions for these benchmarks had to be given 2-10 times the storage used by CDSR
to avoid thrashing. On the other hand, for Paraffins and Quicksort, CDSR is able to reclaim
only 10-20% of the total garbage, therefore the TRGC and CGC versions are able to run in
same or less storage than the CDSR version without thrashing. This shows that in general,
CDSR may need additional storage reclamation support from an independent garbage collector,
although it works very efficiently for applications where data-structures are easily analyzed.

8.7 Conclusions

In this chapter, we have described a direct application of complete run-time type reconstruction,
namely, tagless garbage collection (TRGC). We used the reconstruction algorithm described in
Chapter 7 to reconstruct the exact types of all run-time objects. We also described an inter-
preted and a compiled marking schema for traversing and marking live run-time objects using
the reconstructed type information. We have implemented the interpreted marking schema on
a simulator for the *T architecture and compared its performance with conservative garbage
collection (CGC) and compiler-directed storage reclamation (CDSR) on several benchmarks.

Our results show that in general, TRGC does more work in marking the live objects than
CGC, unless it can avoid scanning large, scalar, array-like objects using type information.
The type reconstruction overhead increases with the amount of polymorphism and higher-
order functions (closures) used in the program, although the cost of reconstruction is small
compared to the cost of marking live objects with type interpretation. The cost of interpreted
marking itself should get reduced considerably using the compiled marking schema instead of
type interpretation.

TRGC has the additional advantage that other storage reclamation schemes may be used,
such as compaction or copying. These may not be used with CGC because they require updating
live pointers, and CGC cannot guarantee that what it uses as a pointer is not really a scalar
value. On the other hand, TRGC requires initialization of polymorphic and pointer data with
valid values and cannot cope with stale data as CGC can.

CDSR consistently does better than either of the garbage collection schemes in terms of
time spent in the run-time system. This is as expected, although sometimes it is not able to
collect all the garbage and therefore requires more memory than strictly necessary. CDSR also
takes much longer to compile, sometimes increasing compile-time by a factor of 10.

On the whole, type reconstruction and type-reconstruction-based garbage collection seem
to be a promising area of research with a lot of scope for compiler optimization and run-time
performance improvement. This initial study has shown that type reconstruction based garbage
collection is certainly feasible and can be competitive with other storage management strategies
under the right mix of applications.

8.7.1 Future Work

There are several dimensions in which further investigation would be useful. The first step would
be to implement the compiled marking schema and compare its performance with our current
interpreted marking schema. We expect to see a substantial improvement in performance using
specialized marking functions. Our experience also shows that mixed storage management
schemes that combine garbage collection with explicit storage reclamation within the same

178

run-time environment are feasible and may be able to combine the benefits of both schemes
running on its own.

Although our system has been designed and implemented for a multi-processor architecture,
we have currently made a study for only a single processor. We would like to see how TRGC
scales under a multi-processor environment and quantify the inter-processor communication
overhead for type reconstruction.

It would be very interesting to compare the performance of TRGC with an explicitly tagged
object identification scheme implemented within the same framework. It would be interesting
to know if TRGC offers any concrete advantages over that technique.

Finally, it would be useful to implement a compacting garbage collector based on type
reconstruction with a very simple allocation scheme (bumping a pointer) and compare its heap
management overhead with that of the CGC and CDSR that require a more sophisticated
storage management scheme (free-lists).

179

180

Bibliography

[AA91] Zena M. Ariola and Arvind. Compilation of Id. In Proceedings of the fourth Work-
shop on Languages and Compilers for Parallel Computing, Santa Clara, California,
August 1991. Also available as CSG Memo 341, MIT Lab. for Computer Sc., Cam-
bridge, MA 02139.

[AA93] Zena M. Ariola and Arvind. Graph Rewriting Systems: Capturing Sharing of Com-
putation in Language Implementations. Computation Structures Group Memo 347,
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, April 1993.

[AA94] Zena M. Ariola and Arvind. Properties of a First-order Functional Language with
Sharing. CSG Memo 347-1, Laboratory for Computer Science, MIT, Cambridge,
MA 02139, June 1994. To appear in Theoretical Computer Science, September
1995.

[AC93] Shail Aditya and Alejandro Caro. Compiler-directed Type Reconstruction for Poly-
morphic Languages. In Proceedings of the A CM Conference on Functional Program-
ming Languages and Computer Architecture, Copenhagen, Denmark, pages 74-82,
June 1993.

[AFH94] Shail Aditya, Christine H. Flood, and James E. Hicks. Garbage Collection for
Strongly-Typed Languages using Run-time Type Reconstruction. In Proceedings of
the ACM Conference on Lisp and Functional Programming, Orlando, Florida, USA,
pages 12-23. ACM Press, June 1994.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[AM89] Andrew W. Appel and David B. MacQueen. Standard ML Reference Manual.
Princeton University and AT&T Bell Laboratories, Preliminary edition, 1989. Dis-
tributed along with the Standard ML of New Jersey Compiler.

[ANP89] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-Structures: Data Structures for
Parallel Computing. ACM Transactions on Programming Languages and Systems,
11(4):598-632, 1989.

[App89] Andrew W. Appel. Runtime tags aren't necessary. Lisp and Symbolic Computation,
2(2):153-163, June 1989.

[App90] Andrew W. Appel. A runtime system. Lisp and Symbolic Computation, 3(4):343-
380, November 1990.

[Bar88] Joel F. Bartlett. Compacting Garbage Collection with Ambiguous Roots. Research
Report 88/2, Western Research Laboratory, Digital Equipment Corporation, Febru-
ary 1988.

[Bar92] Paul S. Barth. Atomic Data Structures for Parallel Computing. PhD thesis, Labo-
ratory for Computer Science, MIT, Cambridge, MA 02139, March 1992. Available
as Technical Report MIT/LCS/TR-532.

[Bec92] Michael J. Beckerle. An Overview of the START(*T) Computer System. Mo-
torola Technical Report MCRC-TR-28, Motorola Cambridge Research Center, One
Kendall Square, Building 200, Cambridge, MA 02139, July 1992.

[Blo89] A. Bloss. Update analysis and the efficient implementation of functional aggregates.
In Proceedings of the ACM Conference on Functional Programming Languages and
Computer Architecture, London, UK. ACM, September 1989.

[BNA91] Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-Structures: Extending a Parallel,
Non-Strict, Functional Language with State. In Proceedings of the ACM Comference
on Functional Programming Languages and Computer Architecture, pages 538-568.
Springer-Verlag, 1991. LNCS 523.

[Bur77] Rod M. Burstall. Design Considerations for a Functional Programming Language.
In Infotech State of the Art Conference: The Software Revolution, October 1977.

[BW88] H.-J. Boehm and M. Weiser. Garbage Collection in an Uncooperative Environment.
Software-Practice and Experience, 18(9):807-820, September 1988.

[Car89] L. Cardelli. Typeful Programming. In E. J. Neuhold and M. Paul, editors, Formal
Description of Programming Concepts, pages 431-507. Springer-Verlag, 1989.

[Car93] Alejandro Caro. A Debugger for Id. Master's thesis, Massachusetts Institute of
Technology, February 1993.

[CCF+93] Derek Chiou, Alejandro Caro, Christine Flood, James E. Hicks, and Michael J.
Beckerle. Run time support for Id running on *T, version 1.4. Computation struc-
tures group memo, MIT, Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, May 1993.

[Dam85] L. Damas. Type Assignment in Programming Languages. PhD thesis, University of
Edinburgh, Department of Computer Science, 1985.

[Dar77] John Darlington. Program Transformation and Synthesis: Present Capabilities.
Research Report 77/43, Department of Computing and Control, Imperial College
of Science and Technology, London, September 1977. Also appears as Report No.
48, Department of Artificial Intelligence, University of Edinburgh.

[DM82] L. Damas and R. Milner. Principal Type-schemes for Functional Programs. In
Proceedings of the 9th Symposium on Principles of Programming Languages, pages
207-212, January 1982.

[FLR+94] Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, loannis Schoinas, Mark D.
Hill, James R. Larus, Anne Rogers, and David A. Wood. Application-Specific Pro-
tocols for User-Level Shared Memory. In Supercomputing '94, Proceedings. IEEE
Computer Society Press, November 1994.

182

[GG92] Benjamin Goldberg and Michael Gloger. Polymorphic Type Reconstruction for
Garbage Collection without Tags. In Proceedings of the ACM Conference on Lisp
and Functional Programming, pages 53-65, 1992.

[GJLS87] David K. Gifford, Pierre Jouvelot, John M. Lucassen, and Mark A. Sheldon. FX-
87 Reference Manual. Technical Report MIT/LCS/TR-407, MIT Laboratory for
Computer Science, September 1987.

[GJSO91] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O'Toole. Report
on the FX-91 Programming Language. Technical Report MIT/LCS/TR-531, MIT
Laboratory for Computer Science, 1991.

[Gol91] Benjamin Goldberg. Tag-free garbage collection for strongly typed programming
languages. In SIGPLAN '91 Conference on Programming Language Design and
Implementation, pages 165-176, June 1991.

[GP90] Benjamin Goldberg and Young Gil Park. Higher Order Escape Analysis: Optimizing
Stack Allocation in Functional Program Implementations. In Proceedings of the
3rd European Symposium on Programming, pages 152-160. Springer-Verlag, 1990.
LNCS 432.

[GPG91] Young Gil Park and Benjamin Goldberg. Reference Escape Analysis: Optimizing
Reference Counting based on the Lifetime of References. In Proceedings of the ACM
Symposium on Partial Evaluation and Semantics-based Program Manipulation, Yale
University, New Haven, CT, USA, pages 178-189. ACM Press, June 1991.

[Gup90] Shail Aditya Gupta. An Incremental Type Inference System for the Programming
Language Id. Master's thesis, Laboratory for Computer Science, MIT, Cambridge,
MA 02139, September 1990. Available as Technical Report MIT/LCS/TR-488.

[HI89] W.L. Harrison III. The interprocedural analysis and automatic parallelization of
scheme programs. Lisp and Symbolic Computation, 2(3-4):179-396, 1989.

[Hic93] James E. Hicks. Experiences with compiler-directed storage reclamation. In Con-
ference on Functional Programming Languages and Computer Architecture, 1993.

[HJ92] James E. Hicks Jr. Compiler-directed Storage Reclamation using Object Lifetime
Analysis. PhD thesis, Laboratory for Computer Science, MIT, Cambridge, MA
02139, 1992. Available as Technical Report MIT/LCS/TR-555.

[HM93] R. Harper and J. C. Mitchell. On the Type Structure of Standard ML. ACM
Transactions on Programming Languages and Systems, 15:211-252, April 1993.

[HMV93] My Hoang, John Mitchell, and Ramesh Viswanathan. Standard ML weak polymor-
phism and imperative constructs. In Proceedings of the Eighth Annual Symposium
on Logic in Computer Science, pages 15-25. ACM Press, June 1993.

[Hud92] Paul Hudak. Mutable Abstract Datatypes -or- How to Have Your State and Munge
It Too. Research Report YALEU/DCS/RR-914, Department of Computer Science,
Yale University, New Haven, CT 06520, December 1992. Revised May 1993.

183

[HWe90] P. Hudak and P. Wadler (editors). Report on the programming language
Haskell, a non-strict purely functional language (Version 1.0). Technical Report
YALEU/DCS/RR777, Yale University, Department of Computer Science, April
1990.

[JG91] Pierre Jouvelot and David K. Gifford. Algebraic Reconstruction of Types and Ef-
fects. In Proceedings of the 1991 ACM Conference on Principles of Programming
Languages, pages 303-310. ACM, 1991.

[Joh85] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Springer- Verlag LNCS 201 (Proc. Functional Programming Languages and Com-
puter Architecture, Nancy, France), September 1985.

[JW75] Kathleen Jensen and Niklaus Wirth. PASCAL User Manual and Report. Springer-
Verlag, 1975.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Pren-
tice Hall, second edition, 1988.

[LAB+81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert,
Robert Scheifler, and Alan Snyder. CLU Reference Manual, volume 114 of Lec-
ture Note in Computer Science. Springer-Verlag, 1981.

[Ler92] Xavier Leroy. Polymorphic Typing of an Algorithmic Language. Rapports de
Recherche 1778, INRIA, Rocquencourt, France, October 1992. English translation
of the author's Ph.D. thesis originally in French.

[Ler93] Xavier Leroy. Polymorphism by name for references and continuations. In Proceed-
ings of the ACM Symposium on Principles of Programming Languages. ACM Press,
1993.

[LG88] John M. Lucassen and David K. Gifford. Polymorphic Effect Systems. In Proceed-
ings of the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming languages, San Diego, California, pages 47-57, January 1988.

[LPJ94] John Launchbury and Simon L. Peyton Jones. Lazy Functional State Threads. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, Orlando, Florida, USA. ACM, June 1994.

[Luc87] John M. Lucassen. Types and Effects - Towards the Integration of Functional and
Imperative Programming. PhD thesis, Laboratory for Computer Science, MIT, Cam-
bridge, MA 02139, August 1987. Available as Technical Report MIT/LCS/TR-408.

[LW91] Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment. In
Proceedings of the A CM Symposium on Principles of Programming Languages, pages
291-302. ACM, January 1991.

[Mai90] Harry G. Mairson. Deciding ML Typability is Complete for Deterministic Exponen-
tial Time. In Proceedings of the 17th ACM Symposium on Principles of Program-
ming Languages, pages 382-401, January 1990.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17:348-375, 1978.

184

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press,
Cambridge, Massachusetts, 1991.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
The MIT Press, Cambridge, Massachusetts, 1990.

[NAH93] Rishiyur S. Nikhil, Arvind, and James Hicks. pH Language Proposal (Preliminary).
Circulated on the pH mailing list, September 1993.

[Nik91] Rishiyur S. Nikhil. Id Language Reference Manual Version 90.1. Technical Report
CSG Memo 284-2, MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139, July 15 1991.

[Nik94] Rishiyur S. Nikhil. Cid: A Parallel, "Shared-memory" C for Distributed-memory
Machines. In Proceedings of the 7th Annual Workshop on Languages and Compilers
for Parallel Computing, Ithaca, NY. Cornell Theory Center, Cornell University,
August 1994.

[NPA92] Rishiyur S. Nikhil, Gregory M. Papadopoulos, and Arvind. *T: A Multithreaded
Massively Parallel Architecture. In Proceedings of the 19th International Symposium
on Computer Architecture, Queensland, Australia. ACM Press, May 1992.

[OJ91] James William O'Toole Jr. Type Abstraction Rules for References: A comparison of
four which have achieved notoriety. Technical Memo MIT/LCS/TM-390, Labora-
tory for Computer Science, MIT, 545 Technology Square, Cambridge, Massachusetts
02139, August 1991.

[PBGB93] G. M. Papadopoulos, G. A. Boughton, R. Greiner, and M. J. Beckerle. *T: In-
tegrated building blocks for parallel computing. In Proceedings of Supercomputing
'93, 1993.

[PJ92] Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127-202,
April 1992.

[PJW92] Simon L. Peyton Jones and Philip Wadler. A static semantics for Haskell, February
1992.

[PJW93] Simon L. Peyton Jones and Philip Wadler. Imperative Functional Programming. In
Proceedings of the 20th ACM Symposium on Principles of Programming Languages,
Charleston, South Carolina, USA, pages 71-84. ACM, January 1993.

[Pla92] P.J. Plauger. The Standard C Library. Prentice Hall, Englewood Cliffs, New Jersey
07632, 1992.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Den-
mark, September 1981.

[Rey74] J. C. Reynolds. Towards a Theory of Type Structure. In Paris Colloquium on
Programming, volume 19 of Lecture Notes in Computer Science, pages 408-425.
Springer-Verlag, 1974.

185

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23-41, 1965.

[SJ90] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, second edition, 1990.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline. In Proceed-
ings of the ACM Symposium on Logic in Computer Science, pages 162-173. ACM
Press, 1992.

[Tof90] Mads Tofte. Type Inference for Polymorphic References. Information and Compu-
tation, 89:1-34, 1990.

[Tol94] Andrew Tolmach. Tag-free Garbage Collection Using Explicit Type Parameters.
In Proceedings of the 1994 ACM Conference on Lisp and Functional Programming,
pages 1-11. ACM Press, June 1994.

[Tra86] Kenneth R. Traub. A Compiler for the MIT Tagged-Token Dataflow Architecture.
Master's thesis, Laboratory for Computer Science, MIT, Cambridge, MA 02139,
August 1986. Available as Technical Report MIT/LCS/TR-370.

[TT93] Mads Tofte and Jean-Pierre Talpin. A Theory of Stack Allocation in Polymorphi-
cally Typed Languages. Technical Report 93/15, Department of Computer Science
(DIKU), Copenhagen University, 1993.

[Tur85] D. A. Turner. Miranda: A non-strict functional language with polymorphic types.
In Lecture notes in Computer Science, volume 201. Springer Verlag, September 1985.

[Wad90] Philip Wadler. Linear types can change the world! In Proceedings of the Working
Conference on Programming Concepts and Methods, Israel, pages 385-407. North-
Holland, 1990.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM Symposium on Principles of Programming Languages,
Austin, Texas, pages 60-76, January 1989.

[Wil92] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Proceedings of the
International Workshop on Memory Management, St. Malo, France, pages 1-42.
Springer-Verlag, September 1992. LNCS 637.

[Wri92] Andrew K. Wright. Typing References by Effect Inference. In Proceedings of the 4th
European Symposium on Programming, Rennes, France, pages 473-491. Springer-
Verlag, February 1992. Lecture Notes in Computer Science, volume 582.

[Wri93] Andrew K. Wright. Polymorphism for Imperative Languages without Imperative
Types. Technical Report TR93-200, Rice University, February 1993.

C'c:,ý7ý ('-

186

