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Abstract

A non-perturbative effective potential of AO4 theory at finite temperature was ob-

tained and renormalized by using the Hubbard-Stratonovich transformation (or auxil-

iary field approach). This effective potential exhibits renormalization group invariance

and agrees with the perturbative one-loop effective potential at the tree level. It can also

recover zero-temperature non-perturbative effective potentials obtained from the Func-

tional Schroedinger Picture approach and the Gaussian Effective Potential approach.

A formal expression of the contribution to the partition function of AO4 theory beyond

leading order saddle point contribution was also obtained. This effective potential was

shown to be able to drive inflation in the new inflationary scenario of the early universe.

We also calculated the effective potential of the two component AO' theory and studied

its relevance to the relativistic Bose-Einstein condensation. The same method was also

applied to the O(N) invariant Gross-Neveu model and the renormalization of the non-

perturbative effective potential was accomplished. Attempts were also made to apply

the same method to Scalar QED.

Thesis Supervisor: Arthur Kerman Professor of Physics.
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Chapter I

Introduction

The effective potential for a field theory is a very useful tool in the studies of sponta-

neous symmetry breaking since it incorporates quantum effects into the classical potential.

These quantum effects may change the vacuum structure of the classical theory, as was first

pointed out by Jona-Lasinio ([1]) and later by other authors ([2]). The effective potential

is traditionally calculated by summing infinite series of Feynman graphs at zero momentum

([2]), or by the perturbative, loop-expansion technique. This approach is mainly confined to

the one-loop calculation since higher-loop calculations are extremely difficult to accomplish,

although several authors have successfully calculated two-loop or higher order effective poten-

tials. However, when the relevant renormalized coupling constant in a theory becomes very

large, this perturbative approach becomes questionable although it is essentially a perturba-

tive expansion in terms of the product of Planck's constant and the renormalized coupling

constant. Because of the widespread application of spontaneous symmetry breaking, espe-

cially for its application to the finite temperature phase transition, much effort has been put

into nonperturbative ways of calculating effective potential. Among them are the Gaussian

Effective Potential approach ([3], [4] and [5]) and Functional Schroedinger Picture approach

([6]).

The Gaussian Effective Potential was first introduced by Stevenson ([3]). It is based on

the intuitive ideas familiar in quantum mechanics. It is conceptually more straightforward

than the standard generating functional approach. It is a variational approach which uses
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a normalized Gaussian wave functional as the trial ground state. This trial ground state is

centered around an arbitrary constant classical background field q. The trial wave functional

also contains a variable mass parameter. Actually this trial wave functional is the free field

vacuum with a variable mass parameter. The effective potential, for a given background

field ý, is obtained by minimizing the energy of the system with respect to the variable mass

parameter, where the energy is the expectation value of the Hamiltonian in the trial ground

state. In evaluating this expectation value, the Hamiltonian is rewritten in terms of the usual

annihilation and creation operators which obey the usual commutation relations (for bosonic

case). Quantum fluctuations are incorporated into the effective potential due to the fact that

these minima normally differ from their classical counterparts. With a crude approximation,

finite temperature effective potential can also be obtained in this formalism by minimizing

the free energy of the system rather than energy ([5]).

The idea of the Functional Schroedinger Picture approach is essentially the same as that

of the Gaussian Effective Potential. The main difference is that the Functional Schroedinger

Picture approach evaluates the expectation value of the Hamiltonian with the functional in-

tegral method by replacing the operators of the Hamiltonian by functional differentiations.

The main advantage of this approach over the Gaussian Effective Potential approach is that

it is possible to extend it to the nonconstant background field case. However, it is unclear

how to extend it to the finite temperature case. As a comparison, although it is possible to

obtain Gaussian Effective Potential at finite temperature, the effective potential is evaluated

with the real-time operators which obey the usual commutation relations. Today, this cum-

bersome method is replaced to a large extent by the finite temperature field theory formulated

covariantly in terms of the Feynman functional path integrals. It is in light of this that we

8



want to obtain a nonperturbative approach to the effective potential which can be extended

to finite temperature within the functional path integral formalism.

In next chapter we will illustrate the main idea of our auxiliary field approach by cal-

culating the free energy of AO4 theory at finite temperature. Keeping only the leading order

saddle point contribution to the partition function, we carried out the renormalization of the

free energy in a way essentially the same as the method used in the variational approach in

Functional Schroedinger Picture. But we extended previous results in that temperature is

easily incorporated into the formalism.

We will focus on the second order contribution to the free energy in Chapter III. A

formal expression for the contribution to the partition function of AO4 theory beyond leading

order saddle point contribution was obtained and its renormalizability was discussed. We will

derive the finite temperature effective potential of AO4 theory in Chapter IV. This is just an

extension of Chapter II to the case of nonzero background field. The potential implication of

this effective potential to inflation in the new inflationary scenario will be studied in Chapter

V. In Chapter VI we will calculate the effective potential of the two component A'4 theory

and study relativistic Bose-Einstein condensation. The same method will also be applied

to Gross-Neveu model and renormalization of the effective potential will be accomplished in

Chapter VII. Finally, we made attempts to extend our auxiliary field approach to scalar QED

in Chapter VIII.



Chapter II

,\4 Theory at Finite Temperature

II.1 Free Energy

We begin our investigation with the A04 theory described by the following Lagrangian

in Euclidean space:

LE(?) = 21(8t)2 - V(¢)
(2.1)

= • r )2 (V •)2 - V(O)2 &7 2

where

V(q) = M 2 + A04 (2.2)
2

The partition function of a system of bosons interacting through this Lagrangian at

temperature T = 1/l is

(2.3)Z = N ' 1 p e r D [ O ] e xp { - f d2 3 2 L ) ( -2 ( 2 .3
= N D[]exp {- d 1( ) + (V)2 + 2 4

where f d4 x ' fo dr f d3 x and

N' = exp -(V 1 Zln) (2.4)

which is a dimensional, temperature dependent constant ([7]). Here V is the volume to which

the system is confined.

The only troublesome term in the above Lagrangian is the A04 term, which prevents us

from doing a gaussian functional integral. In order to overcome this difficulty, we consider

the two cases: (a) A < 0 and (b) A > 0 separately.
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(a) A < 0

In this case, the functional integral (2.3) is ill defined since it is manifestly divergent. In

addition, since classical potential is unbounded from below, intuition suggests that the theory

is unstable. Since we will encounter this problem again when we derive the effective potential,

we will defer our discussions on these questions to Chapter IV.

We can remove the Aq4 term by making use of the following identity:

Sdzl ... "dxn _iA-'•+ ½ Jr, Aq j(det A)- d( 2 - jn e- iA i xj+ZiJi - J e2 I (2.5)

If we regard -2A64(x - x') as Aij and 02 (x) as Ji, then the A04 term can be eliminated at

the sacrifice of introducing an extra functional integral of the auxiliary field o(x).

4 1 a2 1 1

Z = N ]D[]exp dx -(x) - 2 - V2 + m2 O(X) xo2()

(2.6)

with N _ N'(det A)- . Note (det A)-½ is an infinite, temperature independent constant. It

merely represents an infinite multiplicity in each energy state in the partition function. This

multiplicity represents a certain underlying degree of freedom of the system which has no

effect on the physics of the system. Indeed, a constant multiplied with the partition function

has no effect on the average energy of the system. Therefore, we can drop the (det A)-

factor in front of the partition function.

Upon doing the gaussian functional integral of O(x), we obtain

Z = N' 82 D[e- (-m-v2+M2-2(z))-b(x-')]+f d4 · ' (X)

(2.7)
= N' D[Lo]e-j•~+~-r2l +f+m 2- +d 4 lx*)

Jperi

In the last line above we switch to the operator notation which will facilitate our derivations

later. Apparently, the above functional integral in a(x) is convergent since A < 0. So far we
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have transformed the original partition function from a functional integral of the O(x) field

into that of a new auxiliary field a(x). This new functional integral is to be evaluated with

the method of saddle point integration by expanding a(x) around &o, where the exponent

attains its global maximum.
Z = N'e-½r in p2+p2+m2-2ol]+f d 4 U 2()

i D[oa]e K :2+m,2- 2&]0 4 ) ) (2.8)
eri

X tr 6&++2 + -2 o0 1 +92 + n-2&o 6f] + d4X6o'(X)

By definition, the terms linear in 6o(x) have to vanish. We want to drop terms quadratic

in 6a(x) for now, which we will deal with later. Thus, we are only left with the zeroth order

term in 6S. Suppose the saddle point for o(x) field is translational invariant, then we can

replace ao(x) by a constant ao. Under this assumption, the operator l2 + -2 + m 2 - 2&0 is

diagonal in the four momentum space.

lnZ = InZo = -1 trln[p2 + +m - 2a] + d 'O4a + InN'
2 j 4 ZA

- JdX d4P < xp > ln[P + p2 + 2 - 2o] < pjx > + dx a +lnN'

Inserting < x p >= I eip .x +iw,,r and f d4 x = OV into the above equation, where

matsubara frequency w, = 2 and V is the volume to which the system of bosons is confined,

we get

SV (2) ln[(2rn) 2 + 22] + V ln3 + •- C2V0  (2.9)
n rx

where the second term is a infinite temperature dependent constant, which cancels the InN'

term (see [7] and equation (2.4)). Here we have defined an effective mass 7m and its on-shell

energy w by,

w- p2 + v2 -= Vp 2 + m2 - 2ao0

12
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Notice that

ln[(27rn) 2 + 2W2 ] = j 02 2 2 + ln[1 + (27r ) 2 ]  (2.11)

where last term can be ignored since it is temperature independent. Furthermore,

c 2 (/2) 2  ( 2 + (2.12)n2 + (0/27r)2 =0 ! o - 1

With the help of these two identities we get the following expression for the partition function,

Z = ev (2,3 [- -4n (2.13)

The free energy density of the system easily follows from the partition function,

1
f -- nZ

f ýV lnZ(2.14)
(2~-)3 1 + I n(1 - e-
(27r)3 2 4 4/ o

The two terms in square bracket above have exactly the same expression as the free

energy density of the ideal boson gas. The first term, f 1w, is the zero-point energy. In

the case of ideal boson gas, this term can be dropped since it is just a pure infinite constant.

However, in our case, the zero-point energy depends on an effective mass rii, which is to

be determined from the first order terms in &o in equation (2.8). Later we will see that : 2

depends on temperature, which means we are not allowed to drop this zero-point energy term.

Consequently, we need to deal with the infinities associated with it. This problem could be

solved since the coupling constant and the mass which appear in the Lagrangian are bare.

As in perturbation approach, these bare parameters are momentum- cutoff dependent. Here

we make an assumption that the ao also depends on the cutoff and it approaches infinity in

such a way that it cancels the infinities in bare mass rn2 , leaving f 2 finite. It can be shown

later that ri 2 is indeed finite. The last term in the above expression consists of bare coupling
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constant and ao, which are both infinite, we hope this term will cancel the infinities from the

zero-point energy. Note the second term in the square bracket is finite, which we call function

.F(#, m2) for convenience.

3 0 1 In (1 - e- 2 ) (2.15)

Before we embark on the renormalization of the free energy density, we come back to the first

order terms in 6u. The collection of the first order terms are,

A +p2 + m 2 - 2o0' 2A

4 dX -< x x > +-co(x) be(x)/ r 1 1
- J 1< Xi • + p2+ m2 - 2&o 2A o()6(x)

d F 1 dj p 1 1 0o(X) ba(x)
Sd (2r)3 n n2 (27r/n) 2 + p2 + m2 - 2o+ ••

By definition, the sum in square bracket should be zero. After doing the sum in n, which

is the same as in equation (2.12), we get,

o J 3 2A [+ (2.16)
(2r)3 w 2 eOw - 1

The second term above is a finite integral. Here we define a finite function f(0, fm2) for later

convenience,

f(,0 2) d3p - 1 (2.17)
(2-)3 W e, - 1

Thus we have obtained the free energy density equation (2.14), with Co being determined by

equation (2.16).

(b) A > 0



In this case in order to obtain a functional integral of o(x) which is manifestly convergent,

the equation (2.6) has to be replaced by

Z = N D[]D[a]exp {d4x -(x)( - ) - 2V2+] m2 ())2

(2.18)

with N - N'(detA)-1 and 2A6 4 (x - x') as Aij.

Upon doing the gaussian functional integral of '(x) and expanding a(x) around the

saddle point 0o(x), we obtain,

Z = N'e- tr1n[•+p2+m2 -2i&o]-f d 4XL 2 (X)

x D[bI]e O 2+M 2 -2i0 d o(z)6) (2.19)
peri

X etr o +2+ o +p2+m 2-2i&O f d4 x 2 ()

Looking at the linear term, we can realize that the saddle point go should be purely

imaginary. If we set ao = -iar, then in terms of a', we can recover all our previous expressions

in the case of A < 0 for the zeroth order and first order terms in S•. Since later it will be

shown that renormalization is entirely determined by the zeroth order and first order terms,

we conclude that renormalization is unaffected by the sign change of A.

The reason why a(x) can become purely imaginary is that the exponent of equation (2.18)

is diagonal in a. Therefore, the functional integral can be considered as a infinite product

of ordinary integrals in each a(x). Each of these integrals is an analytic function of a(x),

therefore, we can deform the contour of the integration. To be specific, we can arbitrarily

deform the integration contour when Rea is finite. When Rea -+ 0oo, Ima has to be zero

in order to ensure the convergence of the functional integral (2.18).

1.2 Renormalization



Now we embark on the task of renormalization. Since the sign change of A has no effects

on renormalization, we consider the case A < 0 only. To show clearly how renormalization is

accomplished, I purposely choose to be pedestrian in some parts of the derivations. we begin

with the first order equation (2.16). The first term in that equation is divergent, we want to

single out the divergent terms explicitly in order to perform renormalization,

J d3p 1
(2.r)3

4 1 r A 1

4 11 1
(27r)3 2 2m +2

We insert the two integration limits into the above expression and expand it into powers of

ml/A, we keep explicitly only the finite and divergent terms, then we obtain,

d d3p 1 1 +1 n2 Ifr +  (2.20)
(2)3 w 472 2 aA2 A2

with Ina! 21n2 - 1. Consequently, we can rewrite the first order equation (2.16) as,

r 2u j{A2 + 21n A2+ - (,2
m 2 - 2ao = 2•22--,

or

2 2 A 2  A 2 2 2
A- = mn + •2A + 2 ln + 21n - 2Af(#3, n2 ) (2.21)272 47 2 r 2 4r2 2

Where we have split the logarithm ic term by introducing an arbitrary mass scale E2 , this

splitting is the key in our scheme of renormalization. If we collect linear terms of 7m2 into the

left hand side of the equation, then we have

2 [1 A 2 2 + 2 A -2A f(n, m2)
4721A 2r2 47rr2 n2

16



From this equation we can see if we define the following renormalized mass and coupling

constant,
A/(2r 2)

1- A ln E2
(2.22)

_ m2 + AA2 /(27r 2 )
\- InF,2

412 aA 2

then we can obtain the following renormalized version of the first order equation since every

variable in this equation: ip2 (F 2 ), AR( 2 ) and E2, is finite.

m 2(E2) + R(E2)21n 4r22R(2)f(/,rn-2) (2.23)

Finite solution(s) to fn2 can be obtained by solving this equation if they exist. We will call

this equation the constraint equation later.

In the above definition of renormalized mass and coupling constant, the bare mass and

coupling constant depend on A in such a way that they make jp2(E 2 ) and AR(E 2) finite.

The relationship between the renormalized mass and coupling constant with the bare ones

are temperature independent, which is expected for a renormalizable field theory. Note the

renormalized mass and coupling constant run with E2 . When splitting the logarithm term in

equation (2.21), we could as well have chosen E2 = - 2 , then everywhere E2 will be replaced

by y2 and the equations defining the renormalized mass and coupling constant will be,

SA/(27r 2)

1-2 aln2  (2.24)
2 2 + AA 2 /(2r 2)

The explicit appearance of p2 in the logarithm requires it to be positive. However, the

renormalized coupling constant can be any real value. This set of renormalized mass and

coupling constant are not running anymore and are determined "uniquely". (In practice, we

17



choose a set of numbers for them). With the help of equations (2.22) and (2.24), we can easily

establish the following relationship by calculating p2( 2) _ 2 and AR(E 2) - AR,

22 AR
=(2E 2 _ R() 1 (2.25)

1- f In 4 2 n- n

These set of equations tell us how t12(E2) and AR( 2 ) run with p2 and A as E2 changes its

value. We will later show that this extra freedom, or this group of renormalization adds no

new physics to our system. Thus we will drop the explicit argument E2 in AR and P2 later.

(However, we still use equation (2.22) rather than (2.24) for the renormalization.)

Now we come back to perform renormalization of the free energy density equation (2.14).

As before, we first single out the divergent terms in the zero-point energy. The result is

fd 3 p 1 22 1  n ( 2(2r)3 81r2  4 + 2 4 In 2  +O 1 (2.26)
(2) 872 72 A2

with ln-y 21n2 - I. The free energy in equation (2.14) becomes

1 4n2
f = [A 4+ A 2 4

f=1672 [1+A 2 4 72 (2.27)
1

- (mn - )2 + F(Orh 2)
16A

where use have been made of the definition of f2 to replace the o'0 in the free energy. As

mentioned before, the last term above is finite, thus we hope the infinities associated with the

bare mass and bare coupling constant will kill the explicit infinities above.

To this end we need to invert the relationship between bare parameters and renormalized

parameters,

A(A) = AR/A m2 (A) = 2-2 - ARA 2 )/A (2.28)

where A is an infinite constant defined by

1 AR caA 2

A R In (2.29)2r2 4Z72 2

18



It is interesting to note that for any fixed renormalized mass and coupling constant, the bare

coupling constant approaches 0- as A goes to infinity unless the renormalized mass is 0. Now

we substitute the above expressions of A and m2 into equation (2.27),

11 [2
2 ~l_- 21

f = 1  + A2 2 + 4 ln + ?7n3, 2)

(2.30)A [rh 4 - 2h 2(Ly2 - ARA 2)/(27r 2 A) + (,2 - ARAA2 )2 /(47r 4 A 2 )
16 AR

The A4 term is a pure constant, which we can drop. The last term in the second square

bracket also gives us an infinite constant, which is independent of ri2, thus we can also drop

this term. Then
1 A22 1 4 22  42)

16r 2  64n2 TA
A rm4 rn2(p 2 - ARA 2 )/(27r 2)
16 AR 8AR

Inserting equation (2.29) into the above expression, we can see that the fn2A2 and lnA2

divergences cancel, thus we obtain the following renormalized version of the free energy.

1 4( _12  f 1 h2
1f ( '( In 1 22 ( - 2r ) + '($, ) (2.32)

6 4 7r2 Y 2 22 32 7r2AR

The explicit appearance of 1/AR in the free energy density shows that this approach is non-

perturbative.

In summary, with the definition of the renormalized mass and coupling constant, equation

(2.22), we accomplished renormalization of both the constraint equation (2.16) and the free

energy density (2.14). The free energy density depends on temperature both explicitly through

f and implicitly through f- 2 . For a fixed pare of renormalized mass and coupling constant,

the constraint equation (2.23) relates effective mass rh2 to temperature, with this relation we

can obtain the relationship between the free energy density and temperature.

1.3 Discussion



In the following we want to further elucidate the relationship between the constraint

equation and the equation for free energy. The constraint equation is obtained by setting

6_.G = 0. Here for simplicity we denote the exponent in the partition function (2.7) as G. If

we replace the variable ao by 7h2, which is just shifted from ao by a bare mass, which can be

regarded as a constant under this circumstance, we get G = 0. However, in our calculation

for the free energy density , we essentially kept only the leading term of G in the expansion

of

bG
G = Go + b6a Go•-= (2.33)

This Go has the same functional form of f as G does, thus we expect to regain the constraint

equation if we take derivative of equation (2.32) with respect to fh2. Making use of the

relationship,

(, 2  f(, 2) (2.34)
ain-2 4 JfJ(,M

we can easily check that

af -- 0 ==

-1 2) + A2 ) = 0
4 322 2 2 64 2  167r2 Ar

which is nothing but the constraint equation (2.23). Note the f above denotes free energy

density, not the finite, temperature dependent function f(fl, rh2 ). Since the free energy density

(2.32) is an even function of fn, it always has an extremum at fn = 0. If we just keep track

of the constraint equation (2.23), then we will lose the other solution Fn = 0.

Now we need to discuss whether fi is allowed to be zero. In our renormalization process,

it is implicitly assumed that the rh can not be zero due to the explicit appearance of terms like

lnmt2. However, if it is zero, we could have adopted another renormalization procedure. Before
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renormalization, the free energy density (2.14) and the constraint equation (2.16) become the

following equations when fh = 0:

1 4 m 2

f = 'F(3, 0) - 1m = f (, 0) (2.35)16A 2A

In order to renormalize the above two equations, we just need to define the bare mass and

the bare coupling constant to be the renormalized ones. On the other hand, if we take the

limit of i -+ 0, then, up to irrelevant constants, we can recover the above two equations from

(2.32) and (2.23) by appropriately defining the renormalized mass and coupling constant in

(2.35). Therefore, we can safely consider the case of fm = 0 by taking the limit of fm -+ 0 in

equations (2.32) and (2.23).

Now we take up the point of the running renormalized mass and coupling constant, we

want to show that this degree of freedom is illusionary by showing that E has now effect

on both the free energy and the constraint equation. (or on fh2 since the purpose of the

constraint equation is to solve for f2.) Quite generally, we have,

df Of Of dmn2  Of dAR Of dL"2
+ + +

dE2  4+2 +2 d2 2  d02 2(236)
1 r4 O f dmz2 2  1 [4 ] dAR n2 d u 2

64 r 2 f2 + d2 dE 2  32[r2 n 2 2 - 16 2A dE 2
-+r 3 R ý2 + 167r2 AR dE2

If we insert into the above equation the following identities, which can be easily established

by taking derivative with respect to E2 to equation (2.25),

dAnR 1 A2 1

dýE2 R F2
d• 2  2 R(2.37)
d1 2  12 A 1

dE 2  2 E2

and af = 0, all the terms in equation (2.36) cancel out and we reach the conclusion that

df
dE2
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In the language of renormalization group, we have a 3 function of

O(AR) =E = A2 (2.38)

The positivity of the 3 function suggests that this theory is not an asymptotically free theory.

If we take derivative with respect to E2 on both sides of the constraint equation, we

obtain,

1- +AR (1+ln2 + 47r2 df 2 ) df22 f2) dm2 j 2
d_ 2  (2 m42  dAR 1 F R2

= + In - 472jf(d, F2 22
dE2 2 2 ) d 2  2 E2

Inserting equations (2.37) into the above equation and making use of the constraint equation,

we find the right hand side of the equation is zero, thus we proved that ri 2 is invariant with

respect to E2 also:

=0

dE2

We can similarly prove the term

1 14  (2 ARA2)2
6474 A (RA

that we dropped in equation (2.30) when we renormalize the free energy is not only an

infinite constant, but also a constant invariant under the running of E2. By inspecting the

free energy density (2.32), we are tempted to add a "constant" term --t 4 /(327r2 AR) into the

free energy density to complete the square. However, this additional term is not invariant

under the running of E2 . In later discussions, unless explicitly stated, we will stick to the

renormalization (2.24), where the E2 degree of freedom is removed by setting E2 =- 2, then

we can add the -M 4 /(327r 2 AR) term and the free energy density becomes

m r ln-2 - (2AR12 -- 2 + +(3,rh 2 )  (2.39)
64 2  2 2/ 327r2 R
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If we want to plot it as a function of temperature T, we need to solve the constraint

equation (2.23) for fr 2 at various temperatures. However, the constraint equation has no real

solution above a critical temperature for both AR > 0 and AR < 0. Below that temperature,

it usually has two solutions to rh (This is always true in the case of AR > 0 and true for a

certain interval of temperatures in the case of AR < 0. See Fig. 2.1(a) as an example, where

we have two intersections from both sides of the constraint equation). For reasons explained

later, we keep the bigger one of the two solutions. As an example, the solution to r as a

function of temperature T (with AR = 1 and M2 = 10) is plotted in Fig. 2.1(b). The critical

temperature in this case is T = 2.17.

We can give an explanation to this phenomenon by plotting the free energy density as

a function of both T and in, namely, we ignore the constraint equation for the moment and

treat T and in as independent variables. First, we list the following four properties of the

function F(0, rh 2):

F(, 2)  0- as --+ oo

F(, 2) -- +-oo as - 0

F(0, f2) finite F(0, 0) as f 2 -, 0

F(0, fn2) increases as n2  increases

Starting with the zero temperature, if we look at the free energy density, equation (2.39),

we learn from the first property above that only the first two terms in the free energy density

contribute. In the fh -- 0 region, the first term approaches 0. Thus, in that region, depending

on the sign of AR, the free energy is either an valley or hill. In the region of large fh, the first

term dominate, the free energy density goes up as r- increases.
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As temperature increases, in the rh --+ 0 region, the F(3, M2) term will dominate over

the other two terms, and the free energy density will form a valley eventually in this region

regardless of the sign of AR according to the second property above. In the region of large rh,

even at high temperature, the first term still dominates and the free energy density goes up

as m increases, as before. The above analysis explains the "restoration of symmetry" as the

temperature increases, as exhibited in Fig. 2.2(a)-2.2(d) for the case of AR > 0 (with AR = 1

and y 2 = 10) and in Fig. 2.3(a)-2.3(d) for the case of AR < 0 (with AR = -1 and p 2 = 10).

The constraint equation results from the partial derivative of the free energy density

with respect to fh. Thus as soon as the free energy density has no non-zero extrema with

respect to Fi, the constraint equation has no solution. Fig. 2.2(c) shows that the free energy

doesn't have any non-zero extremum above T = 2.17, the critical temperature in Fig. 2.1(b).

Below the critical temperature, if the constraint equation has two solutions to rT, then the

smaller one corresponds to the local maximum between the minimum at Fn = 0 and the other

minimum which is the bigger solution. This explains why we kept only the bigger solution

when relating fr to temperature.

The above analysis suggests us that we should add up the two contributions around the

two minima as we calculate free energy density, thus, we have

f = 1 4 n 1 - 1 ( -2 2)2 + 2 ) + F(, 0)- (2.40)f (In 3 + F(01 0) 2AR6472 A2 2 327nr2A 32-72r

Note that when AR < 0, f = 0 is a maximum of the free energy density at low temperatures.

Therefore the above improvement doesn't apply to this situation. In addition, the above

expression is only an improvement in the temperature (or Fh) region where the constraint
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equation has a solution. As soon as we fail to obtain a solution to i from the constraint

equation, we can approximate the free energy density by

4
f = F(, 0) - 2AR(2.41)

Actually we will show in Chapter IV that even before the constraint equation stops

having solution(s) to fn2, the free energy density given by rh = 0, equation (2.41), is already

lower than the free energy density given by the solutions to the constraint equation. In other

words, the free energy density, equation (2.41), should be deployed earlier than stated above.

However, equation (2.40) is always valid unless the constraint equation has no solutions any

more, under which circumstance we are left with equation (2.41) only.
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1.4 Nonuniform ao

Now we break translational invariance by assuming ao is nonuniform in space, namely,

ao = ao(x). We want to accomplish renormalization in this case.

Our derivations up to equation (2.8) are general. Thus, our first order constraint equation

is

1o0(x) = (-2A) < zx Ix > (2.42)

where we defined r 2 (x) -m2 - 2co(x) and it takes over the degree of freedom represented by

ao(x). We can do the trace in r (or po) as before since we break only the three dimensional,

translational invariance, which has no effect on the fourth component: either 7 or po. We

obtain,

io(x) = (-A) < xl Jx > +Af(P,x) (2.43)

with (x2) = ;p2 + 2(x)Z and if(,, x) -< xjl [(e-] Ix >. Whether or not m2 is uniform,

this term is always finite since it decreases exponentially as w approaches infinity in any given

representation. This term corresponds to the finite function f(0, m2) in the uniform case.

The first term in equation (2.43) is divergent. We want to separate it into finite and divergent

parts. This can be achieved through an operator expansion around fm2 = E2, where E2 is

an arbitrary positive constant. If we secretly take the trace in three momentum space, by

counting the powers of momentum, we can determined which terms are finite or divergent.

In the following we write out the two divergent terms explicitly and denote the finite part of

< xl1/clx > by Rf(0,x).

1 1 1ao(x) = -A < x j I > + < x + x > -ARf(#,x) + Af(P,x) (2.44)
2 2 2A (2 + 2)3/2

29



Making use of equation (2.20) and

< xI[ 2 + E2]-3/21x > = -2 < x + [ 2]/ 2 Ix >

1 E2
27=2 aA -In +  (2.45)

1 2 1 + ln-E2

472 I+aA2

we can obtain the following renormalized version for the constraint equation with the renor-

malized mass and coupling constant defined exactly the same as those by equation (2.22).

2 X)= 2 + XAR(,h2(x) - 2) + 4 2ARRf((, x) - f(#, x) (2.46)

The leading term from the saddle point integral gives us the following expression for the

free energy,

1 21F = trln[Lp + p2 + f2(x)] - d4 X2(x) (2.47)

We can evaluate the trace in the fourth component as before,

F = -tr3a& + VF(f, x) - d idX(m2 _- f 2(x)) 2  (2.48)
2 16A

where we defined a finite function F(#, x) - -- tr3 ln (1 - e-' ), which is equivalent to the

finite function F(#, rn2 ) in the uniform case. The first term in equation (2.48) is divergent,

separating divergent parts from the finite part by the expansion of ri 2 (x) around E2, we

obtain the following expression for the free energy density,

1 1f = F(, x) + RF(, x) + (m2 _ 2) < XI[ + 2] -1/2I >
(2.49)

162 - < XI[ + E2] 3/2 IX > - (m2 - rh2(x))2

where we defined the finite part of tr3c^ by V - RF(f, x). We have also dropped the term

< xl V2+ M2 Ix > since it just contributes to the free energy by an infinite constant.
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Inserting the divergences from equations (2.20) and (2.45) and dropping irrelevant infinite

constants, we arrive at

1 1 1 -2
f = (, x) + 2RF(O, x) + 6 4 r2 (r 4 (x) - 2r 2 (x)) 2 ) + 64 m 4 (x)ln& 2

aA2 (2.50)
1 1+ 16r 2 f 2(x)A -(2 ))2

+ i6 16A

Note the last three terms are very similar to the divergent terms encountered in equation

(2.30) of the uniform case. If we adopt the same renormalization defined by equations (2.22)

in the uniform case, we obtain the following renormalized free energy density by replacing the

bare parameters by the renormalized ones.

1 1 m4(x) m2 ()2f = (,x) + RF(, x) + 6 (4 (fi ) - 2 2 ( ) 2 i) • () (2.51)
2 6472 32r 2 AR 167r2AR

The renormalization group analysis applies here also. As before, if we choose E = p,

then we can add an additional term to the free energy density to complete a square with the

last two terms. The free energy density is still connected to the constraint equation by the

partial derivative of rh2(x).



Chapter III

Second Order Contribution to the Free Energy

III.1 Formal Result

Now we embark on the calculation of the second order contribution to the free energy.

According to equation (2.8), we need to calculate,

Z2 e D[br]e [~+02+0m2-2&o r +I+f2-2( (3.1)

The first term in the exponent can be easily seen to be,

dxd x < 1 'X > 1 Ix > 6o(x') (3.2)
L(P) L(P -

with L(1 ) -2+ ,2. Here multiplied with &o(x) and 6o(x') are two matrix elements,

< X ' x > and < x'L x >, of the same operator L( We want to convert it to one

matrix element of another operator. As can be seen later, this can be accomplished by the

introduction of relative and total momentum. By inserting complete set of four momentum

states, we have

<X L ' >< 'Ix >= 4pd 4p' (2)41 ei(p-p')(x'xz)
L )L() (2r) > • L(p) L(p')

Here f dpo means n since po = 27rn

Now let's define total momentum P = p - p' and relative momentum q = p + p'. Here we

could also define total momentum and relative momentum the other way around by calling

p + p' the total momentum. However, just for the convenience to the derivations in section
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111.2, we choose this definition here. If we have chosen the other definition, all the arguments

and derivations in 111.2 are valid as well. But they are valid in a less intuitive way. With

these total and relative momenta, the above expression can be rewritten as,

J dPd [ 1 2  1 1 eip(,
16 (2•r)4~ L((P + q)/2) L((P - q)/2) (3.3)

1
(2r < x lf(P)Ix' >

with

1 f 1 1

) 16 q L(( + q)/2) L((P - q)/2)

So far we have converted the product of two matrix elements of the same operator 1

into one matrix element of the operator f((P). Thus, after the functional integral in equation

(3.1) is done, Z 2 becomes,

Z2 = e-r [2 ()-

Finally, taking the trace in configuration space, we get,

Z2= - f (2  [ (2  (3.5)

Again we want to emphasize that a four momentum integral f d4p means f d3p. Note

in this final result we have -~- in it. From chapter II we know that A -+ O- unless AR = 0.

Thus, we hope that the first term in the exponent will cancel the infinity of --. To this end

we need to calculate the integral in the definition of f(P) in next section.



111.2 Renormalization

In the definition of f(P), equation (3.4), we have discrete sum due to qgo. This is sum is

done is Appendix B. Thus,

1 w) + WW
f(P) = 1- dq +_[ + F1  + F2

with w+, w-, F1 and F2 defined in Appendix B and w,, = P0. Then the second order

contribution to the partition function becomes,

Z2 = exp V3 In [J++ F1 + F2 }Z2 (2)3 (21)3 [-W2 - (W+ + W_)2]WW2 2A
(3.6)

where we have rescaled q to 2q in order to absorb a 1/8 factor. In contrast to Appendix B,

this rescaling changes the definitions of of w+ and w_ to,

wi -- r %+ ( - ± q)2 (3.7)

We are interested in renormalizing the argument of the logarithm. Because of the exponential

terms in F1 and F2 , the integrations of F1 and F2 are finite. Therefore, we are only interested

in the calculation of integration of d3q over the first term. To obtain an analytical expression

for this integration, we first need to calculate the following integral,

Int d3p 1 + (3.8)
(2r)3 Q2 - (w• + w') 2 +i WW (3.8)

here we assume Q is positive. Note this integral is essentially the same as the first term in

the argument of logarithm in equation (3.6) except for a sign change in front of f2 . This sign

change is introduced on purpose. With this sign change, we can separate integral (3.8) into

principal part and imaginary part. It turns out that we can obtain an analytical expression
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for the imaginary part. Then, with the help of dispersion relations, we can obtain both the

final result for integral (3.8) and the integral in the argument of logarithm in equation (3.6),

namely, the integral with correct sign. In other words, we change the sign in front of Q2 just

as a means to obtain the result for the integral with the correct sign. In equation (3.8) p'

plays the role of q in equation (3.6). This change is introduced for notational clarity later.

Consequently, w' are defined as (3.7) with the replacement of q by p'.

As is outlined above, we devote the rest of this section to the calculation of the afore-

mentioned integrals. Making using of the following identities,
1 1=1 P 1 - ir6(f2 _ U + W ) 2)-Q (W + W_) 2 + ie - (WI + 1'_)2 - i6( - (+ w)2)

+ 6X 2 = 1 + (3.9)
6(x2 a2) = [6(x - a) + 6(x + a)]

we get the following expression for the imaginary part of the integral,

Im(Int) = -2 7 6( - (W' + W_))
(2r)3 4w4w'.

-(2) d3p' 6( - (w + w ))6(P' - P) (3.10)

= -(2()4( d3 p, d3p2 1 6(Q - (w' + w' ))6(P' - P)S(2r)3 (27) 4 w'w'._
In the second step above we introduced an three dimensional integral d3 P' on purpose in

order to change w' to

W; = ZlrM2 +( + p') 2

In the last step we introduced momentum p', - P'/2 + p' and P'2 - P'/2 - p'. Namely,

we "disintegrate" the total momentum P' and relative momentum p' into their "original"

component and consequently wL become wL and w' respectively.

The reason why we want to introduce p'z and P'2 is that they enable us to deploy the

following identity

d4p'b(p,2- _h 2)(p) = 1d3p' (3.11)20/p 2
2+ r 2



to transform the three dimensional integrals in equation (3.10) to four dimensional integrals

in Minkowski space. The above identity puts particle 1 and particle 2 on mass shell, namely

P1o = + P2o ' (3.12)

Now we change variables p' and p'2 back to the relative momentum p' and the total

momentum P'. However, this time it is a four dimensional transformation and we introduced

pO and PO for the first time. Due to equation (3.12), we can replace 6(f - (W + wl_)) by

6(f - Po), which kills the d4 P' integral. Consequently, we are left with

Sd 4 p' 2PIm(Int) = -27r f (22r)- - rh2)6(p' 2 - fn2)(p'+o)O(po0 )
(27r) 3  4 +

P21 P2
x 6(T - Pp' + p' - •)( + p)( - )4 2 2 0

- d4q P 2 - _-- 2Q
= ( (P2q)6( 3 + q -m )(q + qo)O( -qo)

where we change p' back to q as in equation (3.6) for notational simplicity. Here P is the four

momentum (Q, P) in Minkowski space and P2 = Q2 _ p2. As far as no confusions arise, we

define

Pcqq = Iql P -IPI u =
Pq

Then in polar coordinates we have,

Im(Int) = (,)3 J du q2 dq dqo 6(Sqo - qPu)(27)3 -1 o -0
Q2  P2 2 OfQ

x 6(q2 - q2 + 4 - + )( -

272 + o1 qPu2 1+1 du q2dq 0(2 + )
(2x)O -1 2

qPu qPu 2 2 p 2
0x ( ) 6( - q2 + - 2)

2 S)( 4 4
2n r2  dU o° qPu

= 27r d 1 du qd 0( +
(2)r-3 1- P2U2 2
( qP2 p 2 -_ 2

2 S(q 2  P2u2 )
p2U



The 6 function above kills the dq integral and we get,

72 a2 p2 2+1 du
Im(Int) = _ r 4 - m 3(

(2r)3l 4 4 2-1 (1- ) 2

4- 1- 2 U 4 2IPu 4 4 4 4t I_

72 2  p2 2

( 02 p 2Q 2  P2  2
x 2  -7: -V1 -+ 2

4 4 - 2  
2 F4 4 2

where we have defined a new variable x = Pu

Scaling Q and P by mh, and denoting fQ/S and P/ri by f and P, we can eliminate one

degree of freedom in the argument of 0 functions through the replacement of m by 1,

r2 2 p2 1

Im(Int) = 2 1 dP-
(27r) 3Q 4 4 JP. (1 X2) 2

( n 2  p2 in2 p2I
xy -1 + -+ -

4 4 /1 - x 2 4 4 1-x2

As a function of x, the argument in the first 0 function behaves as Fig. 3.1(a); and the

argument of the second 0 function behaves as Fig. 3.1(b). In the figures we choose Q/2 = 10

and V 2/4 -_ 2 /4 - 1 = 5. Let's look at the argument of the first 0 function. The minimum

value of x is -P/Q. However, we can show that the root of the argument as a function of x

lies below this minimum value of x. In other words, the argument is always positive and the

0 function is nothing but one. Similarly, the root of the argument of the second 0 function

lies above the maximum value of x: P/fi. Therefore, the second 0 function is nothing but one

again. Let's solve for the root of the first argument only. The root for the second argument

can be solved similarly.

V2~~f22 P2-4~i2-
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The following statement,

/22 - p2 - 4 Q

after several reversible steps, can be shown to be equivalent to the following inequality, which

obviously holds.

PQ) 4
( -- )2 + = > 0

Thus our claim is proved. Now we can do the x integral and get the following answer,

272 1 Q2  p2
Im(Int(s)) - m(27)2

7(2 2 4 4

(27) 3  s + 4m2

where s f= 2 _ p2 - 4r2. In the above expressions we explicitly change P 2 back to P 2 to

avoid confusions. Now we can calculate the real part through the following dispersion relation,

Ref(o) = P mf(x) d
7rJ-oo x -- X 0

We get,

Re(Int(s)) - (2)r Pj ss s • •  (3.13)

where we changed the lower integral limit to 0 since imaginary part is 0 if s' is negative, as can

be seen from the 6 function in equation (3.9). The analytical form of the indefinite integral

above can be easily obtained,

Sds' s - v1ln(s' - s) +n 22 +' + s'( 42
S' +4+ 4 7;2 L442

s + 4m2,s + 4 In 27=+  2 s + 272SI + v S, SI+' + 44( + 7;(3.14) + (3.14)



For the integral in equation (3.6), we have 2 = -- wn , thus we have s < -4m2 according to

its definition. This means we can ignore the principal value operator in equation (3.13) and

plug in A,,, the cutoff of s', and 0 directly into equation (3.14) and we get,

Int(s) = Re(Int(s)) = [ln2A, - ln2fi2 + In + (8F2 s +F + v's + 4 n As,
s < -- 4r 2

(3.15)

If we renormalize the A as in chapter II (equation (2.24) ) and make use of the following

relationship A,, = (2A) 2 for on energy shell s', then

f d q + w_ 1
(27)"3 [-W - (W+ + _)2]W+_ J 2A

1 1 aA2  _ Vs-21 42+ 42 - In + I~2 L - ln-2 - ln(2A)2 In4j72 XR+ 82 -2 )+ir2 V;hgz n 2 I2 -s + 442 -2AR 87r2  s 4-4 2  Vr -v+ s4- 2

1 1 s _-s + 4m2 2
S1- + In -S In

47r2 AR 8Nr2  s V+ 4i 2  4+f• + / 2

(3.16)

In the last step we used Ina = 21n2 - 1. Here s = -w - P2 - 4 2 . For Im(Int(s')) to exist,

we know from equation (3.9) that s' must always be on energy shell in the sense that

s n2 p-P2 _ 42 = ( •) 2 - 2 - 4 ~2

with w' defined in equation (3.7) except for the replacement of q by p'. Then in any reference

system of fixed P, we can establish the relationship between the two cutoffs above as p'

approaches infinity.

Finally, after renormalization, the second order contribution becomes:

InZ2  V In 1
2 n (2r)3 47n2A

1n 1 + 1 2 1n  - 2 - 42 1 F)
Fs + 4 F + -rs + 472hn I2 (27r)3

(3.17)



If we look at the second term in the parenthesis, which depends on s only, we can realize that

the sum over n and the integration over P do not give us a finite result as they become large.

The term containing F1 and F2 is harmless because F1 and F2 decay exponentially as n and

P get larger and larger. In addition, the infinities due to the s dependent term is temperature

dependent through the temperature dependence of MT. However, we can reasonably anticipate

that this temperature dependence can be removed by the ln(n 2 /p 2 ) term. So let's expand the

s dependent term around large -s (recall s is negative). Then indeed the leading divergence

from the s dependent term is transformed into a temperature independent term ln(P 2/- s)

by ln(rh2/,a 2). However, the other terms which are of higher power of 1/ - s are divergent

and temperature dependent. To be explicit, let's present the result here:

InZ 2 = d3 In42 1 +ln 1+ ( +ln )2 (2 7)3 4 7r2A R 2 -s
+n[ ( + In + + In f-- 47r AR 3F2)

1+ A& (1 +InA
(3.18)

Here F,-a denotes the term of order 1/(-s)3 and higher, which is convergent. We can readily

realize that the terms of order 1/(-s) and 1/(-s)2 are not convergent and they are temper-

ature dependent.

Before we continue with our discussion of renormalizability, we need to examine whether

at the point fn, the point we identified as the saddle point from the constraint equation,

really gives us a maximum of the partition function. In obtaining the above result (3.18),

we have only formally done the functional integral of D[Sar] in partition function (3.1). We

have not proved that every diagonal matrix element in the exponent after diagonalization is

negative. However, we can study this question now by examining equation (3.18). If under
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certain circumstance we get an overall negative argument in the logarithm function of equation

(3.18), that means there are direction(s) at our saddle point along which the partition function

is increasing. This will disqualify our calculation in last chapter as a valid approximation.

However, as we can see, all the terms multiplying AR in the last logarithm function have

upper and lower bounds once the saddle point rh is fixed except for the term 1 + ln(tL2 / - s).

Therefore, as long as AR < 0 and it is sufficiently small, we will never encounter the case of

an overall negative argument for our logarithm function (recall that A -+ 0-). However, we

can not rule out the case of AR > 0 since there are occasions when a large and positive AR

can guarantee the overall nonnegativity of the logarithm function.

Coming back to renormalizability, it seems that to make the second order contribution

renormalizable, we have to choose AR = 0 (and 0- regarding discussion above), in which case

lnZ2 reduces to a pure infinite constant, which can be dropped. This signifies that the theory

becomes free or A~4 theory is trivial. However, we may need to renormalize our theory in

a different way which could renormalize leading and second order contributions as a whole

rather than separately. In more than four space-time dimensions there are rigorous proofs of

triviality. However, the proofs fail for four dimensions ([9] and [10]). The lattice calculation

suggests that although the theory is trivial, namely, AR = 0, it is not entirely free in the sense

that spontaneous symmetry can occur ([11]). With all these in mind, we will keep all the

calculations up to first order and perform similar calculations in the following chapters. The

question of whether the theory is free is left open at this moment.



Chapter IV

Effective Potential of Aq$4 Theory

IV.1 Effective Potential

We start with the generating functional for the temperature Green's function

Z[J] = N'
Iperi

= N1 /peri

D[]exp [j0dr d3X(LE +
Jq,]

I(V)2 + M 2 + A04
2 2D[b]exp - JIx)O)x·)

As before, we can remove the A04 term by introducing an auxiliary variable a(x).

following I assume the A < 0, since the case A > 0 can be dealt with similarly, as discussed at

the end of section II.1.

Z[J] = N rD[ ]D[a]ep {Jd4z -4(x) 1 02

2 0-2 IV2
2

+ 12
2

- 0(W) O(W)
(4.2)

1
+J(x)q(x) + 12 )4A

Here N - N'(det A) 4 as in Chapter II (see equation (2.6) ).

After doing the O(x) functional integral, which is now quadratic in O(x), we get,

Z[J] = N feri D[r]exp [ trln[(-y - V2  + m2 - 2a(x))6(x - x')] +D 1~x-2 rn(9,r 2

x exzp 2 d4x d 4 'J(x')
(- - V2 + - 2o(x))6(x - x')

= N fperi

x exp I

D[]exp [1 trln[p2 + m2 - 2&] + d'4-X 12(x)

d 4xd4XI 1 JIx' >
I < 2 + m 2 - 2&

(4.3)

(4.1)

In the

d4x 1 2(
4A

x)]

J(x)

dx [( +



Again, we have adopted the operator notation in order to facilitate the derivations later.

Expanding the exponent around ao, the saddle point, we get,

11 60
x exp - dzdz' < j ' > +tr[ ]

2 < 2d4xd4x' 2 + m 2 - 20 > + m2 - 20O

x exp Jd40o(x)6o(x) + I d4xd 4x' < xj 2 aj 2o) ' >] (4.4)
(21 + 1m22

xexp J d4X 2()+tr 1 ___2S 4Ap p21 < l2 + m,2 -20o P 2 + m2 - 2O0

x exp [2 d fd(xd' < 1 1j 6JlzIx >
(p 2 + m2 -2&o)2  2 +m 2 -2o

Let's first look at the terms which are of first order in Sa.

2 (#P2 + m2 _ 2&0)2

1 2d d4'd4Jd-\ 21 f d4xd4x'd4pJ(x) < xp > (p2 + m 2  20)2 < Plx' > 6a(x')J(x')
2 (p2 + 2 - 2aO)2

Where we have assumed translational invariance for ao by assuming it to be a constant and

65 and J are local operators in configuration space. If we further assume J is x independent,

then we can simplify the above expression to

J2 dzd zxd'd 1 eip(xz-X) 2  b)(x')
2 (27) 3 3 (p2 + m 2 _ 2ro)2

J2 2= - d4x'd4 P64 (p)' (P + -2o) (')

d4X2 (p2 + m2  2o)2  ()

=jd (m2 - 2oo)2
By definition, the terms of first order in ba should sum to zero, thus we get,

1 1 J2
< x12 + > o + = + (4.5)

P2 + m2 -20 2A (m2 - 2o)2

Upon evaluating the matrix element, we obtain

/ d3p -2A 1 1 -2d
Co 23 ( - + ) + J2  (4.6)

1(27r) w 2 ew - 1 f4
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With

w /pE + = /p$ + m2 - 20o (4.7)

This equation implicitly gives us the stationary point of ao for a given external source J.

In the same spirit of calculating the first order term, we can calculate the zeroth and

second order terms. In the end we get,

ZPJ] = eXP J (27r) - w - ln(1 - e- )] + 1 2 n-2V(2x)" 2 4A 2 m
x D[Sa]exp tr[ 1 6 2 (4.8)

peri l2 + m 2 - 2a0o 2  M2 - 2(4.8)

x exp d4x6o2(x) + V d4xd4x' < xI + 2  2t >4A m p2 + m2 - 2&0
We approximate the generating functional by keeping only the zeroth order term and

get the following expression for the exponent of the Z[J], or the generating functional for the

connected Green's function.

+,~ 1 O + 1 5j2

W[J] = v [- pw - In(1 - e-W)] + V + V (4.9)

Note the expression above differs from equation (2.13) only by the last term. Defining renor-

malized mass ,p and coupling constant AR as in equation (2.24), we get the renormalized

expression for W[J],

+ 1 77 n 1 1 (m2 _ 2)2 J2

W[J] = -V F(, 2) + (lnI -) (4.10)
6472 P2 2 3272 /R 2m7

As for the case without external source, the first order constraint equation can also be

renormalized since it differs from equation (2.16) in 11.2 only by a harmless source term. The

explicit expression for the renormalized constraint equation is,

1 2 J2

2  -= 2 21n• 42 Rf( 2) 82R (4.11)

2 P2 m



As in Chapter II, taking partial derivative to equation (4.10) with respect to 7r2 gives

us equation (4.11). In the above expression for W[J], ?h implicitly depends on J through

equation (4.11). This equation solves for ao for a given J, and f5n depends on ao through the

defining equation (4.7).

The classical field € is defined as

bW[J] 8W dm2• •  (W (4.12)
S = (4.12)6J - 2 dJ J+

Since the gives us the constraint equation, the first term above vanishes. Consequently,

= (4.13)

and we can rewrite the constraint equation as,

1 S2 = 2+ 21ln; - 4ARf(,) +87r••)  8• ~2  (4.14)2 4 2

From this relationship between € and J we can get effective action defined by

r[ - w[J] -J d 4 j (4.15)

and the effective potential,

v() = - r(
1 1 2 1 1 (2 -2)2 (4.16)= -22 + 2 F( •, 2 )+

2 64I2 n2 2 32r 2  AR

It is worth noting now that if we set O0, then we can recover the constraint equation

(4.14). Therefore, solving the constraint equation is nothing but finding the extrema of V(q)

with respect to 72.



If we want to numerically plot the effective potential as a function of €, then we need

first fix a temperature, then we solve for f for all possible values of J through the constraint

equation (4.11). Then using equation (4.13) we can relate f to €. With this relationship

equation (4.16) gives the effective potential as a function of q.

However, the constraint equation (4.11) does not have solutions to 7 when J is above a

certain value. We have known that taking partial derivative to equation (4.10) with respect

to rh2 gives us equation (4.11). Therefore, if we plot W[J] as a function of f2, the extrema

on the plot are solutions to constraint equation (4.11). As an example, in the case of T = 1,

AR = 1 and M 2 = 10, the constraint equation has solution(s) only when J is between -6.9

and 6.9 (Fig. 4.1). The corresponding range for q can be obtained by the relationship (4.13)

(Fig. 4.2). If we plot W[J] as a function of fn, then we can realize that when J is outside the

above range, we do not have any nonzero maxima to the W[J] curve (Fig. 4.3). Namely, we

do not have a point around which to do the saddle point integration except for the fr = 0

peak. When J : 0, it seems that we should always expand our generating functional around

this fh = 0 peak since it is absolutely the global maximum (actually infinity), even when J

is within the range of [-6.9, 6.9]. Although this peak is a singular point of W[J], suppose we

can, nevertheless, make a saddle point expansion around fi = 0, then we have di 2 /dJ = 0 for

fn identically being zero, and consequently we have € = J/i 2 as before. In other words, all

the formal derivations from (4.10) to (4.16) go through even for n = 0. However, if we insert

= J/fn2 into effective potential (4.16), then in the limit i~ -- 0, € -- oc and V(q) -+ +oo,

which is certainly not interesting to us. Therefore, we can safely ignore the fn = 0 peak on

the W[J] curve when J : 0. When J = 0, this analysis no longer holds and we will come

back to J = 0 case later.



Besides the r7 = 0 peak, we still have two extrema in Fig. 4.3 when J is between -6.9 and

6.9. Ideally, we want to expand our generating functional around its maximum. Nevertheless,

we can keep both extrema (meaning two solutions to fi) and plot the effective potential from

both roots. The result is shown in Fig. 4.4. The dashed curve is from the minimum in Fig. 4.3

and the solid curve is from the maximum. The result confirmed our intuition that we should

keep the root corresponding to the maximum because this branch of solutions result in a lower

effective potential.

Now the question which needs to be answered is how we construct the effective potential

for J outside the above range. Note that J is actually the total derivative of V(q) with

respect to ý because of the Legendre transformation. Therefore, we conclude that when J

is too large, there are no points on the effective potential curve V(O) where the derivative

with respect to € equals to J. Namely, there exists an upper bound to the steepness of the

effective potential curve. That is why the constraint equation (4.11) has no solutions to rh

when J is larger than a certain critical value, which is the maximum steepness of the effective

potential V( ). Recall that the constraint equations (4.11) can only give us the nonzero rn

solution to the saddle point. Thus, when J becomes larger than the maximum steepness of

the effective potential, the only saddle point we are left with is rf = 0. We have shown that

the relationship (4.13) still holds even when - = 0. However, this relationship should be

interpreted as J(q) = u2 ( ) = 0 when rf = 0 since in order to obtain the effective action

F( ), J (and rl) in the Legendre Transformation (4.15) should be regarded as a function of

€. In other words, when fn = 0, both fn and J are independent of € and remain zero for any

when they are interpreted as a function of €. In fact € can be all the values outside the J

region where (4.11) has nonzero solution to fm. With fl- = 0 and € any finite value, equation
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(4.16) gives a flat effective potential. Because J is the steepness of the effective potential, this

flat effective potential means J = 0, which agrees with our interpretation above.

In summary, the effective potential is given by (4.16) when J is within the region where

(4.11) has nonzero solutions to fm. Outside this J region, the effective potential is given by

the constant V(fr = 0).

The above conclusion is equivalent to saying that the effective potential is given by the

closed system of two equations: (4.14) and (4.16). Note that equation (4.14) is essentially

the same as equation (4.11) with the only difference that # is replaced by J through the

relationship (4.13). Thus, for any J that gives us nonzero solutions to f from equation

(4.11), we have a corresponding ý that gives us nonzero solutions to fr from equation (4.14),

and vice versa. For a given temperature, the equation (4.14) has solutions to fi for only a

finite interval of q. This property can be phrased the other way around: for any fixed ý, there

is only a finite interval of temperature during which the constraint equation has a solution

to fn. But this is not surprising at all considering the discussion at the end of 11.3. Here

we have an effective potential (4.16) which is even in Fn, thus for any finite ý, fn = 0 is an

extrema on the V vs. i plot. The constraint equation (4.14) only keeps track of the non-zero

extrema. Therefore, as in chapter II, for $ outside the above range, we can simply set i = 0

in equation (4.16) and get the effective potential.

At a given temperature, the constraint equation (4.14) usually has two solutions to the

fZ for each value of ý (This is always true in the case of AR > 0 and true for a certain interval

of temperatures in the case of AR < 0). This can also be understood the other way around:

for a given ý, the constraint equation has two solutions for fn at every temperature. Again,

this is what we have encountered in 11.3. Admittedly, here we generally have q # 0. But

qualitatively, the discussions in 11.3 are unchanged.
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Now if we look at Fig. 4.3, an interesting question arises: W[J] certainly attains a higher

maximum at fh = 0 (although it is a singular point) than at the solution(s) to the constraint

equation (4.11) when J : 0, why should we bother to consider the solution(s) to the constraint

equation in the first place? Should we always pick the rh = 0 point as our saddle point as

long as J # 0? We have several arguments to deal with this question. First of all, as we have

pointed out earlier, if we literally let rh -- 0 for fixed nonzero J, we will obtain a single point

for the effective potential: V -- oo at o --+ 0, which is completely uninteresting. Secondly, if

we want to set fin = 0, then the relationship J(d) = ýir2( ) means J is independent of ý and

remains zero for any value of €. This line of arguments means J = 0 must hold when ih = 0

and it leads to the flat part of our effective potential. Indeed, if J = 0 when ihn = 0, for a

certain €, the W[J] curve will not blow up at fh = 0. In addition, according to this line of

arguments, we have already considered the case of rh = 0 and we have already obtained all

the effective potential curves by regarding all the extrema in Fig. 4.3 as potential candidates

for saddle points. We take the point of view that the "true" saddle point should be the one

that gives a lower effective potential. In other words, the effective potential curve has more

"determining power" than the W[J] curve in Fig. 4.3.

However, if one insists that we should consider the combination of J - 0 and rh -+ 0,

then our "soft" line of arguments is that the curves in Fig. 4.3 give us an incomplete picture.

In Fig. 4.3, the fri is assumed to be independent of positions in the configuration space.

Therefore, as we move toward Ft = 0, the rih(x) has to be changed uniformly across all

positions. In terms of functional integral (4.4), this means we are looking at one direction

in an infinite dimensional space. Although the exponent W[J] is growing in this direction as

we move toward fin = 0, it could be a very sharp "ridge" in the whole infinite dimensional
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"terrain" and consequently contributes little to the whole functional integral. In short, they

could have very small measure. To supplement our "soft" arguments, we present our "hard"

line of calculations here. First of all, as f- moves toward 0, the linear term in the functional

integral (4.4) does not vanish any more. If we keep this term and complete a square with the

quadratic term, then we can obtain an additional contribution to the leading order W[J]. To

be specific, the functional integral (4.4) can be rewritten as (referring to III.1):

Z[J] = N D[ba[exp [Wol[J + J (x)MIxd 4s()M 26a(X') (4.17)fperi IWO [j] + j 2

with Wo [J] defined as the leading order contribution given previously by (4.9) and

1 0o j2
MJ =< xI Ix > + + (4.18)L(i 2A f-

-2 4J2 1 1
M2 =< x1 - f(P) - --]2Ix'> (4.19)

Upon completing the square of the linear and quadratic terms, we obtain an additional term

which is essentially of the nature of M/,/(2M2 ). As f approaches zero,

M1 J4 /ms J2

M 2  -J 2 / n4 f4

Since Wo [J] ~ j 2 /2 as fr approaches zero, M2 /(2M 2) will dominate Wo [J] and consequently

their sum decreases as f - -- 0. Therefore, the inclusion of this additional term will make

M = 0 a global minimum rather than a maximum. In addition, we do not have a "ridge" at

all as we move fh toward zero uniformly across all positions in configuration space. However,

as F -- 0, M 2 -+ -oo, meaning the quadratic term in (4.17) will not give us a convergent

functional integral. To ensure convergence, it seems that we have to let J go to zero as rh
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approaches zero, while maintaining the ratio J/i 2 = € fixed. Then this comes back to our

previous arguments that J must be zero when rh is zero.

According to equation (2.24), where the renormalized parameters are defined, when AR $

0, A -+ 0-. This seems to be the only scenario when we can obtain a nontrivial, bounded (from

below) renormalized effective potential. However, intuition suggests that the theory in this

case is unstable if we look at the bare classical potential. In addition, the initial functional

integral (2.3) defining the partition function is ill defined in this case. However, we can

overcome this difficulty by first study the case when A > 0. As discussed in section II.1, when

A > 0, all our derivations so far can be carried out similarly with the same renormalization

prescription. Then we can regard what we got for A -+ 0- as an analytic continuation of the

A > 0 case. Then a question naturally arises as to what this continuation represents. In other

words, whether it represents the true A'4 theory or something else. However, if we adopt the

language of the effective field theories, then a negative A is perfectly legitimate ([3]). Since we

will be always ignorant of the physics at arbitrarily small distances, we are allowed to treat

AO4 as an effective theory at a certain low energy scale characterized by M. Below energy

scale M, we have AO4 theory; Above that scale, we have another unknown, underlying theory.

To be specific, suppose the unknown, underlying theory is fermionic and has the following

general Lagrangian,

' = (, V), IM)

As temperature drops, the fermionic fields get coupled and $O plays the role of our € field.

Then effectively, the underlying theory can have the following Lagrangian below the charac-

teristic energy scale:

1 1
£C = at,a0#0- m202 - A 4 + A 1,/ + A28 +. -.2 2



On dimensional grounds, A1 , M - 2 and A2 ~ M - 4 . When € < M, we obtain the A04 theory.

When 0 E> M, the otherwise suppressed terms in low energy case may dominate the Aq4 term

and bends over the potential curve back up again for sufficiently large 0. Consequently, our

theory can be stable when A < 0. In addition, if this is the case, then the functional integral

(2.3) is well defined. In summary, the energy scale M introduced in the language of the

effective field theories serves as the cutoff both for the momentum and for the 0 field. We

only have A04 theory if our energy scale is below M and 0 < M. In this case, the 0 = 0

minimum corresponds to a metastable state. The decay of this metastable state to the true

vacuum is hindered by a large potential barrier. As M becomes sufficiently large, this barrier

becomes so wide that the decay width approaches zero. Namely, it takes an infinite amount

of time for this metastable state to decay. In other words, this metastable state effectively

becomes stable. It is in this spirit that we consider the 0 = 0 minimum as our vacuum when

A < 0.

Finally, we need to confirm that when A > 0, we get a free theory. Recall that the bare

parameters are related to the renormalized ones through

AR ' - ARA 2 /2r 2
A(A) = m2 (A) = (4.20)

It is easy to see that only AR = 0 allows the possibility of A > 0. If we denote A by f(A),

which is a general function of cutoff A, then our renormalization prescription,

f(A)/(27r2 )A f(A) 'In A2

(4.21)
Y2 m 2 + f(A)A2 /(27r2)

1 + (A)ln~r
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says that when f(A) > 0, either finite or not, AR --+ 0+. This corresponds to a free theory

and it is easy to realize that the corresponding effective potential is given by a flat curve

V(b) = F(O, 0)

which corresponds to the endpoint rh = 0. The solution from constraint equation (4.14)

is rh2 = ,L2 when AR = 0, which always gives a higher effective potential than the rh = 0

endpoint.

It is also interesting to note that when A is negative and finite, we also have AR - 0+,

which gives us a free theory again.

As a comparison with the usual perturbative approach, we write down the result of

one-loop effective potential ([8])

V(W) = + + 6 - +F(, 2 2 ) (4.22)

with

h 2 = I2 + 12ARý 2  (4.23)

The first two terms in this one-loop effective potential is the tree level effective potential.

The third term and last term are due to quantum and thermal fluctuations respectively

around the classical field. Note the in2 does not depend on temperature in the one-loop

effective potential. Therefore, thermal fluctuations are separated from quantum fluctuations.

In contrast, the effective potential (4.16) does not exhibit the tree level expression explicitly

and the quantum and thermal fluctuations are no longer segmented because the effective mass

2 depends on temperature.

We want to study the weak coupling limit of our nonperturbative effective potential and

compare this limit with the perturbative result. We will only study the zero temperature
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case for simplicity. In the next section we will see that at zero temperature, the range of ý

over which the constraint equation (4.14) has solution(s) extends to infinity as AR -- 0-. In

addition, essentially all these solutions are lower than the flat part of the effective potential

given by rn = 0. Therefore, we can concentrate on the constraint equation (4.14) and ignore

the special case of ri- = 0. In the weak coupling limit, r 2 --+ p2 in the constraint equation

(4.14). Therefore, we can express the difference rn2 - y2 as a power series of AR:

2 -~ = a, (4.24)
n=1

with

_ al 167r4 4 2 247r4q 4  1287r6 6

al = 87r2 a 2 - - as = 21r2  + 2 a 4 = 7 + 2 2 23

With this power series expansion, we can easily get the weak coupling expansion of our

effective potential (4.16):

V(B) = 12 2 3 2••2 AR4 +,2 +2 4 6 3 + O(A4 (4.25)

In our definition of the renormalized coupling constant (2.24), we could have absorbed a factor

of 27r2 into AR, then our effective potential in the weak coupling limit will be:

1 222 A 4 + 4 36
V(O) = + AR 4+ 2 + 1 + 37r2 2A 

+ O(A) (4.26)

Therefore, this way of defining the renormalized coupling constant can recover the functional

form of the classical potential at the tree level.

The weak coupling limit of the one-loop effective potential is:

22 23 4 -6
V( )= ý2 2+ARO4+ -R 2 + O(A4) (4.27)

2 72 2



Clearly, our effective potential differs from the one-loop result. The main reason for this

difference is that in obtaining the one-loop effective potential, an unjustified interchange of

limits is taken. In other words, an ultraviolet cutoff is first introduced to regularize the theory

and then the limit AR -+ 0 is taken for a fixed cutoff. This cutoff is then sent to infinity after

the limit AR -- 0 has already be taken. However, the true AO4 theory has no intrinsic cutoff

in it. If a cutoff is introduced temporarily to regularize the theory, it must first be removed

before any physical interpretations can be made (including any assertions about weak coupling

limit). Clearly, the way that the one-loop effective potential is obtained violated this principle

([3]). In addition, like the free energy density in Chapter II, our effective potential (4.16) has

the desired property of renormalization group invariance, which means that we are always

dealing with one single AP4 theory, no matter how we choose to parametrize it. In contrast, the

one-loop effective potential breaks this invariance and consequently leads to the complication

of the "renormalization-scheme-dependence", which suggests the physical content of the AO4

theory is different if we parametrize it differently.

The nonperturbative effective potential from the Functional Schroedinger Picture ap-

proach is given by ([6]):

1 1 4  1( ( -(2 _ 2V() = -- 2+ (Inm -n (4.28)2 64r 2  Y 2 2AR

with

f2 =2 (+ 2 1 21lniP) (4.29)

The above results agree perfectly with our effective potential at zero temperature by

reparametrizing our AR by a factor of 1/16r 2 .
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The Gaussian Effective Potential is ([3]):

1 1 ( n- - 2 (f2-2_ 2 8 ( 2

V(q) = 2 + m1n f 64+ (m - A2)2 (4.30)2 64=2 p* 64x2 lR 2

with

-2 = p2 A+ A R 4 2i2  +167r2ý2 (4.31)

Am + 4r 2  M 2

This effective potential does not exhibit as striking a similarity to our effective potential as

that of the Functional Schroedinger Picture. However, this effective potential reproduces

all the qualitative features of our effective potential ([3]). The Gaussian Effective Potential

reached the same conclusion that A -+ 0- is the only surviving scenario of the AX4 theory. Its

potential looks exactly like ours in Fig. 4.4. However, for A > 0, we conclude that the theory

is free, whereas the Gaussian Effective Potential concludes that the theory is unbounded from

below and not necessarily free.
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IV.2 Symmetry Breaking

Now we want to study symmetry breaking by examining the extrema of the effective

potential (4.16). The total derivative of the effective potential with respect to € is:

dV(b) V drh2  (&V -2-
S- + =- = (4.32)do &n- do 8O

where we have used the fact that . = 0 again. Thus the extremum of the effective potential

occurs either at 4 = 0 or fn2 = 0 and only the second case allows the possibility of spontaneous

symmetry breaking of the reflection symmetry. By taking the second derivative of the effective

potential at 0 = 0, we can easily realize that the 0 = 0 extremum is always a minimum.

If we insert rin 2 = 0 into the constraint equation (4.14), then we obtain a very general

equation between € and temperature T.

0 = j2 - 4r2 ARf (/, 0) + 8xr2 ARý 2  (4.33)

The above equation does not always have a solution to €. If it does have one, then

it has only one solution: 0o (except for the other one connected by reflection symmetry).

However, corresponding to this ý0, there exists another rh2 which satisfies the constraint

equation (4.14). This fri 2 is:

m2 = e2e21A (4.34)

We are interested in knowing whether the F = 0 extremum is a minimum of the effective. To

this end, we calculate the second derivative of the effective potential:

V" = r2 + A 2  (4.35)

with

161r 2X R

1 - AR/2 - (AR/2)ln(rh 2/l 2 ) + 4 2 R(2f(rh2 ,)/) 2 ) (4.36)
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It is easy to realize that as F 2 -- 0, A becomes positive and therefore, the rh = 0 extremum is

always a minimum. As an example, see Fig. 4.5 for the case An = -2, ,2 = 10 and T = 0.1.

Fig. 4.5(b) is the blowup of the upper-left corner of the Fig. 4.5(a). The point C corresponds

to the point where Fn = 0 and straight down below is point A, where rf has the value as given

by equation (4.34). At point B, the flat part of the effective potential meets the curve part.

The value of the effective potential at point C must be the same as that of flat part of the

effective potential. Therefore, the curve part of the effective potential must merge smoothly

with the flat part (not shown in Fig. 4.5(b)) at point C. However, the minimum at point C

is above the lower "branch" of the effective potential. Therefore, it is at best unstable if not

fictitious.

Nevertheless, we want to know under what circumstances this unstable state exists, or

when equation (4.33) has a solution to q. First let's consider the high temperature regime,

namely, the special case of T >> r and T >> p. The high temperature expansion of

F(/, f2) is given in appendix C,

2T 4

F(l, h2 ) -= 2 H(r, r = 0) (4.37)

Thus, we have,

r2T T2,2 T 4 16•22 T32

F(h) = + 2 (r 2 ) / + in n 2  27 +- (4.38)+0 2 12-7r 64-72 2 2

and consequently,

OFf(fn=2 -4 --
T 2 Ta r 2  

22 1672T 2  (4.39)
= + + - 27+ -6 27r 162 7r2  

2
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Inserting the above expansion into the constraint equation (4.33), we obtain,

2= 2 T2 (4.40)
87r2AR 12

We have a solution to the equation above only if

3y 
2

< T2AR < O (4.41)
27r2

In other words, only in the case of AR < 0 can we obtain a unstable state with #4 0. Put in

another way, for given renormalized mass and coupling constant, regardless of the sign of the

renormalized coupling constant, no € # 0 solution exists at high enough temperature. The

critical temperature below which the unstable solution starts to exist is,

-ART = 3  (4.42)

In this case, the effective potential has a value of,

7r2T4  1 4(
V(0, M2 = 0) = 90 32 2  (4.43)90 327r2 A

Now let's consider the low temperature case. From appendix C we can get F(/P, f2) at

low temperature,

2T44 -4T4 r(5/2)27)n3/2 fT (4.44)

F(, 22) 5 (,r 0= 0) (5) e- /T (4.44)

and consequently,

f(, fn-2 ) = 8(2T) 3/ 2m'/ 2 r(5/2) e_,/T (4.45)
72 r(5)

It is clear that as T -- 0, f(fl, fr 2 ) -+ 0, therefore, at zero temperature, the constraint equation

(4.33) gives us,

=2 = -_ 2/87r 2 AR (4.46)
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which means we can only get a unstable state when AR < 0 at zero temperature. This result

agrees with our conclusion in the high temperature regime.

With the q2 given by equation (4.46), we can easily get the corresponding value of the

effective potential at zero temperature,

1 •4
V(r = 0) =- > 0 (4.47)32-7r2 AR

When q = 0, the constraint equation (4.14) at zero temperature gives us the solution r 2 = y2.

Then we can get the value of the effective potential at € = 0,

V( = 0)= 128 2 4 < 0 (4.48)128xr2

Comparing the two values from equation (4.47) and (4.48), we confirmed that at zero tem-

perature, the unstable state is indeed unstable relative to the 4 = 0 minimum.

In summary, only when AR < 0 and T < T, can we get a unstable state in addition to

the q = 0 minimum of the effective potential. The existence of this unstable state means

that the curve part of the effective potential merges smoothly with the flat part, although it

is above another lower "branch" of the effective potential. The merging point corresponds to

the unstable state. As we increase the temperature above Tc, the unstable state disappears.

If we further increase the temperature, the curve part rises completely above the flat part.

The effective potentials at different temperatures described above are shown in Fig. 4.6.
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As the conclusion to this section, we want to present our preliminary calculations on the

second order contribution to the generating functional for the connected Green's function.

From equation (4.8), following the procedures similar to those in section III.1, we get,

1
W2 = V2

d4 In
(27r)4 n

(2)4) -2 f (P) +
(2r)

-1
2A

4J 2  1 1
ni-4 L(P)

(4.49)

with L(P) and f(P) defined by equations (3.2) and (3.4) respectively in section III.1. Then

the classical field becomes

SWo 6W 2U= +
6J 6J

J OW2 di 2  OW2-- +  +2 V
m2 Om2 dJ &J

Here Wo is just the zeroth order contribution to the generating functional, which is already

given by equation (4.9). The individual terms in equation (4.50) can be calculated and they

are,

OW2
OJ

d4 p -8J
(4.51)

(2r)4 f (P)L(P) + (P) 8J2

dVF'
rW2

d4 P

(27r) 4 4r 4 f(P)L(P) + L(P + 8J 2
-2a 4 L(P) Of(P)

(27r) 4 an 2

1

L(2)

8J 2  4J 2 1
+ +

+2+ L(P)4
(4.52)

with

af
aO2

1
16

1
d4 q

L(P+g)L( )

1

L( P+)
(4.53)

and from constraint equation (4.11) we can obtain

dn 2  8J/mn4

dJ + 8J2 +1 I2 -1
S 2r+ in 4 Ina +

with Ina = 21n2 - 1 and Jf f f p(27r)3
2 20elW - ,2.3 3(e3-- 1) ] W2(e•,i)2 - I ,UJ + -, which is finite. There-

fore, 7  is finite. From the above expressions, we can easily find out that aw2 and 9~W drjh2
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are divergent and they have similar leading divergence structures with opposite signs. How-

ever, the integrations in the above expressions can not be performed. Even if we can perform

the integrations, it is unlikely that all the divergences in 9W and 8 d fn- 2 will cancel since

the later certainly contains other divergences besides the leading divergence. This can be

confirmed by the fact that the second order contribution to the free energy in last chapter

can not be renormalized when J = 0.

Aside from renormalizability, the discussions at the end of section 111.2 regarding the

validity of saddle point integral remains true in this case. In other words, we have similar

ranges of AR over which our saddle point becomes a maximum of W[J]. It is easy to realize this

since equation (4.49) differs from (3.5) only by the term -4J 2/( 4L(P)), which is bounded

above and below for fixed J and t(4- 0).



Chapter V

Implications to Inflation

V.1 General Picture

The inflationary universe scenario was first proposed by Guth ([17]). Guth suggested

that if the phase transition associated with the spontaneous symmetry breaking of the Grand

Unified Theories (GUT) is first order, then the isotropy, homogeneity, flatness and monopoles

problems, which the standard big bang model failed to elucidate, could be explained. In

this scenario, the early universe was trapped in a metastable symmetric phase (false vacuum)

through supercooling. The false vacuum would decay by the process of Coleman-Callan bubble

nucleation. The bubbles of true vacuum have to coalesce uniformly in order to achieve the

observed mass homogeneity of the universe. However, it was later shown that the bubbles

would never merge and consequently the desired smooth coalescence can not be achieved.

This "graceful exit" problem was later overcome by the new inflationary scenario where the

effective potential near the false vacuum is assumed to be very flat ([18], [19]). It was shown

that with the Coleman-Weinberg effective potential, the symmetry breaking of the SU(5)

theory could follow the desired "slow-rollover" process and a single bubble could undergo

enough inflation to encompass all the observed entropy in the universe. Since the observed

universe has inflated by about a factor of 1028, a small patch of the early universe can become

the observed universe today. Under the assumption that the small patch is homogeneous

due to the thermal equilibrium before inflation, this homogeneity would be preserved during

inflation. Consequently, new inflation scenario can generate enough inflation as well as solve

the homogeneity problem.



Except for the contribution from the vector mesons which acquired masses through sym-

metry breaking, the Coleman-Weinberg effective potential is essentially due to the Higgs

sector of the SU(5) theory. However, in order for the Higgs field to drive inflation success-

fully, the field must be extremely weakly coupled (fine structure constant a - 3 x 10- 8 ).

This is because the observed mass density fluctuations in the universe is due to the quantum

fluctuations of the Higgs field as it rolls down the false vacuum. And this mass density fluc-

tuation sets an upper limit on the relevant coupling constant in the theory. The necessary

extreme weak coupling in the theory poses a severe problem to the SU(5) model since this

extreme weak coupling is far too small to fit into any framework of unification.This suggests

that the inflation driving field may not be the Higgs field in the SU(5) theory. In other words,

the Higgs field may not break the symmetry of SU(5) theory and drive inflation at the same

time. Therefore, we are allowed to consider a model which drives inflation only and ignore

the constraints due to the symmetry breaking of SU(5) theory for the moment.

In light of the above discussion, we want to study whether our effective potential can

drive inflation although it can not break reflection symmetry. We will concentrate on the

zero temperature case partially because of its analytical tractability and partially because we

believe that the qualitative features of the low temperature case can be captured. Since low

temperature means the temperature is low relative to the mass scale, in our case f and y,

which could be extremely large, the temperature actually has a great deal of latitude in the

absolute sense.

From section IV.2, we have qualitatively presented the effective potentials as temperature

changes. Our calculations done in section IV.2 can be easily repeated for zero temperature

case. From now on in this chapter, we will simplify our notation by omitting the bar on top
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of € and fh. Referring to Fig.4.5(b), I will present the relevant results which will be useful

later. The 0 and m of points A,B,C are given respectively:

= 2= _2 = (5.1)87r 327r2  87r2AR

2 22
P2 AR P2 AR 2

From equation (4.35), we can easily get the second derivative of the effective potential at

point B:

V 2 = m2 - 647r2 , (5.3)

It is easy to see that as AR -- 0-, m2 approaches 0 exponentially and we are left with a

negative second derivative at point B. In addition, in this limit, V2 = m•bB = 0. Therefore,

we can see that at zero temperature, as AR --+ 0-, the curve part of the effective potential at

point B could merge smoothly with the flat part. Although the effective potentials as shown

in Fig. 4.5 and Fig. 4.6 are often double valued, we should always look at the lower "branch".

Then the above interesting limit is suggestive of the potentials that can drive inflation in the

new inflationary scenario. Of course, at any finite AR, there will be a kink at the merging

point. Nevertheless, we are interested in knowing whether our effective potential allows a

picture similar to the one in the new inflationary scenario. We will only study the case when

AR is negative and extremely small partly because of this "level off" property of the effective

potential and partly because of our discussions at the ends of sections 111.2 and IV.2 regarding

the validity of saddle point approximation.

The general picture of inflation, according to our effective potential is the following: At

high temperature, the effective potential is essentially flat, therefore, the vacuum expectation

71



value of € can be any value. This is similar to the starting point of the universe in Linde's

chaotic inflation ([20]). The € can be any value with equal probability. However, there should

be such values of 0 that as it rolls down the potential curve, it can generate enough inflation

to encompass all the entropies of the observed universe. As in the chaotic inflation scenario,

there could be many such inflationary universes and our observed universe is just a tiny part

of one of them.

Suppose initially the vacuum expectation value of the effective potential is Oi. As tem-

perature drops, the curve part of the effective potential becomes lower than the flat part. As

the curve part lowers down when temperature drops, it becomes wider in its range also, as can

be seen on Fig. 4.6. For sufficiently weak coupling constant, equation (5.1) says the range of

curve part of the effective potential gets wider and wider. Actually its width attains infinity

in the limit of AR --+ 0-. Therefore, for sufficiently weakly coupled fields, the curve part of

the effective potential will always hit the €i as temperature drops. After that, we hope € will

roll down the hill and generate enough inflation.

Now we want to review the underlying equations in the new inflationary scenario and

the main requirements for a workable model ([21]). The key equation governing the time

evolution of 0 as it rolls down the hill is:

S+ 3H€ + F¢ + VY'() = 0 (5.4)

Here the Hubble parameter H R/IR is determined by the Friedman equation:

H2 = (81r/3m~,)[V(O) + + pr] (5.5)

with plank mass mpl = 1.22 x 1019Gev. p, is the energy density in radiation. Here F accounts

for particle creation due to the time evolution of 0 and is only important when the time
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evolution of 0 is large compared with the expansion rate. Actually F is the energy density per

unit time that is drained from the € field through particle creation. Its value is determined

by the fields which couple to € and the strength of the coupling. Since we do not know what

our 0 is and to what fields it is coupled, we can not determine this P. Actually this F is

the inverse of the lifetime of the € field during the radiation phase in the end of exponential

inflation. Since this P is related to the reheating of the universe in the radiation phase, our

lack of knowledge about it means we can not study reheating process and we will not be able

to determine reheating temperature and related phenomena. We need to imbed our model

into a sensible larger model which gives us a complete picture of inflation. The energy in

radiation p, and the N¢ term are both negligible during the slow rollover phase, therefore we

can ignore them in equations (5.4) and (5.5).

The key assumption during the slow rollover phase is that € term is negligible compared

to the friction term 3H€ and the kinetic energy (1/2)€ 2 is much smaller compared to the

potential energy V(q). Under these assumptions, the Hubble parameter is determined only

by the absolute value of the effective potential and becomes

H2  87rYV(¢)/3mP 1  (5.6)

and equation (5.4) becomes

-V'(0)/3H (5.7)

Futhermore, using this 0 to calculate € and making use of equation (5.5), we get

4/3Hq " -V"/9H 2 + (V'mp,/V) 2 /487r (5.8)

Therefore, it is self consistent to neglect € term when

IV"(O)l 5 9H 2  (5.9)
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(5.10)

For polynomial potentials, it is generally true that inequality (5.10) follows directly from (5.9).

It can be shown later that for our potential, this is true. Therefore, (5.10) is redundant. It is

easy to verify that if (5.10) is true, then (1/2)€2 < V(b) follows directly also. Therefore, in

the most general sense, if equations (5.9) and (5.10) are true, then our assumptions (€ < 3Hq

and (1/2) 2 < V(O)) are self consistent and the universe begins the de Sitter phase when it

expands exponentially and cosmic scale factor will grow by a factor of exp [f Hdt].

V.2 Parameters Fitting

To fit our effective potential into this inflation picture, we need to find a range of 0 where

equations (5.9) and (5.10) are satisfied. Suppose the range is from qb till 7e (see Fig. 5.1). It

is tempting to believe that point B is the beginning point. Form equations (5.1) and (5.2),

we can easily obtain the values of the effective potential at point A, B and C.

1 4
VB = V = 32 2 AR VA (5.11)

If we assume the cosmological constant is zero, then we need to set the value of the effective

potential to zero at its true vacuum. From equations (4.47) and (4.48), we can see that

all the values of the effective potential need to be shifted upward by a constant amount of

(1/1287r2 )p4 . However, in the limit of extremely weak coupling, this constant amount is

negligible compared to the values in equation (5.11). Therefore, from now on, we will neglect

this upward shift. If we substitute the appropriate values corresponding to point B into

equation (5.9), then we get,

2 > 32 (5.12)
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This is not good since the this means we have to consider quantum gravity effect (We can

repeat the same calculation to point A and we will get a similar answer). In other words, if we

do not want to consider quantum gravity effects, we have to choose a , 2 less than mP1. This

can only be achieved by choosing a beginning point kb somewhere further down the potential

curve.

It is useful to present the second derivative of the effective potential at zero temperature

at this moment:
16•X'2 ]¢2V = m2 +167r 2AR

1 - AR/2 - (AR/2)ln(m 2 / 22) (5.13)3m 2 - ARm 2 /2 - 3ARm 2 n(m2 /p2)/2 - 2p2

1 - AR/2 - (AR/2)ln(m 2 /M 2)

If we insert the value of mIB or mA into the above equation, we can realize that the dominant

contribution to the denominator of the second term is of order AR. This makes the second

derivative relatively large and consequently violates inequality (5.9). From the fact that

m = 2e2 /XR and m 2 = A 2 when 0 = 0, we can parametrize the m 2 in the interval between

qA and 0 = 0 as follows:

m 2 = /2ea/XR (5.14)

with a changing from 2 to 0. With this parametrization, inequality (5.9) becomes:

3m- 3am2/2 . 2 1 < 3(1 - a/2) 22 1 2 1
3m b- 3a m/2- 2 2  32m 2(m2 - 2 1am) -2\ am - (m 2 - '2)2 (5.15)

in the limit of negative and extremely weak coupling, as is assumed throughout this chapter. If

we are interested in an a such that m2 is negligible compared to .2, then the above inequality

becomes:

-ARmPp%, 2( 1 - (5.16)
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If we choose pM2  - ARm • , then we can realize that there is a wide range of small a which

we can choose to satisfy the above inequality. In summary, if we choose our renormalized

parameters such that p2 - -ARm •
1, then we have a wide range of a to make inequality (5.9)

satisfied as long as a > -An. This final requirement for a is to make sure ys2 > m2. For

definiteness, we will choose ab - -100AR for reasons which will become apparent later. So

far we have only specified the ratio of iM2 to -AR. Later we will see that we need to choose

_,2 1026Gev 2 and -An - 10-12. With these numbers, we know mr - 10-20 Gev2 , which

is very small. Now we should check with the above range of parameters, whether inequality

(5.10) can be satisfied also. At the beginning point Ob, we have as an order of magnitude

estimation: V' = m 2qb 2 I 2eab/'R[I2/( AR) 1/2 and V 1 /z4 /(-AR). These estimation

means inequality (5.10) is equivalent to

e-a/XRmp R (487r)/2 (5.17)

which is apparently true due to the exponential decay. Indeed, for the beginning point, we

proved that (5.10) is a less stringent requirement then (5.9).

After identifying the beginning point, we need to identify the ending point e, also. First

we want to point out that inequality (5.9) says that the point 0m, where V"(0m) = 0, should

be encompassed by the slow rollover range: from qb to the 0e. Indeed, as we go from the

top of the hill down to the bottom, V" changes from a large negative number (of the order

,P2/AR) to a large positive number (of the order y2). For later convenience, we present the

relevant results for point 0,m:

m 2  2222 __2_ (5.18)
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Now we look for such c e that satisfies m2 ·V 2 . If we look at equation (5.13), then the

dominant contribution to V" in this case will be 3m2 - 2 u2. We can similarly look at the

dominant contribution to H 2 , then inequality (5.9) becomes:

(3m 2 - 2P 2 )tt 2  y- 3 2  ( • 4 - m4) (5.19)

where we have used the fact that me should be larger than m2 2 2 /3. From equation

(5.16) we know it has to be true that - > 2, if we choose it to be 3, for example,

we can get a value m 2 ; 5M2 /6. We have to check further whether inequality (5.10) can

be satisfied at the same time. The dominant contribution to the effective potential V at

qe m (1/6)(-/u2 /(87 2 AR) is V(qe) - (11/36)(-11 4 /327r 2 AR). Remember also that we have

chosen - '~ 2 = 3. With all these values given, we can easily verify that inequality (5.10)

is satisfied also. Actually this inequality is almost saturated. Nevertheless, we have shown

that the inequality (5.10) is less stringent than inequality (5.9) again. In conclusion, we have

identified the range of q for the slow rollover phase so far.

Now we need to see how reliable our effective potential over the slow rollover range is.

The scalar field is subject to quantum fluctuations during the slow rollover process. The

scale for this quantum fluctuations is set by Hawking temperature H/27r. In other words, the

fuzziness of the effective potential is of the order of H, therefore, the range of the slow rollover

process must be many times larger than the scale H. Namely, we need to see whether

14b6- 0el > H (5.20)

We can do an order of magnitude estimation here: AO ,, (-p12 /AR)'/ 2 and H -, V1/2/mpl ,

(-P4/(ARmp))1/2 remember p,'- - m AM , then we can see the AO ~ 10 6H if we choose

AR , -10 - 12, as before. Therefore, the quantum fuzziness can be safely ignored.
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With the above preparation, we want to answer the following two questions: (a) Can

this slow rollover process generate enough inflation? (b) Can it produce the right amount of

small scale density fluctuation?

(a) During the slow rollover phase, the cosmic scale factor is enlarged by a factor of

exp Hdt] jb V----d( -= N (5.21)

For a phase transition at GUT energy scale, about 60 e-fold of inflation is required in order

to solve the large scale homogeneity and the flatness puzzles. In addition, this number is very

insensitive to the energy scale. As the energy scale changes from 1Gev to 1019 Gev, it only

changes from 24 to 68. Therefore, we can roughly say N - 102 (Chapter 8 of [22]).

With our previous parametrization of m 2 = .2ea/ XR, the number of e-fold can be written

as

S4 1 4d d (5.22)
b plm2ea/AR AR - ea/A R

Here we have made the order of magnitude estimation for V - -p4/AR over the range of

slow rollover phase. Making use of the constraint equation (4.14), we can derive the following

relationship:

d 1 a, 1/AR - 1/2 - a/(2AR)e da (5.23)
2 ea/R - 1 - (a/2)ea/AR

Then the number of e-fold becomes

N a 1/AR - 1/2 - a/(2AR)da

ab 1 - e"/XR + (a/2)ea/AR

Recall that we have chosen ab ~ -100AR - 10- 10. In addition, because m2 ; (5/6)p2 , We

must have ae ~ -AR. For this range of a, the above equation gives us the following number

of e-fold:

N -da 2 100 (5.25)
ab AR
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Therefore, we can reproduce the desired number of e-fold to solve the homogeneity problem

and flatness problem. Recall that we had a great deal of freedom in choosing ab. In addition,

we can just change ab itself without the need of adjusting other parameters in the model.

Therefore, this genuine degree of freedom gives us a lot of latitude in fitting any desired

number of e-fold.

(b) In order to achieve the small-scale density fluctuation of the universe, the density

fluctuation (6p/p)H must have a value smaller than 10- 5 when the mass scales relevant for

galaxy formation reenter the horizon. At the GUT energy scale, it can be proved that this

requirement means at about 50 e-fold of inflation, H 2 /4 _ 10- 5 . Again, this number of e-fold,

50, is not very sensitive to the energy scale (Chapter 8 of [22]). Recall that we have N - 100

at the end of slow rollover phase. Therefore, as an order of magnitude estimation, we can

calculation whether H 2 /q _ 10- 5 is satisfied at the end of slow rollover phase. According to

equation (5.7), the above requirement means

3H 3
- -- 10- 5  (5.26)

V-

However, at the end of inflation, the inequality (5.9) is saturated. This means H 2 - V"T /9 2

87rV/(3m 1). Then it follows readily from equation (5.13) that the above equation becomes

(3m• - 212)3/2 __ 10- 6m -(m - 1/2) (5.27)

From this we can see why we have chosen AR - -10 - 12. With this order of magnitude for

AR, the above equation reduces to a very simple one which relates m2 to p2. It is easy to

see that with our previously determined m 2 ; (5/6)bp2, the above equation is almost exactly

satisfied. The small residual discrepancy can be absorbed into a factor on the right hand side

of the equation. Since this factor is of the order of one, we retain our initial 10'- for H2 / .
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In conclusion, it seems that our effective potential satisfies the generic requirement for

driving inflation in the new inflationary scenario. With carefully chosen parameters, it also

seems that it can solve the homogeneity and flatness problem with sufficient inflation and

with the right amount of small scale density perturbations. Of course, as said earlier, we do

not know what our scalar field is in the sense we do not have a complete picture of inflation

and symmetry breaking as a whole. Therefore, we have difficulties to extend our calculations

to the radiation phase after the slow rollover phase and we will not be able to determine

the reheating temperature and study the related phenomena. Nevertheless, it seems we can

extend our calculations to low (nonzero) temperature case. An apparent problem with the

low temperature case is that the temperature has to be lower than both p and m in order to

make low temperature expansions. However, as we have seen, m 2 can be extremely small at

zero temperature, for example, m2 _ 10-20Gev2 . Therefore, as temperature rises from zero,

we have to enlarge our m2 in order to make any sensible low temperature expansion. This can

be accomplished by moving the beginning point of the slow rollover phase transition closer to

the true vacuum. Therefore, in principle, low temperature case can be studied similarly and

with carefully chosen parameters, the required amount of inflation and small scale density

perturbation should be achievable.
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Chapter VI

Relativistic Bose-Einstein Condensation

VI.1 Free Field Case

Now we study a more interesting system with the auxiliary field approach. The theory

we consider is the two component, or charged scalar A•4 theory. It is well known that when

A = 0, this free field theory exhibits the phenomenon of Bose-Einstein condensation. However,

the Bose-Einstein condensation of ideal gases has never been observed. The presence of

interactions, however week they are, can qualitatively alter many features of this phenomenon.

Much work has been done in this respect and the possible link between spontaneous symmetry

breaking and Bose-Einstein condensation has also been extensively studied. Here we first

review Bose-Einstein condensation in free field theory and study the interacting system with

auxiliary field approach and compare our results with those of previous studies.

The Lagrangian of this theory is,

1 1 1
291010891 + 1 1902a02 - m 2(o2 + 42) - xA(o + 42) 2  (6.1)2 2 2

Associated with the obvious U(1) symmetry is a conserved charge density,

02r1 - 01 r2 (6.2)

Where 7ri = ' and consequently we get the Hamiltonian density,

1
S= r + 2 + (71 + (2 

2) 2 + m2(€ + 02)] + A( +2 + 2)2  (6.3)
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Then the partition function for the grand canonical ensemble is

Z = [dfrl][dnr21  [d1j][drd2eXP[ d4 x(i7rl T ÷ iir2 10
Z[ 2 periodic J .r &r (6.4)

- (r7r21, • , 0102) + /(~ 2ir 1 - 017r))]

where we have inserted a chemical potential y associated with the conserved charge. After

doing the integration of the field momenta, we obtain

1Z = N' O[]D[,exp{ dr d3x[-1(r + i ) -)2nZ = -ndetA)2eri 2(6.5)

2 •-- o2 + o) -A(2 + 02)21}
2 22

the functional integral of the momenta. When A = 0 we are left with terms quadratic in €1

and2 only. Completing the Gaussian functional integral, we must, we obtain

lnZ 2 - lln det A

with

__ 2 + m2 )u2 2ppo•
-2yP0 P 2 + m 2 - 112

The calculation of lnZ here is a simplified version of the interacting case considered later,

thus the details are omitted here. We finally get the thermodynamic potential as a function

of Mu,V and T.

f2a--lnZ V [w + =ln(1 e- ( +- )) l ln(1 e-#(w+1))] (6.6)

In calculating the Gaussian functional integral, we must have JIy < m in order to ensure

the exponent is positive definite, which guarantees that the final result from the functional

integral is convergent. Thus, we must require Ijy < m if we expect to obtain sensible results

later.



From this thermodynamic potential we can calculate pressure P, charge density p =

Q/V,entropy S and energy U as given by,

P -= 7 ,J 'P [&2J's a=I, (6.7)
V T, V T, V T V,

and U = TS - PV + , pV.

Here we only want to concentrate on the charge density p,

p = (2 (n - ) (6.8)

with n, = 1/exp[P(w - p)] - 1 and iip = 1/exp[P(w + M)] - 1. Here np and iip can be

interpreted as number density of particles and antiparticles. Note the requirement I/| < m

means the number densities have to be positive in this context. The sign of P determines

whether particles outnumber antiparticles or vice versa.

The above equation gives us a function of p in terms of temperature and P, however, since

p is a physical quantity, for a system with fixed number of net charges, the above equation

actually gives us a implicit solution to p for any given p and at any temperature. However,

for any given p, only for T above some critical temperature T, can we always find a y < ImJ

satisfying the above equation. For T below T, no such M can be found and we interpret

the expression above as the charge of excited states. The rest of the charges (particles and

antiparticles) stay in the ground state and form a Bose-Einstein condensate. Thus the critical

temperature corresponds to pLM = m.

Here I only quote the results for Bose-Einstein condensation in the case of a relativistic

Bose gas (T > T > > m). The high temperature expansion of p as given in equation (6.8)

can be found in Appendix C. For T 2 Tc, we have,

p = pT2 (6.9)
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Note for p fixed, as temperature decreases, [ increases. Hence T, is given by

p= 1mT 2 (6.10)

As temperature drops below T7, the charge density in excited states are given by

p(p > 0) = p[T/TC2  (6.11)

The rest of the charges stay in the p = 0 state.

What we had written down earlier in the partition function (6.4) was effectively the

following Hamiltonian density,

1= = [r + •r2 + + (V)2 2 2  2m( + + A(• 1 2 P)2 -_•(271 - 0172) (6.12)

It is easy to verify that the following Lagrangian density gives us the above Hamiltonian

density through the standard procedures,

1 1 1
C = (01 + /P2 + 2 ,1)2 [(V1 1)2 + (V 2) 2 + 12 + - X2+ 2 (6.13)

First we have,

r° = =1 + 02 = - = +2 + / 1 (6.14)

substitute above expressions of momenta for 7r° and 7ro in H = •ri l + • 2 2 - C, we will

recover the above expression of Hamiltonian.

A brief excursion to the conservation laws associated with symmetries in classical field

theory is in order here. For a given Lagrangian £C(4O), if we perform a transformation to the

fields such that a, --+ 0a(A), where A characterize the trans formation, then we have,

DL = a( Dka + D 7rAD&9A1a

a 0£,7i a+7 i10
a,



where DOa is defined as,

d4fi

dA d x=o

In the derivations above we have used the definition of the conjugate momenta and the

Lagrangian equations of motion. If the Lagrangian is invariant under this transformation,

then, we end up with,

, J = a, ( Z tD a = 0

Now we consider the rotation transformation,

1 -4 €1 cos A + 02 sin A 02 -" -€1 sin A + 02 cos A

The Lagrangian (6.13) consists of three kinds of terms: .- 0, € - 0 and € x €, they are all

invariant under rotations of €. In addition, we have

DO, = €2 D€ 2 = -01

Thus, we obtain the conserved current density,

J, = ( )2- (a"02)01 + P0.o(€ +1 ) (6.15)

The corresponding conserved charge density is

P = 7r 2 - 7201 (6.16)

with 7r0 given in equations (6.14). Note the conserved charge above has the same formal

expression as (6.2).

We will find later that at low temperatures the ground state has the property

=< 01010 ># 0
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Then the rotational symmetry associated with Q is broken. In this case if we shift the field

operator by a = 0'a + Ca, then the charge operator contains a c-number piece,

Q = vM(0 + (P2 Q '

where Q' contains the terms linear and quadratic in the filed operators ' .Here Q' charac-

terize the quantum fluctuations. Thus the thermal average charge density is

1 Tr{Q exp[-/(H - pQ)]}

V Tr{exp[-/(H - yQ)]}

= 2 + ý) + 1 Tr{Q' exp[-3(H - Q)]} (6.17)
1 2 V Tr{exp[-3(H - bQ)]}

Note the expectation value of the charges in ground state is,

-2 -2< olVlo >= VY(41 + 02)

Later we will prove that the transition to the broken symmetric phase is just the onset of the

Bose-Einstein condensation in the ultrarelativistic regime, therefore the first term above is

the charge density in the condensed (zero momentum) ground state, and the second term the

charge density in the excited states ([12]). For a system confined in a finite volume, the total

charge is conserved. The distribution of the charges between the condensed ground state and

the excited states depends on temperature.

VI.2 Interacting Field Case

We start with the generating functional:

Z[J] = N' iD[1]D[l2]exp{J dr d3X[-_ -- ( + i14 2)2  
- i2 1)2

eri ((0) 2 +- 2 ( )]2i= 1
+ _?2  + J,(X)Ok(X)) - A(02 + 02)2]}

i=-1 22 
1 2



Removing the -A(0 + 02)2 term by introducing an additional functional integral of the1Lllvvr~j rr~ ~\ll /functional integral of the~l~lr LII~rlIL~I~~~~jl~1VIIrl
auxiliary field o(x), we obtain,

Z[J] = N' fperi D[¢1]D[¢2]D[a]exp{ 2 j
2

d 4X[(( )2 + (VO~) 2 + (m2
i=1

-_2)04 - 20€Ji)

+ 2iwP2( )

= N' fperi

- 2ipl( ) - 2o(02 + 02)- _-(9r 1 2 A
d 4x[(A Ai - 2 Tj- _21 2

Where we have defined

A- (€2(2)
- 2 V2 + M2 -2

2ip-L

J2

-2ipL
a2 V2 m2 + M2
0-( 9-

Now we can do the functional integrals of 01 and 02 and we obtain,

Z[J] = N' ri D[a]exp- -tr1nA + I dxSd4Xj(x)T A-1(x, ') J(x')

We have dropped some irrelevant constants when we do the functional integrals. Here the trace

is taken over the configuration space as well as the 2 by 2 matrix A. A(x, x') is understood

as

A(x,x') = Ai ( (x - X')

Note the term with double integral of x and x' in (6.18) can be rewritten in operator form,

1fd'x

2J" d4 x' < xIJTA- JIxI>

Expanding around a uniform ao with a(x) = Co + 6a(x), and keeping only terms up to

first order in ba, we obtain,

Jpei D[boa]exp{- trlnAo + 2
1

d4 xao0 - tr
2 [Ao-1 -2661

0

d4 d4x' < ijTo Jl ' >

0-2O ] 1/+ 12A d4Xao0 a

xJ TAo 1 26&

- 2)

1++ d4x 2 (X)}

(6.18)

Z[J] = N'

1

1
2

(6.19)

D-1D[ OjD[02]DEjexp{ 21

n P

b(X - ') )

204A o~' ix'd4X d 4X' <



Where

= (P2 + 2 _ IL2 - 21o 21L 0A m -2 2P 2-2yPo 2 + m2 - - 2co

= 1 ( ++2 + m2 u2 _ - 2ao -2p^
A0 (p2 + m 2 - 2 - 2ao)2 + 4 2 2pio 2 2 + m 2

First we look at the zero order terms in 6a. Assuming J1 and J2 are x inc

inserting complete set of states we obtain,

Sd4x I d4' < Xl •TAi 1 Ji >

S d4x d4x' d'4p(Ji, J2) < xp > A 1(p) < plx' >

1= dx Id4P(JiJ 2) < x p > Ao '(p) //L(2r)364(p ) (J)

Where r = 2  o and

Where ifn2 M2 - 2ao and

2 - 2a)

ependent and

trlnAo = In det A0 = In det'[(i2 + 2 _ /12)2 + 4 U213• = tr'ln[(l2 + f2 _/12)2 + 4y 23021

Note we first calculated the determinant of the 2 by 2 matrix, thus det' denotes taking the

determinant of the remaining matrix in configuration space only. Similarly tr' means the

trace in configuration space. Thus we have,

1 o = - I-i3 [4(W + p2 2 2 4 2 2]
--2 trlnAo = 2 (27r) 3  pln[W + pp 2n + 42 - 2 2 + 4 Wn

S1V d3pln{[02(w2 + (w + /) 2 )][fl2 (w2 + (w - l))]}
2 (27r) 3 Z 1 f n n

= -V (2)3w + In(1 - e- (W")) + In(1 - e )) + C

where C is a dimensional constant which cancels InN' in equation (6.19).

Now let's look at the first order terms. As before, it is straight forward to obtain,

d4Jd4 <I•T -1 (26 1 X ' >= d4X [J+2 6(x)2( 0- 2 2)2 )
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[A 1l(-26a^
0

-206 )]
2Jd3x

dU 2 + p2+ m2 -2d3 p Wn 2 2 +r 2 2 (x)
(2) 3  ( + 2p• 7n22 _ 2)2 + 4p2 w. (n P A n

Id3 (2 d3p 1 (•)- 1
(2-r) 3 w e(W) -1 + e( +)- 1 ()

The sum over n is done in appendix A with w = p2 + fr 2 .

The first order terms should sum to zero, thus we get the constraint equation,

22 2 A 12 (J2 + J22)+ -- i2n 2•} + m2 - 2Af (07, 25,t) + 42
2 aA2 (F2 - M2)2

Here we have done the divergent integral in momentum p explicitly and A is the momentum

cutoff. We have also defined a finite function f(fl, h2 , ),

e19(wpr) - 11

1 )
+ ) - 1

If we define renormalized mass and renormalized coupling constant as follows,

AR -
1R - Aln C2

=2 2 m 2 + ;A2/r 2

1- Xln 22•r2 LyA2

then we can obtain the renormalized version of the constraint equation,

1 212 2

2s2 = R2 ++ A AR 2 ln- - 2 xrA f(, m2, 0 2 ) + 4r72 (J
2 (m2 _ 2)2

(6.20)

(6.21)

Keeping only the zeroth order result as an approximation for the generating functional,

we get the generating functional for the connected Green's function

d 3 [pfw + in(l - e- 3(w-L)) + In(1
(2ir)3

- e-)(w+1L))] + 1 #VCr2 + #V + J22

(6.22)

and

1
--tr

2

d3 p -2
(27) 3

W[J] = -V

f(#, 2, t ..) =



For notational simplicity, we define the following finite function

JF(9 fnd 3p 1 [ln(l - e-# ))+ ln(1 - e-("+"))]
1(27r)3 n1 e- 3 (w-L))

The divergent part of the expression (6.22) can be renormalized as before. We first invert the

equations defining the renormalized mass and coupling constant,

A = AR/A, m 2 = 2 - ARA 2 )/A (6.23)

with A In aAl 2 Then we substitute equation (6.23) for the bare mass and bare

coupling constant in equation (6.22). Apart from some irrelevant constant, the divergences in

equation (6.22) all cancel out and we finally obtain the renormalized version of the generating

functional of the connected Green's function,

[ 1 4 2 12 + J22
W(J) = -PV F(, n2, /p) + m (lnn ) 16 R( -•• 2 23272 r2 2 167r2A\ 2 72 ; -2

(6.24)

As before, if we set = 0, then we obtain the renormalized constraint equation

(6.21). Making use of this fact, we can relate source J to classical field €,

SW OW df 2  OW OW Ji
-i -= 2+ =i=1,2' 6Ji O -n2 dJ OJi O Ji  '2 - P 2

Thus the standard Legendre transformation leads to the following renormalized effective po-

tential

1W1 1 1
V() 327r2  n2 2 16 7r2AR(r 2) 2 (6.25)

and the renormalized constraint equation can be rewritten as,

22

91



which can also be obtained by setting = 0. This fact immediately gives us,

dV(k)
d j

ov(c)= V(90i&V(q) dfn2

+ a n - di i = 1,2
v( ( ~02)f;
a4i

(6.27)

It is easy to establish the relationship between the thermodynamic potential and the

effective potential,

2(T, V, V) = V V()dV/d=
dV/dg=o

In other words, the thermodynamic potential is the value of the effective potential at its

minimum. To study the thermodynamics of the system, we must differentiate the minimum

value of V(q) with respect to T, V and p. Without the knowledge of the minimum of the

effective potential at this moment, we can write down the following general expressions, where

V depends on p (or T) via €, fn2 and F(P, n2, i).

V(d) V
0(1 v,T

OV drn2

-r
2 dCL

OF

= y - -

9V d 9V
+ P+a'2 dp 8p

1 .d( q + q)
2 dM

1 d

2 dM

(6.28)
[/2(ý2 + ý)]

and similarly,

= F 1 20V( )VOT v, p (6.29)SL2)d(1 + 0)
dT

We are interested in the relativistic regime where T >> M- and T >> ». In this region

we have the following expansions of F(f, rh2, Mi) and f(fl, rh2 , p) according to Appendix C,

Sr2T4  T2(rh2 - 2 2) T(fi 2 - p2)3/2 t2 (3f2 - /2)
F= - -

Sn4
+ T6-X

247"
(6.30)6 24 2

+ O( )T2 ' T2
In47rT +in r

and

+ 2 - r 4rT
27r2 27r2 m

T2
f= +33

T 2 _ 2)1/2

7r
(6.31)

! r\ C)

- + -2]



We will show later that at high temperatures, the system is in the symmetric phase

= 0. We first summarize some of the common features in this phase in order to facilitate

the discussions later. We can obtain the charge density and entropy by setting 0 = 0 in

equations (6.28) and (6.29).

OF OF
S- S = -V (6.32)

The ideal gas form of the F shows that all the interactions among the bosons are incorporated

into the effective mass hm2. However, the interactions appear nontrivially in the pressure and

energy,

P = -V(¢ = O) U = V[V(V = 0) + TS/V + pp]

since all the complicated terms in effective potential contribute. With the help of the expan-

sion for F, we obtain the following leading contributions to charge density and entropy,

1 4Tr2 T 3 V
p = -T 2  S =

3 45

If the system is cooled with charge Q and volume V fixed, then the above equation requires

M(T) increases with 1/T2 . If we take the quotient of the above two equation, then

Q 15 P
S 4r 2 T

From this we see if the system is cooled with Q and S fixed, as in the cosmological applications,

then y has to decrease linearly with T.

From this high temperature symmetric phase, we want to see what happens to it as

we lower the temperature if we fix the total charge and volume. At high temperature, the
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constraint equation (6.26) gives us the following rh as a function of T if we keep only the

leading order term in the expansion of f(p, f 2 , I2 ) .

im(T) = [E2 + 3272ART2

comparing with the high temperature behaviour of chemical potential 1 (T),

p(T) = (6.33)

we see in this phase p(T) < n(T), thus the minimum has to occur at € = 0, namely, in this

high temperature region the system is in the symmetric phase. As we lower the temperature,

there will be a temperature T, at which y(T) = Fr(T), at this temperature, the system

will jump into the broken symmetric phase in which the system develops a nonzero q and

maintains the relationship 4(T) = mr(T) throughout the temperature region of T > Tc. Since

the symmetry broken is a U(1) rotational symmetry, we can set ý2 = 0 and ý1 takes the

nonzero value. The critical temperature satisfies,

3T= ( + RT (6.34)

The value of the chemical potential at critical temperature is

S= 2r2X+T2)1/
2

making use of the equation (6.33), we can find this value of chemical potential satisfies the

following cubic equation,

c 2 - 2)= P
212 AR
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At temperatures lower than Tc, the system develops nonzero values of 0 which can be

determined by the constraint equation,

[ 2 - - AR 21n + 2lAf(,2, ) (6.35)

To connect the spontaneous symmetry breaking with relativistic Bose-Einstein conden-

sation, we computer charge density p. With m(T) = M(T) and nonzero €, we obtain p from

equation (6.28).

p = PO (6.36)
& = • _ (T)=fn(T)

Comparing with equation (6.17), we can see that the first term is the charge density in the

condensed ground state and the second term is the charge density in the excited states. Note

/F [ 1 1 (637)
&9P g(T)=fn(T) (21r) 3 [exp[3(w - p)] - 1 exp[3(w + -)] - 1] f(T)=,(T)

From our earlier interpretation of the above two term as number densities of particles and

antiparticles in the states with momentum p, we see that this integration over p is indeed the

charge density in excited states (p > 0).

Here we can raise an interesting question: we have seen in Chapter IV that the state

~ 0 is at best an unstable state. Therefore, how can we identify it with a physical,

symmetry breaking state? The answer lies in the fact that for fixed total charges, the amount

of charges in excited states, which is determined by equation (6.37), reach their maximum

when t(T) = fh(T). Thus, charge conservation forces the scalar field to develop a nonzero

vacuum expectation value to absorb some charges in this otherwise unstable state. However,

for a system with zero net charge, the above argument breaks down. Therefore, in contrast to

the conclusion from the usual perturbative approach ([12]), it seems to us that for this kind

of system, relativistic Bose-Einstein condensation should not occur.
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Making use of the equations (6.35), (6.36) and high temperature expansion of f, equation

(6.31), we obtain the explicit expressions for charge densities in ground and excited states,

p(p = 0) = pi - E2 2r 2AR T2
4r 2 A R  2 3

p(p > 0) = T 2p
3

The sum of them should give us the total net charge, which provides us with a cubic equation

for p,(T). For temperatures just below Tc, we can expand y around ,c and solve the cubic

equation,

27r2 ARk2(T2 - T2)
p(T) = 3~C + 2

3(4PC - 2E2 )

Inserting this back to the expression for p(p = 0), we obtain the ground state charge densities

at temperatures just below T,,

p(p =O)=p 1- 2 31C
Tc2 4y2 - 2E2

This result is certainly invalid for the region T -- 0, otherwise we would get an absurd result

that some particles still stay in the excited states when T -+ 0.

Finally, we mention in passing that the entropy in the broken symmetric phase can be

similarly calculated.

S OF
V T 07A(T)=rn(T)

So far we fixed charge and volume, we can also consider the case of fixed charge and

entropy. In the high temperature symmetric phase, we quote the results obtained previously,

Y(T) = 4(r2 T)= E2  27r2AR]2/
2

15 Q rh(T) = + - T
15 S 3
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In this phase, from equation (6.32) we can see if we are to get an physical , real entropy, F

has to be real, namely, p(T) < r(T). Here we assume this is the case, which means, in high

temperature,
22 1/2 4r2 Q[22 3  15 S

However, if this is true, then as temperature decreases, the relationship fii(T) > M(T) remains

true, consequently, in contrast to the conclusions from the usual perturbative approach ([12]),

no symmetry breaking occurs.



Chapter VII

Gross-Neveu Model

VII.1 Dynamical Symmetry Breaking

In most theories where spontaneous symmetry breaking plays an essential role, such as in

SU(2) x U(1) electroweak theory and the SU(5) grand unified theory, we explicitly introduce

an elementary scalar field in order to generate masses for the gauge vector bosons by means

of Higgs Mechanism in order to preserve the renormalizability of the theories. However,

the introduction of a scalar field is not necessary for a theory to exhibit the phenomenon

of spontaneous symmetry breaking. The fields in a theory, either composite or elementary,

can develop nonzero vacuum expectation values by themselves and thus break the intrinsic

symmetry of the theory. Interests in this dynamical symmetry breaking can be explained in

part by the difficulties encountered in the non-abelian gauge theories of strong interactions.

In these theories, it is impossible to break the gauge symmetry by explicitly introducing

Higgs particles without destroying the asymptotic freedom. However, if the gauge symmetry

remains unbroken, then infrared singularities associated with the masslessness of the gauge

bosons prevent the appearance of the charged gauge bosons and quarks in physical states.

Here we study the Gross-Neveu model since it is the only known physical, asymptotically

free theory besides the non-abelian gauge theory of the strong interactions. It was first intro-

duced by Heisenberg and then studied by Nambu and Jona-Lasinio who demonstrated that

a fermion mass can be generated by the dynamical symmetry breaking of the discrete chiral
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symmetry in this theory, in analogue with the energy gap in the theory of superconductivity.

The Lagrangian of the Gross-Neveu Model is

£ = bi(i#)i + -9 2 (7.1)

with i = 1,..., N, and summation over repeated indices. We will omit the explicit indices

from now on. This theory is perturbatively renormalizable in 1 + 1 dimensions and we need

to perform coupling constant and wave function renormalizations. The masslessness of the

fermion fields ensure the discrete chiral symmetry

We want to construct the effective potential for the composite field ROR, where OR

denotes the renormalized wave function. In order to obtain a self-consistent result from the

auxiliary field approach, we need to perform wave function renormalization explicitly, as

opposed to the case in the Ao4 theory of chapter II. Here we demand that the renormalized

wave function be defined as aROR=9g . Thus the generating functional for temperature

Green's function is

Z[J] = N' D[ý]D[] exp Jd 2BX [ + Jg,] (7.2)

With f d2x f dxdr. Associated with the antiperiodicity of the 0 field in the Euclidean

time direction, we have a Matsubara frequency for fermion field wn - ( .

Now we can introduce the auxiliary field as before,

Z[J] = N' ntipi D[]D[]D[a] exp { d2 x [(i + + gJ) -I} (7.3)
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Gaussian functional integral of Grassman variables

D[I]D[I]e- iAiu j+4Pi +# i+ •a i = det AeP'A •i P (7.4)

leads to

Z[J] = N' D[]exp {Ntrln[-i~ - - gJ] - d2x} (7.5)

where the trace is with respect to x as well as Dirac indices. Expanding around ao and

omitting second order terms, we get the generating functional for the connected Green's

function

W[J] = Ntr 2ln[(co + gJ)2  p2] -J d26)2g+ n' (7.6)

where we have used

trDln(±• + m) = ln(m 2 - p2 ) (7.7)

in 1 + 1 dimensions, where tr2 means trace with respect to x and trD trace with respect to

Dirac indices.

The linear constraint equation is

1 co
-N < xltrD IX >= (7.8)

-iO - m 9

with h - go + gJ, or equivalently,

2N < z j jI >= (7S+ p2 + 2 >= g (7.9)

Taking the matrix element and summing over n, we obtain

/ dpl 2 ao
NIL + Nf(, r2) - - = 0 (7.10)

27r w gm
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with f(/P, :n2) =f - 1 ,-2 which is a finite, temperature dependent function. Use have

been made of the following relation

1 ( 1 2 ) (7.11)W + W2 2 e.1 + 1
n

With the help of

fdp 1 1 A 12A 1i
2r 1p2-ln(p + p2 +7; 2 ) = -ln + O 2A (7.12)

we obtain the following expression for the constraint equation,

n 2A
Ng-In + Nghf(/, r2) - 0ri + gJ = 0 (7.13)

7r m

As before, if we split the logarithm term into a sum of two terms by introducing an arbitrary

mass scale E, then we can obtain the following renormalized version of the constraint equation

mr = -garnln- + lrgrn2f(/, 2) RJ (7.14)
C N

with

Ng
9R = 2A (7.15)

7 - Ngln

Inverting this equation and we get,

g = 7rgR (7.16)
N + NgRln-

Had we started with a term JfO in (7.2), then we would not have been able to accomplish

renormalization for the constraint equation. That is why we want to study the vacuum

expectation value of g o4.

we can see in the limit of A -+ 0, g -- 0+ . From the Lagrangian (7.1), it is clear that

the positive sign of g makes the theory unstable at the classical level. However, like the X4 '
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theory, this Lagrangian can be regarded as the low energy effective theory of the Yukawa

interaction and the positivity of g can be substantiated ([23]).

Now we can come back to renormalize the W[J],

W[J] = NL f
n

dIn[w~ +p2 + f2]

where L is the one dimensional volume to which the system of fermions are confined. For

fermions, we have

CIn(w2 + x2 ) = Ox + 21n(l + e- "3) + C (7.18)
n

where C is an x independent, temperature dependent constant. In our case, it cancels the

InN' in W[J]. Thus, we have

W=fW[J] = NLO I + 2NL/F(#, fn 2 )

with F(, Fr2) f- 1-'ln(1 + e-O'), which is a finite, temperature dependent function. It is

easy to obtain the following result

Jdp
21

2+ 2 ln(p + w) A (7.20)
+ f2 InaA

21nA

with Ina = ln2 + 1. Substituting this in W[J], we get

{Nrft aA 2

W[J] = 3L nIn -- + 2NF(#, 7 2) -2x T -A;nr 2g
For notational simplicity, we denote (g 3) by 1 from now on.

6W[J] _W bf &w
,= - +  -- - g J

6J 80 6J 8J
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- Lao + InN'
2g

(7.17)

(7.19)

(7.21)

(7.22)

- L a22g

A2



In the limit A --, 0, we have f = i and in = ao. Thus, the effective potential is

V[q] = -T(W[J] - OJ)

Nin2  aA 1 N 2 (1 + gRln ).
- In - 2NF(, 'ir2)+ (7.23)

2r f mn 2 7rgR

2 2 2-= N + ýIn - 2F(O, 02)27rgR 27r aEI
This is the final, renormalized expression for the effective potential. We have dropped a term

Sgj 2 which approaches zero for any finite J in the limit of large A. The constraint equation

(7.14) relates f = rh to J.

It is interesting to note that regardless of the sign of AR, this effective potential is always

bounded from below and consequently the system is always stable.

At T = 0, F(3, q 2 ) = 0, we have

dV /1 1 2_n 1dV + q$n 2+ 1 N (7.24)

and

d2V 3 1 1 2Y\S - +- + -ln- N (7.25)
d0\2 g7 R 7r aE)

Thus, the 0 = 0 solution is never a minimum, whereas it is easy to check the 0 # 0 solution

o0 is always a minimum and the fermion field obtains a mass M = 0o.

We can similarly do the renormalization group analysis as we change E, the f function

associated with it is

(gR) = = - g92 (7.26)

the minus sign indicates that we recovered the property of asymptotic freedom in this theory.

Now we want to study the temperature dependence of the effective potential. Here we

study high temperature regime only. If we define

h Fo dx-- x
I() w 1 +j ew
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with w = Uvz2 + 7 2 , then it is easy the establish the following algebraic relation,

h F(fn-) = h(fi-, 0) -21 h (2f, 0)

where h1(rh, r = 0) is defined in Appendix C. Furthermore, we can relate the finite, tempera-

ture dependent function F(#f, fh 2) to hF(rh) by the following relationship,

F(1, 7n2 ) = 2 hF(r)

Therefore, we can easily get the following high temperature expansion of F(P3, f2) from the

high temperature expansion of H3 (fr, 0) = 2h3(7:, 0) in Appendix C,

F(f, ri 2)= •T2 + ln ( ( 2 - 4+ + 8 m 2- 2 - O41
12 47 irT 2 4-r 8r 64 7r3 T2 T4

Dropping a pure constant - TT2 and keeping only leading order contribution from the high

temperature expansion, we obtain the high temperature effective potential,

V() = N [2 (+ 2 + ln2
v N 27rgR 2r 47r 2 2-rTa

with the Euler's constant y 0.577.

Thus, we see that at high enough temperature, the sign in front of the quadratic term

ý2 is always positive, which indicates the system is always in symmetric state at high enough

temperature.

In summary, our non-perturbative effective potential confirmed the picture from the

usual perturbative calculations that the symmetry of the system is dynamically broken at low

temperature. Our effective potential also exhibited the expected phenomenon of high temper-

ature symmetry restoration and recovered the asymptotic freedom of the theory. Admittedly,
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this phenomenon of dynamical symmetry breaking as exhibited here is unrealistically simple.

However, it is believed that this is indicative of what one would expect in realistic theories of

strong interactions.

VII.2 Nonuniform ao

The extension to the nonuniform case in space is straight forward. The approach here

parallels that in II.4. The derivations up to (7.6) and (7.9) are general. We can do the sum

on the Euclidean time component as in VII.1. In the end we obtain the following results for

the constraint equation and generating functional for the connected Green's function

1 _1 2 1xoO
-N <x x >= - (7.27)

WN eP. 1<-

W[J] = N ] dx < xjzjx > +2N d2xF(, x) - d2x 2-(7.28)

with P(/O,x) < xlln(1 + e-')jx >.

Expanding rf(x) around an arbitrary mass scale V2, and retain the divergent terms

explicitly, we obtain

NgfI(x) ln- A + Ngfn(x)rf((, x) + Ngmf(x)f(f , x) - rf(x) + gJ(x) = 0 (7.29)
7r E

for the constraint equation, where f(, x) (xi --1x, which is a finite, temperature

dependent function. Here rf denotes the finite part of the expansion of (xl[jx). Defining

the renormalized coupling constant as in equation (7.15), we obtain the renormalized version

of the constraint equation

m(x)= 7gRRn(x)(rf + f) + 1RJ(X) (7.30)
N
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We can similarly expand rm(x) around E for W[J]:

E2 aA
W[J] = N/3L-In

2r EZ

+ NJ d2x(R(13( , x)

[ 2 ) 1 ln2A+ N f dx(7'(x) - E2)I -
f ~ 27 E

(7.31)

+ 2F(, x)) - d2
2g

where Rfy(P, x) denotes the finite part in the expansion of (xt lx). As before, we have

P(x) = ?(x) - gJ(x) (7.32)

which goes to rm(x) as A --+ 0. Thus, replacing the bare coupling constant by the renormalized

one through equation (7.16), we get the renormalized effective action

F[x] = W[J(x)] - d2

[LE2 +=N 2In-± +
2r 2

xz(x) (x)

Sd 2 (Rf(ý, x) + 2F(/, x)) - d27 R I
27igR
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Chapter VIII

Scalar QED

In this chapter we want to extend our auxiliary field approach to a gauge theory: scalar

electrodynamics (scalar QED). The Lagrangian for the scalar electrodynamics is,

L= (( V - ieAV')4* (9 ' + ieA'") - m *2 - 4*(k- 4F"1 F, (8.1)
4

with (1 + i€2 ), where €1 and 02 are two real fields and 4* is the hermitian conjugate

of P. We also have

4FF1' - A, (g,P8 2 - 8av&) A"

This Lagrangian is expressed in Minkowski space, but we will be secretly working in Euclidean

space. The generating functional for temperature Green's function from this Lagrangian is,

Z[J] = [N'(p)]4 jeri [dA][dt][d*] exp(/ d4xf + Ji) det( F )(F)

where w is the variable that parameterizes the local U(1) gauge, and F is an arbitrary func-

tion chosen to fix the gauge. Without this gauge fixing, the functional integral will sum over

paths in space-time which are connected by gauge transformations. When we study parti-

tion functions, this means we are taking the trace over both physical and unphysical states,

therefore, in order to exclude unphysical states, gauge fixing is necessary.

For later convenience, we choose

F = 8,A" - f = 8,A" - ael202
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This choice of F was first suggested by 't Hooft ([14] and [15]). As usual, we will also multiply

the above generating functional by a function G(f) = exp [-2- f d4xf]. The effect of this

function is adding an extra gauge fixing term -2 (8,A - aeo 1€2 ) 2 to the Lagrangian.

The advantage of 't Hooft gauge fixing is that in the limit of a -- 0, the cross term,

-e(O,A')¢ 1¢2 , from the Lagrangian (8.1) is canceled by the gauge fixing term. This can-

cellation greatly simplifies the algebra later. In this limit, we also obtain a temperature

dependent constant det(-a2) from .OF

As before, we replace the original (,* D)2 term by an auxiliary field a. We are going to

calculate the effective potential for this theory, and it is known that effective potentials can

be gauge dependent for gauge theories since it is not a physical observable. With the chosen

gauge, we get,

Z[J] = [N'(p)]4 det [-_2] [dA[][d][do-*][d]

exp d4x- 1(-( io)2 - e2 A + m 20 + 4e 2A,089,uq - 2oao) + iJij
1 ri2  1 12 )11

x exp d4x X2() + A(x)(1 )a.8 A'((x)

Now the exponent is quadratic in Oi and after we do the functional integral of them, we

obtain,

Z[J] = [N'(#)]4 det[-_ 2] e[dA] [d] exp fd4xd'x' < xI r-1~x >

x exp - trlnB+ d/ x [A. a (x) + 61 a ) a, A_(x)
with

( 2 - e2 A2 + m 2-o 0
4eA,4 •  02 _ e22 + 2 - 2

and J is the column vector of J1 and J 2. Now we define a new matrix Bo around which we

are going to expand matrix B,

{2 + m•2 - 2&o }
0 2 + i2 - 2&o

108



with 8 = ao + 68. Keeping terms up to ba2 or A2 (dropping cross product terms of So2 and

A2 ), we have,

1 1 1
-- trlnB = -trlnBo + tr[iL-(e2 A2 + 26&)] + -tr[L-L266-1268a]

2 2 2

with L = 2 + i7 2 - 20o. Now we need to calculate the inverse of B

B-1= B 1o - B's6BBo-' + B-16BBo6BB' ...

with

-e 2 A2 - 26&
4eA,&'a -e2A2 - 2605

The insertion of 6S into equation (8.3) leads to

B- 1 = Bo1 + B1 + B2 +...

with

26L+ e282)jL

-L-'4eA~B2 eaAL

0
L-1(26& + e22) - 1

Lý'26aL-'26a&L )

where the matrix element

B2 ,e ,L-12eAi,8 -1 (-26s8)L- 1 + L-'(-26)L-1 2eA^,•"i,-L

So far we kept terms up to 6a2 or A2 and dropped cross product terms of 6o 2 and A2 .
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By substituting trlnB and -1' with equations (8.2) and (8.4), we obtain the following

expression for the exponent in the generating functional,

f Adx2 - trlnBo + d4xd4x' <x JB o-1 >

+ Jd A,(x) (s)6,2 -(1- ))aA A"v(x) + Jd4x co (8.5)
+ tr[L-(26& + e2 2)] + 4xd4<x' < •Xj•(IB• + B2)J >

1 1 2+ -tr[L-2L-126&] + d4
2 J A

In the case of J(x) being a constant, the nondiagonal element of B, doesn't contribute to the

generating functional since

Id4xd 4x'J 2 < xI- L^4eA^,ALlx' > J

= d4xd4qJ2 < xl^- -'4eAlq > q + 64(q)_1

=0

Similarly, the second term in B2 , L-1(-26a)L-12eAMaL - ', doesn't contribute.

Now we want to do the [dA] functional integral. All the terms containing A field in

the above generating functional are quadratic in A except the term due to the nondiagonal

element of B2 , or the first term in B2e. However, we can do the functional integral of [dA]

and the only effect of this first term in B2, is that it generates a extra term which is of

second order in ba. From now on, we will only consider leading contribution to generating

functional from the expansion of o around ao, thus, effectively, B 2 can be considered as a

diagonal matrix. Consequently, only the three quadratic terms in A are relevant to the [dA]

functional integral. Collecting all of them, we get

_ d4 xd4 x'AI(x') -([g"2- (1 - 1)av + e2g y(2d + h)]6(x - x') A'(x)
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with

h + J2 + J2
(m2 - 2 0o)2 - 4

which results from the term f d4xd4 x' < xl JT BJIx ' > in (8.5) and

-q 2 + f- 2

which is due to the term tr[L - 1 6e2 2 ] in (8.5). In Euclidean space d becomes

d=/ d3p 1
(27r) 3 2w

2
+ e1 w - 1

with w - V'p 2 + r 2

In momentum space the matrix is

1 k:k"
C" = -a (k 2 - 2ae2d - ae 2 h) k2  + (k 2

a k - 2e 2d - e2 h) (g9"

The functional integral of [dA] replaces all the terms quadratic in A in equation (8.5) by the

term exp (- trlnC). Using the formula2II~V· V~+j l~ VII~I

det [A - kk) = -AB 3

we obtain the following result for the generating functional in the limit of a -+ 0

Z[J] = [N'(3)]4 det[- 2 ] feriS[da] exp {
x exp d xd 4x' < x I 0B1JIx > +

d4X - trlnBoZ-A 0 2
41

d 4X-6aao + tr[LP1 26&j
dA

x exp d 4xd4x'I (J12 + J~ ) < x I1 26&-1 ' >

x exp { -1 V fd dk[-ln(w2+ k 2) + 31n(w2 + k2 + 2e2d + e2h)]2 (27r)3
n1
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Keeping only the leading order contribution in ba we obtain the generating functional for

connected Green's function W[J]

W[J] = AV -v [#w + 21n (i -e- )] + #V J
(8.6)

- VJ [3 wM + 31n (1 - e-1WM) - jpj - In 1 - eIPI

with WM = p2 + M 2 - 2 + e2 (2d + h). The first three terms are due to the scalar fields

and the last four terms are due to the gauge fields. Note the structure from the gauge fields

are the same as that from the one loop calculation. This is not surprising since for the gauge

fields sector, all we did was a Gaussian functional integral, as in the one loop calculation.

It is easy to obtain the first order constraint equation

1
1ao + 2d + h = 0 (8.7)2A

This constraint equation and the scalar fields sector from equation (8.6) are identical to those

in chapter IV, thus, the same renormalized mass and coupling constant from equation (6.20)

will produce the renormalized versions for both W[J] in the scalar sector and the constraint

equation. However, the new effective mass M is temperature dependent, as can be seen from

the constraint equation. The gauge coupling constant e in our calculation so far is the bare

gauge coupling constant. However, this will not change the temperature dependence of M.

If we treat the gauge coupling constant as the renormalized one, as in most of the one loop

calculations, then we have in our minds some counter terms, which is not explicitly written

so far. However, these counter terms in principle should not have temperature dependence

either. In addition, treating e as the renormalized gauge coupling constant no longer sets

the scalar fields and the gauge fields on an equal footing in terms of renormalization. The

temperature dependence of M prevents us from dropping the divergent f d3pgLwM term, which
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is in our way in attaining a renormalized version of W[J]. We believe the problem here lies

in the fact that we are trying to renormalize this theory in a segmented fashion: scalar fields

sector and the gauge fields sector. The possible renormalization involving both the gauge

fields and scalar fields is left for further studies.
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II. APPENDIX A

For a function f(po = iwn = 27rnTi), if it has no singularities along the imaginary po axis,

then we have the following general formula for calculating sums over Matsubara frequency

(See page 40 of reference [16])

00 oo 1 .oo+e 1
Sf(Po = io) = 2 i dpo2[f(Po)+f(-PO)]+ i dPo [f (po)+f (-Po)]eo - 1

n=-oo -oo

(A.1)

Now for the sum

w + p2 + fr2 _ ,2

n +
(wi + p2 + A2 - /i2)2 + 4t 2W~

we have

-p2 + P2 + p 2 -_ 2f(po) (A.2)f(P) (-p2 + p2 + r2 _- 2)2 _ 4/•2p

Inserting this f(po) into (A.1), we get two contour integrals, which we call fi and f2 respec-

tively. We can rewrite the first contour integral if we define q - ipo,

0i " / ._- q 2 + 2 + -2 2

f 2 dqo (q+ P2 + )2 - P2)2 + 42 p2

f q q2 + r2 + f-2 - 2

27r I (q - ipL - iw)(q - ipL + iw)(q + ipi - iw)(q + ip + iw)

Where w p2 + Fr2 . To proceed with the calculation, we can assume that w > P > 0. It

can be proved that the result is independent of the relative values of w and / or their signs.

Under this assumption, we can close the contour of integration by a semicircle in the upper

half plane. Then the contour encircled two poles: q = il + iw and q = -i4 + iw. The residues

give us the result for the integration,

-(IP + w)2 + W2 -P 2  -I-( W)2 + W2 2

2iw -2ip -2i(p + w) 2iw -2ip -2i(p - w)

2w
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Similarly, we have

= i - doE - + W _ 2 1

f r d-poo+ I(Po - P - w)(Po - p + w)(po + I' -w)(po+ J + w) Po -

Note because of the presence of the infinitesimal e, we have to close the contour of integral

on the right half plane of p0o. If we close on the left half plane, then we will enclose an

infinite number of poles due to the exponential term in the integral. Under the assumption

of w > p > 0, we have the following two poles: po = w - p and Po = w + p. The residues give

US,

f2 = ews - 1+Ie#(w-1) - 1 e8(w+A) - 1
Thus, finally we obtain,

W 2 + P2+ 2 2- 2 --1 11

( +p 2 + f 2 _ 2 ) 2 + 4 2 , 2 1 ( ) _ 1 + (+) - 1
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II. APPENDIX B

For a function f(po = iw, = 2irnTi), if it has no singularities along the imaginary po axis,

then we have the following general formula for calculating sums over Matsubara frequency

(See page 40 of reference [16])

3 f 0" 1 2_i' + 1f(= i = dpo 2 f(Po)+f(-po)]+ dpo [f(po)+f(-o)]e1E2f (PO = i2) 0 dpo fAppo)+-_,p)]_IP -1

(B.1)

Now for the sum
+000 1 1

E Wm+wn) 2 +.2 (WmWn )2 +W2M=-00 2 + T (- -2
with

we can shift m by n since it goes from -oo to oo, therefore we have,

1 1
f(Po) = 2 1 (B.2)

-ipo+2w,) 2 2W-P 2

Inserting this f(po) into (B.1), we get two contour integrals, which we call fj and f2 respec-

tively. We can rewrite the first contour integral if we define q - ipo,

oo +ie 2 + 2w2 + 2W
fi= - dq+

l 1_J0 0 +11 (.2S oo+i ++ i +) (-, -i;w+)
1

2(•+• + iW+) (I+Fo -i2+) (2 + iW_) (12 -, _
We can close the contour of integration by a semicircle in the upper half plane. Then the

contour encircled three poles: q = 2wn + 2iw+, q = -2Wn + 2iw+ and q = 2iw_. The residues

give us the result for the integration. We obtain, after simplification,

w+ + 0_fi = W (B.3)w+w[(w+ + w_)2 +w (B.3)
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We can similarly calculate f2. First, we factorize its denominator,

t"+  - P0 + 2W + 2W2
f2 = dpo 2 _ _ n +2i7r -Soo+E (-i + w + iw+) (-i + - i++)

1
x

x (i + wn + iw+) (i P + ,n - iw+) (-i + w_) (iPP + w ) (eP0o - 1)

Note because of the presence of an infinite number of poles from the exponential term in the

integral, we have to close the contour of integration on the right half plane of po. The residues

from the following three simple poles: po = 2iwn + 2w+, po = -2iwn + 2w+ and po = 2w_

give us, after simplification, the following result,

[ (2w~ + 2W2  - 22 )(cos 2 .wn e 2,+ - 1) + 4w~+•n sin 2pý, . e20w+
w=8 [(W.+ +,w,) 2 + Wj][(W+ - W_ )2 + W][e4•~ + - 2 cos 2~w# - e28+ + 1]

+[ ~2w + 2w?. -2 2W1
S_ [(L+ + W) + [(+ - W)2 + W][e2 - - 1

Thus, combining the above result with (B.3), we finally obtain,

+oo
1 1 1

WM[moo Wm+Wn )2 +4W2 w( -uz )2 + L2

w+ w-

+•w-[(w+ + w-)2 + L,2

S(2n + 2 2 - 2+ )(cos 2• • + - 1) + 4w+~w sin 2w~n e "+
w+ [(Lw + w _)2 + L] [(W+ - W )2 + W2] [e4,w+ - 2 cos 23wn, e2 8w+ + 1]

2w + 24 - 2w- 2
j[(W+ + LJ) 2 + j[(W+ - W..) + j][e 2)"- - 11

w- + + w-
S -- + Fl + F2

In the last line above we introduced two functions F, and F2 for notational simplicity.
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II. APPENDIX C

We begin with the definition of two dimensionless variables: fm = m/T and r = p/m.

The physical region is fm > 0 and Iri < 1. With the above definition, we define,

gj(f-, r) 0 j x 1- 1 dx (C.1)(' -r(1) -0 d ep[(2 + n2)1/2 r_] - 1

1 xzl-Idz 1
hi(, r) = f dx 1(C.2)

F(1) J 0 (x 2 + m- 2)1/2 exp[(x 2 + M2)1/2 rr] - 1-

The functions of physical interest are

Gr(m, r) = gi(f, r) - gi(r, -r) (C.3)

Hz(rh, r) = hI(mn, r) + h(mh, -r) (C.4)

We want to obtain the high temperature expansion of the above functions, namely, the ex-

pansion around fn = 0. If we just naively expand the above functions around fn = 0, then

the coefficients in front of powers of fm will be divergent integrals, this is due to a branch cut

at fin = 0 in above functions. Two methods have been introduced to get around this problem

([12] and [13]). Here we follow closely the derivations from [12).

Using the definition of Riemann's Zeta function,

((z) = jdt = (C.5)r(z) o et -1 k=1 k

we can easily obtain the following result,

Gr(0, 0) = 0 (1 > 0), (C.6)
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HI(O, 0)= 2 (1 > 2). (C.7)
I-1

By taking derivatives of G(r(m, r) and Hi(rh, r) with respect to fii and r respectively, we

can obtain the following recursion relations,

dG1+1 m f-2r
dG = IrHt+1 - IGl-1 + - Hi-1, (C.8)
dm 1 1

dHI+1 r md GI- HI-1, (C.9)dn I I

dGI+1 fn
dr= lnHl+l + HI-1, (C.10)
dr "

dHi+1 _
dG- G 1. (C.11)dr I

Consequently, if we know G1 (f, r) and H, (m-, r), then, together with the initial con-

ditions of equations (C.6) and (C.7), we can derive all the GIr(, r) and H(mn, r) for all

positive odd 1, similarly, with the knowledge of G2(fm, r) and H 2(rh, r), we can obtain all the

GI(m, r) and HI(fm, r) for all positive even 1. However, for physical systems in an odd number

of spatial dimensions, only GI(m, r) and H,(mh, r) with positive odd I are relevant for their

thermodynamics. Thus, we will confine our calculation to the odd I case.

We start with the equation (2.12) we used earlier, but we rewrite it as follows,

1 1 1 00
= -- 2E y (C.12)

exp(y) - 1 y 2 2 yZ2 + (27rn)2

We substitute this identity into the integrand of G1(i, r) and Hi(fi, r) and then expand

around rm = 0. After that we collect all the terms of the same order of fin and integrate term
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by term. As we will see later, as we do the integration of individual terms, we will encounter

divergent integrals. However, if we regularize those integrals by multiplying the integrand

with a convergent factor x - ' (0 < e < 1), we will be able to keep track of the divergence

structures of the individual terms. This is in the same spirit of dimensional regularization.

Not surprisingly, in the end the divergences of the individual terms cancel when we sum them

up.

Inserting the identity (C.12) into G1(7, r), we obtain,

= I+ 2 Ln (C.13)

with

I = 2rx- + O(e)
- 2 x2 + rh2(1 - r2 ) (1 - r2)1/2 (C.14)

/= 2rn-  x 2 + rh2(1 - r2 ) - (27rn) 2  (C.15)
o [x2 + m2(1 - r2 ) + (27rn) 2]2 + (4irnrrJ) 2

Note in obtaining the result for I, we have made use of the assumption of 7r7 > 0, otherwise

we would have obtained the opposite sign for I. Now we expand equation (C.15) in power

series of mf and integrate term by term. We integrate terms linear in im for the purpose of

illustration,

(1) 2rfn- iz x'x2 - (2§dn)
Jo [x2 + (27rn)2j2

rm 3n- [ - 1+] + 3 + r
(2-rn)1+E 2 2 2 2

=-r?; + O(e2 ).
(27rn) 1+e

Summing over n gives us the zeta function,

2 EL() = -rf(2)rE - O(e2 ) = -rfm + O(e).n=1 (27r)(1+1E

(C.16)

(C.17)
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where we have used the following property of the zeta function,

1
+(1+ e) -+ + O(E). (C.18)

where - is the Euler's constant.

We can similarly obtain the results for higher orders of in2. The integration on x is

straightforward and the sum over n just gives us a zeta function. In these integrations E

doesn't play any role any more, therefore we can safely set e = 0. We just quote the result

here,

70[ 2k+1
G(m,-r) = 1 - r)1/ - r + 21rr x (-1)k+I((2k + 1)ak , (C.19)

k=1

where at = 1, a2 = 2r 2 + 3/2, a3 = 3r4 + 15r 2/2 + 15/8.

Now if we insert the identity (C.12) into the expression for H1 (f, r), then,

00
Hi(;, r) = I, + 12+ 2 Mn (C.20)

n=1

with

2  f-x dx _
I, = 2 0=0 x 2 ) + O(e), (C.21)X x2 + f2(1 - r2) fn(l - r2 1/2

12 2-" 7 -2)1/2  -- + ln -+ O(), (C.22)o(x2 + -2)1/2 (6 2

= 2 d x2 + fr2(1 - r 2 ) + (27rn)2  (C.23)

o [x2 + n2(1 - r2 ) + (27rn) 212 + (47rnr) 2 "

As before, we expand the equation (C.23) in powers of ?r, integrate term by term and sum

over n in the end. Here we can also set e = 0 except for the leading terms in m = 0. For

illustration, we calculate the leading term here,

M-1) = 2 [1 - dn2ir + O(e2 )]. (C.24)
1 0 X2 + (2xrn) 2 2nl+e
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Summing over n and use equation (C.18), we get,

oo

2 EM ) =
n= 1

(C.25)

As mentioned, the 1/e terms cancel as we sum the above term with equation (C.22). The

higher order terms in fh can be calculated similarly and we quote the result here, which is

only valid for fn > 0.

H, (-, r) = 7r

;(l - r2)1/2
+ In [ + + + (-1)k (2k +

k=1
1)bk [l- 2k

where bl = r2 + 1/2, b2 = r4 + 3r 2 + 3/8, b3 = r6 + 15r 4 /2 + 45r 2 /8 + 5/16.

From Gl(fl, r) and Hl(n, r) we can get all GI(fr, r) and HI(f-, r) for positive odd frn,

here we list some of them,

((2) - -7r(1

00+ 1

+ Z(-1)k+l((2k

72 f2 f2 f2
7 + - In

4 4 8 4 47
S2k+2

+ 1)ck( 2 )2k

with cl = r2 /4 + 1/16, c2 = r4 /4 + 3r2 /8 + 1/32, C3 = r6 /4 + 15r 4 /16 + 15r2 /32 + 5/256.

1 3-Ga(m,r) = nr + 2rm?(2) - f 2r(1 - r2)/2
4 6

00 722k+3

+ (-1)k ((2k + 1)dk, (2 .)
k=1

with dl = r/8, d2 = r3 / 4 + r/8, d3 = 3r 5 /8 + 5r3 /8 + 15r/128.

1 2
H5(f-, r) = mr2 432 +1 r 2f 2 C(2)4

r4 ii4  7rfn 3(
96+ (1496 24

-4 374 - 2  f4
+ ý- 256 - (2) + -In-64 256 8 64 4

00 -2k+4

+ (-1)k (2k + 1)ek( 2 r
k=1
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(C.26)

H3(m, r) =
(C.27)

(C.28)

- r,2)3/2

(C.29)

+ 7 - In(2;r) + O(e).

Sr2)1/2 r
- r2)1/

+ 1- (4)2



with el = r2 /64+1/384, e2 = r 4 /64+r 2 /64+1/1024, e3 = r 6/64+5r4 /128+15r2 /1024+

1/2048.

For later convenience, we quote,

72 4

C(2) - C(4) = -.6 90'
Now let's consider the low temperature case. The derivation in the following is given by

H. E. Haber and H. A. Weldon ([13]). Low temperature regime is equivalent to the case of

m -+ oo at fixed r. If we make the substitution, w = exp[ih - (x2 + ri2)1/2] in (C.1) and

(C.2), then the results are

1 (1 dw(-lnw)1/ 2 -1(2r - Inw)'/ 2-1(y - Inw)
= I(l) Jo exp[(l - r)r] - w

1 1 (-lnw)'/ 2-1(2?-i W)- - 1/-
h t (rm, r) =- dw exp[(1 - r) -w (C.31)(exp[(1 - r)1] - w

Expanding the numerators under the assumption that lnw/2~I < 1, we may use the

following definition of the polylogarithm function Lii(x) (for I > 0)

-- 1 (-nt);-1 " x P

Lii(x) = Itdt =\- - (C.32)t - x-1 E pI
p-l

to integrate term by term and obtain,

r(i/2) E 1 1 k+1-1/2( 3
(91() = r(k + 1)r(1/2 - k) 2(C.33)

x {fr(1/2 + k)Lik+1,2 ((r-I)f) + r(1/2 + k + 1)Lik+,/2+,(e(r-)I)}f

h1(f-, r) = r(1/2) r(1/2 + k) i)k+  / ) (C34)/2
r(l) = r(k + 1)(1/2 k) 2 (( 1 )) (C.34)

The above equations give us the low temperature expansions.
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