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Abstract

The primary focus of this thesis is on the presentation of a sensitive, quantitative
method that requires minimal subject cooperation for the assessment of the autonomic
nerve damage frequently associated with diabetes mellitus. The method employs a
system identification procedure to estimate the open-loop couplings between the beat-to-
beat fluctuations in heart rate, arterial blood pressure, and instantaneous lung volume
described in a closed-loop model of short-term cardiovascular control mechanisms. This
model contains four couplings, two (ILV->HR and BAROREFLEX) of which are
considered autonomically mediated; one (ILV-,ABP), mechanically mediated; and the
other (CIRCULATORY MECHANICS), primarily mechanically mediated but also
autonomically influenced. The model also includes two noise perturbations. These
couplings are estimated with data collected non-invasively from both control subjects and
subjects with diabetes mellitus. The subjects with diabetes mellitus are divided into three
groups based on current accepted tests for the assessment of autonomic nervous function.
The results show marked differences in ILV--HR and BAROREFLEX and minor
differences in CIRCULATORY MECHANICS across the control and three diabetic
groups. Just as important, there are no significant differences in ILV--ABP across these
four groups. This study suggests that this closed-loop system identification procedure
may provide a powerful tool for the assessment of autonomic neuropathy in patients with
diabetes mellitus.

This thesis additionally presents a preliminary investigation on the nonlinear
dynamics involved in short-term cardiovascular control mechanisms. In particular, a
nonlinear system identification procedure is implemented to estimate the effects of the
squared and cross product terms of arterial blood pressure and instantaneous lung volume
on normal heart rate variability. The results indicate that these particular nonlinear terms
do not play a significant role in the generation of heart rate variability.

Thesis Supervisor: Richard J. Cohen
Title: Professor, Harvard-MIT Division of Health Sciences and Technology
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Chapter 1

Introduction

Autonomic neuropathy is well recognized as a serious consequence of diabetes

mellitus [15]. The clinical manifestations of diabetic autonomic neuropathy include

postural hypotension, gastric symptoms, hypoglycemic unawareness, and sweating

disturbances [13,15]. These clinical manifestations are slowly progressive, usually

irreversible [13], and are associated with considerable mortality [17]. Consequently, it is

essential to be able to quantify diabetic autonomic neuropathy so as to obtain a

physiological measure of the progression of autonomic nerve damage and thus, guidance

for treatment. As a result, standard autonomic tests based on cardiovascular reflexes to

various physiological perturbations are commonly employed [19]. However, these tests

are relatively insensitive, especially to early sympathetic nerve damage [16] and require

the active cooperation of the subject, which may make the test results difficult to

reproduce.

1.1 Objective

The primary objective of this thesis is to present a sensitive method that requires

minimal subject cooperation for the assessment of autonomic nerve damage in subjects

with diabetes mellitus. The method is based on employing a system identification
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procedure to extract the information concerning cardiovascular control mechanisms

inherent in the beat-to-beat fluctuations of cardiovascular variables. System

identification involves the estimation of models of dynamic systems or couplings based

on input and output data acquired from such couplings [28]. Therefore, syystemi

identification provides a means to examine the couplings of the beat-to-beat fluctuations

in cardiovascular variables so as to quantitatively assess cardiovascular control

mechanisms and consequently, autonomic nervous function. Specifically, a system

identification procedure is implemented to estimate linear, time-invariant (LTI)

mathematical models associated with a closed-loop model of short-term cardiovascular

control relating the couplings between the beat-to-beat fluctuations in heart rate, arterial

blood pressure, and instantaneous lung volume. This method is applied to data collected

non-invasively from diabetic and control subjects to assess diabetic autonomic

neuropathy.

Since nonlinear aspects of cardiovascular control mechanisms have been

previously reported [29,42], an additional objective of this thesis is to present a

preliminary analysis of the nonlinear dynamics involved in cardiovascular control. In

particular, a nonlinear system identification procedure is implemented to estimate the

effects of the squared and cross product terms of arterial blood pressure and instantaneous

lung volume on normal heart rate variability.

1.2 Contents of Thesis

The contents of this thesis are organized in the following manner: Chapter 2

introduces the three components of this thesis, namely system identification,

cardiovascular control mechanisms, and diabetic autonomic neuropathy. This chapter

also discusses the application of system identification to the study of cardiovascular

control mechanisms and highlights some of the previous relevant studies. Chapter 3

presents a treatment of the closed-loop system identification procedure employed in this

thesis in the context of a general system identification procedure presented in Chapter 2.

Chapter 4 presents the application of the closed-loop system identification procedure



described in Chapter 3 to the study of diabetic autonomic neuropathy. Chapter 5 presents

a preliminary study of the nonlinear dynamics involved in cardiovascular control

mechanisms, particularly in the generation of normal HR variability.

Ill__.~_*··~···~··lhgl··I -- -



Chapter 2

Background

This chapter provides background information on the three components of this

thesis, namely system identification, cardiovascular control mechanisms, and diabetic

autonomic neuropathy. The chapter also includes a section about some aspects of the

application of system identification to the study of cardiovascular control mechanisms,

including highlights of previous relevant studies.

2.1 System Identification

This section provides an introduction to system identification by summarizing

material in [5,24,28,39]. System identification is the field of estimating models of

dynamic systems based on the observed input and output data from such systems.

Science also involves developing models (such as laws and hypotheses) based on

observations and so, system identification, in broadest terms, is integral to the scientific

method. The applicability of system identification is virtually unlimited as dynamic

systems are prevalent everywhere in this world.



2.1.1 Dynamic Systems

The notion of a dynamic system is illustrated in Figure 2-1. The system is driven

by external stimuli u(t) and v(t) to produce an observable quantity y(t) with t denoting

time. The observer can control and measure u(t) but not v(t). Therefore, u(t) is called the

input, while v(t) is referred to as a disturbance. The observable quantity y(t) is called the

output. For causal, dynamic systems, the present output value not only depends on the

present value of the external stimuli but on their past values as well. Some examples of

dynamic systems are aircrafts, robots, and as pertaining to this thesis, cardiovascular

control mechanisms.

Disturbance
v(t)

Figure 2-1: The notion of a dynamic system.

2.1.2 Modeling Dynamic Systems

The need for modeling dynamic systems often stems from the design problem.

For example, in order to design a regulator for a particular system, some model of the

interactions of the inputs, disturbances, and output of that system is necessary. However,

design is not the only aim of system identification. System identification is also

motivated by the need to obtain an understanding of the system itself. This is the

motivation for system identification in this thesis. Several types of models can be used

to describe dynamic systems. These include mental models, nonparametric models, and

parametric models. A mental model does not involve any mathematical formulation. An

example of a mental model is the knowledge that pushing the brake of a car decreases the
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speed of the car. A nonparametric model is described by a graph or a table and can

involve mathematical formulation. An example of a nonparametric model without

mathematical formulation is a step response that is constructed by simply exciting the

system with a unit step and measuring the resulting output. An example of a

nonparametric model with mathematical formulation is the optimal transfer function in

the least squares sense computed via FFT-based spectral analysis. This type of

nonparametric model will be encountered again in Section 2.4.3. Parametric models

typically involve mathematical formulations with adjustable parameters. The most

common examples of parametric models are difference or differential equations. It should

be noted that transfer functions can also be constructed from the parameters of such

equations; however, in this case, the transfer functions are considered to be parametric.

In this thesis, parametric models in the form of difference equations are employed.

System identification is one of two approaches for modeling dynamic systems.

The other approach is mathematical modeling and is based on applying physical laws,

such as Ohm's Law and Kirchhoffs Laws, to describe the dynamic nature of a system.

Although mathematical modeling seems more desirable, it turns out that system

identification is often more useful. In many cases, the system to be modeled is either too

complex to be formulated on the basis of first principles or little if any a priori

information is known about the system. In fact, the historical motivation of system

identification was to design control strategies for such systems. Additionally, many

models based on physical insight often contain parameters that are unknown. In these

cases, system identification can be applied to identify the unknown parameters.

2.1.3 System Identification Procedure

The estimation of models from experimental data typically involves the following

four steps:

1) Generation of input-output data. This step includes experiment design and data

collection and processing. Experiment design deals with such issues as what signals to

measure, when to measure them, and whether these signals are related in open- or closed-

loop. The goal of experiment design is to obtain data that is maximally informative



subject to any existing constraints. This is equivalent to the inputs being persistently

exciting which roughly means that all modes of the system are being excited by the

inputs. The mathematical details of persistently exciting inputs will be discussed in

Section 3.4.2. However, in some situations, the observer may not be able to control the

inputs and must consequently use data from the normal operating conditions of the

system. Data collection and processing deals with the measurements and signal

processing involved in the generation of the input-output data. The objective of data

collection and processing is to provide the most cleanest data possible. Clearly, good

models can only result from good data.

2) Selection of a candidate set of models. This step is often the most difficult in the

system identification procedure. In some cases, the system can be mathematically

modeled with unknown parameters and consequently, a candidate set of models can be

chosen accordingly. In other cases, the system is too complex or little is known about the

system, and models must be chosen without regard to physical insight. This is often

referred to as a black box approach. The first step in this approach involves choosing the

type of model, generally a choice between nonparametric and parametric models. Since

parametric models are employed in this thesis, the remainder of this procedure will be

based on such models. As mentioned previously, parametric models are commonly

difference or differential equations that have adjustable parameters. Generally, in the

next step of the black box approach, a candidate set of parametric models is selected by

choosing first a particular form of a difference or differential equation and then a set of

different parameterizations for that equation. A parameterization is defined to be the

collection of all the adjustable parameters in a difference or differential equation.

3) Determination of the "best" model in the set. This step first deals with determining

the "best" parameterization from the input-output data and the set of parameterizations

based on some criterion. The "best" parameterization is generally determined with one of

the available information criterion tests such as the Rissanen's minimum description

length (MDL) criterion or Akaike's Final Prediction Error (FPE). These tests find the

proper balance between the number of parameters in a model and the loss function (some

function of the difference between the actual output and the output produced by the
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model). A model with too many parameters will produce a small loss function but at the

same time it will model the noise. This is referred to as overparameterization. A model

with too few parameters or underparameterization will produce a larger loss function

which essentially means that the model does not explain the dynamics of the system.

Therefore, information criterion tests essentially penalize the loss function by the number

of parameters that comprise the model. Once the "best" parameterization is chosen, the

"best" parameters can be estimated from the input-output data based on an identification

method such as least squares. The identification methods are usually based on a

minimization of the loss function. Clearly, an important requirement of an identification

method is that the estimated parameters approach their true value as the data length

approaches infinity. If this is the case, the system is rendered identifiable. It should be

noted that transfer relations can also be computed from the estimated parameters. This

often provides additional intuition about the estimated model.

4) Validation of the "best" model. This step deals with the question of whether the

"best" model in the set provides an appropriate representation of the system. One way to

deal with this question is to verify that the model describes the true system. Since the

true system is not known, this amounts to confirming that the model is reasonable based

on any a priori information. Another way to deal with this question is to determine if it

is likely that the actual data was generated from the model. This can often be determined

by testing the whiteness of the residual error (difference between the actual output and the

output produced by the model) as some identification methods such as least squares

require this feature. Perhaps the best way to deal with this question is to generate new

input-output data from the system and see if the same model results. (Unfortunately, this

validation method is not employed in this thesis, because the data records are not long

enough.) Note that this step renders system identification to be an iterative procedure. If

the model is not validated, then steps 1, 2, and/or 3 should be adjusted and the procedure

should be repeated again until the "best" model is validated. Figure 2-2 shows a

flowchart for the general system identification procedure.



nowledge

Figure 2-2: A flowchart of the system identification procedure. Modifed from [39].

2.2 Cardiovascular Control Mechanisms

This section presents some of the basic concepts of the short-term control

mechanisms of the cardiovascular system by summarizing material from [8,14,22,23].

The cardiovascular system which consists of the heart and blood vessels is a transport

system for blood. This transport system makes it possible for nutrients, gases, waste

products, hormones, and fluids in blood to be exchanged between different tissues of the

body. The required flow of blood to the tissues of the body vary since the metabolic

lcl-~"~~'~"~~"p-"1~



needs of each tissue differ. Therefore, each individual tissue can control its own local

blood flow. This is referred to as the intrinsic control of the cardiovascular system.

The flow of blood from the heart to the vascular beds of the many tissues can be

conceptualized with the electrical circuit in Figure 2-3. This circuit illustrates that the

heart and the vascular beds can be respectively thought of as a current source and

resistances connected in parallel. Note that the electrical variables of the circuit are

represented with their analogous cardiovascular variables. The rate of blood flow fi

through the ith vascular bed is as follows:

= P - P

Ri
where Pa is arterial pressure, Pf is the filling pressure, and Ri represents the vascular

resistance of the ith vascular bed. Since arterial pressure is generally much greater than

the filling pressure, the following approximation can be made:

fRPa
Ri

Pa

Heart

CO

Vascular Beds

Figure 2-3: Electrical circuit model relating cardiac output (CO), arterial pressure (Pa),
filling pressure (Pf), local vascular resistance (Ri), and local blood flow (fi). Modified
from [14].



Since adjustments in arterial pressure will influence blood flow to all vascular beds, the

local control of blood flow must be achieved by adjusting local vascular resistance.

Consequently, it is of paramount importance that arterial blood pressure remain constant

or nearly constant. Otherwise, with varying arterial blood pressure, it would never be

known whether adjustments in resistance would result in the appropriate changes in local

blood flow. Therefore, the cardiovascular system includes a complex regulatory system

that maintains arterial blood pressure within narrow limits. This is referred to as the

extrinsic control of the cardiovascular system and is the focus of this thesis. It should be

noted that the term cardiovascular control will henceforth refer specifically to extrinsic

cardiovascular control.

The extrinsic control system consists of many control and feedback loops. The

control loops are specifically responsible for adjusting arterial blood pressure via some of

the cardiovascular variables that influence it. Figure 2-3 illustrates that arterial blood

pressure is related to the overall blood flow from the heart or cardiac output CO and total

peripheral vascular resistance R as follows:

P, =COx R

where

1 1 1 1
- = -- +-+---+ .

R R, R2  RN

Peripheral vascular resistance is adjusted by constriction or dilation of the resistance

vessels respectively termed vasoconstriction (TR) or vasodilation (,R). The resistance

vessels are primarily the arterioles whose thick, muscular walls allow for significant

changes in caliber and thus resistance. Control of cardiac output is very complex and is

dependent on many cardiovascular variables. However, it is normally adjusted by either

modulation of heart rate or effective blood volume. In particular, cardiac output is a

monotonically increasing function of heart rate and effective blood volume. Effective

blood volume is defined to be the difference in total blood volume and the filling volume

of the peripheral vasculature. Specifically, effective blood volume is adjusted by the

constriction or dilation of the capacitance vessels respectively referred to as

-- - - - - - -



venoconstriction (teffective blood volume -*- CO) or venodilation (,leffective blood

volume -+, CO). The capacitance vessels are the veins whose thin, muscular walls do

not provide much resistance to flow but do allow for a greater capacity for changes in

filling volume. The control mechanisms for adjusting peripheral vascular resistance,

heart rate, and effective blood volume are of the following three types: local control,

humoral control, and neural control. This thesis specifically focuses on the neural control

which is on the time scale of seconds to minutes (short-term).

The autonomic nervous system is the portion of the nervous system that controls

the involuntary functions of the body and consequently, plays a major role in the neural

control of the cardiovascular variables that influence arterial blood pressure. The

autonomic nervous system is divided into two subsystems, the sympathetic nervous

system and the parasympathetic nervous system. The sympathetic nervous system

innervates the arterioles and veins of the body along with the sinoatrial node (the heart's

pacemaker), atria, and ventricles of the heart. The sympathetic nervous system can be

further divided based on the particular chemical receptor in the tissue receiving the neural

message. The chemical receptors are of three types, namely a, 13I, and 2 *. The a

receptors are present in the arterioles and veins and when stimulated, they cause

vasoconstriction and venoconstriction. However, the P2 receptors are also found in the

arterioles and veins and when they are stimulated, they result in the opposing effect of

vasodilation and venodilation. The P1 receptors are present in the heart and when

stimulated, they increase heart rate and enhance the contractility of the heart. The

parasympathetic nervous system innervates the atria and ventricles of the heart to some

extent but primarily innervates the sinoatrial and atrioventricular nodes via the vagus

nerve. Parasympathetic stimulation decreases heart rate and slightly decreases the

contractility of the heart.

There are a couple of points to note about these two subsystems. The first point to

note is that the efferent branches of the sympathetic and parasympathetic nervous systems

are tonically active. For example, modulation of sympathetic activity either increases or

decreases vasoconstriction and venoconstriction with respect to a certain baseline tone.



Likewise, an increase or decrease in parasympathetic activity respectively decreases or

increases heart rate. The second point to note is that the sympathetic nervous system

increases its activity in the upright or tilted posture, while the parasympathetic nervous

system increases its activity in the supine posture.

The feedback loops of the extrinsic control system work in conjunction with the

control loops to maintain arterial blood pressure under various perturbations. The

baroreceptor reflex is one of the most important feedback loops that act on the time scale

of seconds to minutes (short-term). Baroreceptors are stretch receptors located in the

carotid sinus and the aortic arch that sense changes in mean arterial blood pressure. An

increase in pressure stretches the baroreceptors and causes them to transmit signals that

eventually reach the autonomic nervous system. The autonomic nervous system responds

by reducing peripheral vascular resistance via vasodilatory effects and decreasing cardiac

output via venodilation and a reduction in heart rate and contractility of the heart. Of

course, a decrease in arterial blood pressure sensed by the baroreceptors would result in

the opposite effect. It should be noted that there are other inputs to the autonomic

nervous system besides arterial blood pressure such as oxygen and carbon dioxide

pressures and signals from higher brain centers.

2.3 Diabetic Autonomic Neuropathy

This section provides a brief treatment of the autonomic neuropathy associated

with diabetes mellitus by summarizing material in [13,15,16,17]. Diabetes mellitus is a

disease marked by excessive blood sugars due to insulin deficiency. Autonomic

neuropathy, a frequent complication of diabetes mellitus, is a disorder that has damaging

effects on sympathetic and parasympathetic nerves. Since this thesis deals with

cardiovascular control mechanisms, this section specifically emphasizes the damage of

the nerves that innervate the cardiovascular system referred to as cardiovascular

neuropathy. Of course, cardiovascular neuropathy can have deleterious effects on the

autonomic control mechanisms of the cardiovascular system.



The morphological changes associated with diabetic autonomic neuropathy and

their pathogenesis are not well understood. Few studies of changes in morphology of the

autonomic nerves have been completed because of the inaccessibility of these nerves.

The issue of pathogenesis is controversial as both metabolic and vascular causations have

been hypothesized. However, the clinical features of diabetic autonomic neuropathy are

well recognized. These clinical features are often non-specific and range from mild

disturbances to severe disabilities. They include symptoms involving the cardiovascular,

gastrointestinal, and urogenital systems and disturbances to thermoregulatory function

and pupillary reflexes.

In particular, the clinical features of cardiovascular neuropathy include postural

hypotension and resting tachycardia. Postural hypotension is defined to be a fall in

systolic blood pressure of greater than 30 mmHg when moving from the supine to

standing posture. When the cardiovascular control system is operating normally, the

decrease in arterial blood pressure that occurs on the move from supine to standing is

sensed by the baroreceptors and ultimately peripheral resistance and cardiac output is

increased mainly by the sympathetic nervous system. Therefore, postural hypotension

reflects damage to predominantly sympathetic nerves. Resting tachycardia is a fast heart

rate at rest and probably indicates the inability to reflexively modulate heart rate as a

result of autonomic nerve damage.

Standard autonomic tests based on cardiovascular reflexes to various

physiological perturbations are commonly employed to assess autonomic nerve damage.

These tests assume that abnormal cardiovascular reflexes not only indicate cardiovascular

neuropathy but damage throughout the entire autonomic nervous system. The goal of

these tests are to confirm the presence and quantitatively assess the severity of autonomic

neuropathy. These tests non-invasively assess the heart rate response to such

perturbations as the Valsalva maneuver (subject blows into a mouthpiece at a pressure of

40 mm Hg for 15 seconds), standing up, and deep breathing and the blood pressure

response to such perturbations as standing up and sustained handgrip. Although both

branches of the autonomic nervous system are involved in these tests to some extent, the

sympathetic nervous system is believed to play the major role in the blood pressure tests.



However, the blood pressure tests are relatively insensitive, particularly to early

sympathetic nerve damage. Furthermore, both heart rate and blood pressure tests require

the active cooperation of the subject and so, the test results may be difficult to reproduce.

The prevalence and natural history of diabetic autonomic neuropathy is not fully

understood. Between 17 and 40% of randomly selected diabetic subjects have abnormal

standard autonomic test results according to large studies. The development of clinical

features is variable and appears to be relatively late. They are slowly progressive and

usually irreversible and their onset often results in severe disabilities. Studies show that

diabetic subjects with clinical symptoms of autonomic neuropathy are associated with

considerable mortality. The potential consequences associated with diabetic autonomic

neuropathy emphasize the need for its quantification. This quantification would provide

a physiological measure of the progression of autonomic nerve damage and consequently,

guidance for treatment. For example, an increase in the autonomic nerve damage would

indicate the need for tighter glucose control. Therefore, the standard autonomic tests are

often employed clinically despite their severe drawbacks. Clearly, a more sensitive test

that requires minimal subject participation is needed to quantitatively assess diabetic

autonomic neuropathy.

2.4 System Identification of Cardiovascular Control Mechanisms

This section discusses some aspects involved in the application of system

identification to the study of short-term cardiovascular control mechanisms and presents

some highlights of previous studies. Since a major component of this thesis is diabetic

autonomic neuropathy, an emphasis is placed on the study of cardiovascular control

mechanisms of subjects with diabetes mellitus.

2.4.1 Simple Models of Short-Term Cardiovascular Control Mechanisms

Figure 2-4 summarizes the autonomic control mechanisms of the cardiovascular

system discussed in Section 2.2 in a block model The blocks of the model represent

functional subsystems of the entire control system. The autonomic control mechanisms



are much too complicated for each block to be described with physical insight. However,

if the input-output data to each subsystem could be measured, then system identification

could be employed to estimate the dynamics of each block. Therefore, a fairly complete

assessment of autonomic control would be obtained. Unfortunately, much of the input-

output data in this model is not available for measurement and hence, this model is not

particularly useful in the system identification context. However, some of the input-

output data in this model, such as heart rate and arterial blood pressure, are easily

accessible for measurement and can be used to estimate simpler models. Although, these

models are not as detailed, they still provide useful insight about some aspects of

autonomic control mechanisms.

Other
Inputs

Arter
Bloc

Press

Heart
Rate

Output

Figure 2-4: Block model of the autonomic control mechanisms of the cardiovascular
system. Modified from [8].

Respiratory activity is also readily available for measurement via instantaneous

lung volume. Although it is not included in the model in Figure 2-4, respiratory activity

is an important factor in the study of cardiovascular control because it is a perturbation to



the cardiovascular system that causes a dynamic and compensatory response by the

cardiovascular control mechanisms. Therefore, respiration can also be included in simple

models of cardiovascular control. Specifically, respiration influences the cardiovascular

system by perturbing both arterial blood pressure by mechanical mechanisms [8] and

heart rate by autonomic mechanisms [37].

The intrathoracic pressure changes that result from respiration produce an additive

effect on arterial blood pressure and modulate venous return and ventricular filling which

eventually affect arterial blood pressure through their effects on cardiac output.

Specifically, during inspiration, the intrathoracic pressure is more negative than usual.

This causes an immediate decrease in arterial blood pressure due to capacitive effects and

increases venous return to the right side of the heart which increases ventricular filling

and eventually cardiac output from the left side of the heart. During expiration, the

opposite effects occur.

Heart rate is also modulated by respiration. Specifically, phasic changes in heart

rate follow the inspiratory and expiratory cycle of respiration. This is commonly referred

to as respiratory sinus arrhythmia (RSA). The mechanisms that generate RSA are not

completely understood; however, several potential mechanisms for RSA have been

suggested. One possible mechanism is the direct neural coupling of the respiratory drive

and heart rate control centers within the central nervous system. Another possible

mechanism is the mechanical modulation of arterial blood pressure influencing heart rate

via the baroreceptor reflex. Although the mechanisms for RSA are not completely

understood, it is known that the modulation of heart rate in response to respiration is

mediated by the autonomic nervous system almost exclusively.

2.4.2 Fluctuations in Cardiovascular Variables

It should be emphasized that when employing system identification to model the

autonomic control mechanisms of the cardiovascular system, it is essential to deal with

the fluctuations in cardiovascular variables such as heart rate, arterial blood pressure, and

respiration about their mean values [3]. The mean values of cardiovascular variables are

simple to examine and are thus used clinically, but they imply only the static state of



cardiovascular control. However, the fluctuations in cardiovascular variables about their

mean values imply the dynamic nature of cardiovascular control as they represent the

interplay between perturbations to the cardiovascular system and the response of

cardiovascular control mechanisms. Of course, these perturbations can either be

exogenous such as respiratory activity or endogenous such as local vascular resistance

adjustments which affect total peripheral resistance.

The information concerning cardiovascular control inherent in the fluctuations in

cardiovascular variables is illustrated by examining the power spectrum of heart rate.

Power spectral estimation decomposes a signal into a sum of sine waves of different

frequencies. The power spectrum is presented as the squared amplitude of these sine

waves as a function of frequency. Figure 2-5 shows that a typical heart rate power

spectrum contains three peaks that are centered at approximately 0.04 , 0.1, and 0.2 Hz.

The 0.2 Hz peak is associated with fluctuations in respiration and the 0.1 and 0.04 Hz

peaks are probably related to fluctuations resulting from arterial blood pressure

regulation. The frequency band above 0.15 Hz is modulated by the parasympathetic

nervous system as power in this band disappears during parasympathetic blockade. On

the other hand, the frequency band below 0.15 Hz is modulated by both sympathetic and

parasympathetic nervous systems as power in this band is diminished during either

blockade and completely disappears during double blockade.

Figure 2-5: Sample power spectrum of heart rate fluctuations. Reproduced from [1].
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Figure 2-6: The power spectrum of heart rate for a) a control, b) a diabetic subject with
moderate autonomic neuropathy, and c) a diabetic subject with severe autonomic
neuropathy. Reproduced from [20].

Since the power spectrum reveals so much about autonomic control, it is natural

to wonder whether it can be used as an assessment tool for autonomic neuropathy. In

fact, there has been extensive work on the application of heart rate power spectral

estimation to assess the autonomic neuropathy associated with diabetes mellitus

[7,20,27,33]. The total power of the heart rate spectrum decreases with increasing

autonomic neuropathy. This is consistent with the hypothesis that autonomic modulation

of heart rate reduces as nerve damage progresses. Figures 2-6a, b, and c illustrate this
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trend by respectively showing the power spectrum of a control subject, a subject with

moderate autonomic neuropathy, and a subject with severe autonomic neuropathy in both

supine and upright postures. Additionally, the parameters of the heart rate power

spectrum such as low frequency power, high frequency power, and total power compare

well with the standard autonomic tests. Although heart rate power spectral analysis is a

quantitative, non-invasive, and sensitive method that requires minimal subject

participation, it only provides information about an output of a control loop of the

cardiovascular control system. It does not provide any information about how the output

would change to varying inputs to the control loop. Clearly, it would be more

informative to estimate the dynamics of the couplings of the control and feedback loops

of the cardiovascular control system from experimental data.

2.4.3 Previous Studies

Many previous studies have applied system identification to quantitatively and non-

invasively assess cardiovascular control mechanisms with minimal subject participation.

A few of these studies have specifically assessed the cardiovascular control mechanisms

of diabetic autonomic neuropathy. Of course, none of these studies provide a complete

description of cardiovascular control; however, they do provide insight about some

aspects of the cardiovascular control system. It should be noted that all of these studies

assumed that the cardiovascular control mechanisms behaved as LTI systems. The

system identification techniques that have been employed can be divided essentially into

two categories namely, nonparametric transfer function analysis and parametric system

identification.

Nonparametric transfer function analysis provides an estimation of the gain and

phase delay as a function of frequency between a single input and output of an LTI

system. Because this type of analysis applies to LTI systems, a requirement is that the

input data contains all relevant frequencies of interest so that the system can be identified

at all these frequencies. The estimation procedure involves the determination of the

optimal estimate of the transfer function in the least squares sense computed via FFT-



based spectral analysis. The interested reader can find a detailed treatment of this topic in

[38].

Nonparametric transfer function analysis has been applied to analyze several aspects

of cardiovascular control. Berger et al. stimulated the vagus and cardiac sympathetic

nerves of dogs in a broadband manner to study the coupling of this stimulation and the

resulting atrial rate in order to gain insight about the dynamics of the sinoatrial node [10].

They found that the sinoatrial node behaves as a lowpass filter whose cutoff frequency

depends on both the mean level of stimulation and the particular nerve that was

stimulated. Saul et al. examined the coupling of respiration and heart rate using

techniques to broaden the frequency content of respiration in order to study RSA [35].

They determined that RSA was frequency dependent with parasympathetic nervous

control providing a faster and larger heart rate response to respiration than sympathetic

nervous control. The objective of study in [36] included the analysis of RSA and the

coupling between respiration and blood pressure by blocking branches of the autonomic

nervous system pharmacologically. One of the discoveries of this study was that the

respiratory effects on arterial blood pressure are mediated by both RSA and the

mechanical affects of respiration on arterial blood pressure. Freeman et al. assessed RSA

in diabetic autonomic neuropathy [21]. The main results of this study are shown in

Figure 2-7. Figure 2-7a shows the mean gain between respiration and heart rate as a

function of frequency for groups with varying degrees of autonomic neuropathy.

Specifically, the mean gain decreases as autonomic neuropathy increases across these

groups for both the supine and tilted postures. Figure 2-7b illustrates the mean phase

delay between respiration and heart rate as a function of frequency for these groups.

The phase delay at low frequencies is particularly of interest and implies that

sympathetic modulation increases (but to no avail as is evident in Figure 2-7a) with

increasing autonomic neuropathy in the supine posture and plays a major role regardless

of the degree of autonomic neuropathy in the tilted posture.

Clearly, nonparametric transfer function analysis provides useful insight about

cardiovascular control mechanisms. However, its utility is limited. Consider the

important coupling between heart rate and arterial blood pressure. This coupling is a
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closed-loop relationship in that arterial blood pressure influences heart rate by way of the

autonomically mediated baroreceptor reflex, and heart rate affects arterial blood pressure

via the mechanical effects of ventricular contraction. As will be shown in Section 3.4.2,

causality conditions must be imposed in order to identify the open-loop couplings in a

closed-loop system. Since nonparametric transfer function analysis cannot impose

causality conditions, this technique cannot distinguish between the open-loop couplings

in a closed-loop system. However, as will be shown in Section 3.2.1, parametric system

identification can impose causality conditions. The power of parametric system

identification over nonparametric transfer function analysis rests with this fact.
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Figure 2-7: a) The mean transfer function gain between respiration and heart rate for
groups with varying degrees of neuropathy in the supine and tilted postures. b) The
mean transfer function phase delay between respiration and heart rate for these groups
also in the supine and tilted postures with the control, normal diabetic, mild neuropathy,
and severe neuropathy groups respectively arranged from top to bottom. Reproduced
from [21].

Parametric system identification provides an estimation of couplings typically in the

form of a parameterized impulse responses. The general estimation procedure is

reviewed in Section 2.1.3. Of course, parametric system identification can also be

applied to open-loop couplings. Yana et al. examined RSA by blocking branches of the

autonomic nervous system pharmacologically [45]. Their technique included a method to



broaden the frequency content of respiration so as to provide informative data, pre- and

post-processing procedures, a time domain, moving average (MA) difference equation,

and least squares estimation. Their model estimates in the form of impulse responses

implied that changes in heart rate anticipated changes in respiration. This suggests the

neural coupling of respiratory drive and heart rate control centers and thus supports the

role of the central nervous system in the generation of RSA. They also found that

parasympathetic block almost completely diminished the impulse response while

sympathetic block had little effect, perhaps indicating greater parasympathetic

modulation.

As mentioned previously, the real utility of parametric system identification in the

cardiovascular control context is that it can be applied to closed-loop systems. Kenet

examined the closed-loop coupling of heart rate and arterial blood pressure in dogs under

normal sinus rhythm and during atrial fibrillation [26]. This technique involved using a

symmetric closed-loop model, autoregressive, moving average (ARMA) difference

equations, and generalized least squares estimation. He found that the data was not

informative enough during normal sinus rhythm; however, during atrial fibrillation this

problem was resolved at the expense of normal operating conditions. Baselli et al.

studied the couplings between heart rate, arterial blood pressure, and respiration [6].

Their method involved using a closed-loop model consisting of seven transfer relations

and two unmeasured noise perturbations, dividing the system into two models, and

generalized least-squares estimation. However, the data was not informative enough as

the respiration data was not persistently exciting. Appel et al. also examined the

couplings between heart rate, arterial blood pressure, and respiration under selective

pharmacological blockade of autonomic pathways [4]. This method involved a random-

interval breathing technique to provide informative data, a closed-loop model consisting

of four transfer relations and two unmeasured noise perturbations, ARMA difference

equations, and least squares estimation. Their method was able to distinguish between

altered autonomic states produced by both postural changes and the pharmacological

blockade. Additionally, their results were consistent with established physiological
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experimental results. This thesis, in fact, implements this same method to study aspects

of the cardiovascular control mechanisms of patients with diabetic autonomic neuropathy.



Chapter 3

Closed-Loop System Identification

Procedure

This chapter describes the closed-loop system identification procedure that is

implemented to assess diabetic autonomic neuropathy. The chapter presents this

procedure in the context of the general system identification procedure in Section 2.1.3.

Specifically, input-output data generation, candidate model selection, "best" model

determination, and model validation are all discussed in some detail.

3.1 Generation of Input-Output Data

The first step in any system identification procedure is to create the input-output

data. This step includes experiment design and data collection and processing. The

objective is to generate the most informative, cleanest data possible so that good models

can be constructed.

3.1.1 Experiment Design

Experiment design deals with such issues as what signals to measure, under what

conditions are these signals to be measured, and whether these signals are related in open-



or closed-loop. Since heart rate, arterial blood pressure (ABP), and instantaneous lung

volume (ILV) signals are all easily accessible and identification of their couplings can

provide useful insight about cardiovascular control mechanisms, these signals are chosen

for measurement. Strictly speaking, heart rate is not readily available, but it can be

derived from the surface electrocardiogram (ECG) which is perhaps the easiest

cardiovascular signal to measure. Therefore, the ECG, ABP, and ILV signals are actually

chosen for measurement. These signals are measured during two sessions, first while the

subject is supine and then following passive tilting to 600 (relative to the supine posture)

by an electrically driven tilt table. Each posture provides a different balance between

sympathetic and parasympathetic control of the cardiovascular system. Consequently, the

measurements from each session may be very insightful about the roles of the

sympathetic and parasympathetic nervous systems in cardiovascular control. Before each

of these sessions, the subject is provided with a period of hemodynamic equilibration.

Approximately eight minutes of data are measured for each session as it is short-term

cardiovascular control mechanisms that will be assessed. It should be emphasized that

this is a closed-loop experiment because of the relationship between heart rate and ABP.

The goal of experiment design is to obtain maximally informative data.

Informative data results from persistently exciting inputs, and in practice, persistently

exciting inputs correspond to broadband inputs. (This issue will be discussed further in

Section 3.4.2.) Heart rate and ABP can be thought of as outputs of the cardiovascular

control system; however, ILV is an exogenous input to this system. Therefore, it is

essential for ILV to be broadband. Unfortunately, normal breathing patterns typically

result in narrowband ILV data. As a result, during both sessions, subjects are instructed

to breathe on cue according to a sequence of auditory tones spaced by independent and

identically distributed, modified exponential inter-breath times. The inter-breath times

range from one to 15 seconds with a mean of five seconds to avoid subject discomfort.

This "random-interval breathing technique" provides broadband ILV data within 0.5 Hz

while preserving normal ventilation [9]. Figure 3-1 illustrates the effectiveness of the



random-interval breathing technique by showing the power spectra of ILV generated by

normal breathing and random-interval breathing.
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Figure 3-1: ILV
breathing.

power spectra from a) normal breathing and b) random-interval

3.1.2 Data Collection and Processing

The collection and processing of data involves the measurements and signal

processing techniques included in the generation of the input-output data. The ECG,

ABP, and ILV signals are measured non-invasively and recorded continuously on a Teac

C-71, eight-channel FM tape recorder (Teac America, Montebello, CA). The ECG signal

is measured with a Hewlett-Packard EKG Monitor 78203A (Andover, MA); the ABP

signal is measured with a 2300 Finapress Continuous Blood Pressure Monitor (Ohmeda,

Fort Lee, NJ); and the ILV signal is measured with a two-belt chest-abdomen inductance

pelthysmograph (Respitrace System, Ambulatory Monitoring, Inc., Ardsley, NY). The

ILV signal is calibrated by having the subject alternately empty and fill an 800 ml bag

after each period of hemodynamic equilibration. These three signals are then lowpass
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filtered at 180 Hz with a six-pole Butterworth filter and digitized with a 12 bit bipolar

A/D converter at a sampling rate of 360 Hz. Figure 3-2 shows a sample trace of the

resulting digitized ECG, ABP, and ILV signals.

ECG

ABP

ILV

Figure 3-2: Sample 7.5 second trace of digitized ECG, ABP, and ILV data.

The couplings of the three digitized signals can be described with the closed-loop

model of short-term cardiovascular control illustrated in Figure 3-3. The model

represents the closed-loop coupling of heart rate and ABP with ILV as an exogenous

perturbation that directly influences both heart rate and ABP. Since, it is assumed that

heart rate and ABP do not affect ILV, these couplings are not included in the model.

Therefore, the model contains four unknown open-loop couplings or transfer relations

(ILV-+HR, BAROREFLEX, ILV--ABP, and CIRCULATORY MECHANICS) and two

unmeasured noise perturbations (NHR and NABp). ILV--HR represents the autonomic

coupling between ILV and heart rate or equivalently, RSA. BAROREFLEX represents

the effects of ABP on heart rate due to the autonomically mediated baroreceptor reflex.

ILV-+ABP represents the mechanical coupling between ILV and ABP resulting from

variations in intrathoracic pressure induced by respiration producing an additive effect on



ABP and modulating venous return and ventricular filling which indirectly affect ABP.

CIRCULATORY MECHANICS primarily represents the mechanical effects of a single

ventricular contraction on the ABP waveform. However, the autonomic nervous system

also has some influence on CIRCULATORY MECHANICS since the ABP waveform is

dependent on peripheral vascular resistance which is sympathetically mediated. NHR and

NABP respectively represent the residual variation in HR and ABP not accounted for by

the couplings.

NHR

I

(ILV) Arterial Blood
sure
IP)

NAs,

Figure 3-3: Closed-loop model of short-term cardiovascular control mechanisms relating
heart rate, ABP, and ILV.
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An additional transfer relation (SA NODE) is also included in the model. SA

NODE reflects the effects of autonomic tone (represented by a heart rate tachogram

(HR)) on the modulation of the timing of ventricular contractions (represented by an

impulse heart rate (IHR) signal) by the sinoatrial node. Since the dynamics of the

sinoatrial node are well described via the integral pulse frequency modulation (IPFM)

model [25] and HR and IHR can be derived from the ECG as described in [11] and

illustrated in Figure 3-4, SA NODE is not estimated. The SA NODE is essential to the

model, though. The autonomic modulation of HR is over the spectral band between dc

and roughly 0.35 Hz [31 ], while the spectral content of the ABP waveform includes up to

the tenth harmonic of the mean heart rate which is usually about 10 Hz [12]. However, it

will be assumed that the couplings are LTI and so, the output can only contain power at

frequencies that are excited by the input. Because the spectral content of IHR also

includes at least up to the tenth harmonic of the mean heart rate, the function of SA

NODE is to close the loop by converting HR to IHR which is in turn linearly coupled to

the ABP waveform. Thus, SA NODE is a fully defined nonlinear element which is

crucial to the closed-loop model but does not require estimation.

It will be discussed in Section 3.3.1 that the couplings and noise perturbation

involved in the generation of HR will be estimated separately from the couplings and

noise perturbation involved in the creation of ABP. The signals used for the estimation

of the former couplings and noise perturbation are HR, ABP, and ILV. This data is zero-

meaned and decimated to 1.5 Hz which is more than sufficient to accommodate the

spectral content of the autonomic modulation of HR. The longest portion of the eight

minute data segment that is clean is used for this estimation. The signals used for the

estimation of the latter couplings and noise perturbation are ABP, IHR, and ILV. This

data is zero-meaned and decimated to 90 Hz which provides more than enough

bandwidth for the ABP waveform. Ninety seconds of the cleanest portion of the eight

minute data segment is used for this estimation. Additional processing techniques will be

necessary in the closed-loop system identification procedure; however, these techniques

will be discussed in Section 3.4.3.
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Figure 3-4: Derivation of the heart rate tachogram (HR) and the impulse heart rate signal
(IHR) from the ECG. The units of ECG are in millivolts (mV), while IHR has arbitrary
units.

3.2 Least Squares Estimation

The next step of the general system identification procedure deals with the

selection of a candidate set of models. However, the fundamental concepts of least

squares estimation are presented here, because they are essential to understanding this

step and the remaining steps of the closed-loop system identification procedure. Least

squares estimation is an identification method that is used in this thesis as a tool for the

determination of the "best" model. Since the closed-loop system identification procedure

employs LTI systems in the form of difference equations, this section specifically focuses

on least squares estimation in this context.
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3.2.1 LTI Systems

Disregarding any disturbances, a system is a transformation T{.} that maps an

input u(t) to an output y(t) i.e.,

y(t) = T{u(t)}.

A linear system follows the principle of superposition which states that

T{au,(t)+ bu2(t)} = aT{u,(t)} + bT{u2(t)}

where ul(t) and u2(t) are inputs to the linear system and a and b are arbitrary constants. A

time-invariant system is one in which a time shift of the input produces the identical time

shift of the output. Equivalently, provided that the output y(t) of a system results from

the input u(t), a system is time-invariant if the input u(t-to) produces the output y(t-to).

The input-output relationship of an LTI system is described by the convolution operation

as follows:

y(t) = h(k)u(t - k) = h(t)* u(t)
k

where * denotes the convolution operator and h(t) is referred to as the impulse response

of the LTI system. Note that if the impulse response of an LTI system is known, then for

any input to that system, the output can be determined. In other words, the impulse

response completely characterizes an LTI system. This is a powerful feature of LTI

analysis.

An important subclass of LTI systems are linear constant coefficient difference

equations (LCCDE's). The general form of such a difference equation with input u(t) and

output y(t) is
R S

Z ,aky(t- k)= bku(t- k).
k=R' k=S'

where R' < 0. Note that if R' = 0 and S" > 0, the system is causal. This general form is

often referred to as an autoregressive, moving average (ARMA) equation. Assuming

R' = 0, the autoregressive (AR) portion of this equation deals with past values of the

output influencing the present value of the output. The moving average (MA) portion of



the equation deals with the present value of the output being affected by some weighted

average of the input sequence. The ak's are called the AR parameters, while the bk's are

referred to as the MA parameters. If S', S = 0, then the difference equation is purely AR.

However, if R', R = 0, then the difference equation is purely MA. In this case, the

difference equation is equivalent to the convolution operation with the bk's being the

impulse response. It should be noted that the values of R', R, S', and S are referred to as

the order of the difference equation in this thesis and that these values directly relate to

the parameterization. Of course, LCCDE's can be extended to the multi-input case as

will be shown in the next section. A more detailed treatment of LTI systems and

LCCDE's can be found in [32].

3.2.2 Formulation of the Least Squares Problem

The least squares problem in the closed-loop system identification context has two

components, input-output data and a difference equation. Section 3.1 discussed the

generation of input-output data, and the selection of candidate models in the form of

difference equations will be presented in Section 3.3. More precisely, these two

components lead to the formulation of the least squares problem. Consider the following

two input ARMA equation which can serve as a model of a dynamic system:

R S T
y(t) = _ aky(t - k) +, blku(t - k)+ + b2kx(t - k) + e(t)

k=l k=O k=O

where e(t) represents unobserved noise and is referred to as the residual error. The

residual error accounts for both imperfections in the measurement process and dynamics

of the true system not contained in the model. Additionally, assume that there are

N+max(R,S, T) samples of the input-output data: u(t), x(t), and y(t) where

t E[- max(R, S, T)+ 1, N].

This ARMA equation can also be written in the following vector product form:

y(t) = 4T(t)O + e(t) (3.1)
where

ýT(t)= [y(t-1)... y(t- R) u(t)...u(t-S) x(t)...x(t-T)]
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T =[a,...aR b,,...b,, b21..b 2T,].
TT(t) and 0 are respectively referred to as the data vector and the parameter vector. Since

t E [- max(R,S, T) + 1, N], there are N such equations that can be placed in the following

matrix form:

Y= (0+E

where

Y = [y(l) y(2)... y(N)]

(D = [4(1) 4(2) ... (N)]

ET = [e(1) e(2) ... e(N)].

Disregarding E for the moment, a system of N equations and M = R+S+T+2 unknown

parameters results. Typically N > M, or equivalently, the number of the samples of data

is larger than the number of parameters of the difference equation. Therefore, the system

of equations is overdetermined and an exact solution for the parameters generally does

not exist. One can then resort to the least squares solution, and so the formulation of the

least squares problem is complete.

3.2.3 Derivation of the Least Squares Estimate

Least squares determines the parameters of the difference equation by fitting the

input-output data to the equation in the least squares sense. This amounts to minimizing

the mean-squared difference between the actual output y(t) and the output produced by

the model estimate 4w(t)0. The output produced by the model estimate will henceforth be

referred to as the prediction. By rearranging (3.1), this difference is found to be the

residual error

e(t)= y(t)- T(t)o.

The mean-squared residual error is called the loss function V and is defined as follows:

V = e2(t) = 1 ETE = IEI = IIY- 1.
N ,1= N N N



The minimization of V can-be achieved via the Orthogonal Projection Theorem. This

theorem states that the prediction vector (0O minimizes V provided that the residual error

vector E is orthogonal to all possible prediction vectors or equivalently, the column space

of (D. The proof of this theorem is very simple. Let Y be the prediction vector for which

E=Y-Y' is perpendicular to the column space of 1. If I' is any prediction vector, then

V = Y-Y11 2 = I(Y- Y)+(Y'-Y")1 2 = - '112 + IIY' -Y"ll
N N N N

where the last equality is from the Pythagorean Theorem and the fact that Y-Y is

orthogonal to Y-Y' which is clearly in the column space of D. Obviously, Y'=Y

minimizes V. Figure 3-5 provides a two dimensional geometric perspective of this result.

All Possible Prediction Vectors
(The Column Space of Q )

Figure 3-5: Two dimensional geometrical perspective of the Orthogonal Projection
Theorem. Modified from [44].

The least squares estimate 0 can now easily be derived. Since E must be

orthogonal to (D8, it follows that

EsIt = (Y- QO)T = 0.

The solution of this equation results in the least squares estimate

0 = ((DT )-, Oy T y. (3.2)

0



3.2.4 Consistency Conditions for the Least Squares Estimate

A crucial requirement for the least squares estimate is that it is consistent.

Assume that the dynamics of the true system can be described as follows:

Y = OO + E (3.3)

where the vector 0o contains the true parameters. Then the least squares estimate (or any

estimate for that matter) is consistent if

0 -+ 0o as N -+oo.

As mentioned in Section 2.1.3, if the estimate is consistent then the system is said to be

identifiable. The issue of consistency can be analyzed by substituting for, Y in (3.2) with

(3.3) as follows:

0 = ((•T()-'(DT((O + E).

After further simplification,

0=00 + ((Ir)-l'DTE.

This equation can be written in terms of vectors as follows:

I N T /N
4 = 0o + •: ()#W(t) d(t)e(t) . (3.4)

The data u(t), x(t), and y(t) are assumed to be jointly, wide-sense stationary (WSS)

stochastic processes that are ergodic with respect to second order moments. WSS

stochastic processes have second-order statistics that are time-invariant i.e., the mean of

the process does not vary with time and the covariance of the process only depends on a

time difference. Jointly, WSS processes additionally have cross-covariances that are

time-invariant. Jointly, WSS processes that are ergodic with respect to second order

moments have the following property:

- ~w(t)z(t + ,) -> E(w(t)z(t + r)) as N -+ oo

where E(-) is the expectation operator and w(t) and z(t) are any jointly, WSS processes.

In other words, the WSS process varies enough over time so that second order ensemble

behavior can be inferred from time averages. These assumptions hold under fairly weak



conditions and are assumed in this thesis. A detailed discussion of this issue can be found

in [39]. Therefore, the sums in (3.4) tend to expected values as N-00oo as follows:

0 = o+ {E(4(t)4)(t)) E(4(t)e(t)) .

Therefore, 0 is consistent if both of the following two conditions hold:

1) E(O(t)OT (t)) is nonsingular, and

2) E(O(t)e(t)) = O.

Of course, E(Q(t)4)'(t)) is defined to be the covariance matrix of 0(t). An excellent,

thorough treatment of least squares estimation can be found in [39].

3.3 Selection of a Candidate Set of Models

The issues involved in the selection of a candidate set of models can now be

presented. This step is typically the most difficult of the general system identification

procedure, particularly when a black box approach is taken. As discussed in Section

2.1.3, a black box approach deals with selecting a candidate set of models without regard

to physical laws. In this approach, the parameters of the models are viewed simply as a

means to fit the data. Since the cardiovascular control mechanisms are too complex to be

modeled with physical insight, the black box approach must be taken here.

3.3.1 MA Difference Equations

As mentioned in Section 1.1, studies have shown that the cardiovascular control

system displays both nonlinear and time-varying behavior. However, LTI analysis is

often employed to study aspects of this system. There are essentially two reasons for this.

The first reason is that LTI analysis is a well developed, powerful tool for the study of

systems. The second reason deals with the character of the cardiovascular signals that are

often examined for the study of the cardiovascular control system. It is hypothesized that

the under stable experimental conditions, the fluctuations in these signals about their

mean values are small enough so that the couplings between these fluctuations can be

related in an LTI fashion. A more detailed discussion of this hypothesis can be found in

[2].



As discussed in Section 3.1, the input-output data used in the closed-loop system

identification procedure is generated under stable experimental conditions. Therefore, the

"true" description of the open-loop couplings in the closed-loop model of short-term

cardiovascular control in Figure 3-3 is hypothesized to be LTI. This closed-loop model

can conveniently be divided into two parts, namely the generation of HR and the creation

of ABP. Consequently, NHR and the two transfer relations associated with HR generation

can be treated separately from NABp and the two transfer relations associated with the

creation of ABP. Thus, two difference equations can describe the closed-loop model.

Since all the transfer relations in the closed-loop model are considered LTI, it is assumed

that the generation of HR and ABP each involve the sum of two convolutions and a noise

perturbation. In accord with the closed-loop model, the difference equations that describe

the "true" dynamics of the system are as follows:

R S

HR(t) = E bkABP(t - k) + b2klLV(t - k)+ NHR(t) (3.5)
k=1 k=S'

T U

ABP(t)= c,,klHR(t - k) + , 2klLV(t - k)+ N,,(t) (3.6)
k=l k=U'

with R, S, T, U = ao as it seems unlikely that the "true" dynamics of such a complicated

system could be represented with a finite number of parameters. The residual errors

NHR(t) and NABP(t) are assumed to be colored processes that are uncorrelated with each

other and with ILV(t). These two equations are referred to as two-input MA equations.

Note that only the past values of the {ABP(t)} sequence influence HR(t), and only the

past values of the (IHR(t)} sequence affect ABP(t). Since the sinoatrial node is a causal

system, IHR(t) is dependent on only present and past values of the (HR(t)} sequence.

Therefore, (3.5) and (3.6) restrict the closed-loop part of the model in Figure 3-3 to be

strictly causal. It should be noted that most physical closed-loop systems are strictly

causal and so, this assumption is quite reasonable. The importance of strictly causal

closed-loop equations in the context of least squares estimation will be discussed in

Section 3.4.2.

Since (3.5) and (3.6) are assumed to describe the "true" dynamics of the closed-

loop model, it would seem appropriate to choose the form of these difference equations



and a set of finite parameterizations for the candidate set of models. However, it turns

out that applying least squares to either of these equations (as they are estimated

separately) results in inconsistent parameter estimates. In fact, any closed-loop system

whose open-loop couplings are described by MA equations and colored residual errors

cannot be estimated consistently with least squares and MA equations. For example,

consider the simpler closed-loop system in Figure 3-6 whose true dynamics are

represented by the following two MA equations:

P

y(t)= 2 hlkx(t- k)+ Ny(t) (3.7)
k=1

x(t) = h2ky(t - k) + N.x(t) (3.8)
k=1

where P, Q = oo and the residual errors N,(t) and Nx(t) are colored processes that are

uncorrelated with each other. Now consider the form of these equations and a set of finite

parameterizations as a possible candidate set of models. In order to check for the

consistency of the least squares estimation of the form of such equations, (3.7) is written

in vector product form as follows:

y(t) = T (t)O + Ny(t)

where

T(t) = [x(t -1) x(t- 2) ... x(t- P)]

0) =[h,, h12 .. hP]

From Section 3.2.4, one condition for consistency in this case is that the vector

E(j(t)N,(t))= 0. The elements of the 4(t) vector all contain contributions from past

values of the (y(t)} sequence (see (3.7)) and thus the past values of the ({N(t)) sequence

(see (3.8)). Since Ny(t) is a colored process (i.e., it is correlated in time), the elements of

E(Q(t)Ny(t)) cannot be zero and so, consistent parameter estimates cannot be obtained

with this form of difference equation as a direct consequence of the closed-loop. By a

similar argument, least squares estimation of the parameters of (3.8) also cannot be

consistent.
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Figure 3-6: Simple closed-loop system in which the dynamics of the couplings between
x(t) and y(t) represented by Hi and H2 are described by MA equations and the residual
errors Ny(t) and Nx(t) are colored.

3.3.2 ARMA Difference Equations

If the residual errors in (3.7) and (3.8) are white, uncorrelated processes then

clearly, consistent estimates from a closed-loop system could possibly result. Now,

consider the two following ARMA equations as a possible form of the candidate set of

models:

S R

y(t) = L glky(t - k)+ 1 g2kx(t- k) + WY(t) (3.9)
k=l k=1

T U

x(t) = jlkx(t-k) + j 2ky(t- k) + Wx(t) (3.10)
k=1 k=1

where S, R, T, U are all of finite value and W,(t) and Wx(t) are respectively the residual

errors. These residual errors are defined to be white, Gaussian processes that are

uncorrelated with each other. At first glance, it seems unlikely that these equations can

properly represent the dynamics of the true system, since these equations are different

from those of the true system. Additionally, (3.9) and (3.10) must be able to account for

the colored residual errors respectively in (3.7) and (3.8). This also seems to be

Nx (t)



impossible as the residual errors of (3.9) and (3.10) are white. However, by examining

(3.9) and (3.10) more carefully, it turns out that these equations can indeed account for

the dynamics of the true system and the colored residual errors. This can best be shown

by introducing a linear operator notation.

The forward operator q and the backward operator q-' are introduced as follows:

qu(t)= u(t + 1)

q-'u(t) = u(t - 1).

where u(t) is some discrete-time sequence. Now, (3.9) can be written as follows:
S Ry(t) = gk(q-ky(t)) + g2 (q-kx(t)) + W(t)

k=-- k=

= [ glkq-k L(t) + [ g2 -kq]x(t) + Wy(t)

= G,(q)y(t) + G2(q)x(t) + WY(t)

where G1(q) and G2(q) are called transfer operators or transfer functions. Solving this

equation for y(t) results in

t)= G2(q)x(t)+ W(t).I1-G,(q) 1-G,(q)

For comparative purposes, the application of this linear operator notation to the true

system in (3.7) results in

y(t) = H,(q)x(t) + NY(t) .

Therefore, (3.9) can represent the dynamics of (3.7) provided that

G2(q)= H,(q) (3.11)
1 - G,(q)

1- WY(t)= N,(t ) . (3.12)1 -G,(q)
The left side of the equality in (3.11) is a finite order ARMA transfer function, while the

right side of the equality is an infinite order MA transfer function. This equality is

possible because in theory, finite order ARMA transfer functions can be equivalent to

infinite order MA transfer functions [30]. Furthermore, (3.12) shows that the colored



residual error of the true system can be accounted for by (3.9) via the AR terms. (3.12)

basically shows that a function of the AR terms is to whiten the colored residual error.

The left side of the equality in (3.12) is generally referred to as the actual error of an

ARMA equation. Equality of (3.11) and (3.12) requires that the proper parameterization

is chosen. Therefore, the ARMA equation in (3.9) can equivalently represent the

dynamics of the true system and the colored residual error. Additionally, its residual

error is white and uncorrelated with the residual error of (3.8). By using some of the

methods that will be presented in Section 3.4.2, it is not difficult to show that the least

squares estimation of (3.9) results in consistent parameter estimates. Of course, all these

results apply to (3.10) as well.

3.3.3 Simulation Experiments

To further demonstrate the concept that a closed-loop system whose open-loop

couplings are described by MA equations with colored noise can be estimated better with

ARMA equations than MA equations, simulation experiments were performed using the

closed-loop system in Figure 3-6. The open-loop coupling H1 was described by the

following MA equation:

99

y(t) = -(.95)k - ' x (t - k) + NY(t) (3.13)
k=1

where N,(t) is colored noise. Figures 3-7a and 3-8a respectively show the actual impulse

response of H1 and the actual power spectrum of NY(t). The other open-loop coupling H2

was also described by an MA equation as follows:
99

x(t) = (-.9)k-' y(t - k) + Nx(t) (3.14)
k=1

where Nx(t) is colored noise as well. Figures 3-7a and 3-8a also respectively show the

actual impulse response of H2 and the actual power spectrum of Nx(t). The input-output

data x(t) and y(t) was generated using (3.13) and (3.14) and Ny(t) and Nx(t).
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Figure 3-7: a) Actual impulse responses of H1 and H2 in the simulated closed-loop
system. b) Estimated impulse responses for H1 and H2 resulting from MA equations. c)
Estimated impulse responses for H1 and H2 resulting from ARMA equations.
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The form of the candidate set of models was first chosen to be MA as in (3.7) and

(3.8). The set of different parameterizations was chosen in conjunction with Akaike's

Final Prediction Error (FPE) information criterion which is as follows:

1+nNFPE(n) = * V
IN

where n is the number of parameters, N is the number of samples of data, and V,, is the

loss function computed from n parameters. As discussed in Section 2.1.3., the FPE

essentially chooses a parameterization by penalizing the loss function with the number of

parameters. Therefore, by minimizing the FPE, a parameterization is chosen that

sufficiently describes the dynamics of the system in question without

overparameterization. N is also included in the FPE because, in theory, the larger N is,

the better the estimate should be. Therefore, N allows for the comparison of models that

are generated from different data lengths. However, the data lengths were constant in this

simulation, so N is not a factor. Of course, in this case, V, was determined via least

squares estimation.

The choice of the "best" model was determined from the generated data by first

choosing the parameterization. This was done as follows: The order of the difference

equation (P or Q) was initially set to one and then incremented by one and each time the

FPE was computed. Each time, the FPE should decrease until overparameterization

occurs, and then the FPE should begin to increase. The parameterization that produced

the minimum FPE was chosen and least squares was applied to this difference equation to

estimate the parameters. Of course, least squares must be applied to the entire set of

parameterizations as V, is required for the computation of the FPE. Figures 3-7b and 3-

8b respectively show the resulting MA estimated impulse response of H1 and the MA

estimated power spectrum of Ny(t). Figures 3-7b and 3-8b also respectively show the

resulting MA estimated impulse response of H2 and the MA estimated power spectrum of

Nx(t).

Next, the form of the difference equations was chosen to be ARMA as in (3.9)

and (3.10). The same incremental procedure used for the MA equations was applied to
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estimate these parameters except this time the number of AR and MA parameters were

stepped up in tandem beginning with one AR parameter and one MA parameter. Figures

3-7c and 3-8c respectively show the resulting ARMA estimated impulse response of H1

and the ARMA estimated power spectrum of N,(t). Figures 3-7c and 3-8c also

respectively show the resulting ARMA estimated impulse response of H2 and the ARMA

estimated power spectrum of Nx(t). As discussed in the previous section, the ARMA

estimated Ny(t) and Nx(t) are actual errors and not residual errors. It is obvious from

Figures 3-7 and 3-8 that estimation with ARMA equations provided a better

representation of the true closed-loop system than estimation with MA equations just as

theory predicted. However, more formally, the normalized mean-squared error (NMSE)

was calculated for the MA estimated residual errors and for the ARMA estimated actual

errors. The NMSE in this case is defined to be

NMSE = Var(Nacual (t) - Nestimaed())
Var(Nactua,(t))

where Var(.) is the variance operator. The NMSE's for the MA estimated N,(t) and Nx(t)

are respectively 0.085 and 0.035. On the other hand, the NMSE's for the ARMA

estimated Ny(t) and Nx(t) are respectively 0.018 and 0.023. These results further support

the use of ARMA equations in estimating closed-loop systems with colored residual

errors.

So the form of the difference equations that describe the dynamics of the closed-

loop model of short-term cardiovascular control in Figure 3-3 is selected to be

Q R S
HR(t)= akHR(t- k)+ d,kABP(t - k)+ d2klLV(t- k)+ WHR(t) (3.15)

k=l k=l k=S'

T U V
ABP(t) = fkABP(t- k)+ gHR(t- k) + g2kLV(t- k)+ W,(t) (3.16)

k=1 k=1 k=V'

where WHR(t) and WABp(t) are the residual errors. These residual errors are defined to be

white, Gaussian processes with variances of2 and a2 that are uncorrelated with each

other. The set of parameterizations for (3.15) and (3.16) now needs to be chosen. This

issue will be discussed in conjunction with the determination of the "best"

parameterization in Section 3.4.1.



3.4 Determination of the "Best" Model in the Set

Now that a candidate set of models has been nearly chosen, the next step in the

general system identification procedure is to determine the "best" model in this set based

on the input-output data. First, the "best" parameterization must be determined which is

normally accomplished by minimizing some information criterion. As discussed in

Sections 2.1.3 and 3.3.3, information criteria typically penalize the loss function with the

number of parameters of the model in order to avoid both underparameterization and

overparameterization. Once a parameterization is chosen, an identification method,

specifically least squares in this thesis, can then be applied to estimate the "best"

parameters of the difference equation. The loss function can only be computed via the

residual error resulting from least squares estimation. Therefore, least squares plays a

major role in the determination of the parameterization as well. Of course, it is essential

that the resulting estimates are consistent i.e., the system is identifiable.

3.4.1 Least Squares Estimation and the APR Algorithm

The parameters of each difference equation in (3.15) and (3.16) are estimated

separately. From Section 3.1.2, (3.15) is to be estimated with 1.5 Hz data, while (3.16) is

to be estimated with 90 Hz data. Since the fundamentals of least squares estimation were

presented in Section 3.2, only the least squares solution is shown here. In particular, the

least squares solution for (3.15) is

0 = (CT()-' •l HR (3.17)

where

T =[a,...ao d,...ad,R d2s,...d2s]

HRT = [HR(t) HR(t + 1)... HR(t + N- 1)]

' = [D(t) +(t + 1)...(t + N- 1)]

and

4T(t)= [HR(t -1)... HR(t-Q) ABP(t-1)... ABP(t- R) ILV(t-S')...ILV(t-S)].



Note that N denotes the number of equations in the least squares problem. The least

squares estimate resulting from (3.16) can be similarly shown.

However, before least squares can be implemented, a set of parameterizations

must be selected. The set of parameterizations is chosen with an ARMA parameter

reduction (APR) algorithm. This algorithm also determines the "best" parameterization

from the chosen set of parameterizations with the aid of the Rissanen's minimum

description length (MDL) criterion which is as follows:

MDL(n) = (l + n j

where n is the number of parameters of the difference equation, N is the number of data

samples, and V, is the loss function computed when the difference equation consists of n

parameters. The loss function is determined by calculating the mean-squared residual

error resulting from least squares estimation. The rationale for the terms n, N, and Vn in

the MDL value is essentially the same as that discussed in Section 3.3.3 for these terms in

the FPE value. A detailed discussion of information criteria is in [28,39].

A complete treatment of the APR algorithm can be found in [34]; however, its

essentials are summarized here. This algorithm is based on determining the

parameterization from a "maximal model." The maximal model is an overparameterized

model that is assumed to include the true parameterization. The idea is that the

parameters estimated from the maximal model are more likely to be true parameters if

they are of large magnitudes. However, it can be shown that each parameter estimate is

corrupted by different levels of noise. So, more precisely, an estimated parameter is more

likely to be a true parameter if its magnitude is large relative to its corresponding noise

level i.e., it has a large signal to noise ratio (SNR).

It should be noted that the AR parameters are treated separately from the MA

parameters. One reason for this deals with changes in gain between the input and output.

In this situation, the parameterization is still the same; however, the SNR of the MA

parameters change, while the SNR of AR parameters remain the same. This will result in

either a bias towards MA parameters or AR parameters depending on the exact change in

gain. Clearly, the parameterization selection procedure should be insensitive to the



relative gain between the input and output. Another point to note is that many biological

systems tend to have delays in their MA parameters but not in their AR parameters. The

concept of such delays is best understood with an example. Consider a difference

equation whose MA parameters are bk where ke[1,50]. All the bk's that are zero in this

range are the delays. These delays have no effect on the loss function but are still

considered to be parameters of the difference equation. Therefore, delays cause the MDL

value to be higher than it really should be. If the delays are not included in the

parameterization, the MDL value will be determined appropriately. However, since the

delays are unknown, this implies that there are much more than just 50 possible

parameterizations and to search through all these parameterizations would be intractable.

In fact, this is the advantage of the APR algorithm which gets around this problem via the

SNR technique. However, the SNR technique is only necessary to determine the MA

parameterization, since the AR parameters do not have the problem of delays.

Based on the aforementioned information, the procedure for the determination of

the "best" model is as follows:

1) A maximal model that is believed to include the true parameterization is selected.

Based on experience, the maximal models are chosen for (3.15) to be Q=1O, R=15, S'=-

10, and S=15 and for (3.16) to be T=10, U=35, V'=0, and V=15.

2) The AR parameters are decreased one at a time beginning with the AR parameter of

largest lag, thus creating "reduced models."

3) The reduced model with the smallest MDL value is chosen as the proper reduced

model and so the AR parameterization is determined.

4) The SNR for each MA parameter of the reduced model is computed.

5) The MA parameters are removed one at a time beginning with the MA parameter with

the lowest SNR, hence creating "minimal models."

6) The minimal model with the smallest MDL value is chosen as the proper minimal

model and so the MA parameterization is determined.

7) Least squares is then applied to estimate the parameters of this minimal model.
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3.4.2 Consistency of the Parameter Estimates

It is of paramount importance that the least squares estimation of the parameters

in the ARMA equations in (3.15) and (3.16) result in consistent estimates. The task that

is undertaken here is to show that this is indeed the case. From Section 3.2.4, the

conditions for consistent least squares estimation are that 1) E(ý(t)r T(t)) is nonsingular

and 2) E(ý(t)e(t))= 0. Consistency will be shown only for the least squares estimates

resulting from (3.15). However, the methods that are presented here can be used to show

the consistency for the least squares estimates resulting from (3.16) as well.

Before the nonsingularity condition can be shown to hold, a few pertinent results

in linear algebra must be presented. A symmetric matrix A is positive semidefinite (A>O)

if

xTAx 2 0

for all vectors x. This matrix A is positive definite (A>0) if

xTAx >O

for all vectors x • 0. The sum of a positive semidefinite matrix A and a positive definite

matrix B results in a positive definite matrix since

xT(A + B)x = xTAx +xTBx > 0.

It is not difficult to see that a positive semidefinite matrix is positive definite if and only

if it is invertible or nonsingular. Nonsingular matrices have a full set of linearly

independent columns. The number of linearly independent columns of a matrix is

referred to as the rank of the matrix. Therefore, a nonsingular matrix has full rank. A

more complete treatment of these concepts can be found in [40].

Now, the nonsingularity condition is shown to hold via a simplification, two

matrix results, and the concept of persistent excitation. For simplicity, (3.15) and (3.16)

can be rewritten as follows:

HR(t) = x(t) + WR(t)

ABP(t)= y(t)+ WA(t)

where



Q R S

x(t) = akHR(t - k) + dkAABP(t - k) + d2klLV(t- k)
k=l k=l k=S'

T U V

y(t) = fkABP(t - k) + E glklHR(t - k) + Y g2 lLV(t - k) .
k-=1 k=1 k=Y'

This simplification is similar to that found in [43]. Now, from this simplification and +(t)

in (3.17),

Q R S"
Q Rx Rxy RxILV 2HRI 0 0

E(Q(t)•T (t))= R Ryx R R [" +R 0 oa2I O (3.18)
S" R R R O 0

where the elements of the left-sided matrix are all covariance matrices and Q, R, and

S" = S - S' +1 represent the dimensions of these matrices. For example, RxBP is a cross-

covariance matrix with R rows and S" columns. Of course, by definition, the left-sided

matrix is also a covariance matrix with Q+R+S" rows and columns. Two properties that

characterize all covariance matrices are that they are symmetric and positive semidefinite

and possibly positive definite. (3.18) can be rewritten as follows:

P S"
P [A' B] A" 01

E((t) (t)) = " BT C [ 0 o (3.19)

where

A' =r Rx R B = [ C = R A" =Ryx RY R0, a2 I

and P = Q+R. A" is positive definite since it is the covariance matrix of the vector

[WHR(t -1)... WR(t - Q) WABP(t -1) ... WABp(t - R)]

and it is nonsingular. Of course, the left-sided matrix in (3.19) is still positive

semidefinite as it has not changed. By additionally assuming that C is positive definite,

then the following two matrix results apply:
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A' - BC-'BT >2 0

and

rank E(4(t)4 (t)) = S" + rank (A" + A' - BC-IBT) .

The derivation of these two matrix results can be found in [39]. Since the sum of a

positive definite matrix and a positive semidefinite matrix always results in a positive

definite matrix and a positive definite matrix always has full rank,

rank (A" + A' - BC-' BT ) = P

and so

rank E(O(t) T (t)) = (S - S' + 1)+ Q + R .

This equation means that the covariance matrix E(O(t)OT(t)) has full rank which implies

nonsingularity.

All that is left is to show that C which is RILv is positive definite and so, the

concept of persistent excitation is now formally introduced. This treatment is essentially

that in [28]. A stationary signal u(t) with power spectrum Su(o) is defined to be

persistently exciting of order n, if for all filters of the form

M,(z) = mz-' + ---+ m,z-",

the relation

IM,(e'"2S,() - 0 implies that M,(e jw) -O. (3.20)

This definition can be interpreted in a more meaningful way. Note that

M. (e " = Mn(Z)Mn(Z~' )jM=e

that is, provided that the inverse z-transform of Mn(z) is real. M,(z)M,(z-') must

always have one zero at the origin of the z-plane and any zero on the unit circle of the z-

plane or equivalently, the 0-axis, must also be accompanied by a duplicate zero.

Therefore, M,(e ~ )12 can potentially be zero for at most n-1 different values of o and so,

u(t) is persistently exciting of order n if S,(c) is different from zero at at least n different

values of o.



Now, consider the vector

uT = [u(t) u(t + 1)... u(t + n - 1)].

Let the covariance matrix of this vector be Ru. If u(t) is persistently exciting of order n,

then Ru is positive definite. The proof follows. By definition, Ru is positive definite if

mTRm = O =>m = O.

It can be shown that

m Rum = E{(M,(q)u(t))2 }

where the linear operator notation introduced in Section 3.3.2 is used. Therefore, from

[38],

mTRUm 7= jM,(e1)I2S,(o)do.
2 _7

Since u(t) is persistently exciting of order n, (3.20) applies. Hence, this integral is zero

only when

M,,(e ) 0

which implies that

m'R,m = 0 only when m= 0.

So, if ILV(t) is persistently exciting of at least order S-S'+I, the covariance matrix of

ILV(t) or RjLV is positive definite. The power spectrum of lLV(t) is broadband as a result

of the random-interval breathing technique. This technique produces many more non-

zero values of the power spectrum of IL V(t) than 26 which is the maximum value of S-

S'+1 (see Section 3.4.1). Therefore, the covariance matrix RILV is positive definite and so

the nonsingularity condition is satisfied.

Now the second condition for consistency is shown to hold. This condition

requires that



E( (t)WHR(t)) = E

HR(t - 1)WR(t)

HR(t - Q)WHR(t)
ABP(t - I)WHR(t)

ABP(t - R)WR(t )

ILV(t - S')WR(t)

ILV(t - S)WHR(t)

=0. (3.21)

Because (3.15) is strictly causal and WHR(t) is a white process, the first Q elements of

(3.21) are clearly zero. As mentioned in section 3.3.1, the sinoatrial node is causal and

so, IHR(t) depends on only the past and present values of the (HR(t)} sequence.

Therefore, from (3.16), the middle R elements of Q(t) contain contributions from the past

values of the (HR(t)} sequence and thus the past values of the (WHR(t)} sequence (closed-

loop is strictly causal). These contributions maybe nonlinear, but they are still

uncorrelated with WHR(t) which is white. Therefore, the middle R elements of (3.21) are

also zero. Finally, the last S-S'+1 elements of this vector are zero as WHR(t) is white and

thus, uncorrelated with the sequence (ILV(t)}. It should be noted that white residual

errors and a strictly causal closed-loop are sufficient features for this condition to hold.

Since it has been shown that these two features do apply here, consistent parameter

estimates will be obtained.

3.4.3 System Identification of ILV-+ABP

The ultimate goal of the closed-loop system identification procedure is not to

estimate the parameters of (3.15) and (3.16) but to estimate the transfer relations and

noise perturbations in the closed-loop model of short-term cardiovascular control

mechanisms. These transfer relations are implicit in the ARMA difference equations of

(3.15) and (3.16). They can be made explicit via the z-transform which is defined as

follows:

H(z) = h(k)z-k



where h(t) is some discrete-time sequence. Consider the z-transform of (3.16) as follows:
U V

EgkZ- k  1 g 2k 
- k

ABP(z)= k=l IHR(z)+ k=V' ILV(z)+ Q WBP(z).
J1- fkz - k 1 fkz - k -k

k=1 k=1 k=1

From this equation, the CIRCULATORY MECHANICS transfer relation is defined to be
U

ABP(z) k=1
IHR(z) Q z k

k=l

while the ILV--.ABP transfer relation is defined to be

V

g2kz
- k

ABP(z) k=V'(3.22)
= "(3.22)

ILV(z) JIf-k

k=1

Clearly, the parameter estimates are essential to the goal of this thesis as they are

necessary to estimate the transfer relations. Of course, the z-transform can be similarly

applied to (3.15).

The estimation of the parameters of (3.16) is accomplished with 90 Hz input-

output data to accommodate the spectral content of the ABP waveform. From (3.22), this

means that ILV->ABP is also estimated with 90 Hz data. However, the data required to

estimate this transfer relation need only be sampled at 1.5 Hz as this will be more than

sufficient for the spectral content of ILV. The 90 Hz ILV data contains only noise above

about 0.5 Hz, and this noise may corrupt the parameter estimates. Therefore, it is

appropriate to estimate this transfer relation at 1.5 Hz. The system identification

procedure to perform this estimation is presented here.

As in any system identification procedure, the first step is to generate the input-

output data. This is done in two steps. In the first step, the IHR data is fed through the

estimated model resulting from (3.16) with ILV set to zero, thus creating the portion of

ABP which is only attributable to IHR. This data is referred to as ABPIHR. ABPIHR is

then subtracted from the 90 Hz ABP data, creating the portion of ABP that is attributable

·I·I11·III~-· ---~-LI·l I_



to ILV and noise. This data is called ABPIHR,. In the next step, ABPIHR, and ILV are

decimated to 1.5 Hz. Of course, the next step of the system identification procedure is to

select a candidate set of models. The form of the difference equation that is chosen is as

follows:

L M

ABP.IHR(t) = _ hkABP,,(t - k) + jkILV(t - k) + WAB(t) (3.23)
k=I k=O

where W'ABP(t) is a white, Gaussian noise process. One may wonder why a MA

difference equation is not chosen as ILV->ABP is an open-loop coupling. The reason is

that an infinite order MA difference equation would be required which is not

computationally feasible. Furthermore, as mentioned previously, a finite order ARMA

equation can be equivalent to an infinite order MA difference equation. The parameters

are determined using the exact procedure in 3.4.1. Experience shows that the maximal

model with L=10 and M=15 is very reasonable. From the methods used in Section 3.4.2,

it is easy to show that the resulting parameter estimates are consistent. It should be noted

that the noise perturbations NR and NAB in the closed-loop model respectively refer to

the actual error estimated from (3.15) and the actual error estimated from (3.23). At last,

the "best" model in the set is determined.

3.5 Validation of the "Best" Model

In the previous three steps of the closed-loop system identification procedure, a

"best" model is determined based on the least squares and MDL criterion from a set of

candidate models and input-output data. The question that must be dealt with now is as

follows: is this "best" model good enough? This is the problem of model validation, and

it is the final step in the general system identification procedure. There are several

different approaches to deal with this question. Two of these approaches are employed

here. The first approach analyzes the residual errors, while the second approach involves

the use of a priori information about the true system. Normally, if the "best" model is

not validated, then steps 1, 2, and/or 3 of the general system identification procedure must

be adjusted and the procedure should be repeated again until the "best" model is



validated. However, the goal of the closed-loop system identification procedure is to

assess diabetic autonomic neuropathy. Clearly, it would be desirable for the assessment

method to be standardized. Therefore, the system identification procedure in this thesis is

not iterative and invalid models are considered to be outliers. Since this method

generally produces models that are validated, this lack of iteration does not present a

major problem.

3.5.1 Residual Error Analysis

The residual errors in (3.15), (3.16), and (3.23) that result from least squares

estimation are defined to be white noise processes. If these residual errors are not white,

then inconsistent estimation will result. Consequently, the "best" model will be in doubt.

However, if the residual errors are white, consistent estimation of the parameters will

result. Furthermore, there will be an increased confidence in the chosen AR

parameterization, because the AR parameters successfully whitened the colored residual

error of the "true" system (see (3.12)). Therefore, it is essential to test the whiteness of

the residual errors. In particular, whiteness tests are performed by estimating the

unbiased autocorrelation function of the residual errors as follows:

N-Ijm-I
R,(m) = -x(n)x(n + m)

N-m n=O

where N is the number of data samples of a residual error sequence x(t). Figures 3-9a, b,

and c respectively show the autocorrelation function for lags up to 25 (m=25) for WHR(t),

WABP(t), and W'ABP(t) estimated from a typical control subject in the tilted posture. The

autocorrelation function of a white noise process is defined to be

R, m) = a 8(m)

where a' is the variance of x(t) and 8(t) is the Dirac delta function. Therefore, these

residual errors appear to be sufficiently white.

Unfortunately, this test does not provide an absolute validation of the model

because whiteness does not guarantee that the parameterization was chosen appropriately.

This may include the AR parameterization as well, since there are many AR



parameterizations that could sufficiently whiten the colored residual error of the "true"

system. However, the power of this test is evinced when the whiteness test fails. In this

case, inconsistent estimation occurs and hence, the model cannot be validated and is thus

rendered an outlier.
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Figure 3-9: The unbiased autocorrelation functions for lags up to 25 of the residual
errors as a) WHR(t), b) WABp(t), and c) W'AB(t) estimated from a typical control subject in
the tilted posture.

3.5.2 A Priori Information

The most powerful way to validate the "best" model would be to verify that the

model represents the exact dynamics of the true system. Of course, this is impossible

because the exact dynamics of the true system are unknown. (If they were known, system

identification, and this thesis for that matter, would be unnecessary.) However, some a

priori information about the cardiovascular control mechanisms is known (see Sections

0-005

-- --



2.2 and 2.4), and this can be used to at least determine whether the estimates are

physiologically reasonable.

Figure 3-10: Closed-loop model estimates obtained from a typical control subject in the
supine posture. The transfer relation estimates are in the form of impulse responses with
95% confidence intervals, while the noise perturbation estimates and ILV are in the form
of power spectra.



Figure 3-10 shows the estimates of the transfer relations and noise perturbations

in the closed-loop model of short-term cardiovascular control mechanisms obtained from

a typical control subject in the supine posture. The transfer relation estimates are shown

in the form of impulse responses with 95% confidence intervals. The calculation of the

impulse responses with the 95% confidence intervals can be found in [34]. The noise

perturbation estimates are shown in the form of power spectra which are computed via

the windowed periodogram method with a Gaussian window.

The ILV->HR impulse response estimate shows that for a transient increase in

ILV at time zero, HR increases and then returns to baseline. Note that the increase in HR

precedes the increase in ILV. This may indicate central nervous involvement as

inspiration is anticipated. These findings are in accord with the current understanding of

RSA. The BAROREFLEX impulse response estimate implies that HR decreases and

then returns to baseline when there is a transient increase in ABP. This appropriately

describes the regulatory effect of the baroreceptor reflex. The ILV-*ABP impulse

response estimate shows that an impulse of ILV causes an immediate drop in ABP

followed by an overshoot and then a return to baseline. This result is physiologically

reasonable. The immediate drop in ABP is caused by the negative intrathoracic pressure

induced by inspiration. The overshoot of ABP results as venous return increases during

inspiration which causes an increase in ventricular filling and ABP. ABP's return to

baseline occurs because the inspiratory/expiratory effects of the impulse of ILV wear off.

The CIRCULATORY MECHANICS impulse response estimate shows that a single

ventricular contraction does indeed produce an ABP waveform. The power spectrum of

NHR shows that the fluctuations in ILV and ABP do not completely account for HR

fluctuations below 0.1 Hz. The power spectrum of NBp shows that the fluctuations in

IHR and ILV do not explain all the variability in ABP fluctuations less than 0.15 Hz. The

fact that these couplings do not completely account for the fluctuations in HR and ABP at

low frequencies is reasonable, because there are many other physiological variables that

are known to impinge on HR and ABP at such frequencies. Note that the power spectrum

of ILV is indeed broadband.



Therefore, all of these estimates are consistent with the established physiological

principles of the cardiovascular control mechanisms. Clearly, this fact provides powerful

support for the validity of the "best" model. Of course, if the estimates are not

physiologically reasonable, the model is rendered invalid and is considered an outlier.

Finally, the closed-loop system identification procedure is complete.



Chapter 4

Closed-Loop System Identification

Applied to Diabetic Autonomic

Neuropathy

This chapter presents the application of the closed-loop system identification

procedure described in the previous chapter to the study of diabetic autonomic

neuropathy. Specifically, details of the materials and methods involved in the study are

described and the results, discussion, and conclusion follow.

4.1 Materials and Methods

This section includes a description of the subjects, experimental protocol, data

analysis, and statistical analysis used in this study.

4.1.1 Subjects

Fifty-nine diabetic subjects (mean±SEM age: 46±2) and 37 control subjects

(mean±+SEM age: 42±2) participated in this study. Written, informed consent was



obtained from all subjects. There was no significant difference in mean age between the

diabetic group and Control group.

The diabetic subjects were divided into three groups based on an equal weighting

of a parasympathetic nervous system measure (supine high frequency power of the heart

rate power spectrum [1]) and a predominantly sympathetic nervous system measure

(systolic blood pressure (SBP) fall in response to passive tilting [16,41]). A

parasympathetic score for each diabetic subject was calculated as the difference between

the parasympathetic test result for that subject and the mean parasympathetic test result

for the Control group normalized by the standard deviation of the parasympathetic test

result for the Control group. A sympathetic score for each diabetic subject was computed

similarly. Hence, negative parasympathetic and sympathetic scores respectively reflect

reduced parasympathetic and sympathetic nervous function. A total autonomic score for

each diabetic subject, referred to as the A-score, was determined by averaging his or her

parasympathetic and sympathetic scores. Diabetic subjects were divided into

approximately three equally sized groups based on their A-scores. Specifically, diabetic

subjects with A-scores greater than 0.25 were placed in Group 1, between -1.0 and 0.25,

in Group 2, and less than -1.0, in Group 3. Therefore, autonomic neuropathy is

considered to progress from Group 1 to Group 2 to Group 3. There was no significant

difference in mean age among these three groups and the Control group. These four

groups will henceforth be referred to as the diagnostic groups.

4.1.2 Experimental Protocol

The experimental protocol was approved by the Institutional Review Board and

carried out at the Autonomic Evaluation Unit both of the New England Deaconess

Hospital, Boston, MA. This experimental protocol included performing the SBP fall in

response to passive tilting test and collecting the data for closed-loop system

identification and heart rate power spectral analysis.

The experimental protocol for the SBP fall in response to passive tilting test is

presented first. SBP was measured non-invasively with a Critikon Dinamap Vital Signs

Monitor 1846SX/P (Johnson and Johnson, Critikon Inc., Tampa, FL) connected to an



IBM PC AT via an RS232,serial interface board. SBP was first measured for each

subject in the supine posture prior to passive tilting to 600 (relative to the supine posture)

by an electrically driven tilt table. Following passive tilting, SBP was measured each

minute for a five minute period. The difference between the lowest SBP measured during

this period and the SBP measured in the supine posture was recorded as the SBP fall to

passive tilting.

The experimental protocol for closed-loop system identification was the same as

that presented in Section 3.1. The ECG data collected from this protocol is used for heart

rate power spectral analysis as well.

4.1.3 Data Analysis

Data analysis included both the calculation of the supine high frequency power of

the heart rate power spectrum and closed-loop system identification. The heart rate

power spectrum was constructed by applying the windowed periodogram method with a

Gaussian window to the heart rate tachogram (HR) introduced in Section 3.1.2. A

detailed account of the generation of this HR power spectrum is given in [11]. The power

in the frequency band between 0.15 and 0.50 Hz was calculated as the supine high

frequency power of the heart rate power spectrum.

Closed-loop system identification has already been discussed in detail in Chapter

3. The impulse response estimates that resulted from closed-loop system identification

were characterized with the following three parameters: peak amplitude, area, and

characteristic time [4]. Let h(t) represent an impulse response as a function of time.

Then, these parameters were calculated as follows:

PeakAmplitude = max(h(t))

Area = TY h(t)

tl h(t)I
CharacteristicTime =

I h(t)l



where T is the appropriate sampling period. Since the BAROREFLEX shows a negative

HR response to a transient increase in ABP, the peak amplitude of its impulse response

estimate was computed as follows:

PeakAmplitude = Imin(h(t)) .

The noise perturbation estimates in the form of power spectra (windowed periodogram

method with Gaussian window) were characterized with three parameters as well. These

parameters were determined by computing the power in the spectra of the noise

perturbation estimates in the following three frequency bands: dc to 0.50 Hz (total

power), dc to 0.15 Hz (low frequency power), and 0.15 to 0.50 Hz (high frequency

power).

4.1.4 Statistical Analysis

Comparison of each parameter of the impulse response and noise perturbation

estimates were made across the diagnostic groups using one-way analysis of variance

(ANOVA) and multiple comparison (Tukey Honest Significant Difference for Unequal

Sample Sizes) tests. The null hypothesis of the ANOVA and multiple comparison tests

was that the means of the groups under comparison were the same. The null hypothesis

was rejected when p < 0.05. Nonparametric, sample-by-sample comparisons of each

impulse response and noise perturbation estimate were also performed across the

diagnostic groups using one-way ANOVA tests. Impulse response and noise perturbation

estimates were considered to be different across the diagnostic groups when the null

hypothesis (the means of the groups under comparison were the same) was rejected for at

least one sample. Since there were many samples associated with each estimate, many

ANOVA tests were performed for the comparison of each estimate across the diagnostic

groups. Therefore, to account for these multiple comparisons, the ANOVA significance

level a was chosen so that the probability of rejecting the null hypothesis incorrectly at

least once during the multiple comparisons a* was equal to 0.05. This was done as

follows:

a* =I-(1-a") > a=-(0.95)v



where n is the number of multiple comparisons. Thus, the null hypothesis was rejected

when p < a. It should be noted that the statistical tests employed here assume that the

data was normally distributed. Log transforming the data is a common statistical

technique that often makes the data more normally distributed. This technique worked

well here and so, all the parameters were logarithmically transformed. The exceptions

were the area parameter and the samples of the impulse response estimates, since they

may take on negative values. All statistical calculations were made using the Statistica

software package (StatSoft, Inc., Tulsa, OK). A more complete treatment of these

statistical techniques can be found in [18].

4.2 Results

The resulting averages of the closed-loop model estimates for the diagnostic

groups are shown in Figure 4-1. These averages are a result of data obtained while the

subjects were in the tilted posture. The autonomically mediated ILV-+HR impulse

response is largest for the Control group and then diminishes as autonomic neuropathy

progresses across the three diabetic groups. These impulse responses show that for a

transient increase in ILV at time zero, HR increases and then returns to baseline. Note

that these impulse responses all show that an increase in HR precedes the increase in ILV.

This suggests at least some neural involvement in each of the four impulse responses

since inspiration is anticipated. The autonomically mediated BAROREFLEX impulse

response changes across the diagnostic groups in a similar fashion. These impulse

responses show a decrease in HR followed by its return to baseline in response to a

transient increase in ABP. This also reflects at least some neural involvement in each of

the four impulse responses. The mechanical coupling ILV->ABP impulse response

seems to be unchanged across the diagnostic groups. Each impulse response shows that

an impulse of ILV causes an immediate drop in ABP followed by an overshoot and then a

return to baseline. The primarily mechanical coupling CIRCULATORY MECHANICS

impulse response seems to be the same across the diagnostic groups as well. These

impulse responses show the ABP waveform resulting from a single ventricular



Figure 4-1: The averages of the closed-loop model estimates for the diagnostic groups in
the tilted posture.
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Figure 4-2: The averages of the closed-loop model estimates for the diagnostic groups in

the supine posture.
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Table 4-1: ANOVA and Multiple Comparison test results for the ILV-+HR parameters.

ILV--HR Mean±SEM ANOVA Significant
Parameter Controls Group 1 Group 2 Group 3 p-value Multiple Comparisons

[In(BPMi Liter-sec)d 2.35+0.14 1.60+0.21 1.33+0.19 0.98+0.09 <0.000005 Cla C2b C3c

sBpiear 4.52+5.61 1.49+3.38 0.85+3.34 0.55+2.34 NS --
supine characteristic time[supi n(sec)]ctstic time 1.18+0.12 1.55±0.19 1.65+0.31 1.46+0.20 NS --

tiltedpeakamplitude 1.95+0.11 1.43+0.16 1.17+0.11 0.83_0.13 <0.000005 CI C2 aC3 13a[ln(BPMILiter-sec))
tilted area[BPM/Liter] 3.28+3.52 -2.94+2.34 -1.76+2.41 -2.27+1.13 NS -

tilted characteristic time[tilted chn(sec) time 1.57+0.16 1.56+0.19 1.47+0.41 1.90+0.26 NS --

C, control; 1, Group 1; 2, Group 2; 3, Group 3; a, p<0.0005; b, p<0.005; c, p<O.05; NS, not significant. Cl a denotes that the
mean of the control group is significantly different from the mean of Group I with a p-value <0.0005. The other Multiple
Comparison results follow accordingly.

Table 4-2: ANOVA and Multiple Comparison test results for the BAROREFLEX parameters.*

BAROREFLEX Mean+SEM ANOVA Significant
Parameter Controls Group I Group 2 Group 3 p-value Multiple Comparisons

supine peak amplitude aba
[suln(BPmmHg-sec)] 0.43+0.05 0.32+0.07 0.16+0.04 0.05+0.02 <0.00005 C2; C3; 13 a

supine area
[BP1unMmmHg] -0.54+0.13 -0.23+0.07 -0.28±0.14 -0.12+0.06 NS --

supine characteristic time 1.35+0.08 1.48+0.16 1.67+0.25 2.12+0.36 <0.05 none

tilted BP MmmHg-se)] 0.32±0.04 0.23+0.04 0.15+0.03 0.07+0.02 <0.0005 C2a C3C 13 a
tilted areaC 3a

[BPM/mmHg] -1.00+0.18 -0.6660.17 -0.58+0.17 -0.17+0.09 <0.05 C3 a

tilted characteristic time
[in(sec)] 1.750.13 1.890.14 1.89+0.29 2.36+0.21 NS --

*See Table 4-1 for abbreviations.

Table 4-3: ANOVA and Multiple Comparison test results for the ILV-.+ABP parameters.*

ILV-ABP Mean+SEM ANOVA Significant
Parameter Controls Group 1 Group 2 Group 3 p-value Multiple Comparisons

[sn(mmHg/Liter-sec)] 2.30+0.12 2.08+0.14 2.11±0.22 2.19+0.16 NS
supine area

[mmHgsiter] 8.64+8.32 11.08+4.02 -0.80+15.14 2.87+8.95 NS --
supine characteristic time[supi n(sec time 1.75+0.10 1.66+0.12 1.69±0.20 1.98±0.18 NS --

tilted peak amplitude 2.21±0.07 2.00±0.12 2.09±0.17 2.02±0.11 NS --
[ln(mmIHg/Liter-sec)]

tilted area[mmHgLiter] 6.47±2.59 4.38+2.47 11.35+5.68 15.10+7.16 NS --tilted characteristic time
tilted character[stic time 1.80±0.09 1.78±0.08 1.57+0.10 1.84+0.14 NS --

*See Table 4-1 for abbreviations.



Table 4-4: ANOVA and Multiple Comparison test results for the CIRCULATORY MECHANICS parameters.*

CIRCULATORY MECHANICS Mean±SEM ANOVA Significant
Parameter Controls Group 1 Group 2 Group 3 p-value Multiple Comparisons

supine peak amplitude 4.05+0.08 NS
[ln(mmHg)] 4.01+0.04 3.96+0.07 4.00±0.09 4.05+0.08 NS
supine area
[mmHg-sec] 17.34+1.19 17.10±1.75 18.74+4.20 13.43+1.44 NS

supine characteristic time a a
[In(sec)] 0.70+0.04 -0.72+0.06 -0.78±0.13 -1.01+0.04 <0.05 C3; 13

tilted peak amplitude 3.74+0.04 3.82+0.07 3.83+0.10 3.65+0.11 NS --[In(mmHg)]
tilted area
[mmHg-sec] 11.60±0.76 12.95±1.27 14.47+2.69 10.40+1.21 NS

tilted characteristic time
[In(sec)] -0.71+0.03 -0.70+0.07 -0.71+0.10 -0.79+0.05 NS

*See Table 4-1 for abbreviations.

Table 4-5: ANOVA and Multiple Comparison test results for the NUg parameters.*

NBR Mean+SEM ANOVA Significant
Parameter Controls Group 1 Group 2 Group 3 p-value Multiple Comparisons

supine total power ca b
[ln(BPM 2)] 2.47+0.18 1.99+0.32 1.33+0.25 0.05+0.38 <0.000005 C3; 12; 13

supine LF power c b
[ln(BPM 2)] 2.37+0.18 1.90+0.31 1.24+0.25 -0.03+0.40 <0.000005 C3; 13

supine HF power a c b
[ln(BPM 2)] -0.12+0.20 -0.83+0.37 -1.75+0.32 -2.89+0.24 <0.0000005 C2; C3; 13

tilted total power 2.60+0.17 2.20+0.26 1.54+0.28 0.26+0.23 =0.0000000 C2 C3 12 13
[ln(BPM 2)I C

tilted LF power c a[ln(BMted )] 2.55+0.17 2.14+0.25 1.46+0.29 0.12+0.26 =0.0000000 C2 C3 12 13

tilted HF power -0.55+0.23 -0.99+0.33 -1.64+0.36 -2.80+0.27 <0.00005 C3; 13b
[In(BPM 2 )]

*See Table 4-1 for abbreviations.

Table 4-6: ANOVA and Multiple Comparison test results for the NABp parameters.*

NAsp Mean+SEM ANOVA Significant
Parameter Controls Group 1 Group 2 Group 3 p-value Multiple Comparisons

supine total power
[ln(mmHg2)] 1.03+0.14 1.19+0.15 0.92+0.28 0.45+0.23 NS

supine LF power
[ln(mmHg2)] 0.91+0.15 1.08±015 0.80+0.30 0.30+0.25 NS

supine HF power
[ln(mmHg 2)] -1.53+0.13 -1.54+0.25 -1.59+0.24 -1.89+0.28 NS

tilted total power0 C3 I
[ln(mmHg 2)] 1.63+0.11 1.64+0.14 1.47.17 0.940.18 <0.05 C3

tilted LF power C3 a it
[ln(mmHg2)] 1.56+0.12 1.59±0.14 1.40+0.18 0.82±0.18 <0.005
[In(mmHg2)]
[ln(* -1.52See.15 -1.58 Table.16 -1.37.25 -1.67for abb .25reviations.

*See Table 4-i for abbreviations.



Table 4-7: ANOVA test results for a sample by sample comparison among
the impulse responses of the diagnostic groups

Significant Differences
Impulse Response (a<0.05)

supine ILV->HR yes
tilted ILV->HR yes

supine BAROREFLEX yes
tilted BAROREFLEX yes

supine ILV->ABP no
tilted ILV->ABP no

supine CIRCULATORY MECHANICS yes
tilted CIRCULATORY MECHANICS no

Yes indicates that the impulse response is significantly differentfor at
least one sample across the diagnostic groups. No indicates that all the
samples of the impulse response are statistically the same across the
diagnostic groups.

Table 4-8: ANOVA test results for a sample by sample comparison among
the noise spectra of the diagnostic groups

Noise Spectra Significant Differences
(In) (a<0.05)

supine NHR yes
tilted NHR yes

supine NABP no
tilted NABP no

Yes indicates that the noise spectra is significantly different for at least one
sample across the diagnostic groups. No indicates that all the samples of
the noise spectra are statistically the same across the diagnostic groups.

contraction. The power spectrum of the noise perturbation NH is about the same for the

Control group and Group 1 but then diminishes across the remaining diabetic groups as

autonomic neuropathy progresses. These power spectra show that fluctuations in ILV

and ABP do not completely account for HR fluctuations less than 0.1 Hz. The power

spectrum of the noise perturbation NABp is roughly the same for the Control group, Group

1, and Group 2 but is diminished for Group 3. These power spectra show that



fluctuations in ILV and IHR do not explain all the ABP variability less than 0.2 Hz.

Finally, note that the power spectrum for ILV appears to be broadband with significant

spectral content within 0.5 Hz for all the diagnostic groups. Figure 4-2 shows that similar

averages result from data collected while the subjects were in the supine posture.

The results of the ANOVA and multiple comparison tests comparing each

parameter of the impulse response and noise perturbation estimates across the diagnostic

groups are shown in Tables 4-1 through 4-6. As mentioned in Section 4.1.3, the impulse

response and noise perturbation estimates were characterized with three parameters each.

The impulse responses and noise perturbations are estimated for data collected while the

subjects were in both the supine and tilted postures, so six parameters are presented in

each table.

Table 4-1 shows the ILV--HR parameter comparison results. Both mean supine

peak amplitude and mean tilted peak amplitude are significantly different across the

diagnostic groups with the mean being largest for the Control group and then decreasing

with the progressing autonomic neuropathy of the diabetic groups. For each of these

parameters, the Control group mean is significantly larger than those of the three diabetic

groups. Additionally, the Group 1 mean of tilted peak amplitude is significantly larger

than that of Group 3. The other four parameters involving area and characteristic time

did not provide any significant differences across the diagnostic groups.

Table 4-2 shows the BAROREFLEX parameter comparison results. Both mean

supine peak amplitude and mean tilted peak amplitude are significantly different across

the diagnostic groups with the mean being largest for the Control group and then

decreasing with the progressing autonomic neuropathy of the diabetic groups. For each

of these parameters, the Control group mean is significantly larger than those of Group 2

and Group 3, and the Group 1 mean is significantly larger than that of Group 3. The

mean of supine characteristic time is also significantly different across the diagnostic

groups with the mean being smallest for the Control group and then increasing as the

autonomic neuropathy of the diabetic groups progresses. However, there are no

significant differences between any two particular groups. Additionally, the mean of



tilted area is significantly different across the diagnostic groups with a trend in the means

similar to that of supine characteristic time. The Control group mean for tilted area is

significantly smaller than that of Group 3. There are no significant differences resulting

from the remaining two parameters of supine area and tilted characteristic time across the

diagnostic groups.

Table 4-3 shows the ILV-+ABP parameter comparison results. There are no

significant differences resulting from any of the six parameters across the diagnostic

groups.

Table 4-4 shows the CIRCULATORY MECHANICS parameter comparison

results. The mean of the supine characteristic time is significantly different across the

diagnostic groups with the mean being largest for the Control group and then decreasing

with the progressing autonomic neuropathy of the diabetic groups. For this parameter,

the Control group mean and the Group 1 mean are significantly smaller than that of

Group 3. The other five parameters provide no significant differences across the

diagnostic groups.

Table 4-5 shows the NHR parameter comparison results. The mean of all six

parameters are significantly different across the diagnostic groups with the mean being

largest for the Control group and then decreasing as the autonomic neuropathy of the

diabetic groups progresses. There are many significant differences between pairs of the

four groups mostly involving differences between the Control group or Group 1 and

Group 2 or Group 3.

Table 4-6 shows the NAB parameter comparison results. The mean of the tilted

total power and tilted low frequency power are significantly different across the

diagnostic groups with the mean being about the same for the Control group and Group 1

and then decreasing with the progressing autonomic neuropathy of the remaining diabetic

groups. For each of these parameters, the Control group mean and Group 1 mean are

significantly larger than that of Group 3.

The results of the ANOVA tests comparing the impulse response and noise

perturbation estimates nonparametrically across the diagnostic groups are respectively



shown in Tables 4-7 and 4-8. The results are shown for estimates obtained from data

collected while the subjects were in both the supine and tilted postures. These results

matched well with the parametric comparison. For every estimate found to be

significantly different across the diagnostic groups by the nonparametric comparison, at

least one parameter associated with that estimate was also found to be significantly

different across the diagnostic groups. The converse of this statement also holds with the

one exception being tilted NABp.

4.3 Discussion

The results of this study support the role of closed-loop system identification in

the assessment of autonomic nerve damage in patients with diabetes mellitus. There were

marked differences in the ILV-+HR and BAROREFLEX impulse responses and minor

differences in the CIRCULATORY MECHANICS impulse response across the

diagnostic groups. These results were expected as the ILV--HR and BAROREFLEX

impulse responses are autonomically mediated, whereas the CIRCULATORY

MECHANICS impulse response is primarily mediated by mechanical mechanisms but is

also sympathetically influenced. Additionally, there were no significant differences in

the ILV-+ABP impulse responses across the diagnostic groups. This was also expected

as the ILV-+ABP impulse response is mechanical mediated and dysfunction of

mechanical mechanisms is not assumed to be associated with diabetic autonomic

neuropathy.

The parameters used to characterize the impulse response and noise perturbation

estimates provided statistically significant differences across the diagnostic groups only

for the impulse responses and noise perturbations that are autonomically influenced.

Specifically, the peak amplitude parameter provided significant differences across the

diagnostic groups for the ILV-+HR and BAROREFLEX impulse responses; the area

parameter provided significant differences across the diagnostic groups for the tilted

BAROREFLEX impulse response; and the characteristic time parameter provided

significant differences across the diagnostic groups for the supine BAROREFLEX



impulse response. These significant differences showed that the mean peak amplitude

and absolute area are largest for the Control group and decrease with the progressing

autonomic neuropathy of the diabetic groups. The significant differences also showed

that the mean characteristic time is smallest for the Control group and increases with the

progressing autonomic neuropathy of the diabetic groups. Decreasing peak amplitude

and absolute area reflect attenuation in the impulse response, while increasing

characteristic time reflects sluggishness in the impulse response. The peak amplitude is

clearly the most reliable discriminant parameter. Additionally, the BAROREFLEX

seems to be more sensitive to the parameters of the impulse response estimates than

ILV-+HR which further emphasizes closed-loop system identification.

The characteristic time parameter provided a significant difference across the

diagnostic groups for the supine CIRCULATORY MECHANICS impulse response with

the characteristic time being largest for the Control group and then decreasing with the

progressing autonomic neuropathy of the diabetic groups. However, this parameter was

practically the same in all the diagnostic groups excluding Group 3 which was much

smaller than the other three groups. The decrease in characteristic time essentially

corresponds to a decrease in peripheral vascular resistance. Therefore, this may indicate

that damage of the a sympathetic pathways which are responsible for vasoconstriction

occurs late in the natural history of diabetic autonomic neuropathy. This result is

supported by findings from the standard autonomic tests [16]. However, these findings

could also have been due to the insensitivity of these tests in detecting early sympathetic

nerve damage.

All the parameters derived from the noise perturbation NHR provided significant

differences across the diagnostic groups with the mean being largest for the Control

group and then decreasing with the progressing autonomic neuropathy of the diabetic

groups. This seems reasonable as HR is almost exclusively modulated by autonomic

mechanisms. On the other hand, the parameters for the noise perturbation NAP provided

significant differences only for the tilted posture. However, this was not supported by the



nonparametric comparison which found no significant differences across the diagnostic

groups for tilted NABp.

The results of the parametric and nonparametric comparisons matched almost

identically with the exception of tilted NABp. Therefore, the nonparametric comparison

which is a "brute force" method to compare impulse response and noise perturbation

estimates supports the choice of parameters. These parameters provide a much more

intuitive approach to comparing these estimates.

By definition, the mean A score of the Control group is zero. According to the

tests used to rank the diabetic subjects, Group 1 diabetics somewhat better autonomic

function than the control subjects. However, the results of closed-loop system

identification illustrate quite the contrary i.e., the control subjects have better autonomic

function than Group 1 diabetics. This indicates the greater sensitivity of the closed-loop

system identification over the currently accepted tests that were used to rank the diabetic

subjects.

4.4 Conclusion

In this chapter and the previous chapter, a new test for the assessment of the

autonomic nerve damage associated with diabetes mellitus was introduced. As with the

introduction of any new test, a comparison with the currently accepted tests is required.

This study shows that marked differences in the two autonomically mediated impulse

response estimates (ILV->HR and BAROREFLEX) and minor differences in the impulse

response estimate that is primarily mechanically mediated but also autonomically

influenced (CIRCULATORY MECHANICS) were found across the diagnostic groups

defined by the current accepted tests. Just as important, significant differences were not

found in the mechanically mediated impulse response estimates (ILV--ABP) across these

diagnostic groups. Although the results were presented as group averages, it is essential

to realize that closed-loop system identification was applied here to individuals and not

groups. Consequently, the application of this method results in a personal description of

the status of the short-term cardiovascular control mechanisms of a particular individual.



Therefore, closed-loop system identification may provide a sensitive, quantitative, and

noninvasive method that requires minimal subject cooperation for the assessment of

diabetic autonomic neuropathy.



Chapter 5

Nonlinear System Identification Applied

to Normal Heart Rate Variability

In this thesis, the couplings between the small beat-to-beat fluctuations in

cardiovascular signals about their mean values that result from stable experimental

conditions are assumed be related linearly. However, previous experimental work has

shown that the full repertoire of these couplings also includes nonlinear dynamics,

specifically those couplings involving HR as the output [29,42]. This chapter presents a

preliminary investigation of the nonlinear dynamics involved in the generation of HR

variability. In particular, the significance of the squared and cross product terms of ABP

and ILV on HR is explored using input-output data from control subjects.

5.1 Complexity of Nonlinear System Identification

Nonlinear analysis is typically avoided in most engineering problems due to its

extreme complexities. Consequently, unlike linear analysis, nonlinear analysis is a field

that is still developing. However, some nonlinear problems can be solved using linear

analysis. System identification involving the estimation of nonlinear models is one

example of this. A nonlinear description of a dynamic system can be viewed in some



cases as a linear mapping of an infinite number of inputs to an output. Consider a system

with inputs ul(t) and u2(t) and output y(t), a nonlinear description of this system might

then be represented as follows:

y(t) = L{u,(t), u2(t), u,2(t), u2(t), u,(t)u2(t), u(t), u4(t), u2 (t)u2(t),...}

where L() is a linear transformation that maps inputs to a output. Note that this equation

is similar to a Taylor series expansion of analytic functions. This concept also can be

extended to an ARMA linear constant coefficient difference equation (LCCDE) as

follows:

A B C D E

y(t)= b,ky(t- k)+ b2 ku•(t- k)+ b3 (•• (t-k)+ (t-k)u,(t- j)+
k=1 k=B' k=C' k=D'j=E'

F G I J K L

Y, _b,,u2(t- k)u2(t- j)+ •, b3ky(t - k)y(t - j)+ , 1 b4,u,(t- k)u2(t- j) + '- '

k=F'j=G' k=1 j=1 k=K'j=L'

Note that this equation is further complicated because the output and lags additionally

play a role in the nonlinear terms. In this equation, there are nonlinear terms, but these

terms can be created as products of the linear terms. Therefore, the equation remains

linear in its parameters and so, LTI analysis applies here. However, LTI analysis does

not make the problem any less complicated, since identifying the parameters of such an

equation is an impossible task. Even system identification involving only the second

order nonlinear terms in this equation is a difficult problem and could be a thesis in its

own right. However, system identification involving a few nonlinear terms is quite

manageable and so, the objective of this chapter is to provide a simple, preliminary

nonlinear analysis.

5.2 Nonlinear System Identification Procedure

Although the first step in the general system identification procedure is to

generate the input-output data, the selection of the candidate set of models is presented

first for convenience. It seems reasonable to select the form of the candidate difference

equation by simply introducing second order nonlinear terms to the ARMA difference

equation in (3.15) as follows:



Q R S

HR(t) = akHR(t - k)+ dlkABP(t - k)+ d2klLV(t - k)+ (5.1)
k=J k=l k=S'

R S R

Sd3kABP 2(t- k)+ d4klLV 2 (t- k)+ d5kABP(t - k)ILV(t - k) + WHR(t)
k=l k=S' k=l

where WHR(t) is again the residual error and is defined to be a white, Gaussian noise

process. The particular nonlinear terms ABP2 (t), IL V (t), and ABP(t)IL V(t) are included in

this equation as opposed to nonlinear terms with non-zero lag, because they seem more

likely to influence HR(t). The squared and cross product terms of HR(t) also seem likely

to influence HR(t); however, the inclusion of such terms in (5.1) resulted in unstable

models.

The HR, ABP, and ILV data necessary for the estimation of the parameters in

(5.1) is generated as discussed in Section 3.1 except that this time the data is decimated to

3 Hz as opposed to 1.5 Hz. The nonlinear terms are viewed simply as separate inputs and

are created from the ABP and ILV data accordingly. The input-output data which now

consists of six signals are then divided into two equal length segments. The rationale for

this will be discussed in the next section. The "best" model was determined with the

method in Section 3.4 using only the first half of the input-output data segment.

Therefore, since the data is sampled at 3 Hz, the same number of data samples are used in

this estimation procedure and the closed-loop system identification procedure. It should

be noted that this estimation procedure may lead to inconsistent estimates even if the

form and order of this difference equation matches the dynamics of the true system. In

particular, the covariance matrix E(j(t)JT(t)) might be singular. The resulting

nonlinear model estimates are validated again with residual error analysis since whiteness

is a requirement of the residual errors. But validation based on a priori information is

difficult in this case as the couplings between the nonlinear terms and HR are poorly

understood. This nonlinear system identification procedure was applied to the input-

output data from each of the 37 control subjects introduced in Section 4.1.1.



5.3 Comparison with Linear System Identification

The significance of the three nonlinear terms in the generation of HR variability

was assessed by comparing the predictive value of the estimated nonlinear model with

that of an estimated linear model for each subject. The linear model was estimated in the

same manner as the nonlinear model except the form of the candidate set of models was

that in (3.15). The predictive value of each estimated model was determined by

calculating the NMSE for the predicted (HR(t)} sequence as follows:

NMSE = Var(HRacuai (t) - HRpredicted())

Var( HRacua, (t))

The predicted (HR(t)} sequence is determined by computing each value of the (HR(t)}

sequence from the estimated model, the actual past values of the {HR(t)} sequence, and

the actual values of the inputs. In determining the predictive value of the estimated

models, the second half of the input-output data segment is used. Therefore, the first half

of the data was used to "learn" about the dynamic system and the second half of the data

was used to "predict" the output based on what had been already learned. The division of

the input-output data into two segments is essential here. The estimated nonlinear model

will generally contain more parameters than that of the estimated linear model. This will

typically result in a lower NMSE for the estimated nonlinear model when the data used

for prediction is the same as that used for learning. However, when the data used for

prediction is different from that used for learning, the number of parameters is no longer a

factor. Table 5.1 shows the NMSE's resulting from the estimated linear and nonlinear

models for each control subject in both the supine and tilted postures. The mean NMSE's

resulting from the estimated linear and nonlinear models are calculated and compared via

paired t tests. Table 5.2 shows the results of these t tests for data collected while the

subjects were in both the supine and tilted postures. These results show that the nonlinear

terms do not significantly influence HR variability in either the supine or tilted posture,

because the mean NMSE's resulting from both estimated models are the same for each

posture.



Table 5-1: NMSE of predicted HR from estimated linear and nonlinear
models for each control subject in both supine and tilted postures.

Supine Posture Tilted Posture
Subjects I Linear NMSE Nonlinear NMSE Linear NMSE Nonlinear NMSE

subject #1 0.045146 0.047326 0.014398 0.014051
subject #2 0.040499 0.008705 0.008326
subject #3 0.0197 0.016916 0.04908 0.057132
subject #4 0.031648 0.029393 0.012862 0.017846
subject #5 0.035504 0.040245 0.01757 0.017177
subject #6 0.018636 0.019295 0.012854 0.014929
subiect #7 0.022278 0.027094 0.018778 0.015585
subject #8 0.033729 0.031555 0.01113 0.01172
subject #9 0.02363 0.024859 0.030869 0.030965
subject #10 0.062514 0.067789 0.017397 0.013394
subject #11 0.043625 0.057698 0.008311 0.008553
subiect #12 0.035898 0.038212 0.014166 0.015884
subject #13 0.038241 0,04046 0.069628 0.070025
subject #14 0.035841 0.036966 0.050967 0.052357
subiect #15 0.032306 0.032741 0.018556 0.017012
subject #16 0.044911 0.051931 0.020399 0.03109
subject #17 0.015362 0.014929 0.012605 0.010518
subiect #18 0.031027 0.026391 0.027997 0.024245
subject #19 0.035034 0.036853 0.007026 0.008322
subject #20 0.036024 0.036527 0.024742 0.02349
subject #21 0.02911 0.025092 0.020022 0.021879
subject #22 0.065946 0.071654 0.024732 0.02404
subject #23 0.04055 0.041697 0,187177 0.187177
subiect #24 0.032093 0.032696 0.076432 0.072555
subject#25 0.028997 0.030163 0.017158 0.019405
subject #26 0.082688 0.082174 0.141445 0.154633
subject #27 0.028649 0.025703 0.015374 0.015877
subject #28 0.021902 0.015263 0.02489 0.022754
subiect #29 0.063156 0.070411 0.037139 0.037802
subject #30 0.028569 0.032832 0.005126 0.004491
subject #31 0.023491 0.032763 .008789 0.007565
subject #32 0.012399 0.017906 0.008457 0.008524
subject #33 0.017256 0.019341 0.014424 0.013267
subject #34 0.047969 0.04181 0.022536 0.020319
subject #35 0.059446 0.026127 0.007058 0.007409
subject #36 0.028391 0.02761 0.010721 0.010184
subject #37 0.059419 0.060959 0.010818 0.01165



Table 5.2: T test results comparing the mean
NMSE of predicted HR from estimated linear
models and the mean NMSE of predicted HR
from estimated nonlinear models.

Mean ± SEM

Posture Linear NMSE Nonlinear NMSE p-value

supine 0.036 ± 0.003 0.037 ± 0.003 NS

tilted 0.029 ± 0.006 0.030 ± 0.006 NS

Although the results of this comparison show that ABP2(t), IL A(t), and

ABP(t)IL V(t) do not influence HR(t), this by no means indicates that nonlinear dynamics

do not play a role in the generation of HR variability. These terms might not have been

significant because the nonlinear system identification procedure may have resulted in

inconsistent estimates. On the other hand, the estimates could be consistent and these

particular nonlinear terms just do not influence HR This nonlinear system identification

procedure was implemented as a preliminary analysis of the nonlinear dynamics involved

in the generation of HR. Although the treatment of this procedure was not nearly as

rigorous as the closed-loop system identification procedure in Chapter 3, this nonlinear

analysis emphasizes the necessity for a more complete study of the nonlinear dynamics

involved in the generation of HR and short-term cardiovascular control in general.

However, the preliminary conclusion from this analysis is that the linear terms probably

dominate in the generation of HR variability under stable experimental conditions.

Therefore, this analysis supports the focus of the closed-loop system identification

procedure on linear terms.
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