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Abstract

There is currently a great interest in studying the electromagnetic response of helix
loaded composites. There have been many works in the literature that model such
materials as artificial chiral media. The objective is to understand the dependence
of the electromagnetic response of the artificial medium on the inclusion and the
host medium parameters. Therefore, a theoretical model is needed to express this
dependence and to be used in the design of composites with desirable absorption and
polarization characteristics.

In this work, a theoretical model is proposed for characterizing the response of
artificial media made up of randomly oriented helices in a host medium, based on a
description of these materials with the constitutive relations of effective chiral media.
The macroscopic electromagnetic parameters are calculated in terms of helix and host
medium parameters.

The approach taken is to first solve the scattering by a single helix numerically
using the method of moments (MoM) under a thin wire approximation in order
to calculate the helix polarizabilities. The effective electromegnetic parameters of
the composite medium are then obtained by applying an extension of the standard
Maxwell-Garnett mixing formula to include chirality. Using the effective electromag-
netic parameteters that are calculated by this approach, reflection and transmission
calculations are performed.

It is found that the variation of the electromagnetic response with frequency is
well predicted by the theoretical model and the expected resonance frequencies are
obtained due the accuracy of the method of moments. However, the comparison with
published measurement results reveals the limitations of the model to low inclusions
and low frequencies.

Due to these limitations an alternate approach is investigated for periodic struc-
tures consisting of infinite two-dimensional arrays of aligned helices. This approach



is based on an exact MoM solution of the integral equation for the induced currents,
using a periodic Green's function. The formulation derived can be used to find the
scattered fields. The reflection and transmission coefficients for a given incidence
could then be inverted to give the effective EM parameters.
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Chapter 1

Introduction

1.1 Optical Activity - Chirality

Optical activity has been known since the 19th century. Pasteur, or isotropic chiral,

materials have long been distinguished by their ability to rotate the plane of polariza-

tion of light passing through them. Arago (1811) and Biot (1812) discovered the first

effects of optical activity in anisotropic gypsum and quartz crystals. These discover-

ies led to the problem of determining the cause of optical activity. In 1848 Pasteur

solved the problem by postulating that the optical activity in a medium is caused by

the chirality of its molecules [14]. Chiral materials display handedness (from where

the term chiral which means handed, comes) in their microstructure which denotes

a lack of space inversion symmetry. That is, they exist in two distinct forms, mirror

images of each other, that cannot be superimposed (stereoisomeres or enantiomeres).

Chirality is a purely geometric notion which refers to the lack of symmetry of

an object. By definition, an object is chiral if it cannot be brought into congruence

with its mirror image by translation or rotation. Most of the work on chiral media

has been done by physical chemists who have developed polarimetric techniques to

investigate molecular and crystall structures. But chirality is a phenomenon which

can be found in everyday life. Helices, M6bius strips, and, of course our hands are

examples of chiral objects found everywhere (Figure 1-1). The rotation of polarization

of linearly polarized light passing through a substance whose molecules possess a



Figure 1-1: Handed objects and their mirror images

certain handedness, such as sugar, is the most familliar of the various chiral effects

that occur in nature. Optical rotation and circular dichroism for example is exhibited

by certain molecules, such as L- and D-type stereoisomers. As the name suggests, such

phenomena are noticeable at optical wavelengths (400 - 700 nm). Due to the right- or

left- handed configuration of their molecules, such media can distinguish between right

and left circularly polarized waves in the visible range. When an electromagnetic wave

travels through a medium consisting of chiral molecules it is forced to adapt to the

handedness of the molecules. In such media, the linearly polarized light decomposes

into two circularly polarized waves.

The rotation of the polarization plane is the manifestation of circular birefringence,

which is the difference in the refractive indices for left and right circularly polarized

electromagnetic waves. Chiral effects which have proved useful in molecular structure

determinations are circular dichroism (the differential absorption of right and left

circularly polarized light if the medium is lossy), optical rotatory dispersion (the

dependence on the frequency of the angle of rotation of the plane of polarization) and

circular intensity difference (the difference in scattered intensity between right and

left circularly polarized light incident on the medium) [16]. Also, the Cotton effect,

is rapid variations of the angle of rotation and the attenuation with frequency.

a66~~ 'N
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The effects of optical activity are observed when the wavelength is small enough

to discriminate the handedness of the chiral particles. Thus, substances which are op-

tically active in light wave frequencies are inactive in microwave and millimeter wave

frequencies. However, the analog at lower frequencies can be artificially constructed.

Drude was the first to suggest constitutive relations for optically active media.

The measure of optical activity in these relations can be called chirality parameter

and contains information also for the circular dichroism.

1.2 Wave Propagation in Chiral Media

Because a chiral medium responds differently to an electromagnetic excitation, de-

pending upon the handedness with which it is endowed, its contitutive relations are

not the usual ones. The constitutive relations D = eE and B = ,uH are not compat-

ible with the phenomena of birefringence and dichroism. Within the framework of

classical electromagnetics, the optical rotary dispersion and circular dichroism prop-

erties of chiral materials can be explained by a magnetoelectric coupling effect [9].

That is, the effective polarization density P, (effective magnetization density P,,) is

induced not only by the electric (magnetic) field but also on the magnetic (electric)

field. Thus, a chiral medium is described by constitutive relations in which the elec-

tric and the magnetic fields are coupled. That is the electric and the magnetic flux

density are induced by both the electric and the magnetic fields. Several forms exist

in the literature for the constitutive relations for isotropic chiral media. A notation

commonly used in the literature (Drude-Born-Fedorov relations [9]) is:

D = eE+ Vx E (1.1)

B = iH + 1P V x H (1.2)

These relations reflect the isotropic but non-centrosymmetric nature of the materials

via the terms V x E and V x H [24]. The scalar material constants 6 and /I are the

dielectric permittivity and the magnetic permeability of the medium, respectively.



The scalar constant P (with units of length) is the chirality parameter and has a

positive real part if the medium is right handed and a negative real part for left

handed medium. Because chiral media are reciprocal bi-isotropic media the coupling

between the electric and the magnetic field is described by the same parameter. Thus

a chiral material is characterized by three complex, frequency dependent properties.

It may be readily observed that because chirality is manifested through the terms

V x E and V x H, it is absent for static or even quasi-static fields.

In optical frequencies, it is expected that P will be a very small quantity around

10-1 0 m. However the origins of a nonzero 8 are not necessarily molecular. Electro-

magnetic waves can recognize the handedness of a chiral objet primarily due to their

transverse nature. Thus, at microwave frequencies the chirality parameter can be as

big as 8 _ 10- 3 m, since it is possible to introduce much higher volume fractions of

the chiral microstructure [26].

An alternate but equivalent notation is [9]:

D = E' + i,/JV- (1.3)

= - i_eo -i / (1.4)

where n is the chirality parameter and is dimensionless.

The relations between notations (1.1), (1.2) and (1.3), (1.4) are:

e' = (1.5)
1 - w2pep2

' = (1.6)

= w#e,3 (1.7)

and:

E = e' 1 2 (1.8)

r2= '( 1 (1.9)



koP = (1.10)

where n = 7 oIT/•-/Eo and ko = w Eo/-o.

Using a decomposition first proposed by Bohren [4], it can be shown that left and

right circularly polarized fields are the eigenstates of polarization that propagate with

a different phase velocity and attenuation. The constitutive relations (1.1), (1.2) in

conjunction with Maxwell's equations for source free space:

VxE = iwB (1.11)

Vx H = -iwD (1.12)

V-B = o(1.13)

V.D = 0 (1.14)

give the equations:

V. [ .]H = [K]2  (1.15)

where the matrix K is given by:

1 [k 2/ iwL]
[K] = k (1.16)1 -k202 -iwE k 20

where k = wV/ic and a e- iwt time dependence is assumed.

The fields in such a medium also satisfy the equations:

Vx [ = [K]_H (1.17)

SE 0
The (1.18)

The characteristic modes of the medium can be found by diagonalizing the above



equation. A linear transformation of the electromagnetic field:

= [A)-]QL - (1.19)

diagonalizes K:

[A] = [A]-' [A] [A] (1.20)

where
kL 0[A]= 0 kRJ (1.21)

aR[A] =[ R (1.22)
a, 1

where

k k = (1.23)

kk = (1.24)

and
.k(1 1- l2'2 t 2

aR = -Z=-i (1.25)

S.kL(1 -/ 2W 2qL) 2 fW 2qL ia h = - = - (1.26)
W/1 77

The waves QL and QR are the eigenvectors or the characteristic polarizations of the

medium and satisfy the equations:

[QL [ 0 [+ _ +  = (1.27)
LQR J 0 kL QR 0

QR k 0 Q o
Vx = kL [ (1.28)

xQR 0 -kR QR

[ LQV [01 (1.29)

In the above relations, QL represents a left hand circularly polarized wave (LCP) and



QR a right hand circularly polarized (RCP) wave propagating with wavenumbers kL

and kR, respectively. Hence the left and right handed CP waves travel with different

phase velocities and this gives rise to the rotation in the plane of polarization when

linearly polarized light passes through the medium. The LCP waves travel faster

than RCP waves inside the left handed medium and vice versa. If, in addition, the

medium is lossy, that is k is complex, the two eigenwaves will experience different

attenuation resulting in an elliptically polarized wave with a rotation of the major

axis of the ellipse (dichroism).

1.3 Artificial Chiral Media

While optical activity occurs in nature in certain materials at optical frequencies,

the analog at lower frequencies is artificially constructed. Such materials could be de-

scribed as artificial chiral media. These media also exhibit, typically in the microwave

region, the phenomena of optical activity mentioned above (circular birefringence, ro-

tatory dispersion, and circular dichroism). The discovery of such a phenomenon is

attributed to Lindmann (early 1900's) [12],[13] who measured the rotation of the

plane of polarization for a collection of wire helices in the wavelength range 12 to 34

cm. It was found that a collection of randomly oriented right-handed helices would

rotate the plane of polarization of a linearly polarized wave one way but that a similar

collection of left-handed helices would rotate the plane of polarization the opposite

way.

Since chirality is related to handedness and handedness is related to optical ac-

tivity and since electromagnetic waves can discriminate between objects of different

handedness owing to their transverse nature, it is not surprising that the interaction

between an electromagnetic wave and a collection of randomly oriented chiral objects

can be such as to rotate the plane of polarization of the wave to the right or to

the left depending on the handedness of the objets. That is, effectively chiral me-

dia can be constructed by embedding chiral microstructures in a host medium. The

microstructure should be large enough that the electromagnetic wave in the matrix



can appreciate its handedness; at the same time the microstructure size should be

small enough that the composite medium, consisting of a chiral phase is effectively

homogeneous but chiral [18],[23].

In recent years interest has grown in understanding the properties, at microwave

frequencies of chiral composites comprising conducting chiral objects such as helices

embedded in a dielectric host medium. Guire et al. (1990) [21] measured the rota-

tory dispersion for artificial chiral composites, which were made by embedding small

helices in a nonchiral host medium. They reported that the rotation angle was pro-

portional to the volume concentration of the helices. Besides the rotatory dispersion,

the reflection characteristics from metal backed chiral composites were also reported

and it was concluded that a distinct difference in both the rotation and the reflection

characteristics can be observed between chiral and nonchiral composites. This work

appears to support the theoretical modeling work of Varadan et al. (1987) [22], which

predicted that chirality in a material not only affects the polarization characteristics

of a propagating wave, but also affects the reflection, transmission, and attenuation

characteristics.

By varying concentrations and the sizes of chiral inclusions, the properties of the

composite medium may be altered to suit desired polarization characteristics. Chiral

composites can also be attractive as highly efficient absorbers. These absorption char-

acteristic are attributed to multiple scattering in conjunction with mode conversion

from right to left hand polarized waves [26].

1.4 Description of Thesis

In Chapter 2 the transmission and reflection for chiral media are studied, based on

the principles of wave propagation presented in this chapter. The effect of chirality in

enhancing the absorption by a low loss dielectric material is examined by calculating

the reflection coefficients for a chiral slab over a perfect conductor. The transmission

coefficients for a chiral slab in air are also derived and the effects of optical activ-

ity (rotation of polarization and dichroism) are related to the effective parameters



through a general measurement technique.

In Chapter 3 the modelling of artificial chiral media is discussed. The standard

Maxwell-Garnett mixing formula and its extension to effective chiral media, are pre-

sented and the assumptions and limitations inherent in this formula are reviewed.

Chapter 4 presents the modelling work. The problem of electromagnetic scattering by

a single helix is solved numerically using a method of moments (Galerkin's method)

for the induced currents under a thin wire approximation. Then, the equivalent

electric and magnetic dipole moments are calculated and the helix polarizabilities

obtained as scalar quantities by averaging over orientation and spin of helix. The

Maxwell-Garnett mixing formula is then applied to give the effective EM parameters.

Reflection and transmission calculations are also performed and our theoretical pre-

dictions are compared to published results. A sensitivity study is also performed and

finally the accuracy of the model used is discussed.

Due to the limitations of the Maxwell-Garnett mixing formula to low frequencies and

low chiral inclusions, another approach will also be investigated in chapter 5. This is

based on a method of moments solution of the exact integral equation for a medium

made up of periodically spaced helices. The periodic properties of the medium allow

a reduction of the scattering problem to that of a single helix with the use of the

periodic Green's function. Our objective in this case is to obtain the effective EM

parameters by inversion of reflection and transmission coefficients from a layer of

finite thickness.





Chapter 2

Reflection and Transmission

Characteristics

2.1 Introduction

The reason that wave propagation and scattering characteristics are so different in

chiral media is attributed to mode conversion from LCP to RCP and vice versa. The

induced surface current and surface charge densities at the boundary of a chiral ma-

terial are quite different of those in a non-chiral material [2]. An incident linearly

polarized wave will give rise to LCP and RCP inside the inclusion made of chiral

material, and these fields propagate with different velocities. Hence if there are sev-

eral interfaces between chiral and nonchiral materials, we expect enhanced multiple

scattering due to mode conversion, and if the host material or inclusion is lossy, this

would lead to increase absorption of the wave as it undergoes multiple scattering.

Thus, chiral composites can be attractive as highly efficient absorbers. For example,

it can be shown theoretically that by endowing low loss dielectric composites with

chiral properties the reflected power can be cut down by a factor of 4 or more for the

case of a plane coating on a perfectly conducting surface [22].

The field transmitted through a chiral composite layer is elliptically polarized for a

normally incident, linearly polarized wave. The major axis of the polarization ellipse

is rotated with respect to the polarization of the incident wave. The ellipticity is



positive when the LCP wave is more absorbed than the RCP wave and the transmitted

field is right elliptically polarized. Otherwise the transmitted field is left elliptically

polarized.

In this chapter the reflection and transmission coefficients for a chiral slab of given

thickness are derived and then used to determine the electromagnetic properties of a

chiral sample based on transmission and reflection measurements.

2.2 Metal Backed Chiral Slab

Consider first the case of general oblique incidence on a chiral slab which occupies

the region 0 < z < d. The region z < 0 is free space while the plane z = d is assumed

to be perfectly conducting. This geometry describes a metallic surface coated with a

chiral layer of thickness d.

The incidence wave is:

- = (AH cos o00 + AE^ - Ar sin Oo) exp [iko (sin Oox + cos Ooz)] (2.1)

W1
H- VxI7

iwjuo

where AE # 0, AH = 0 refer to TE polarization while AE = 0, AH # 0 refer to TE

polarization.

The reflected wave obeys Snell's law of reflection but is composed of two circularly

polarized waves. On the other hand, two distinct wavenumbers exist in the chiral

medium giving rise also to two circularly polarized waves, (left handed and right

handed) which propagate with different phase velocities in the chiral medium. Each,

however, still obeys Snell's law of refraction and is therefore inclined differently to

the chiral-achiral interface [2]. Consequently, the power reflected by such an interface

is quite different from that which can be calculated quite easily by ignoring the

handedness.



The reflected wave is:

= (-RTMAH cos 0o' + RTEAEY + RTMAH sin 9o0) exp [iko (sin 90o - cos 00z)]

(2.2)
S 1

H = Vx E
iwIo

where RTE and RTM are the reflection coefficients for TE and TM polarization,

respectively.

The eigenwaves propagating in the chiral layer are the sum of a forward and a

backward travelling waves:

QL = AL exp [ikL (sin9L +cos9OLzl + BL exp [ik (sin9LX - cs 0~9z'] (2.3)
R R LR R RRJ R L R R RR J

where 9 L denote the angles of inclination for the LCP and RCP waves.
R

The polarization of QL is derived using the equations (1.28):
R

ikL X QL = ±kLQL
R R R R

(2.4)

thus:

QL
R

that represent

AL (cosOL + i- sin9L) exp [ik (sin±xi + cos rZz)]
' •(2.5)BL (cosOL^ I-sin^ • exp [ik (sin9• -cosz)] (2.5)

a superposition of forwards and backwards t R Rcularly polar-

a superposition of forwards and backwards travelling circularly polar-
ized waves.

The fields in the chiral medium are:

Ech =

Hch =

QL + aRQR

aLQL + QR

where aR = iy, aL = i/! and q = /;/.

Next, we apply the boundary conditions at the intefaces and phase matching:

(2.6)

(2.7)



x. ( + V - Fch)
. + ~ -+ -h )

-. (V + - Ech)

y - (I + R - ies)

at z = d:

-Ech

Phase matching: ko sin Oo = kL sin OL
R R

= 0

= 0

= 0

= 0

= 0

= 0-o-o

(2.8)
(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Thus we get a 6 x 6 system of equations which can be solved for the reflection

coefficients RTE, RTM:

TE polarization:

RTE -
[cos(kL cos OLd) + cos(kR COS ORd)] + i-•- cos o rsin(kL Cos Ord) +

[cos(kL cos OLd) + cos(kR cos ORd)] - i • cos o sin(kL COB OLd) +

sin(kI COSOyd)]
cos OlR

sin(kR COs 0Rd)
cos R J

(2.14)

TM polarization:

[cos(kL coS OLd) -. cos(klR co S Rd)] + i - coS s •in(kL CO O ,d) _
7 L COS OL

[cos(kL cos OLd) - cos(kR cos 8Rd)] - i cos 0 sin(kL COS Ld)
sin(kR cos OGd)

cos 1R J
(2.15)

In the case of zero chirality 0 L = 0 and kL = kR = k, thus:
R

RTE

RTM

1 + i- c"e tan(k cos Od)

1 - incos• tan(k cos Od)
1 0 co tan(kcosd)

1 + i .co" tan(k cos Od),q COS aU~LI~VVI

at z = 0:

RTM -

1 - i "c s 0 tan(k cos 8d)
r7 cos 0

(2.16)

(2.17)



In the case of normal incidence the above expressions reduce to:

1 + i-- tan (kL+lcd)
RTE = RTM= 1o 2 (2.18)1 - i- tan kr dkg

As an example we show the results for the case of metal backed chiral slab of thickness

d = 2 mm at frequency 100 GHz (figure 2-1). The power reflection coefficients for TE

and TM incidence are plotted as functions of the angle of incidence. The dielectric

constant is taken e = (5 + iO.1)Eo while the chirality 3 is varied from 0 to the order

of 104. These cases are examined, among others, in [22].

As can be seen in the plots, in the case of real 0 the reflection coefficients are

considerably lower than for an achiral lossy dielectric, while a complex P does not

seem to contribute in the reduction of the reflection. In addition, chirality does not

have any effect in reducing the reflection if the coating is lossless.

2.3 Chiral Slab in Air

Following the previous analysis, in the case of normal incidence, we can calculate the

reflection and transmission coefficients for a chiral slab occupying the region 0 < z < d

in free space. For a normally incident plane wave the reflected wave will be linearly

polarized in the same direction, while the transmitted is elliptically polarized. Thus it

has a copolarized and a crosspolarized component with respect to the incident wave.

With the copolarized components are along the z- direction, we have:

Incident wave:

- = &eikoz (2.19)

.= e ikoz (2.20)

Reflected wave:

E = = Re - ikoz (2.21)
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Figure 2-1: Reflection from metal backed dielectric slab
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-H = -yRe-ikoz (2.22)

Transmitted wave:

Et = 5:TcoeikOz + +Tcreikoz (2.23)

H = (Tcoeikoz Tcrekoz) (2.24)

Eigenmodes in chiral slab:

ikL z -ik L Z
QL = AL (ii) ef + BL (x i) e 1 (2.25)

R R

Fields in chiral slab:

Eh = QL + aRQR (2.26)

ch = aLQL + QR (2.27)

Boundary conditions:

at z = 0:

x.(r7 + - ch) = 0 (2.28)
~- + ' - (2.29)
S(-+ Ei _- rch) = 0 (2.30)

= op+jHr - wc 0 (2.31)

at z = d:

( (ch _ t) = 0 (2.32)

(-ch _ t = 0 (2.33)

SEch Et ) = 0 (2.34)

" (Rch -t = 0 (2.35)



Thus:
r2 - 72

27R =2 c0 cos( kkd) - i(72 + qo) sin( d)  (2.36)

and

T = T cos( k L - kR d) (2.37)

kCL - kR
Tc = -Tsin( 2 d) (2.38)

where To, Tc, are the transmission coefficients for the copolarized and the crosspo-

larized components of the transmitted wave, respectively and

T = (2.39)2r0o cos(k ~kL kd) - i(r'2 + 7r0) sin( kL+kd)

2.4 Reflection and Transmission Measurements

The theory for plane wave transmission and reflection serves as a basis for calculating

the material parameters from measurements of the electromagnetic response of a

chiral slab. The experimental data are usually in the form of complex reflection and

transmission coefficients. For slab measurements at the normal incidence, it appears

possible to find the material parameters by direct inversion of the reflection and

transmission coefficients [5],[21].

As we have seen, the reflected and transmitted waves for a planar chiral sam-

ple are linearly and elliptically polarized, respectively for normally incident linearly

polarized waves. Therefore, one reflection measurement is enough to describe the

reflected field and two transmission measurements at different polarization angles are

needed to fully determine the transmitted polarized wave. Thus, the transmission

measurements can be broken down into two orthogonal components that are copolar-

ized and crosspolarized, respectively, with respect to the incident linearly polarized

plane wave. The real part of the chirality parameter can be determined through the

angle of rotation 0 between the polarization direction of the incident electric field

and the direction of the major axis of the field polarization ellipse. On the other



Figure 2-2: Components of transmitted wave

hand, the imaginary part of chirality is related to the ellipticity of the polarization

ellipse. These angles can be determined if the transmitted field has been measured at

two angles by rotating the receiving antenna, because these complex measurements

determine the ellipse of the wave.

The S parameters are used to denote the reflection and transmission coefficients.

S11 is the reflection coefficient, S21 is the transmission coefficient, while the subscripts

co and cr are used again to denote the copolarized and crosspolarized components,

respectively. The transmission at an arbitrary angle a with respect to incidence is

denoted by S21 . Therefore (Figure 2-2):

S21, - S21c COS a(2.40)s21cr, = sina(2.40)

Theoretically we can relate the S parameters for linearly polarized incident waves to

those for LCP and RCP polarized waves in combination with (2.37), (2.38) using the

relations:

S11 = S11R = SilL (2.41)

S21R = S21,o + iS21, = Te L d (2.42)

S21L = S21- S21c, =Tei 2  (2.43)
S21R ei(kL-kR)d (2.44)
S21L

with kL = k' + ik" . The Stokes parameters can be used to find the angle of
R R R
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Figure 2-3: Polarization ellipse of transmitted wave showing rotation angle and axial
ratio

rotation and the ellipticity of the polarization ellipse (Figure 2-3). Assuming that the

polarization of the incident wave is in the x-direction it can be seen in Figure 2-2

that

S21co = E, (2.45)

S21, = Ey (2.46)

Therefore the Stokes parameters in combination with (2.37), (2.38) give:

So = EE + EE* = IT12 cosh[(k" - k")d] (2.47)

S, = EE - EE* = ITI2 cos[(k' - k )d] (2.48)

S, = -2ReEE = IT12 sin[(k' - kj)d] (2.49)

S3 = 2ImE,E = IT 2 sinh[(k" - kj)d] (2.50)

The rotation angle 0 can be found from (2.48), (2.49) as:

1 (S) k' - k2
0 = - tan- 1  -- d nw (2.51)2 S, 2

The ambiguity for 0 can be removed by another measurement with a different thick-

ness sample which determines n.

The ellipticity b is related to the major axis A and the minor axis B of the ellipse



as:
B

tan B,= A (2.52)

and can be found from (2.47), (2.50) is given by:

= sin-1 S sin- {tanh[(kZ - k")d]} (2.53)
2 \So 2

The ellipticity can be measured through the axial ratio AR which is the ratio between

the major axis and the minor axis of the ellipse and is therefore given by:

AR = (2.54)
tan Ik

For the axial ratio we have: 1 < IARI < oo, with 1 for circular polarization and oo for

linear polarization. In general, AR > 1 corresponds to right elliptical polarization,

while AR < 1 corresponds to left elliptical polarization.

From transmission measurements the real and imaginary parts of the chirality

can be determined independently from the other two material parameters as can be

seen in (2.51) and (2.53). On the other hand, we cannot determine the permittivity

and permeability without knowing the chirality value. Provided that the chirality

has been measured, the other two parameters can be determined from the reflection

measurement combined with the copolarized transmission data. In the inversion

algorithm there are again multiwavelength ambiguities expressed by integer numbers,

and can be removed by repeating the measurement at another frequency or slab

thickness.

The available experimental results for the electromagnetic properties of chiral

composites that are used for comparison with the theoretical predictions are similar

measurement procedures [25],[15].





Chapter 3

Modelling of Artificial Chiral

Media

3.1 Introduction

When an electromagnetic wave propagates through an artificial medium it induces

currents on the scatterers it includes. The scatterers can be viewed as equivalent

electric and/or magnetic dipole moments that modify the net electric and/or mag-

netic dipole moments per unit volume, thus modifying the effective electromagnetic

parameters of the medium [10]. An interesting and useful feature of artificial media

is that by adjusting the size, shape and density of the scatterers it is possible to

construct a medium with different electromagnetic properties.

For composite chiral media, the determination of the polarizability of the chiral

inclusions is the first step in the modelling of heterogeneous complex materials in

the case of weak mixtures. The polarizability components express the dielectric,

magnetic and magnetoelectric responses of the inclusion element, and once these are

known, it is possible to characterize mixtures that are composed of these inclusions

embedded in a host medium using a quasistatic theory to derive mixing formulas

involving the polarizabilities. The macroscopic parameters depend, in addition to

the polarizabilities, on the fractional volumes of the components making the mixture.

Since the analysis has been based on quasistatic assumptions, the mixing rules are



restricted by it. Therefore, the limitation of the formulas used so far is that the size

of the inclusions has to be much smaller than the wavelength. A limit is that the size

parameter kejjd is less than 1, where d is the average diameter of the particle and

kq,f is the wave number within the mixture [9].

3.2 Standard Maxwell-Garnett Mixing Formula

The simplest mixing rule is the Maxwell-Garnett formula which gives the effective

permittivity eqf of a dielectric medium where spheres of permittivity E occupy a

volume fraction f in a host medium of permittivity ;o :

E - eo
Eeff = co + 3 fEo E - (3.1)i + 2Eo - f(E - o)

The Maxwell-Garnett formula can be derived from the following independencies. The

effective permittivity gives the relation between the electric field and the average

electric flux density:

(D) = eyffE = ioE + (P,) (3.2)

The average polarization is the dipole moment density:

(PT) = nope (3.3)

where no is the number density of the electric dipoles. The electric dipoles are deter-
-L

mined by the electric polarizability a and the field exciting the inclusions: p. = aE.

The exciting field EL also called Lorentzian field, is larger than the average field B

because it includes the contribution from the surrounding polarization:

EL = E + (3.4)
3eo



The combination of these conditions yields the dielectric mixing rule. The effective

permittivity in terms of the polarizability, is given by the Lorenz-Lorentz formula.

ff = o + 1 a (3.5)
3eo

3.3 Chiral Maxwell-Garnett Mixing Formula

Using an extension of the standard Maxwell-Garnett mixing formula to the case of an

effective chiral medium [7], the effective electromagnetic parameters that appear in

the macroscopic constitutive relations, can be expressed in terms of the polarizabilities

of the chiral particles embedded in the host medium. This mixing law is based on

the quasistatic analysis of scattering by a chiral sphere and is therefore valid at low

frequencies. So the assumptions made in this approach are:

- The inclusions are spherical chiral particles

- The size of the inclusions is small compared to wavelength

- The spheres are non-interactive.

Consider a mixture made up of an achiral background with permittivity eo and perme-

ability lio which includes no spherical chiral scattteres per unit volume. The composite

medium is described by the constitutive relations of an effective chiral medium:

(D) = Fe,ffi + iejfN1j,, HIj (3.6)

(R) = ILeff- 9 ,r,,ff i •I- (3.7)

Also:

(D) = o + (P,,) + (Pem,,) (3.8)

(B) = oH + (P,,me) + (Pmm) (3.9)



where P,, and Pem are the electric dipole moments per unit volume induced by the

electric and the magnetic field, respectively, while P,i, and Pmi are the magnetic

dipole moments per unit volume induced by the electric and the magnetic field, re-

spectively. These are related to the dipole moments of a single scatterer as:

(Pij) = no7pj (3.10)

where i, j denote any combination of e and m. The dipole moments are proportional

to the exciting (Lorentzian) fields:

,e = a~~gL (3.11)

&m = ac4mHL (3.12)

where ae, and aCm, are the polarizabilities of the scatterer and ý is either e or m. The

exciting fields EL and HL are given by the quasistatic analysis of scattering from a

sphere, in terms of the average fields E and H as:

LE = + (3.13)

-L P
H =H + (3.14)

31to

Using the relations (3.10), (3.11) and (3.12), the total electric and magnetic dipole

moments per unit volume Pe and Pm, respectively, can be written as:

PC = noa,,Ee + L nea, (3.15)
Pm = noai,EL + nooammHL (3.16)

(3.17)

and in combination with (3.13) and (3.14) we get:

1 oae - oem = noaE + noaemH (3.18)
3& ) 3Io



noame ( noamm
- P. + Pm = noammE + noammH (3.19)

Solving the system of 3.18, 3.19 for Pe and Pm, in terms of the fields and the polar-

izabilities, the following expressions for the effective parameters are derived:

(1 - noamm/311o) noae, + naem,,c,, /3o1
ef f = 6o+ A (3.20)

(1 - noaee/3eo) noamm + n,,aem• e,/3eo
ef f = Po+ A t m(3.21)

s noam i ne0me
neff = -A - Vfi A (3.22)

where

A = (1 - noaee,,/3o) (1 - noamm,/31o) - n a,,,ame,/9ioEo

Using the expressions for the polarizabilities as given by the quasistatic analysis of

scattering from a chiral sphere with radius a, permittivity e, permeability pL and

chirality K [8]:

ee 47ra (A + 2Ao)(E - eps - - oo(3.23)B,, =~ , 4 G n (3.23)
i3npo o

am,, = 4ira3  Oo O (3.24)

MM 4ra3  ( - Po)(E + 2epso) - 2 o (3.25)am = 4TG3Po (3.25)
3 

- i 3 1CIL °C°

ame = 4ra3  00I3 0 B (3.26)

with B = (i + 2Po)(E + 2Eo) - 1 2 00EO, equations (3.20), (3.21) and (3.22) become:

(e - Eo)[(P + 2Po) - f(P - po)] - C2 UO2o(1 - f)
Eeff = o 3f Eo C (3.27)

(3f - po)[(E + 2Eo) - f(e - co)] - /oo(1 - (f)
Pef! = Ao 3f o C (3.28)

ne - C (3.29)C

where f is the fractional volume of the chiral inclusion phase of the mixtures and

C = [(p + 2Poo) - f(f - (oo)][(E + 2Eo) - f(E - co)] - K2 /oCo(1 - f) 2.



It is easy to check that the above mixing rules satisfy all the requirements saddled

on a tentative mixing formula:

- for f = 0, the permittivity and the permeability are those of the background

medium while the chirality vanishes

- for f = 1, the effective parameters are those of the inclusion phase

- if the chirality of the inclusion phase vanishes, the effective chirality vanishes

and the formulas reduce to the standard Maxwell-Garnett mixing formula

One impressive aspect about the chiral Maxwell-Garnett mixing formulas is the set

of multiple dualities in the macroscopic expressions: The way the permittivity e of

the inclusions affects the effective permittivity eeff, chirality ,ef f and permeability

pff is the same as the way the permeability u of the inclusions affects the effective

permeability Ipeff, chirality cff and permittivity eeff.

It is important to observe that the effective permittivity and permeability of a

mixture are even functions of the chirality of the inclusion phase. Hence the sign of

handedness should not have effect on these parameters, and they are scalars, invariant

of space inversion. This is because samples of media that are mirror images of one

another should have the same permittivity and the same permeability. Although

in the subatomic level, in the weak interaction process, the asymmetry between left

and right has been predicted and experimentally observed one should expect this not

to happen at the macroscopic level where racemization processes tend to eliminate

handed effects [9].

The effective chirality parameter is an odd function of the chirality of the inclu-

sions. A change in the handedness of the component changes the handedness of the

mixture.

3.4 Conclusion

Both standard and chiral Maxwell-Garnett formulas are limited to low frequencies.

That is, the scatterers must be sufficiently small compared to the wavelength, so



that quasistatics can apply. The Mawell-Garnett mixing law is also valid only for

low inclusions since it ignores the scattering loss which becomes important at higher

concentrations.

This approach under the assumptions made above can be applicable to the case

of chiral particles of any shape, for example miniature helices. Since the scattering

behavior is strongly dependent on the size of the particles, objects with dimensions

comparable to the wavelength require more complicated treatment than small inclu-

sions, and the Maxwell-Garnett formula is no longer accurate.





Chapter 4

Electromagnetic Properties of

Helix Loaded Composites

4.1 Introduction

Helices are perhaps the most common chiral (handed) objects found in nature. A

helix can be either left-handed or right-handed (Figure 4-1). The one turn helix is

the canonical three-dimensional chiral structure [18]. A helical wire on a uniform

cylinder becomes a straight wire when unwound by rolling the cylinder on a flat

surface. Viewed end-on, a helix projects as a circle. Thus, a helix combines the

geometric forms of a straight wire, a cylinder and a circle. The dimensions of a helix

are conveniently represented by either pitch P and circumference C, or the length

of one turn L and the pitch angle a. When the pitch is zero then a = 00 and the

helix becomes a loop. When the diameter is zero then a = 900 and the helix becomes

a linear conductor. It is noted that there is no chirality when a = 00 or a = 900

because, in these two limits, there is no handedness.

The magnetoelectric coupling can be intuitively grasped from the behavior of a

helix as it is exposed to the electromagnetic field. If an electric field excites the helix,

it separates charges, creating an electric dipole moment. This contributes to the

permittivity of the composite medium, but the shape of the helix forces the charge to

move along a circular route, in addition to the linear path. This electric current loop



Figure 4-1: Left-handed and right-handed one turn helix

is equivalent to a magnetic dipole, and if all the helices in a mixture have the same

handedness, the magnetic polarization effect will be enhanced. The corresponding

appearance of both types of both types of polarization results also for magnetic field

excitation.

It is interesting to study what is the electromagnetic effect on a given left-handed

or right-handed structure. A specific helix should scatter differently to an incident

left-handed wave compared to a right-handed wave. The objective is to predict the

effective permittivity, permeability and chirality of a medium, knowing the dimensions

and the concentration of helices embedded in the sample.

To secure isotropy, helices must be randomly oriented so that there is no pre-

ferred direction (Figure 4-2a). If the helices are set in arrays in alligned configuration

the result is a macroscopically bianisotropic material, leading to dyadic (or matrix)

coefficients in the constitutive relations (Figure 4-2b).

In practice, any method of making an artificial chiral medium will affect all the

medium parameters (dielectric, magnetic and chiral), together. Thus to investigate



(a)

(b)

Figure 4-2: Samples of artificial chiral material (a) isotropic (b) anisotropic



the possible effects, one must start from detailed analysis of the chiral objects. We

then include all the effects of the actually adjustable physical parameters, rather

than varying a chirality which cannot be independedly adjusted. Such an analysis is

performed here for a chiral composite medium containing metal wire helices, which

have been used in many published works. The electric and magnetic moments of

the helix are calculated using the method of moments. These are then used to find

the electromagnetic properties of the composite medium using the Maxwell-Garnett

mixing for effective chiral media.

4.2 Scattering from Helix

Starting from the study by Jaggard et al. [6] there has been work on a quasistatic ap-

proach to the modelling of helix scattering. In these investigations the polarizabilities

of the helix are calculated as functions of the static capacitance and inductance of the

straight portion and loop of the helix, and the crosspolarizabilities are connected with

the copolarizabilities. As the polarizability matrix elements are known, the effective

parameters can also be calculated using some mixing formula. The problem with the

early models has been the narrowband character of their validity around the resonant

frequency of the helix.

To attack the electromagnetic problem involving chiral geometries, one needs to

write boundary conditions on handed surfaces. The formulation of these conditions

on a helix surface leads to a problem with greater analytical difficulties than in the

corresponding nonchiral geometries. Therefore no analytical solutions for the helix

scattering problem exist. However, numerical and approximate efforts in the literature

are numerous [3].

4.2.1 Formulation

The currents induced on a helix are calculated, using a method of moments (Galerkin's

method) to solve the electric field integral equation (EFIE) under a thin wire approx-

imation. In order to use a thin wire approximation, the wires under consideration are



assumed to be thin with uniform radius and with diameter less than 0.01A [27].

We consider first the case of perfectly conducting wires. Integral equations for con-

ducting wire structures can generally be written in terms of the following statement

of a boundary condition on the surface of the wire.

.V x (-+E') =0 (4.1)

where n^ is the unit vector normal to the wire surface, -i and E° are the incident and

scattered fields, respectively. A more useful form for this case is:

. ( + = 0 (4.2)

where i is the unit vector tangential to the wire surface.

In thin problems the surface and volume integrals representing the scattered field

are approximated by simpler linear integrals that can circumvent the difficulty of

source singularity in the self elements (usually the diagonal terms) of the matrix

equation. In a thin wire wire structure with wire radius a, both the electric field

and the surface current density Js on the surface S have essentially only one axial

component along the wire axis 1. E' and Js are also approximately uniform in phase

and amplitude around the circumferance C. Thus, the fields on S due to Js can be

approximated by the fields due to an equivalent axial current Ii given by:

7,(l') = i'I(l') P'27raJs(F') - 27aJs(f') (4.3)

The above expression is valid under the following assumptions:

- Only the component of the surface current along the helical tangent contributes to

the scattered field.

- The surface current along the helical tangent is uniformly disrtibuted around

the wire perimeter.

- The electric field in the vicinity of the wire is quasi-static in nature so the current



can be assumed to be concentrated at the center of the wire without altering the

fields outside the cylindrical surface.

The composite medium of interest, is made up of identical randomly oriented helices

embedded in a host medium with background parameters eo and 0o. Each helix has

N turns, radius b, wire radius a, pitch P and axis along z-direction (Figure 4-3). The

total length L of a helix is then:

L = 27r b2+ (4.4)

The position vectors on the wire axis and on the wire surface respectively are [3]:

r = bcos 'i + b sin b'0 + O' (4.5)
27r

= (a + b) cos O + (a + b) sin ^ + P-zq$ (4.6)

and the tangential unit vectors along the wire axis and the wire surface are [3]:

'(') = -bsin + b cos 'l + - (4.7)
t 27r

() = [-(a + b) sin O + (a + b) cos Y + (4.8)

where

t = b2 + (P/2ir)2  (4.9)

S = (a + b)2 + (P/21r)2  (4.10)

with 0 < q< 4 and 4 = 21rN. The scattered electric field is given by the electric

field integral equation:

E= iWo Jj IdS' (f, f(')js(') (4.11)
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Figure 4-3: Thin helical wire



which in the thin wire approximation takes the form:

S= io I~'j ( ')(') (4.12)

where:

(f, Q') = + V) V ( ) (4.13)

is the dyadic Green's function and ko = wV-oo.

ei -k IFF#I eikoR

9(f, f') = - (4.14)
47r - = 4irR

is the scalar Green's function and

R = p2 + p12 - 2pp' cos v + (P/2'r)2 v 2  (4.15)

is the distance from the source to the observation point and v = - 4'. The induced

current is along the wire axis, so:

I = t'(0')I() (4.16)

Idr'I = td,' (4.17)

and equation (4.12) takes the form:

8 = i,7okot fd '(, 7')'(,')I(,') (4.18)

where 7ro = •oVLeo. If the helix is perfectly conducting then the boundary condition

(4.2) on its surface is:

(). ( E + 'P) = 0 (4.19)



which, in combination with equations (4.13) and (4.18) gives:

- i(). - = i7okoti() f do' [i(,) -i'(0') + (i(4) -V)(i'(,')V) g(0, ,')I(')
(4.20)

With the following manipulations we can derive from (4.20), an expression depending

only on the difference v = 0- 0' :

Og Og

(o) -P'(4')

P(1' ) -Vg

1 b(a+b)cosv+ (PSt Ia.s~+ 27r
1

=- D

1
= t

g P Og)
Ov 27r 8z

(bsin v g9p
b Og+ cos V-

a+b Ov
P Og

2n 8zI

(4.21)

(4.22)

(4.23)

(4.24)

But:

e9g
Op

Of dg

Op df
Of dg
00 df

= [2(a + b) - 2b cos v]

S2b(a + b)

where

f = p 2 + p12 - 2pp' cos v -

Combining (4.25) and (4.26) gives:

b sin v 8p

sin v dg
df

+ 2v

a + b- bcosv Og
a+b Ov

Thus:

Og+ P \
Ov 27r z/

1
.Vg = t

(4.25)

(4.26)

(4.27)

(4.28)

P'(0') (4.29)



and because:
dg Og dz Og+= (4.30)dv Oy dv Oz

equations (4.23) and (4.24) become:

l dgi(=) Vg d (4.31)
s dv

1 dg
'(') Vg = t dv (4.32)

t dv

and equation (4.20) can take the following final form:

s(). =() () =4k•7 de'K(O - €')I(b') (4.33)

where:
(koP\ 2 d2 eiRK(v) = k(a + b)b cos v + 2 + d2 R (4.34)

4.2.2 Method of Moments

Using Galerkin's method, the integral equation (4.33) is discretized and converted

into a set of linear equations by expanding the induced current into a set of basis

functions f,(O) and testing the equation at a number of points with f,(0) as testing

function. The general guideline for the discretization procedure is that the length

of each segment should not exceed A/4 and that each segment should be less than

approximately 100 times the shortest segment [27]. The induced current is expanded

as:
N

I(0) = In fn() (4.35)
n=1

where I, are constants to be calculated and the resulting matrix equation is:

N

Vm = , Zmnln (4.36)
n=l



with:

V, = f d [-s (O)v (0)] f m (k) (4.37)

Zmn 7 4rlco dd'K(( - b')fn(')fm() (4.38)
4-ko D. D(

(4.39)

and D, is the interval [on-1,, 4+1] where the function f, is non-zero. In the case of

finite conductivity the boundary condition on the helix surface under the thin wire

approximation is:
I(M)(O) - (F + I') = ZJ, = Z, (4.40)
2xra

where Z, is the surface resistance of the wire. An approximate expression that we

use for Z, in this problem is [27]:

T Jo(Ta)Z, = (4.41)
a Ji(Ta)

where T = iwpo(o - iwEo), o is the conductivity of the wire and Jo and J1 are Bessel

functions of order 0 and 1, respectively. Galerkin's method is also applied in the case

of finite conductivity. In our problem we choose triangular basis and testing functions

which provide zero currents at the ends of the helix.

The dependence of the integrand on the difference q - 0' allows a reduction of

the double integral of (4.38) to a single integral thus accelerating the process. The

following transformation is applied [3]:

V = €- 0'- (Om - On)

U = + '- (Om + n)

so that (4.38) becomes:

i7o 2A 2ya+lv -v u + v
Z, dvf duK(v + m - n)f( + )(U + v ) (4.42)8Zn - 8 -7 a I - 2A-IvlV 2 2

8k02A a-2A-IvI2



where A = 0, - 0n-1.

The integral with respect to u can be found analytically so finally:

i- 0 2A eikoRm, (v)

Z, -- • dv [hm,(v)T(v) + T"(v)] (4.43)

where

Rmn(v) = R(v + €m + O.)

hmn(V) = k b(a + b) cos(v + m + n) + kP 2

T(v) =

In order to get chirality in a helix loaded composite medium, the helices must be

excited by an incident wave. The interaction between the helices and the electromag-

netic excitation is expected to induce a non negligible chirality. The excitation of one

helix can be considered as most efficient if the backscattered field absolute value is

maximum. The pitch to ratio diameter appears as a relevant parameter for the exci-

tation efficiency. The chiral efficiency of the helix is evaluated by the ratio between

the crosspolarized and the copolarized backscatterded field and is also dependent on

the helix parameters.

4.2.3 Helix Polarizabilities

Macroscopic modelling of chiral media requires the analysis of the response of the

chiral inclusions in an electromagnetic field. The response can be described through

the polarizability coefficients. Once these are known, the electromagnetic parameters

of the material can be found.

Having found the induced currents on the helix, the next step is the calculation



of the equivalent dipole moments using the relations:

f jda 7(s) (4.44)

Pm- = o l2- - da [T(s) 7(s)] (4.45)

and in combination with the relations:

P, = ae,,e + aemV' (4.46)
Pm = •me• + a~mm (4.47)

(4.48)

the polarizabilities of a single helix can be obtained easily if we separate the excita-

tions. This can be done by exciting the helix with two identical plane waves propa-

gating in opposite directions so that in every case the fields (electric for the electric

dipole moments and magnetic for the magnetic dipole moments) whose contribution

we want to find, add, giving a uniform static field while the others cancel.

For a helix the expressions (4.44) and (4.45) for the dipole moments are:

, = f d'ti'(q')I(q') (4.49)

Pm d¢'t,(¢') x i'(€')I( ') (4.50)

(4.51)

Using the expressions (4.5), (4.7) and (4.16), (4.17) as well as (4.35) we have:

I(s) = b(q)I(q) = -bsin(O)i + bcos(O) + 2r I f.(q) (4.52)

thus:

P, = Pe.X + p, Y + pe• (4.53)



where:

bi N
Pe. = -- EI dq' sin q'f (q') (4.54)

W n=1

bi N

Pe, = - EIn d#' cos# () (4.55)
W n=1 d 

(4.55)

Pe, = E InL de' f,(') (4.56)
2x-w n=1 is

and

Pm = Pm. + Pm,!, + Pm,. (4.57)

where:

Pm. = -obP In d' (sin c' - o' Cos ') f.(')

Pm, = 4 E In d' (cos 0' + ' sin 0') fn(q')
pob2 N [

Pob = 2 Inf dqtfn(') (4.58)

and can be calculated analytically since the coefficients In have been found.

For a helix, the polarizability is actually a tensor:

[c=ij] -ai. aij,, Cij,,z (4.59)

tijm aeijz aij,,

where again i, j denote any combination of e and m.

Averaging over orientation and spin of helix, the off-diagonal terms vanish so only

aij..,, aijy, aij,, survive, and the average polarizability is:

a2ij = + aij,, + aij,y (4.60)3

The averaging is done by keeping the exciting field fixed along a certain direction

while the orientation of the helix and its spin are changed using the appropriate



tranformation matrix. First we vary the orientation of the helix. The new coordinate

system (X', y', z') with the helix axis along the z'-axis is related to the initial coordinate

system (x, y, z) through the transformation matrix T:

cos 4 cos 0 sin sin 0 cos

[T]= -sine cos cosq sin sin4 (4.61)

0 - sin 8 cos 0

Thus, if - is a vector in the coordinate system (X, y, z) and W' the same vector in the

new coordinate system (X', y', z') then:

'd = [T]d' (4.62)

Next we vary the spin of the helix by rotation around its axis which stays fixed along

the z'-axis. The new coordinate system (X", y", z") is related to the coordinate system

(X', y', z') through the transformation matrix T':

cos7 sin7 01
[T'= -sin7 cos7 01 (4.63)

0 0 1

Thus, if - is a vector in the coordinate system (z, y, z) , ~' the same vector in the

coordinate system (x', y', z') and a" in (x", y", z") then:

S= [T]' = [T][T']-" (4.64)

If for example the excitation field is polarized along the z-direction: E = iEo we

have:
h]0v co sin 0 sino7

E= 0 Eo= -sin 0 cosy Eo (4.65)

1 jcos 0



The average electric dipole moment induced Pee by the excitation electric field Ei is:

,ee = ([T][T'[a,,]E)

thus

, ee= ([T] A, Eo) (4.66)

Az

where

A = cosY (a0e, sin sin 0 - a,,,, cos sin + aee.. cos 0)

+ sin7 (a,,. sin7 sin 0 - a,,, cos 7 sin 0 + a.ee, cos 0) (4.67)

A, = cos 7 (a,, sin 7 sin 8 - a,,,, cos sin 0 + a,,, cos 0)

- sin 7 (a,,. sin y sin 9 - ae,., cos 7 sin + a,,ee. cos 0) (4.68)

Az = ae,,. sin y sin 0 - a,e,,, cos y sin 0 + a,,,, cos 0 (4.69)

Because T is independent of the rotation angle 7, we perform the averaging over spin

first.

Since:

1 f2r f 21 1 1 2woSdy21  cos'7 = o d7 sin 2  = d1 d j s 7 c sin7 = 0

we get:

Pee = ([T]

2 aV,,,, - a,,,,) sin0'

i (aee. + ae,,) sin 0

ee,,,, COS 0

Thus

P,, = ( c• Eo) (4.70)
Cz.

Eo)



where

O 2 (aO,, - aceM,) sin 0 cos

- ,- + ..,,) sin 0 cos 0 sin ,
+ a,,,, sin 0 cos 0 cos (4.71)

C, = (,e, - ae,,,) sin 0 sin

- (a,,,, + ,) sin 6 cos 0 cos
+ a,,,, sin 0 cos 0 sin (4.72)

C = - z ( ,,, + ae,,) sin' 2 + ezz cos' (4.73)

We average now over orientation of helix:

Since:

1 do W dO sin 0 sin 2 o = d• dO sin 0 cos2 34r fo o 4v o o 3

while for all other terms the averaging gives 0, we finally get:

01
Pee = 0 Eo (4.74)

Equation (4.74) shows that the averaged polarizability is scalar. We get similar result

for any other fixed polarization of the excitation. Thus for a general excitation E the

dipole moment is:
ace 0,, 0

Pee = O 0 a,, cO (4.75)

0 0 acee

where

a ce,,,, + ace,, + aee.y (4.76)
aee- 3



Similarly, the other averaged polarizabilities are:

aem. + aCer,, + aemz (477)

ame = ame,,. + a3ey,, + amez (4.78)

amm = amm + 3 (4.79)

Thus, for a given excitation, we have:

i 0,,•, due to excitationEj
As oc(4.80)

, aem,, due to excitationBj

i a0 ii ,  due to excitationEj
, 'mii ,  due to excitationBj

where j stands for x, y, or z

4.3 Calculation of the Effective EM Parameters

Once the polarizabilities are obtained the effective parameters of the composite medium

can be calculated by applying the Lorenz-Lorentz form of the extension of the Maxwell-

Garnett formula to the case of effective chiral media, presented in Section 3.3.

We test our model by comparing the theoretical predictions with the experimental

results of [25] and [15] that use similar helix and medium parameters but different

frequency region and experimental setup. In [25] a free-space experimental setup was

used and the measurements were performed over a wide frequency range above the

first helix resonance. In [15] the frequency range encompasses only the first resonance

and the measurments are mainly performed using a waveguide experimental setup.

In both cases the effective EM parameters obtained numerically are used to cal-

culate the impedance of the composite medium and in reflection and transmission

calculations using the formulas of Sections 2.2, 2.3. Thus, using the obtained EM

parameters we calculate also the difference kL - kR whose real part is related to the

rotation and the imaginary part is related to the dichroism as shown in Section 2.4.



Our results for the EM parameters are also used in (2.18) to calculate the reflec-

tion coefficient for a metal backed chiral slab of given thickness in comparison with

the reflection of a metal backed slab of the host medium. The induced current and

the backscattered fields for a single helix are also shown in every case since the fre-

quency responce of the helix is expected to determine the behavior of the macroscopic

medium EM parameters.

4.3.1 Wide Frequency Range

In this case we use as reference the measurements by Varadan et al. (1994) [25]. The

helix and medium parameters used as input for our numerical modelling approximate

the samples used in the experiment:

- Frequency: 8 - 40 GHz

- Helix radius: 0.5842 mm

- Helix pitch: 0.5292 mm

- Wire radius 0.0787 mm

- Number of turns: 3

- Total length: 11.125 mm

- Wire Conductivity: 108 S/m

- Fractional volume of helices: 0.8% - 3.2%

- Background relative permittivity: 2.6 + i0.5

- Background relative permeability: 1 - i0.1

With these helix and medium parameters the first A/2 helix resonance is expected

at around 8.3 GHz and higher order resonances at multiples of this frequency. The

maximum absolute current and the backscattered fields for excitation 7E = -e iko4 are

shown in Figure 4-4, where we can see a sharp resonance at about 25 GHz.
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Figure 4-4: Helix response (a) maximum current (b) backscattered fields
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Figure 4-5: Free-space experimental setup used in measurements
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A free-space setup consisting of a pair of spot-focusing horn antennas was used in

the measurements (Figure 4-5). The antennas provide normal plane wave illumination

on planar chiral samples of finite thickness. As previously discussed, the transmitted

wave is elliptically polarized with its major axis rotated from the direction of linear

polarization of the incident wave. Measuring the copolarized reflected wave and

determining the ellipse of the transmitted wave with the measurement techniques

described in Section 2.4, sufficient relations are obtained to solve for the three complex

material properties. Thus the effective EM parameters were determined by inversion

of transmission and reflection measurements while ambiguities encountered in the

inversion algorithm were removed with a new procedure using time domain response.

The samples used in these measurements are prepared by embedding a large num-

ber of either left-handed or right-handed miniature metal helices with the parameters

given above, in an epoxy host material. The matrix material, Eccogel, is homoge-

neous, isotropic and achiral with E ~ 2.6 + i0.5 and 1t ý- 1 - i0.1 at 25 GHz. The

samples have metal volume concentration varying from 0.8% (37 springs/cm 3 ) to

3.2% (147 springs/cm 3). Due to the large excluded volume within each helix, the

closest packing fraction for helices is very low, of the order of 6% - 7%, hence the

concentrations used here are high. The sample consists of two layers one layer con-

tains a random dispersion of helices in Eccogel and the other contains only Eccogel

and is needed to ensure the random orientation of the dispersed springs. The EM

properties of a pure Eccogel sample were determined so that the EM parameters of

the chiral composite without the effect of the Eccogel layer could be determined by

using a two layer inversion method. Details on the construction of the samples and

the experimental setup have been desrcribed by Guire et al. (1990) [21].

Our theoretical predictions in comparison with the experimental results are shown

in Figures 4-6 - 4-10. In addition, we have calculated the reflection coefficient for

normal incidence on a chiral slab of thickness 2.14 cm, over a perfect conductor

(Figure 4-11)

As can be seen in Figures 4-6 and 4-7 there is a rapid variation of e and / with

frequency around the resonance frequency at 25 GHz, which in the experimental
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results extends in a wide frequency range while in the numerical results there is a

sharp resonance at 25 GHz but of much smaller magnitude in most cases. The same

effects can be observed in Figure 4-9 for the impedance since this depends on the

effective permittivity and permeability. Thus the theoretically predicted resonace is

again much narrower around 25 GHz and much weaker than the measured.

On the other hand, the behavior of chirality with frequency is relatively well

predicted as can be seen in Figure 4-8 and the theoretical curves are close to the

experimental curves, but with a sharp resonance at 25 GHz which is absent from the

measurements. Similarly, the qualitative behavior of the difference kR - hL which is

related to the effects of optical activity and hence to chirality, is not far off from the

experimental results. In the later, however the resonance does not appear as sharp.

In Figure 4-11 the reflection coefficient for a metal backed chiral slab is compared

to that of the host medium. Although the results are not very different we can see

that the introduction of chirality has an effect in reducing the reflected power.



4.3.2 Narrow Frequency Range

In this case we use as reference the measurements by Hollinger et al. [15] . The helix

and medium parameters used as input for our numerical modelling approximate the

samples used in the experiment:

- Frequency: 5 - 10 GHz

- Helix radius: 0.625 mm

- Helix pitch: 0.667 mm

- Wire radius 0.0762 mm

- Number of turns: 3

- Total length: 11.95 mm

- Wire Conductivity: 10' S/m

- Fractional volume of helices: 0.8% - 1.6%

- Background relative permittivity: 2.95 + i0.07

- Background relative permeability: 1

With these helix and medium parameters the first A/2 helix resonance is expected at

around 7.3 GHz. Higher order resonances occur at multiples of this frequency and

are not included in this frequency range. The maximum absolute current and the

backscattered fields for excitation 7 = -e 4 y are shown in Figure 4-12.

A waveguide setup was mainly used in the measurements, where the chiral samples

were placed in a circular waveguide. The waveguide propagates the TElo mode and

near its center this mode approximates a plane wave incidence on the chiral sample,

while multiple reflections and errors in measurement have been sufficiently reduced.

The polarization ellipse is determined as described in Section 2.4 only now instead

of receiving antenna we have a waveguide. The results obtained with the waveguide
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setup were also compared and found remarkably similar to results obtained using the

free-space setup previously described.

The composite samples here were made of copper helices with the dimensions

given above, embedded in silicon rubber and had thickness 2.14 cm for the waveguide

measurements and 0.625 cm for the free-space measureements. More details on the

sample preparation the experimental stup and the measurements are given in [15].

The measurements are focussed on the effects optical activity (rotatory dispersion

and circular dichroism) and were not inverted to obtain the effective parameters. In

our numerical modelling, however, we calculate the effective EM parameters of the

medium and the results are used to obtain the reflection and transmission character-

istics. The experimental results are shown here rather as reference for the frequency

response of our model around the first resonance. Our predictions for the EM pa-

rameters and the impedance are shown in Figures 4-14 and 4-15 and the results are

used to calculate the reflection coefficients as before (Figure 4-16). The difference

of wave numbers and the axial ratio are shown for both concentrations in figure 4-17

and the experimental results for the rotation and the axial ratio are given in figure

4-18.

With the first A/2 helix resonance included in this frequency range, our results

for the effective EM parameters (Figures 4-14 and 4-15) exhibit a very sharp and

strong resonace at around 7 GHz. The calculated values are much higher than in

other published modelling works such as [1],[28],[17] and . the medium parameters

have a large negative real part just before the resonance frequency. This effect has

an impact at the calculated reflection coefficients for a metal backed slab (figure 4-

16), thus although there is a trend to reduce the reflected power there is an anomaly

around 7 GHz and the medium becomes active. Thus, our model gives non physical

results around the first resonance. This can be attributed to the breakdown of the

Maxwell-Garnett mixing formula near the resonance.

In our results for the difference kcL - kR we can see that the change of sign of

the real part, that occurs at the resonace frequency corresponds to a change of sign

in the experimental results for the rotation angle. The calculated axial ratio which
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depends on the imaginary part of kL - kR, agrees qualitatively with the measurements

although the variation with frequency is more rapid and much narrower. In both cases

the absolute value of the axial ratio is 1 around the resonance.

4.3.3 Sensitivity Study

It is interesting to see how the predicted EM properties of a helix loaded composite

vary with the helix parameters. We focus on the variations with helix conductivity

and pitch-to-radius ratio and the calculations are performed in the case of very low

inclusion and at frequency far below the first A/2 resonance. Therefore, we expect

the assumptions of the Maxwell-Garnett mixing law to be valid.

The following input parameters were chosen as the defaults in the sensitivity study.

- Total length of wire: 1.56 mm

- Wire radius: 3.8gm

- Pitch/Radius ratio: 2

- Number of turns: 1

- Wire Conductivity: 1 - 108 S/m, power of 10

- Frequency 1 - 10 GHz

- Fractional volume of helices: 0.08%

- Background relative permittivity: 2.05

- Background relative permeability: 1

With these helix and medium parameters the first A/2 helix resonance is expected at

around 67 GHz.

A number of calculations were performed varying one of these parameters while

the rest remained constant. The variation with frequency was found to be almost neg-

ligible, as the helices were always much smaller than a wavelength in this frequency
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range, except for the expected resonant behavior in the imaginary part of the electro-

magnetic parameters for wires with intermediate conductivities. This resonance was

found both in the permittivity and the chirality; however, the relative permeability

showed almost no change from the background value of unity. For a fixed wire length,

a pitch/radius ratio between 4 and 5 was found to give the largest values of chirality

(as can be seen also in Figure 4-19), as concluded also in [18],[23] and one turn was

found to be optimal. Longer wire lengths showed correspondingly larger effects, so

that the problem seems to be driven primarily by the electric dipole behavior of the

included helices.

The variation with conductivity at f = 10 GHz is shown in Figures 4-19 and

4-20. In the latter we verify the fact that long fibers and loops do not introduce

chirality in the medium since, in that case, the inclusions are not handed. And while

the inclusion of long fibers affects only the permittivity, the inclusion of loops affects

both the permittivity and the imaginary part of permeability where the largest effect

is observed.

Except the real part of the permeability where there is no effect, in the interme-

diate conductivities (around 104U) the real parts vary rapidly from above the host

medium values and remain stable until the case of peerfect conductor. The imaginary

parts exhibit a "resonance" at intermediate conductivities.

The reflection coefficients for a metal backed chiral slab were again calculated

using the obtained medium parameters. Although values for chirality were obtained

by including helices in the medium, the reflection coefficients showed little effect and

the permitivitty seems to be the principal component driving the problem in the low

frequency and low fractional volume limit.

4.4 Conclusions

As we have seen above, there is a poor match of the predictions of our model, com-

pared to published data. The only point of agreement is the resonance frequency

and the qualitative behavior of the effective electromagnetic parameters with fre-



quency. The expected A/2 resonace frequencies were obtained with small errors, and

the calculated effective parameters were found to be strongly dependent on frequency

near resonance. The resulting effective electromagnetic parameters show a resonant

frequency dependence similar to that of the helix current. The current in the wire

helices shows a resonant maximum which occurs when the wire length is near half a

wavelength, regardless of how tightly wound the helix is.

Chirality as well as permittivity and permeability increase in amplitude and vary

rapidly near the first resonance and the real part changes sign. The effect is greater on

the permittivity than the permeability. Helix resonance also causes the polarization

rotation and the absorption to vary rapidly with frequency.

Although the qualitative behavior of the EM parameters is predicted, the reso-

nances found are much sharper than in the references we used, especially the first A/2

resonance, and the calculated maximum values differ considerably from the measured

data, being much higher around the first resonance and usually lower around higher

order resonances.

The discrepancies with the published data are due to the breakdown of the

Maxwell-Garnett mixing law whose validity is limited to frequencies much lower than

the resonance and to low inclusions, while the cases examined were over a wide range

of frequency and helix concentration. Also the thin wire approximation used in our

approach is valid for wire diameter < 0.01A so our results become less accurate at

higher frequencies.

The effects on reducing the reflection from a metal backed slab are limited to

narrow frequency bands and it is believed that, in order to achieve broader optically

active frequency ranges, different sizes of helices should be included in the sample[l].

The mixing law applied in the modelling of helix loaded composites is limited to

the case of low inclusion and low frequencies, and consequently to low chirality of

the medium, while it appears that in order to obtain considerable chirality effects

higher concentrations and larger inclusions are needed. Extensions beyond these

limitations will require a new method applicable to such configurations. An alternate

approach to this problem, investigated in the next chapter, could be based upon a



numerical solution of the exact integral equation for a composite medium made up

of periodically spaced helices. Once the currents induced on the helices are obtained

using the method of moments, reflection and transmission calculations for a slab of

given thickness could be inverted to give the effective EM parameters.



Chapter 5

Periodic Helix Structures

5.1 Introduction

Most of the methods of analysis for artificial media, including the Maxwell-Garnett

mixing law, are based upon static or quasi-static approximations and often include

only the lower order multipoles. For this reason, as has been previously discussed,

such methods are limited to electrically small scatterers and low concentrations.

Another general approach can be a full wave analysis based upon a MoM solu-

tion of an exact integral equation for the equivalent currents on the scatterers [10].

The MoM accounts for mutual coupling between the scatterers and is applicable to

artificial media comprising scatterers of essentially arbitrary size, shape and mate-

rial composition, and is capable of determining the dispersion characteristics of the

artificial medium. The scatterers are assumed to be identical and arranged in an

infinite periodic lattice. This simplification allows the scattering problem to be re-

duced to that of a single scatterer. Using the periodic method of moments (PMM),

the unknowns of the equation can be limited to those of the center element. Thus,

due to the periodicity of the medium and of the plane incident field, the current on

each element is identical except a phase and amplitude shift, corresponding to the

amplitude and phase of the plane wave at the reference point of each element.

The periodic artificial medium can be modeled as a triple infinite periodic array

of identical scattering elements in some homogeneous isotropic background with per-



mittivity E0 and permeability LO and wavenumber ko = wli.jio. The basic problem

is to determine whether or not the periodic medium appears as an artificial medium,

and if so, by determining whether a plane wave is an eigenfunction of the periodic

medium, and if so, what is the eigenvalue or complex phase constant of that plane

wave [10]. In this case, an eigenfunction is a source-free solution of Maxwell's equa-

tion that satisfies all the boundary conditions. To find the eigenfunctions, a plane

wave of a known frequency w is assumed to be propagating in the periodic medium

in a known direction but with unknown polarization and phase constant ke.

The periodic array of scatterers is replaced by the host medium and by equivalent

currents, which due to the priodicity of the medium and of the plane wave field, are

identical on each element, except for an amplitude and phase shift corresponding to

the amplitude and phase of the plane wave at the reference point of each element.

The next step is to formulate an integral equation for the equivalent eigenfunction

current J. The current is expanded in a set of basis functions. Applying the PMM

the unknown expansion coefficients are the solutions of a matrix equation of the form:

[Z(ke)]7 = 0 (5.1)

where [Z(k,)] is the impedance matrix and I is the vector of the unknown expansion

coeffients of the current. As can be seen by (5.1) the elements of the impedance matrix

depend on the unknown phase constant kI. Equation (5.1) will have a non-trivial

solution if the determinant of the impedance matrix is zero:

IZ(ke)l = 0 (5.2)

Equation (5.2) must be solved for the eigenvalues ke which yield non-trivial solutions

of (5.1). If a solution of the characteristic equation (5.2) exists, then the periodic

medium can be viewed as an artificial medium. The induced currents that correspond

to the eigenvalue k, yield the eigenfunction fields and the the characteristic impedance

r7, of the medium can be found as the ratio of the electric and magnetic eigenfunction

fields tangential to the assumed direction of propagation with effective EM parameters



that can be found through the eigenfunction fields and the characteristic impedance.

In a simplified approach to the analysis of a periodic artificial medium, we assume

propagation with the background wavenumber in a known direction and polarization.

The currents that are induced on the scatterers could then yield the scattered fields

due to given excitation. Hence, reflection and transmission calculations for given

thickness and given incident field could give by inversion the effective parameters

of the medium. The formulation for this approach is presented for the case of a

superposition of a finite number of two-dimensional periodic arrays made up of aligned

helices.

5.2 General Formulation

Consider a planar periodic structure in the x - y plane at z = zo. The periodicity is

along the x and y directions, thus we can divide the plane into similar unit cells with

the center cell at the origin. The x and y distances between adjucent cells are the

periodicities d, and dy, respectively.

Any of the unit cells is specified by the indices (m, n) that determine the x and y

coordinates of the reference point of the cell. The relevant position vector is then:

-mn = md,, + nd,~ (5.3)

and any source point in the periodic structure is described by the position vector:

n = + mn (5.4)

where V' is the source point on the center element.

Using the equivalence principle we replace the periodic structure by an equivalent

volume or surface current J. which due to the periodicity of the medium and its fields

satisfies the condition:

J,(f + smn) = J,(f)e' (5.5)



where the propagation vector is:

k = kt + k,zý (5.6)

We can therefore define a scalar planar-periodic Green's function 9,(, i') that includes

the phase shift between the adjucent elements :

gp = g(fI' + Em)eik`T*m (5.7)
m,n

where g(T) = eikr/47rr is the scalar Green's function and:

+00 +00

m,n m=-oo n=-oo

Using the identity:
47r2=e- 0t)R = A M,,,,,) (5.8)

m,n m,n

and the spectral representation:

i +0+ 1
g(f e, ).(• •-F)+ikFlz-z'dkdki, (5.9)(27r)2 L- 2kz

with ft = x, + y , equation (5.7) gives the spectral representation of the two-

dimensional periodic Green's function:

= i2Ak ei-t•,,(•')+ikm,, Iz-z'J (5.10)

where for simplicity it is assumed that the reference source is at the origin, where A

is the area of the unit cell and:

k2 - k 1 2, k > 1ktefttI

kZm, = (5.11)

l= ( + k2), k + o) (.2)

kt,, = (m + mo)kl + (n + no)k2 (5.12)



where:

=, = (5.14)

k
mO = - sin o cos 0o (5.15)

no = -sinOosinq o (5.16)

k,1 2 are the reciprocal lattice phase vectors, d,,d, are the periodicities in the x and

y directions, respectively, mo , no are the interelement phase shift constants, Oo, qo

define the direction of the main beam and k is the free space wavenumber. The spatial

representation of the periodic Green's function is [19]:

1 ikRmn
gp,(, ) = r ei2(mmo +nno) (5.17)

m,n Rmn

where:

R, = If - M'-'| (5.18)

Note that in the case of normal incidence, that is 00 = 0 the interelement phase

constants m0 and no are zero.

5.3 Two-Dimensional Arrays of Helices

In our analysis the helix axis is along the z-direction and the helices are aligned and

periodically spaced on the x - z plane with periodicities d, and d, along the z and z

directions, respectively. Therefore the expressions (5.3) and (5.4) are:

,mn = md,4 + ndy (5.19)

•', = ' + mn (5.20)



where V' is the source point on the center helix as defined in the analysis of Section

4.2.

Considering the case of normal incidence along the y direction - = Eioeik , the

equations (5.10) and (5.17) for the periodic Green's function become:

gE(i,') = 1 ikyl Y-Y'jI+ilem.. -f') (5.21)
m,n i2Aklcn

where: 2  it

k.C~ .= (5.22)

and

kt(,, =2m +n 2 (5.23)

In our approach we use the spatial representation of the periodic Green's function in

order to avoid the singularity ^ 6(y - y') that appears in the spectral representation

of the dyadic periodic Green's function. We also consider the case of normal incidence

along the y direction, therefore the interelement phase shift constants are zero:

k2 4 k mn kRmn

where now:

m, = n (- -'- (mdA + ndz3)j (5.25)

Because:

eikR - (ikRmn, - 1)= 3(1 - ikRmn) - (kRmn) 2 ,,AV V =R n + RL R lmRmn (5.26)
Rmn RL, R

The final form of (5.24) is :

1 [(kRmP n) - (1 - ikR-mn)=
- r,(2' = 4Lk2  I

3(1 - ikR,) - (kR ,,)] eikRn (5.27)
+ RRmn I R(5.27)



Through the use of the periodic Green's function, the scattering problem is reduced

to that of the center helix. The analysis is similar to that of Chapter 4. The scattered

field is:

'() = iwi dO'(v, F')I(')tf '(q') (5.28)

or, using (5.27):

-, d'[(kRmn)2 - (1- ikRmn)=

41rk $ J RL

3(1 - ikRmn) - (kRmn)2 2 . eikRm,.
+ R Rn I('I)t'(') (5.29)

We apply now the boundary condition for the electric field on the wire surface

assuming perfectly conducting helices. The position and tangential vectors on the

axis and the surface of the center helix are defined as in Chapter 3.

_-s(q)- - iI(0' ) [(kRmn•) 2 - (1 - ikRm) t•( '( )

+ 3(1 -ikRP7J ) - (kRm)2 ] e ikR,..
+ 3 Rm r (s() -Rm)(t. I'(0')R n) R 5.30)

where 7• = Eoeiky = Eoeikpsin4 and:

sti((), i'(€') = b(a + b) cos(O - 0') + ~ (5.31)

-S().Rmn = b(a + b) sin( - ') + 2ir -Q ') - nd, + m(a + inj

(5.32)
tiA( ').m = {b(a + b) sin(a -s') + - [(- ) - nd] + mbdsin'

(5.33)
The integral equation is again discretized and Galerkin's method is applied on the

center helix, using triangular basis and testing functions fN(q). The matrix equation

for the current on the helix is:

VM = E ZMNIN (5.34)
N



where:

VM = -- I dqs(q) .- E' " fm()do (5.35)

ZMN/ f(kR ) - (1 f kRm) (() (Z [f) f )•. ) sti(,), i'( ')4rkmn D DN Rm(n

+ 3(1 - ikRmn) - (kRm)' 2  leikR]
+ ( i(o) -R•)(t'(') - n),.) (5.36)

In this case, as it can be seen in (5.32) and (5.33) the integrand does not depend only

on the difference v = 4 - •' so the integral cannot be simplified to a single one. When

the induced currents are obtained the scatterd field can be calculated from (5.29).

The expression for the far field can be obtained by making the approximations:

fEmn12 - 2(Y; - Ymn) -f + I2 = Rmný 1 - 2 Rmn ' + (5.37)

where now Rmn = If -Emn,,, so finally:

V• - EmnI2 - 2(r - mrn) *' + ~ ,ij Rmn_ - Rm n ' (5.38)

for the exponentials, and:

S- - 2(f - •,m) -' + '1 •  (5.39)

for all others.

If we drop the terms of order -, I > 1 then the far field approximation of (5.29)

gives:

7= - dikRlem' (5.40)
- ~ c E-m~n



We calculate the scatterd field for ± = ±- and z = 0 so:

Wm -md,, f p{ - nd,,
Rmn R m(5.41)Rmn -p2 + (md,)2 + (nd) 2

," -mdb cos q' ± pbsin 0' - 'nd, (542)

p' + (md,) 2 + (ndz)2

We define the radiation vector as:

Nn = f d4'I(4')ti'(q')e-ikAm ' ' (5.43)

with components:

Nmn, = - f dq'I(4')b sin O'e - ikRA nf'r' (5.44)

Nmn, = d• d'I( ')b cos 'e-ikAnF' (5.45)

Nmnz = j dO'I(') eitkAmf' (5.46)

and
= -mdNm. pNmn, - nd,N,, (5.47)Rm N+ (mdN)2  (5.47)

Due to symmetry along x and z directions, we assume that the contributions to the

scattered field from the y components of the currents cancel, thus only the z and z

components of the scattered electric field remain. The components of the scattered

field that we calculate are:

k md eik R  (5.48)
= Nmn, + (mn - n) (5.48)
47r mn RnL Rmn

ik [__ 1 e ikR
Ez = 1k Nmn, - _ (Amn -•m) (5.49)

47 m,n RJn Rmn

An extension of this analysis is next applied to the case of a superposition of periodic

layers of helices.



5.4 Three-Dimensional Arrays of Helices

A three dimensional periodic structure will be considered along the y-direction as a

superposition of a finite number of periodic layers. The analysis of the electromag-

netic scattering is an extension to that of a single layer. Our objective is to find

the transmitted and reflected fields when this three-dimensional periodic structure is

illuminated by an incident plane wave.

Consider L such layers at distance d apart. The axis of the helices of the 1-th

layer are in the plane y = Id with I = 0...L - 1. In this case the scattered field is a

superposition of the contributions to the scattering due to the currents on each layer.

§ L-1 eikRmn,
i (k=k7 + VV) E e Ikmfte()() (5.50)

4rm,n 1=0

where I corresponds to the helix of thr Ith layer and:

Rmn, = If - fnnl1 (5.51)

where now the source point is on the 1-th layer.

,,n,= ' + imn + Idý (5.52)

and

fmn = mdl + nd.. (5.53)

The boundary condition for the electric field on the wire surface of the helix on each

layer j is applied resulting in a matrix integral equation:

-_ sf(). Eoe•k[(a+b) sin-+jd = i7 f= +.()) (k' + V) - •  '(')
1=0 m,n Rmn(I-j)

(5.54)
The current Ih for each layer I is expanded as:

I(0) = ZIN fN,('') (5.55)
N,
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Galerkin's method is applied and the resulting matrix equation for the unknown

vectors of the expasion coefficients IN, is:.

Vo

VjL

.VL-1.

'Zoo ... Zo0 ... ZLL

Zio ... ZjI ... ZjL

ZLo ... ZLl . Z.. ZLL

'I
-70

I .

.IL.

(5.56)

where Vj is the vector of excitations for the j-th layer:

VM, (5.57)

with:

VM = (5.58)

and Zjj is the impedance matrix that describes the coupling between the helix of the

j-th layer where the testing is done and the 1 - th layer where the source is.
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Vj

do [-,i() - Eoe"k[(a+')sin+jdj] fM(€)



Z11I, •... ZlNi, ZINmaxjl

Zmy, ... Zys,, ... Zunma=>,

. ZNma.x
i

, ... ZNman, 
... ZNm..xma.

..

(5.59)

. . l ... ....... . --.. .... . J. -

with

i77L ikR+
ZMNi - kZ 4 ZD dofm()] d'fN,(4')st() (k21 +VV) )t'(/ ')

I=o m,n M R (, 3j) (5.60)
while Rmn( _j is the vector from the testing point on the center helix of the j-th

layer to the source point on the (m, n)-helix of the 1- layer:

Rm•,-j) = [(a + b) cos 0 - (bcos 4 + md.)]2 + [(a + b) sin q - jd - (bsin 4' + d)]2 +

[P/2ir(4 - 0') - nd,]2 1/2  (5.61)

Solving for the currents on the helices of each layer the scattered fields can be

calculated as in the previous section for the given excitation.

In this configuration the helices are aligned so that the periodic structure behaves

as anisotropic medium [9]. However, we can study its behaviour for specific polariza-

tion of the incident wave and calculate the copolarized and crosspolarized scattered

fields. Hence we can derive conclusions about the chirality that this structure exhibits.

5.5 Summary

In this chapter the first step has been made for an alternate approach to studying the

electromagnetic responce of helix loaded composites. The simplest case of periodic

helix structures has been considered and our analysis was focussed on finding the cur-

rents induced on the helices, which is the first step for calculating the reflection and

I

I

ZjI



transmission coefficients. Then, we can calculate the copolarized and the crosspolar-

ized components of the transmitted wave, thus determining its polarization ellipse.

These calculations can be related to the chirality of this superposition of periodic

layers, based on the discussion of Section 2.4. The chirality could be found in terms

of the distance d between them. It would be desirable to have results for chirality

independent of the number of layers so that the superposition of a finite number of

them would simulate a chiral slab.

The formulation for this approach has been derived with the use of the spatial

representation of the two dimensional periodic Green's function. The extension of

the method of moments to the case of periodic arrays and superposition of arrays has

been used as an accurate solution of the scattering problem and a numerical code

has been implemented and tested for the case of a single layer. The induced currents

that are obtained for sparse stuctures agree with those for a single helix while in

the case of dense arrays different results are expected due to the coupling between

adjacent helices. This case is still under investigation as well as the three-dimensional

structure.

Therefore, there are issues to be addressed in a further work on this approach.

Because the evaluation of infinite double sums is involved in the calculations, large

amounts of CPU time are required to examine a single case. For a further investiga-

tion, an acceleration technique may be needed for the evaluation of the infinite double

sum in the periodic Green's function.
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