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ABSTRACT

The formation of amyloidogenic derivatives of the amyloid precursor
protein (APP) has been linked to the disruption of neuronal calcium
homeostasis in Alzheimer's disease. Muscarinic receptor activation
stimulates secretory processing of APP via protein kinase C (PKC) and
tyrosine phosphorylation, generating non-amyloidogenic APPs peptides
(Nitsch et al., 1992; Slack et al., 1995). Using human embryonic kidney cells
(293) transfected with m3 muscarinic receptors, I investigated whether
elevations in cytosolic calcium similarly influence APP processing. Calcium
influx induced with ionomycin mimicked the effects of muscarinic receptor
activation with carbachol on tyrosine phosphorylation and on APPs secretion.
These effects of calcium influx were found to be partially independent of PKC.
Abolishing calcium influx by chelating with EGTA inhibited carbachol-
stimulated tyrosine phosphorylation and APPs secretion. These results
indicate that muscarinic receptors regulate APP processing by activating at
least two signaling cascades, one dependent on tyrosine phosphorylation
secondary to calcium influx and the other on PKC.

Thesis Supervisors: Barbara E. Slack Ph.D., Department of Pathology, Boston
University School of Medicine, and Richard J. Wurtman M.D., Department of
Brain and Cognitive Science, MIT.
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Chapter 1: Introduction

Alzheimer's disease is a neurodegenerative disorder characterized by

memory loss and dementia. The pathological markers of the disease include

loss of cortical cholinergic innervation, neurofibrillary tangles, and extensive

deposition of amyloid plaques. The core component of amyloid plaques is

the peptide AP, a derivative of a transmembrane glycoprotein termed the

amyloid precursor protein (APP). A fraction of the cellular APP pool is

cleaved in manner which precludes the formation of A3 and results in

secretion of its N-terminal fragment (APPs) into the extracellular medium.

It has been demonstrated that the secretory, non-amyloidogenic degradation

of APPs may be enhanced by activation of cell-surface receptors linked to

phosphoinositide hydrolysis, and subsequent production of second

messengers. However, the cellular signaling mechanisms by which

neurotransmitter activation of receptors results in non-pathologic APP

processing are not yet fully understood.

Recent studies have implicated protein kinase C (PKC) activation as

well as elevations in cellular calcium and tyrosine phosphorylation in the

regulation of APP processing by muscarinic receptors coupled to

phosphoinositide breakdown. Buxbaum and colleagues (1994) showed that

secretory processing of APP is mediated by IP3-induced calcium release from

internal stores following receptor-initiated phosphoinositide (PI) hydrolysis.

They hypothesized that two cellular signaling cascades, one involving PKC

and the other calcium, contribute to APPs cleavage. The findings of Slack et

al. (1995) indicate that stimulation of APPs secretion by muscarinic receptor

activation is mediated by tyrosine phosphorylation in a manner partially

independent of PKC. However, the interactions between these signal

transduction events have not been elucidated. Furthermore, a study by

Querfurth et al. (1994) positively correlated calcium influx with increased AP



production, but did not exhaustively address its effects on APPs secretion.

Thus, the possibility that calcium influx elicited by muscarinic receptor

activation culminates in APPs release remains to be investigated.

The goal of this study is to demonstrate that calcium influx secondary

to muscarinic receptor activation stimulates APPs secretion by a mechanism

dependent on tyrosine phosphorylation. I begin by showing that calcium

influx induced with ionophores affects APPs secretion similarly to muscarinic

receptor agonists. Next, I address the question of what signaling events, PKC

activation, tyrosine phosphorylation, or both, mediate the effects of calcium

on APPs release. I conclude by discussing the evidence for multiple cellular

signaling cascades recruited by muscarinic receptors to stimulate secretory

processing of APP.



Chapter 2: Background

2.1. Overview of Signaling Pathways Involved in APP Processing

One of the hallmarks of Alzheimer's disease pathology is the presence

of senile plaques in the brains of patients with the disease. These plaques are

composed of aggregated peptides (AP) derived from a larger parent protein

termed the amyloid precursor protein (APP). APP is a transmembrane

protein with a large extracellular domain that is expressed in a variety of cell

types (1). Under normal conditions APP is cleaved at an extracellular site

within the AD domain by an uncharacterized enzyme called a-secretase (2).

This secretory processing event leads to the release of a large soluble fragment

of APP (APPs) into the interstitial medium and precludes the formation of

AP (2). Alternatively, APP may be cleaved in intracellular compartments,

giving rise to the intact AP fragment which can aggregate into amyloid

plaques under certain, undefined conditions (3). Since APPs and AD appear

to be formed by two mutually exclusive mechanisms (4, 5), stimulating

secretory processing of APP may prevent formation of AP and its

accumulation into amyloid plaques. The therapeutic implications of this

possibility are clear. Although other evidence indicates that the release of

APPs and AD may proceed independently of each other (6), the ability of APPs

to protect neurons against excitotoxic and ischemic insults provides an

additional rationale for examining the mechanisms regulating its secretion

(7).
Release of APPs can be initiated by binding of acetylcholine analogs to

muscarinic cell-surface receptors linked to phosphatidylinositol (PI)

hydrolysis (8). Stimulation of ml and m3 muscarinic receptor subtypes leads



to G-protein (guanine nucleotide binding protein)-mediated activation of PI-

specific phospholipase C (9). Phospholipase C catalyzes the breakdown of PI to

diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). The formation of

DAG at the cytosolic surface of the plasma membrane, in conjunction with

calcium release from internal stores by IP3, results in activation of protein

kinase C (PKC) (10). Direct activation of PKC by phorbol esters, which mimic

the effects of DAG, has been shown to cause release of APPs (11) and inhibit

production of A3 (5, 6, 12), suggesting that this enzyme mediates the effects of

muscarinic receptor stimulation on APP processing. However, inhibition of

PKC with specific antagonists fails to suppress completely the APPs release

induced with ligands of muscarinic receptors (13). This evidence indicates

that PKC is not the sole mediator of muscarinic effects on APP processing, and

that other signaling molecules may also be involved.

Another signaling event which could effect APPs release is protein

tyrosine phosphorylation, known to be increased upon activation of

muscarinic receptors coupled to G-proteins and PI hydrolysis (13, 14).

Increases in tyrosine phosphorylation in cells may result from a rise in

activity of tyrosine kinases or a decline in the activity of tyrosine

phosphatases (13, 14). Elevations in tyrosine phosphorylation induced by

treatment of cells with tyrosine phosphatase inhibitors has been shown to

evoke APPs release (13). Moreover, tyrosine kinase inhibitors antagonized

the stimulation of APPs release by muscarinic receptor agonists. These

findings suggest the existence of multiple regulatory mechanisms that

mediate the effects of muscarinic receptor activation on tyrosine

phosphorylation and downstream APP processing.



2.2. The Potential Role of Calcium in Regulating APPs Secretion

Calcium is a natural candidate for a messenger in the signaling cascade

regulating APP metabolism. It plays a vital role in numerous cellular

processes, and its homeostasis is essential for cell survival (7). APPs is

involved in stabilizing neuronal calcium concentrations and hence in

protecting neurons against excitotoxic or ischemic insults; it is capable of

causing a marked and reversible reduction in free cytosolic calcium (7). On

the other hand, aggregation of A3 leads to disruption of neuronal calcium

homeostasis, by interfering with membrane proteins regulating calcium, or by

forming pores in the plasma membrane resulting in a toxic influx of calcium

(7, 15, 16). These differential roles of APPs and AP raise the possibility of a

feedback mechanism whereby calcium concentration is "sensed" via a

calcium-dependent step in the APP regulatory pathway and is able to

influence APP processing in favor of APPs production.

There are several points in the signal transduction pathway between

PI-coupled muscarinic receptor activation and APP processing at which

calcium could come into play. The PI degradation product IP3 causes a

transient rise in cytosolic calcium levels, by releasing calcium from

intracellular stores such as the endoplasmic reticulum (ER). The release of

calcium may affect APP release via PKC, since the majority of PKC subtypes

are dependent on calcium as well as on DAG (10, 17). Furthermore, high

concentrations of calcium may activate PKC at smaller concentrations of DAG

(17). Evidence has also been presented for PKC-independent stimulation of

APPs secretion by IP 3-generated intracellular calcium. In Chinese hamster

ovary and neuroglioma cell lines, elevations in intracellular calcium elicited

by inhibition of the ER calcium reuptake mechanism with thapsigargin and

cyclopiazonic acid led to an increase in APPs release and a concomitant

reduction in AP; the effects persisted after PKC activity had been

downregulated (18).



The cell can also regulate calcium levels via channels in the plasma

membrane that permit influx of calcium from the extracellular space.

Elevations in cellular calcium due to influx may likewise affect APP

processing. Calcium influx associated with cell-surface receptor stimulation

has been studied extensively. In numerous cell types, stimulation of PI-

coupled cell-surface receptors produces a rapid transient spike in intracellular

calcium levels, followed by a lesser but sustained elevation in calcium

concentration. The transient rise in calcium is attributed to release from

internal stores, as described above, while the sustained increase is the result of

calcium entry from the extracellular space (19).

One or more mechanisms may underlie receptor-activated calcium

influx. In some cell lines, calcium entry is triggered by depletion of

intracellular calcium stores (20). In parotid acinar cells, depletion of

intracellular calcium pools with thapsigargin (a compound that inhibits

active calcium transport into IP 3-sensitive pools) mimicked the effect of a

muscarinic receptor agonist on both the transient and sustained elevations in

cytosolic calcium levels (20). In many cell types, calcium enters through

receptor-operated calcium channels (ROCCs) upon binding of a ligand to the

receptor (19, 21). ROCCs may also be indirectly activated by IP3, or by

intracellular calcium, or may be regulated independently of these second

messengers (21). Receptor-operated, IP 3-independent calcium influx has been

shown to play a pivotal role in mediating certain functions of ml and m3

muscarinic receptors (22). Calcium entry elicited either directly or indirectly

by muscarinic receptor activation, represents another mechanism by which

cholinergic agonists may increase secretory processing of APP.

If calcium mediates APPs release following muscarinic receptor

stimulation, it is plausible that its effects are due to tyrosine phosphorylation.

There is ample evidence illustrating the dependence of tyrosine

phosphorylation on calcium. Studies performed in Chinese hamster ovary

cells transfected with m5 muscarinic receptors showed that calcium influx is

required for stimulation of tyrosine phosphorylation by m5 receptor



activation (22). In hippocampal slices and in neurons in primary culture,

depolarization and muscarinic receptor activation induced tyrosine

phosphorylation in a calcium-dependent manner (23). Furthermore,

ionophore-evoked calcium influx stimulated tyrosine phosphorylation in

hippocampal slices, via a mechanism which may be independent of PKC (23).

Additional evidence for PKC-independent calcium-mediated control of

tyrosine kinase phosphorylation was obtained from human platelets (24).

Inhibition of PKC activity did not abolish tyrosine phosphorylation induced

by calcium released from intracellular pools with thapsigargin. However,

chelation of extracellular calcium was found to completely abolish tyrosine

phosphorylation induced by depleting intracellular pools with thapsigargin.

This implicates calcium influx, as opposed to calcium mobilized from

intracellular stores, in triggering tyrosine phosphorylation. However,

additional data from human platelets suggests that both IP3-evoked calcium

transients and calcium influx could lead to tyrosine phosphorylation (24).

Moreover, tyrosine kinase activity may in fact regulate calcium influx

stimulated by receptors linked to phosphatidylinositol turnover or by

depletion of intracellular calcium stores (25, 26).

The regulatory effects of calcium on APPs secretion may also be

mediated by calcium/calmodulin-dependent protein kinases (Ca"/CaM

kinases), which have been shown to phosphorylate APP peptides in vitro (27).

Ca"/CaM kinase activation and consequent protein phosphorylation may be

the result of cytosolic calcium transients generated by IP3, as has been

observed in a variety of endocrine and neural systems (19). Alternatively,

tyrosine phosphorylation may modulate the activity of Ca"/CaM kinases (28).

The various pathways through which calcium may affect processing of APP

are summarized in figure 1.



FIGURE 1

Putative Calcium and Tyrosine Phosphorylation-Dependent Mechanisms of APPs
Processing. Activation of ml or m3 muscarinic receptors by acetylcholine (ACh) or its
analogs leads to G-protein coupled phosphoinositide (PIP2) breakdown into the second
messengers diacylglycerol (DAG) and inositol trisphosphate (IP3). IP3 releases calcium
from intracellular pools, such as the endoplasmic reticulum (ER), while DAG activates
protein kinase C, (PKC). Class A PKC isozymes are dependent an calcium for
activation. The IP3-evoked calcium transient may stimulate calcium/calmodulin-
dependent protein kinases (CaM kinases) which in turn may influence APPs processing.
Muscarinic receptor activation may also induce calcium influx, either directly via
receptor-operated calcium channels (ROCC), or indirectly via depletion of cellular
stores (not shown). These signaling events may converge at the level of tyrosine
phosphorylation, which in turn elicits APPs secretion by an unknown mechanism.



Chapter 3. Experimental Procedures

3.1. Cell Culture

Human embryonic kidney (HEK) 293 cell lines transfected with ml

and m3 muscarinic receptor subtypes were used as a model to study of

effects of calcium on APPs release. HEK cells were cultured in DMEM/F12

bicarbonate medium containing 10% fetal calf serum, and maintained at

37'C in an atmosphere of 5% CO2. For experiments, cells were grown to

confluency in plastic dishes precoated with poly-D-lysine and grown at

the above specified atmospheric conditions. Upon reaching confluency,

cells were treated with pharmacological agents diluted to the desired

concentrations in serum-free medium, and incubated for appropriate period

of time (see 3.2. Pharmacological Agents). Following treatments, media and

cell pellets were collected for subsequent analysis.

3.2. Pharmacological Agents

The following pharmacological agents were used to investigate the

dependence of APPs secretion and tyrosine phosphorylation on calcium. The

muscarinic receptor agonist carbachol was used to elicit APPs release and

tyrosine phosphorylation. The phorbol ester PMA (phorbol 12-myristate 13-

acetate) was used for activation of PKC. Inhibition of PKC activity was

brought about by a PKC-specific blocker, GF109203X. Chelation of

extracellular calcium was achieved with EGTA (ethylene glycol-bis-(3-

aminoethyl)-N,N,N',N'-tetra aceoxymethyl ester). Calcium influx was

stimulated with the calcium ionophore ionomycin. W-7, an antagonist of

calmodulin, was used as an inhibitor of calcium/calmodulin-dependent



kinase activity. Tyrphostin A25 was administered as an inhibitor of tyrosine

kinase activity. PMA and EGTA were purchased from Sigma (St. Louis, MO);

GF109203X from LC laboratories (Wobum, MA), and ionomycin along with

W-7 were obtained from Calbiochem (La Jolla, CA).

For treatment preparation, pharmacological substances were diluted to

appropriate concentration in serum-free DMEM and preincubated at 370C in a

5% CO, atmosphere. Where necessary, stock solutions were prepared by

dissolving compounds in dimethyl sulfoxide, then further diluting in serum-

free medium. Prior to application of treatments, cells were washed with 2 ml

serum-free DMEM to remove floating cells and debris. For measurements of

APPs release, cells were incubated in treatment solutions for a period of 1 hr.'

For anti-phosphotyrosine immunoprecipitation experiments, cells were

incubated with treatments for 10 minutes (the time required to achieve

maximal protein phosphorylation (unpublished results)). Experiments

involving tyrphostin A25 required preincubation with this substance or a

vehicle (dimethyl sulfoxide) control for a period of 18-24 hours prior to

administration of acute treatments as described above.

3.3. Measurement of APPs Release2

Media Preparation. Following treatment incubation, media were removed

from cell dishes, centrifuged for 2 minutes to remove debris, mixed with 40 p1

of the protease inhibitor PMSF (Sigma), and placed on ice. Media were

desalted and dried overnight. Media residues were subsequently diluted 1:1

in extraction buffer containing 2% Triton X-100 and 2% Nonidet P-40 and gel

loading buffer.

Pellet Preparation. Cells were rinsed with 2 ml phosphate-buffered saline

(PBS), harvested in 1 ml PBS, mixed with 20 •l PMSF, and placed on ice. Cell

' Maximal APPs release is reached within 30min, and remains stable for 60 min (Nitsch et al., 1992).



suspensions were subsequently centrifuged, the supernatant removed, and

the cell pellets were lysed in the extraction buffer used for media samples.

Lysates were then centrifuged to remove detergent-insoluble material and

suspended 1:1 in gel loading buffer.

Electrophoresis and Western Blotting. Media and pellet samples were boiled

for 2 min to denature proteins, and uniform amounts of each sample (the

equivalent of 300 gg or 400 gg of cell protein for media and 150 jig or 200 Rg

of cell protein for pellet; loading volume was determined using the

bicinchoninic acid protein assay) were loaded into 12% mini-gels (Bio-Rad,

Richmond, CA). Proteins were separated using sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE). At the conclusion of

electrophoresis proteins were electroblotted onto polyvinylidene difluoride

membranes and blocked for 30 minutes with 5% powered milk in Tris-

buffered saline with .15% Tween 20 (TBST). Subsequently, membranes were

immunoblotted with anti-Pre A4 monoclonal antibody (clone 22C11, raised

against the extracellular domain of APP), washed 3 x 20 min, 4 x 15 min, or 5 x

5 min in TBST, and placed in sheep anti-mouse peroxidase-linked secondary

antibody solution. Protein bands were visualized using a chemiluminescence

method, and quantitated by laser scanning densitometry.

3.4. Immunoprecipitation and measurement of tyrosine

phosphorylated proteins

Following treatment with pharmacological agents, cells were rinsed

twice with phosphate-buffered saline containing 1 mM sodium

orthovanadate, collected in 1 ml of lysis buffer (25 mM Tris pH 7.5, 250 mM

NaC1, 5 mM EDTA, 1% Triton X-100, 1 mM sodium orthovanadate, 25 gg/ml

aprotinin and 2 mM 4-[2-aminoethyl]-benzenesulfonylfluoride (AEBSF)), and

2 APPs release was measured as described previously (Nitsch et al., 1992, and Slack et al., 1993).



placed on ice for at least 20 minutes. Lysates were centrifuged to remove the

detergent-insoluble pellet and protein assays were performed to determine

protein quantity in cell pellets. Tyrosine-phosphorylated proteins were

precipitated from cell lysates containing 500 gLg of protein by incubation with

4 gg of a polyclonal anti-phosphotyrosine antibody and 1.5 mg of protein-A

Sepharose (Pharmacia Biotech Inc., Piscataway, NJ) and 1.5 mg protein-G

Agarose (Oncogene Sci.) overnight at 40C. Following centrifugation, pellets

were washed 3 times in IP washing buffer (prepared identically to the lysis

buffer except with 0.1% Triton X-100). Pellets were then diluted in gel loading

buffer and boiled. Proteins were separated using electrophoresis and

electroblotted as described previously. Membranes were incubated overnight

at room temperature in a blocking buffer composed of 3% gelatin in TBST,

washed 3 x 20 min in warmed up TBST, and suspended for 1 hr in a TBST

solution containing a peroxidase-linked recombinant anti-phosphotyrosine

antibody (Transduction Laboratories, Lexington, KY). After several washes

with TBST over the course of 1 hr, bands were visualized on film using

chemiluminescence.

3.5. Statistical Analysis

Values in text and figures are expressed as means + standard error (S.E.).

Statistical comparisons among multiple groups were made using one-way

analysis of variance (ANOVA). Significance testing was performed using the

post-hoc Tukey test, where differences were taken to be statistically significant

at a p-value less than 0.05.



Chapter 4: Results

4.1. Role of Calcium Influx in APPs Secretion

Earlier experiments have demonstrated the ability of the cholinergic

agonist carbachol to significantly increase the secretion of APPs (8) by binding

to ml or m3 muscarinic receptors linked to PI hydrolysis (29). Increases in the

levels of IP3 and diacylglycerol, as a result of PI breakdown, lead to the release

of calcium from cellular stores and activation of PKC (10). Both PKC

activation and the IP3-triggered transient rise in intracellular calcium levels

have been correlated with increased processing of APP via the secretory

pathway (11, 18). However, activation of muscarinic receptors also stimulates,

by a variety of mechanisms, calcium influx from the extracellular space (19,

20, 21, 22, 26), resulting in a sustained elevation in intracellular calcium.

Furthermore, activation of PKC alone does not fully account for carbachol-

induced APPs release, since PKC inhibition fails to completely suppress APPs

secretion in cells stimulated with carbachol (fig. 2), as demonstrated

previously (13). Therefore, I examined the effect of inhibiting PKC (with the

bisindolylmaleimide GF109203X, a selective blocker of PKC activity) in the

absence of calcium influx, achieved by chelating extracellular calcium with

EGTA (fig. 2).

While the addition of EGTA reduced carbachol-evoked APPs release by

33%, a combination of GF109203X and EGTA caused a more significant

reduction of 64%. Neither EGTA3 nor GF109203X altered basal APPs release

(13). This suggests that influx of extracellular calcium is able to modulate

carbachol-induced APPs release via a mechanism independent of PKC, and

3 APPs release during treatment with EGTA alone averaged 108 + 4% of basal (n=4), a difference which
was not significantly different from control (p<0.05) by paired t-test.



that these two mechanisms work in concert to mediate APPs release elicited

by carbachol.

To investigate further the effect of calcium influx on APPs release, I

used the ionophore ionomycin to induce calcium influx. I hypothesized that,

if calcium influx accounted for part of the carbachol-mediated increase in

APPs release, then directly stimulating calcium entry into the cells would
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FIGURE 3

I I

A lonomycin Stimulates APPs Release
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have the same effect. Ionomycin generated a 4-fold increase in APPs

secretion, comparable to the effect elicited by carbachol (fig. 3a). The effect of

ionomycin was also similar in magnitude to that produced by direct

activation of PKC with the phorbol ester PMA (data not shown).

Furthermore, ionomycin increased APPs release in a dose-dependent manner

with an EC50 value of approximately .3 gM, and maximum secretion attained

between .5 jiM and 1 pM ionomycin (fig. 3b). Incubating the cells for one hour

with an ionomycin concentration of 3 gM resulted in toxicity and drastically

decreased the protein content as well as the release of APPs into the medium

(data not shown).

To examine the involvement of PKC in the cellular signaling pathway

mediating calcium influx-induced APPs secretion, I compared the effects of

the PKC inhibitor GF109203X and the calcium chelator EGTA on the release of

APPs elicited with ionomycin (fig 4a). The data were then contrasted with

those obtained using PMA rather than ionomycin to stimulate APPs release

(fig. 4b). As anticipated, EGTA and GF109203X exerted nearly reciprocal

effects on ionomycin- and PMA- stimulated APPs release. Whereas EGTA

blocked the effects of ionomycin, and did not affect PMA-induced APPs

release, GF109203X abolished the effect of PMA, but inhibited ionomycin by

only 45%. These results suggest calcium influx regulates APPs processing

through both PKC-dependent and PKC-independent pathways.

In accordance with these results, I investigated the possibility that

additional protein kinases mediate the PKC-independent effect of calcium

influx on APPs production. It is possible that elevations in cellular calcium

accompanying calcium influx activate one or more calcium/calmodulin

kinases, as has been documented for IP3-generated calcium transients (19).

To test for calcium/calmodulin kinase involvement in the pathways

regulating APPs secretion, I suppressed calcium/calmodulin-kinase activity



using the calmodulin inhibitor W-7 while stimulating the cells with

carbachol. Under these conditions, APPs secretion did not differ markedly



FIGURE 4

A Effect of EGTA, GF 109203X, and Tyrphostin A25
on Ionomycin-Stimulated APPs Release
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from the response elicited by carbachol alone. Furthermore, application of

W-7 in conjunction with GF109203X failed to limit carbachol-evoked APPs

release to any greater extent than did GF109203X alone, suggesting that

calcium/calmodulin-dependent kinases play little role in carbachol-mediated

APPs release.

I next examined the possibility that calcium influx acts through protein

tyrosine phosphorylation to mediate APPs secretion. Protein tyrosine

phosphorylation has been implicated in APPs release initiated by muscarinic

receptor excitation; thus, inhibition of tyrosine kinases with tyrphostin A25

significantly reduced carbachol-stimulated APPs release (13). Data from a

variety of cell lines also support the hypothesis that receptor-induced tyrosine

phosphorylation is mediated by receptor-associated calcium influx (20, 21, 22,

26). Consistent with this hypothesis, the specific tyrosine kinase inhibitor

tyrphostin A25 consistently abolished ionomycin-stimulated APPs secretion

(fig. 4a), without affecting basal APPs levels (13). The reduction achieved with

tyrphostin A25 was significantly greater than the partial inhibition obtained

with GF109203X. While tyrphostin A25 caused a total block of ionomycin-

stimulated APPs release, it diminished PMA-evoked APPs secretion by only

37% (13).



4.2. Effects of Calcium Influx on Levels of Phosphorylated Tyrosine

The effects of calcium influx on cellular levels of phosphorylated

tyrosine were assessed by immunoprecipitation and western blot analysis of

tyrosine-phosphorylated proteins in cell lysates. Immunoblots of tyrosine-

phosphorylated proteins revealed increases in three distinct protein bands, as

reported previously (13). Measurements and data analysis were performed

only on the fastest migrating band representing a tyrosine-phosphorylated

protein with a molecular weight of 70 kDa. Ionomycin increased phospho-

tyrosine levels in a concentration-dependent manner with an EC50 of .2 AM,

and a maximum response between .5 AM through 1 M ionomycin; the dose-

response relation for phosphorylated tyrosine paralleled that for APPs release

(fig. 5b). Moreover, ionomycin stimulated tyrosine phosphorylation4 to the

same degree as did carbachol; about 3-fold with respect to basal levels (fig. 5a).

In contrast, activation of PKC with PMA elicited a similar pattern of phospho-

tyrosine, but to a smaller degree than was observed with ionomycin and

carbachol (data not shown), consistent with earlier experiments (13).

The effects of the calcium chelator EGTA, the PKC inhibitor GF109203X,

and the tyrosine kinase inhibitor tyrphostin A25 on ionomycin-evoked

tyrosine phosphorylation closely correlated with their effects on ionomycin-

stimulated APPs release (fig. 6). EGTA entirely blocked the increase in

phosphorylated tyrosine elicited by ionomycin, as it did ionomycin-

stimulated APPs release. However, GF109203X caused a more substantial

suppression of the increase in tyrosine phosphorylation than of APPs

secretion; 63% versus 40%. Although tyrphostin A25 abolished ionomycin-

evoked APPs release, it reduced ionomycin-evoked tyrosine phosphorylation

of the 70 kDa protein by 59%. None of the antagonists alone significantly

attenuated basal tyrosine phosphorylation. A comparison of the effects

4 In this context tyrosine phosphorylation is taken to mean levels of phosphorylated tyrosine.



FIGURE 5

lonomycin Stimulates Tyrosine
Phosphorylation
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Ionomycin-generated calcium influx stimulates tyrosine phosphorylation in a manner
similar to carbachol. A. Immunoblots showing tyrosine-phosphorylated proteins in
anti-phosphotyrosine immunoprecipitates from HEK cells expressing m3 muscarinic
receptors. Cells were incubated for 10 min in serum-free control medium or medium
containing 1 pM ionomycin or 100 pM carbachol. Ionomycin elicits a pattern of
tyrosine phosphorylation similar to carbachol. Immunoblot showing three
phosphotyrosine bands: 70kDa, 100kDa, 110kDa. Lanes: (1) Control; (2) Carbachol;
(3) lonomycin. B. Quantitative assessment by laser scanning densitometry of a 70
kDa molecular weight band. Phosphorylation of this band has been previously
correlated to a rise in APPs release resulting from carbachol stimulation. Results are
expressed as means + S.E. from nine to twelve experiments performed in duplicate (n
values are indicated in parentheses for each treatment group). X indicates
significant difference from Control (p<0.05 by analysis of variance). C. Ionomycin
increases tyrosine phosphorylation of the 70 kDa band in a dose-dependent manner,
as it did APPs release. Tyrosine phosphorylation of this protein appears to be
slightly more sensitive to ionomycin than APPs, showing an ECs0 value of .2 gM.
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FIGURE 6

A Effect of EGTA, GF109203X, and Tyrphostin A25 on
lonomycin-Stimulated Tyrosine Phosphorylation
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24 hrs with dimethyl sulfoxide (vehicle control) or 100 pM tyrphostin A25 in serum-free
medium. A. Quantitative assessment by laser scanning densitometry of the 70 kDa molecular
weight band. Results are expressed as means + S.E. of three to eight experiments performed in
duplicate (n values are listed in parentheses for each treatment group). X indicates significant
difference (p<0.05 by analysis of variance) from Control, A indicates significant difference
from Ionomycin. EGTA completely inhibits ionomycin-induced tyrosine phosphorylation,
while GF109203X and tyrphostin A25 significantly diminish it. None of the antagonists had
significant effects on basal phosphotyrosine levels. B. Immunoblot showing effect of inhibiting
calcium influx with EGTA on tyrosine-phosphorylated proteins. Lanes: (1) Control; (2) EGTA;
(3) lonomycin; (4) lonomycin + EGTA. C. Immunoblot showing effect of tyrphostin A25 and
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of EGTA, GF109203X and tyrphostin A25 on ionomycin versus PMA-induced

tyrosine phosphorylation revealed a pattern similar to the one observed with

APPs release. Whereas EGTA and tyrphostin A25 generated no significant

reductions in PMA-evoked tyrosine phosphorylation, GF109203X completely

blocked the phosphotyrosine response to PMA (data not shown), as described

previously (13). Overall, the data show that secretory processing of APP may

be effectively stimulated by calcium-induced tyrosine phosphorylation.

The last set of experiments aimed to establish a correlation between

carbachol-associated calcium influx, tyrosine phosphorylation, and APPs

release. Carbachol has previously been shown to increase tyrosine phospho-

rylation concomitantly with APPs release (13), and both effects are inhibited

by tyrphostin A25. Figure 7 shows that EGTA inhibits carbachol-mediated

tyrosine phosphorylation, as well as APPs release. In a series of three

experiments, EGTA reduced carbachol-stimulated tyrosine phosphorylation

by 51%. GF109203X exhibited a more pronounced effect on carbachol-induced

tyrosine phosphorylation than on APPs release, causing a 67% reduction. The

combination of EGTA and GF109203X essentially abolished carbachol-

stimulated tyrosine phosphorylation. The fact that these two antagonists

exerted additive inhibitory effects on both APPs release and tyrosine

phosphorylation, suggests that calcium influx and PKC mediate the effects of

carbachol on both responses.



FIGURE 7

Effect of EGTA and GF109203X on Carbachol-
Induced Tyrosine Phosphorylation
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Chapter 5. Discussion

The results presented here suggest that elevations in cellular calcium

levels resulting from calcium influx mediate APPs secretion stimulated by

activation of muscarinic receptors linked to phosphoinositide hydrolysis.

Thus, elimination of calcium influx with EGTA reduced APPs secretion by

33%. Moreover, induction of calcium influx with an ionophore stimulated

APPs release in a manner that mimicked carbachol-evoked APPs secretion.

Although previous work showed no response or a decline in APPs release

following treatment with ionophores (8, 30), the ionophore concentrations in

these studies were an order of magnitude higher than those used here. The

ionomycin dose-response characteristics revealed that a concentration

between 0.5 pgM and 1 gM was sufficient to elicit maximal APPs release, and

higher concentrations actually resulted in toxicity to the cell and consequent

decline in APPs secretion. Furthermore, the calcium chelator EGTA

abolished ionomycin-stimulated APPs release by preventing the flow of

extracellular calcium into the cytoplasm. The manner in which muscarinic

receptor activation initiates calcium influx leading to APPs secretion, whether

via receptor-operated channels or IP3-dependent depletion of intracellular

calcium pools, remains to be explored.

The effects of calcium influx on APPs secretion appeared to be

mediated by mechanisms which were partially independent of PKC.

Consistent with this notion, the effects of EGTA and the PKC inhibitor

GF109203X on APPs release were found to be additive. The combination of

EGTA and GF109203X caused a 64% decrement in carbachol-stimulated APPs

secretion, whereas each antagonist acting separately reduced secretion by

around 30%. The ability of GF109203X to eradicate APPs release elicited by the

phorbol ester PMA, a potent activator of PKC, indicates that it is a highly

effective inhibitor of PKC; the specificity of GF109203X for PKC has previously

been demonstrated (31). As anticipated, chelating extracellular calcium with



EGTA in no way affected PMA-induced APPs release, since PKC displays

minimal requirements for calcium in the presence of this potent analog of

diacylglycerol. The fact that these two antagonists exerted an additive effect on

carbachol-stimulated APPs release, suggests that EGTA interfered with a PKC-

independent branch of the receptor-to-APPs signaling pathway. Despite this

observation, GF109203X partially blocked ionomycin-induced APPs release,

suggesting that stimulation of APPs release by calcium influx proceeds in part

via a PKC-dependent mechanism. This is not unexpected, since class A of

PKC isozymes displays a dependence on calcium for activation. Thus,

elevations in intracellular calcium of sufficient magnitude may activate some

PKC subtypes at lower levels of diacylglycerol (17). However, the degree of

inhibition of APPs release obtained with GF109203X was less than 50%, unlike

the complete block achieved with EGTA. Therefore, calcium influx induced

by ionomycin, like that elicited by carbachol, can influence APPs secretion via

a signaling pathway that bypasses PKC. Finally, since the calmodulin

inhibitor W-7, unlike EGTA, did not affect carbachol-stimulated APPs release,

I conclude that calcium/calmodulin kinases are not involved in mediating

the effects of calcium-influx on APPs release.

The experimental results further indicate that the PKC-independent

signaling cascade elicits APPs release via an increase in cellular tyrosine

phosphorylation levels, mediated either by activation of tyrosine kinases, or

by inhibition of tyrosine phosphatases. Moreover, both the PKC-independent

and -dependent pathways activated by calcium influx converge at the level of

tyrosine phosphorylation, upstream of APPs release. This conclusion is based

on the observation that the tyrosine kinase inhibitor tyrphostin A25

abolished ionomycin-stimulated APPs release. Tyrphostin A25 has been

previously demonstrated to cause a slight reduction (37%) in PMA-induced

APPs release, in contrast to the complete block attained with GF109203X (13).

Therefore, the effects of calcium influx on APPs release are in part mediated

by PKC activation and are contingent on subsequent tyrosine

phosphorylation, yet tyrosine phosphorylation is not required for PMA to



stimulate APPs release. This apparent discrepancy may be accounted for by

the potent and non-physiological activation by PMA of a wide range of PKC

subtypes, not all of which may act via tyrosine phosphorylation to elicit APPs

release. Calcium influx is likely to result in activation of one or more of the

calcium-dependent PKC isozymes which effects APPs release via tyrosine

phosphorylation. The mechanisms by which calcium influx or PKC elicits

tyrosine phosphorylation were not addressed in this study.

The relationship between calcium influx and tyrosine phosphorylation

described above was confirmed by results obtained from anti-phosphotyrosine

immunoprecipitates. Ionomycin, like carbachol, increased the

phosphorylation of tyrosine residues on three proteins with molecular

weights of 70 kDa, 100 kDa, and 110 kDa, discerned as separate bands on

immunoblots. Moreover, the dose-response characteristics of ionomycin-

induced tyrosine phosphorylation of the most prominent of these bands

(70 kDa) nearly matched that obtained for APPs release. These data, in

conjunction with the powerful effect of tyrphostin A25 on ionomycin-

stimulated APPs release, strongly implicate calcium influx as a mediator of

tyrosine phosphorylation, and subsequent APPs release.

The effects of EGTA, GF109203X, and tyrphostin A25 on ionomycin-

stimulated tyrosine phosphorylation suggest that there are at least two

tyrosine-phosphorylated proteins involved in mediating the effects of

calcium influx on APPs release. As anticipated, chelating extracellular

calcium with EGTA completely obstructed ionomycin-stimulated tyrosine

phosphorylation of the 70 kDa protein, consistent with its effect on APPs

release. Tyrphostin A25 had a less pronounced effect on ionomycin-induced

tyrosine phosphorylation of the 70 kDa band than on APPs release, although

the residual response was not significantly different from basal. However,

GF109203X attenuated tyrosine phosphorylation of the 70 kDa band to a

greater extent than it did APPs secretion, 60% versus 45%. The differential

effect of GF109203X on APPs release and tyrosine phosphorylation of the



70 kDa protein may be explained by noting that EGTA and tyrphostin A25

effectively inhibited tyrosine phosphorylation of another protein, represented

by the 100 kDa band, while GF109203X had no effect on tyrosine

phosphorylation levels of this protein. These data suggests that at least two

tyrosine kinases and/or phosphatases are involved in mediating the effect of

calcium influx on APPs release, one of which responds to activation of one or

more calcium-dependent subtypes of PKC and another which does not.

Additional evidence for this conclusion has been found in previous work

using the broad-spectrum protein kinase inhibitor genistein, which abolished

carbachol-evoked APPs release, presumably by blocking the activity of a

variety of tyrosine protein kinases (13).

A comparison of the effects of EGTA and GF109203X on carbachol-

stimulated tyrosine phosphorylation versus APPs release likewise suggests

that two or more tyrosine kinases and/or phosphatases with differential

sensitivities to calcium-dependent subtypes of PKC are likely to mediate the

effects of carbachol-generated calcium influx. Thus the effects of GF109203X

on the pattern of tyrosine phosphorylation elicited by carbachol are

reminiscent of its effects on ionomycin-stimulated tyrosine phosphorylation.

GF109203X inhibited carbachol-stimulated tyrosine phosphorylation of the 70

kDa protein more than it did carbachol-evoked APPs release, 67% versus 33%,

consistent with the differential actions of GF109203X shown in previous

studies (13). However, GF109203X had little effect on tyrosine

phosphorylation of the 100 kDa band induced by carbachol. These results

suggest that carbachol may elicit APPs release in the absence of PKC activity by

stimulating one or more PKC-independent tyrosine kinases, secondary to

calcium influx. The combination of EGTA and GF109203X caused an

additional, although statistically insignificant, reduction of 10% in carbachol-

stimulated tyrosine phosphorylation of the 70 kDa band over that effected by

GF109203X alone, indicating that phosphorylation of this band was largely

PKC-mediated. The proposed mechanisms by which calcium influx

influences APPs secretion are illustrated in Figure 8.



FIGURE 8

Multiple Signaling Pathways Stimulate APPs Secretion

phosphotyrosine proteins

Calcium Influx and Tyrosine Phosphorylation Mediate APPs Processing. Activation of
ml or m3 muscarinic receptors by acetylcholine(ACh) or its analogs leads to G-protein
coupled phosphoinositide (PIP2) breakdown into the second messengers diacylglycerol
(DAG) and inositol trisphosphate (IP3). IP3 releases calcium from intracellular pools,
such as the endoplasmic reticulum (ER), while DAG activates protein kinase C, (PKC).
Class A PKC isozymes are dependent an calcium for activation. Muscarinic receptor
activation also stimulates calcium entry, presumably by opening receptor-operated
calcium channels (ROCC). Calcium influx stimulates APPs secretion via both PKC-
dependent and PKC-independent mechanisms. Whereas calcium influx regulates APPs
release via phosphorylation of tyrosine an one or more proteins, PKC utilizes tyrosine
phosphorylation only marginally to stimulate APPs release.
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Chapter 6. Conclusions and Recommendations

This study demonstrated that calcium influx participates in the cellular

signal transduction pathways that stimulate APPs release in response to the

activation of muscarinic receptors. The data further reveal that APPs

secretion elicited with calcium influx may be mediated by tyrosine

phosphorylation independent of PKC activation, and that the PKC-dependent

and independent pathways converge at the level of tyrosine phosphorylation.

In a broader context, the data suggest that neurotransmitter-regulated

secretory processing of APP may be relayed by multiple cellular signaling

cascades, which recruit common messenger proteins. Thus, calcium influx

and PKC signaling cascades postulated here do not necessarily serve as

exclusive mediators of muscarinic receptor activation on APPs release.

Evidence for an additional pathway was suggested by the significant elevation

in carbachol-mediated APPs release that persisted in the presence of EGTA

and GF109203X. However, the remaining response was further reduced by

tyrphostin A25, suggesting that it is the result of residual, possibly calcium-

independent, tyrosine phosphorylation-dependent activity.

Although this study postulated a role for calcium influx in APPs

processing, it is possible that elevations in cellular calcium brought about by

other mechanisms will also induce APPs release. For instance, other studies

(18) showed that increases in cellular calcium levels mediated by IP3 may also

stimulate APPs secretion independent of PKC. It is therefore possible that the

source contributing to calcium elevations, whether intracellular or

extracellular pools, may be of little relevance to the final response. However,

it is also possible that APPs processing has a preferential requirement for one

calcium source over another. Moreover, these sources of calcium may act

together to reinforce the release of APPs, since calcium release from internal

stores produces a fast-acting transient while calcium influx results in a slower



rising, but sustained elevation. Whether the IP3-generated calcium transients

stimulate tyrosine phosphorylation remains to be investigated.

The next step in elucidating the muscarinic receptor-to-APPs signaling

pathway to identify whether increase in phospho-tyrosine levels are the

result of activation of tyrosine kinases, inhibition of tyrosine phosphatases, or

both. The subsequent task will be to identify the enzymes and substrates that

participate in regulating APPs release. Finally, the mechanism by which these

signaling molecules trigger secretory cleavage of APPs release remain to be

elaborated. One hypothetical mechanism might involve phosphorylation of

the cytoplasmic domain of the APPs molecule by a protein kinase, rendering

it susceptible to cleavage by a transmembrane secretase. However, significant

evidence indicates otherwise (32). Another possible mechanism of APP

metabolism involves phosphorylation and consequent activation of the

a-secretase responsible for cleavage of APP into APPs and other derivatives.

A third mechanism of APP cleavage may not rely on sudden activation of

a-secretase but instead harness its basal activity. Tyrosine kinases exhibit a

regulatory domain which allows them to attach to each other to form active

regulatory complexes. Stimulation of tyrosine phosphorylation by

muscarinic receptor activation may induce the assembly of such a multi-

kinase complex at a site on the plasma membrane. This regulatory complex

might serve as a docking mechanism for a-secretase (provided it possesses a

regulatory domain), bringing it into proximity with APP and enabling

cleavage to take place.

These findings have significant implications for the mechanisms by

which neuronal cells protect themselves against injury. When a cell

experiences increases in calcium influx due to excitotoxic insults, it may

respond by stimulating secretory processing of APP. APP could then act as a

neuroprotective agent, stabilizing intracellular calcium concentrations. In

Alzheimer's disease, the postulated shift in APP processing in favor of AO

may prevent neurons from properly responding to the neurotoxic effects of



aggregated AP. The consequent disruption of cellular calcium homeostasis

would then precipitate cell death.
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