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Abstract

Certain classes of chaotic systems possess the property of self-synchronization, which
allows two identical systems to synchronize when the second is driven by the first.
Practical utilization of self-synchronizing chaotic systems depends upon their ability
to withstand perturbations caused by imperfect communication channels. In this
thesis the behavior of self-synchronizing chaotic systems under such circumstances is
characterized, and compensation strategies are proposed.

We develop methods for recovering a transmitted signal produced by a self-
synchronizing chaotic system and corrupted by an unknown, possibly time-varying,
gain present in the transmission channel. We also explore effects of channel filtering
and techniques for compensation. Strategies are presented to design compensating
systems, ideally the inverse of the corrupting influences, which may be applied at the
receiver.
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Chapter 1

Introduction

Techniques have been developed recently for analyzing and synthesizing a particular

class of nonlinear systems known as self-synchronizing chaotic systems [2]. Practi-

cal utilization of self-synchronizing chaotic systems depends in part on the systems'

ability to withstand perturbations due to imperfect communication channels. In this

thesis we characterize the behavior of self-synchronizing chaotic systems under such

circumstances, and propose strategies for compensation.

Much interest in self-synchronizing chaotic systems stems from the potential use

of chaotic signals as modulating signals for spread-spectrum communication sys-

tems. Spread-spectrum communication systems, which modulate the energy of an

information-bearing signal over a large portion of the spectrum, recover the informa-

tion by "cross-correlation of the received wide-band signal with a synchronously gen-

erated replica of the wide-band carrier" [1]. An advantage of using spread-spectrum

techniques is that multiple independent carriers can share the same bandwidth and

not interfere, increasing the communication capacity of the spectrum. This advantage

can potentially be enhanced by using chaotic carrier signals, which have similar spec-

tral characteristics to noise and may deceive an independent listener into assuming

that no transmission is occurring when in fact one is. The appeal of spread-spectrum

communications motivates an analysis of the properties of self-synchronizing chaotic

systems.

A diagram of a chaotic spread-spectrum system is shown in Figure 1-1 [4]. The



self-synchronizing chaotic system provides the backbone for the modulation and de-

modulation. The drive link between the chaotic drive and response systems is essential

to the successful operation of the spread-spectrum system as a whole. We will focus

solely on this link.

Receiver
Transmitter

m'(t)

Figure 1-1: Chaotic Spread Spectrum System

The phenomenon of synchronization has been well-known for over fifty years and

motivated much research in spread-spectrum communication during World War II

[1]. Work in chaotic systems, however, is much more recent, only occurring within

the past ten to fifteen years. The two topics were linked only five years ago, in 1990,

when it was discovered that the self-synchronization property could exist within a

chaotic system [6]. Since then, chaotic spread-spectrum systems have been analyzed,

simulated [4], designed, implemented and tested [3], with excellent correspondence



reported between theoretical and experimental results.

The basis for much of the research described in this thesis was a recent study

which described general techniques for the analysis and synthesis of self-synchronizing

chaotic systems [2]. The effects of additive noise on the quality of synchronization

were investigated and documented. An issue which was not fully addressed was

whether self-synchronizing chaotic systems can achieve approximate synchronization

between transmitter and receiver in the presence of other variations in transmission

channel characteristics. We will examine how effectively self-synchronizing chaotic

systems can achieve approximate synchronization in the presence of gain or filtering

in the transmission channel, and explore compensation techniques for recovering the

original transmissions.

Since channel gain is, in some sense, the simplest form of channel disturbance,

our investigation will begin with an analysis of gain effects on the quality of synchro-

nization. Two techniques for gain compensation were considered: minimization of

synchronization error, and comparison of average power in the received signal with

theoretical results. The second converges quickly to a rough estimate of the compen-

sating gain, but the first can determine the correct compensating gain with a higher

degree of precision. If the gain is static, either technique will yield excellent results.

On the other hand, a time-varying channel gain which varies slowly may require both

constant tracking with a power comparison as well as tuning to eliminate the remain-

ing error. The minimum interval over which power estimates can be computed, such

that the variance of the set of estimates is within a user-specified tolerance, places an

upper bound on the time variation of the gain.

A second topic which was investigated was channel filtering. The focus for solv-

ing the filtering problem was on infinite impulse-response (IIR) filters with finite

impulse-response (FIR) inverse filters. An optimal FIR compensator can be realized

by determining the set of filter coefficients which provide the best least-square-error

fit to the inverse spectrum of the transmission channel. Alternatively, minimization

of synchronization error is applicable in theory, but may be cumbersome in practice.



1.1 Outline of the Thesis

Chapter 2 defines the Lorenz transmitter-receiver system, explores the concept and

properties of synchronization, and provides an explanation of the analysis procedure

for experiments with the system. In this chapter definitions are developed which will

be used throughout the thesis.

Chapter 3 examines the effects of channel corruption on the quality of synchroniza-

tion providing a basis for compensation techniques. The chaos-to-error ratio (CER)

is plotted as a function of channel parameters.

Chapter 4 introduces two strategies for gain compensation: (1) comparison of

average power, and (2) minimization of synchronization error. The performance of

each of these compensation techniques is analyzed.

Chapter 5 introduces two analogous strategies for filter compensation: (1) spectral

comparison, and (2) (multi-dimensional) minimization of synchronization error. The

performance of each of these compensation techniques is analyzed as well.

Chapter 6 summarizes the key results of this thesis and offers suggestions for

further work on this topic.



Chapter 2

Self-Synchronization and the

Lorenz System

Chaotic systems exhibit a sensitive dependence on initial conditions, meaning states

which are nearly identical may not evolve similarly. The interconnection of two chaotic

systems might be expected to mirror the locally unstable behavior of a single system.

Under a certain set of conditions, however, synchronization of the interconnected

systems can be observed.

Synchronization of a pair of systems is a coupling of the state variables in system

S1 with the state variables in S2 such that S2's state is completely determined by

Sl's. A self-synchronizing system, then, has the following characteristic: if two copies

of the system are produced, and a state variable from the transmitting system S1

drives the receiving system S2 in an appropriate manner, the state of the receiver

will approach the state of the transmitter after a transient. Chaotic systems possess-

ing the self-synchronization property, however, utilize a stable subsystem to achieve

synchronization, independent of the initial conditions present [2].

Of the many chaotic systems which possess the self-synchronization property, the

Lorenz transmitter-receiver system was chosen to be the prototype for this study.

Current research in chaotic systems indicates that many of the qualitative properties

of the Lorenz system can be observed in other chaotic systems as well. Within the

Lorenz framework, the transmitter and receiver equations are



-= rx-y-xz

S= xy - bz

Zr = U(Yr xr)

,ir = rs(t) - Yr - s(t)Zr

Zr = s(t)yr - bz,.

where s(t) = drive signal in the receiver equations

x, y, z = transmitter state variables

xr, yY, zr = receiver state variables

The fact that these equations may lead to synchronization of the transmitter

and receiver follows by considering the differences between the state variables of the

transmitter and receiver:

[Ex E, Ez] = [Z y z] - [x, y, zr]

The governing equations for these error signals are:

Et = a(E, - Ex)

Et = -Ey- s(t)Ez

Ez = s(t)E, - bE,.

Now suppose that s(t) = Z(t); i.e., the receiving system is driven by one of the

state variables of the transmitter. For the corresponding set of dynamic equations, it

can be shown that [Ex E, Ez] = [0 0 0] is a globally stable fixed point [2]. In other



words, the error between the transmitter and receiver state variables approaches zero

as time evolves, or equivalently the transmitter and receiver must synchronize.

At t = 0, the state of the transmitting and receiving systems is summarized by

a set of initial conditions [x y z]init and [xr yr zr]init. The state variables of the

receiver synchronize to those of the transmitter by approximately t = 2. Synchro-

nization is illustrated in Figure 2-1.

Synchronization of Transmitted and Received Lorenz Signals

CDo)

,n

E
Cu

- trans.
- - rec.

0 2 4 6 8 10
time (sec)

Figure 2-1: Synchronization

2.1 Spectrum of a Lorenz Signal

Though two Lorenz signals may synchronize with one another, the behavior of a single

Lorenz signal as a function of time is highly dependent upon the initial conditions of

the system which produces it. It is more natural to think of the set of signals which

can be produced by the Lorenz system as sample paths of a random process. This

model is not strictly accurate, since the dynamics of the system are deterministic,

but allows the application of techniques which are used to analyze the behavior of

random processes. Specifically, it is plausible to calculate the spectrum of a Lorenz

signal based on the statistical properties of the class of Lorenz signals to which it

belongs.



One means of obtaining an estimate for the power spectral density of a Lorenz

signal is by calculating an averaged periodogram. This technique, normally applicable

to stationary random signals, works well for the (pseudorandom) Lorenz signal since

the dynamics of the Lorenz system are time-invariant. The averaged periodogram

estimates the power in the signal at each frequency based on a truncated version of

the signal.

The averaging of consecutive spectral estimates based on consecutive but non-

overlapping sections of the original signal provides an asymptotically efficient estimate

of the power in the signal. The estimate may be further smoothed by using non-

rectangular windows ("modified periodogram") and/or averaging filters.

The spectrum of the Lorenz signal was calculated using a modified averaged pe-

riodogram. The modified averaged periodogram estimate of the Lorenz spectrum in

Figure 2-1 was obtained using 100 5-second sections of a Lorenz signal, each win-

dowed by the Hanning window. The relevant calculations can be found in Appendix

A. Figure 2-2 shows the estimated spectrum of the transmitted signal x(t) versus t

(in seconds). This and subsequent plots will assume that the variable t in the Lorenz

equations is measured in seconds. By selecting the time variable in the Lorenz equa-

tions to represent a different time unit, the time axis can be rescaled in an arbitrary

fashion, placing the Lorenz signal in any specified frequency range.

a,

E
'U

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
frequency (cycles/s)

Figure 2-2: Estimated Spectrum of a Lorenz Signal



2.2 Analysis Procedure

2.2.1 Integration Algorithm

The Lorenz equations were numerically integrated using a fourth-order Runge-Kutta

algorithm with a timestep of 0.0025. This value was chosen to ensure numerical

stability. Appendix B contains the integration routines.

While setting up the numerical integration, we might assume that since s(t) is

created by transmitting x(t) over a channel, we could include the analytic expression

for s(t) (in terms of x(t)) in the integration algorithm. We do not do this for the

following reason. Suppose the drive signal s(t) is represented as a vector of samples

s[n]. with a spacing of 6 seconds between samples. This vector contains all of the

information available to the receiving party about the signal x(t). However, noise

perturbations present in the transmission channel in addition to the gain or filtering

may result in an s[n] which bears little resemblance to x(t). Fourth-order Runge-

Kutta integration computes, for example, x(6) from x(0) by averaging contributions

from x(6/2) among other quantities. This is possible for x since it is defined on a

continuous variable t, but not for s[n]. Since s(6/2) is not available, we treat s[n] as

a vector of time-varying coefficients, rather than relating s[n] analytically to x(t).

Under ideal conditions (no noise), however, the quality of synchronization can

be improved by modifying the Runge-Kutta formulation; specifically, interpolation

of the drive signal decreases the energy in the synchronization error when no other

perturbations are present. Nevertheless, in the interest of preserving the validity of

the results obtained in this study under the most general set of circumstances, we

shall treat s(t) as described in the previous paragraph.

2.2.2 Parameter Values

At an early stage of these investigations, an array of tests was performed to examine

the effects of parameter variations on several system properties. Specifically, a was

varied from 8 to 16, r from 40 to 70, and b from 2 to 5. No significant qualitative



differences were observed in the system behavior, suggesting that characterization of

the Lorenz transmitter-receiver system at one set of parameter values was sufficient

to understand the system dynamics. The values of the Lorenz parameters chosen for

this study are a = 16, r = 60, b = 4.

2.3 Quantities of Interest

Relevant system parameters include:

,(t) = received signal before compensation

i(t) = received signal after compensation

- signal which drives the receiving system

ex(t = s(t) - ,(t)
- synchronization error

= difference between received and reconstructed x(t)

Px(t) = average power in x(t)

CER = Px(t) Pe,(t)

- chaos-to-error ratio

= quality of synchronization rating

Many measures were available to rate system performance: the average power

in the synchronization error, length of time necessary for transient decay, several

different signal-to-error ratios, among others. The measure which most effectively

indicated compensation strategies was the chaos-to-error ratio (CER) defined above:

the ratio of the average power in the transmitted signal x(t) to the average power

in the synchronization error ex(t). As we will see in the next chapter, the CER is a

smooth function of channel gain, reaching its peak when the synchronization error is

minimized, thus making it a natural choice for rating the quality of synchronization.



Chapter 3

Channel Corruption Effects

The problem facing the transmitting and receiving parties in a spread-spectrum com-

munications system is ensuring the functionality of the link between the chaotic drive

and response subsystems. Since the transmitter is generally unable to control the

characteristics of the communications channel over which the chaotic signal is trans-

mitted, the receiver's task is to compensate for the channel as well as possible. The

following diagram illustrates how such a system might be implemented:

Transmitting
System

Receiving
System

Figure 3-1: Chaotic Drive-Response Link with Channel Compensation

In general, the impulse response of the transmission channel is unknown, so a

model must be assumed by the receiving party. For simplicity, suppose that the



transmission channel imposes a time-varying gain G(t) on the intended drive signal

x(t), resulting in the uncompensated received signal i(t) = G(t)x(t). If G(t) = 1 for

all t, and the compensator's output is given by s(t) = i(t), then s(t) = x(t) and any

difference between the initial conditions in the transmitter and those in the receiver

will decay in a transient fashion. Thus, synchronization will result, as described

earlier. If the transmission channel gain is not unity, and there is no compensation,

the synchronization error incurred becomes significant; i.e., as the gain varies in either

direction away from G = 1, synchronization quality decreases.

Quality of Synchronization vs Channel Gain
1u

5

0

w

-5

-10

-1t

10-1  100 101
Channel Gain

Figure 3-2: Quality of Synchronization versus Channel Gain

Figure 3-2 shows the CER (in decibels) plotted versus channel gain, over several

octaves of variation in channel gain. The key feature of this curve is its unimodality;

it contains a global maximum at G = 1. For gains which are greater than unity, the

energy in the synchronization error approaches the energy of the received signal, which

is proportional to G2. Since P. is independent of G, the CER falls off approximately as

1/G2 . For gains much smaller than unity, the average magnitude of the reconstructed

signal is greater, surprisingly, than the average magnitude of x(t). Again, the CER

· · · · - · · I · · · · · · - ·

--



falls off with decreasing gain.

A slightly more complicated model might represent the channel transfer function

as a one-pole discrete-time filter:

H(z)

where u, v

U

1 -vz - 1

- filter parameters

Using this model for the channel filter, Figure 3-3 (a) plots filter magnitude versus

radian frequency with u = 1 and v = 0.1.

A Sample One-Pole Filter

w/pi (radians)

Figure 3-3: A Sample One-Pole Filter

We would like to scale the filter spectrum so that one period of the filter spectrum

approximately overlaps the Lorenz spectrum. Suppose we upsample the one-pole

filter by a factor N. This has the effect of compressing the filter spectrum by the



same factor N. The expression which represents the newly created all-pole filter is

H(z) = 1 - vz-N
where N = upsampling factor

The corresponding continuous-time transfer function is found by letting z = eS T in

the above expression, where s represents continuous-time frequency in radians/second.

We then have:

H(s) =
1 - ve - sNT

Using this filter model, it is possible to examine the CER as a function of both u

and v, with N = 100. This three-dimensional surface, illustrated in Figure 3-4 peaks

in a similar fashion to the two-dimensional plot of CER vs gain. If one parameter is

held constant while the other is varied, a cross-section of the 3-D plot is generated.

Note that this surface is unimodal; that is, the global maximum at u = 1, v = 0 is

the only extreme point on the surface. The cross-sectional plots also indicate that

each cross-section is unimodal. Unfortunately, the peaks do not coincide; u = 1 is

not necessarily the cross-sectional peak for all values of v, and similarly v = 0 is not

necessarily the peak at all values of u. This fact will hinder attempts at compensation,

as we will see in Chapter 5.
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Chapter 4

Gain Compensation Strategies

4.1 Real-Time Coarse Adjustment by Compari-

son of Average Power

We have seen that unless the transmission channel gain is unity, the transmitter will

not synchronize with the receiver. Assuming the channel imparts only a gain to the

transmitted signal, the ideal compensator is a gain block with gain C(t) = G-1(t).

At the receiver, 2(t) = G(t)x(t) is readily obtainable. Since the receiver is subject

to different initial conditions than the transmitter, x(t) itself is not available at the

receiver. Note, however, that the receiver, being identical to the transmitter in all

other respects, is capable of generating another sample path of the random process,

with the same statistical properties. It is therefore possible for the receiver to compute

Px off-line. This observation motivates a strategy for making a rough estimate of the

transmission channel gain G(t).

An estimator of C(t) may be obtained by first computing an approximate value for

Pi(t), the average power in the received signal at time t. Let tmin be the minimum

time interval required to calculate a stable estimate of P (t). Then the following

strategy gives an estimate C of the compensating gain C, as a function of time:



STRATEGY Gl:

* Over the time interval (t - tmin, t), compute Pj(t).

" C(t)= l=i7/

Given the earlier discussion of Lorenz spectrum estimation, we would like to know

the interval length (in seconds) needed to compute a valid estimate of the power in a

chaotic signal. The answer to this question may be found by examining the variance

of Lorenz power estimates as a function of interval length. This relationship is plotted

in Figure 4-1.

1800

1600

1400

1200

0 1000

Co
> 800

600

400

200

Variance of Lorenz Power Estimates vs. Interval Length

1 2 3 4 5 6 7
interval length (seconds)

Figure 4-1: Stability of Power Estimates

As illustrated, the variance of the estimate of P, levels off at tmi, a 2 seconds.

Assuming that we choose an interval of length at least tmin over which to compute

the power, we can be reasonably assured that the estimate is accurate.



Given tmi,, we can quantify the maximum rate at which G(t) must vary for real-

time gain compensation to be feasible. If G(t) varies slowly enough so that the gain

is approximately constant on time intervals of length tin, the above technique will

yield an excellent estimate of C(t). A good rule of thumb is that the spectrum of

G(t) should be bandlimited to approximately 27r/(10 - tmin).

Figure 4-2 shows a sample G(t) = 0.7 + 0.5 sin(27r(0.2)t) and the corresponding

C(t).

Compensation for Time-Varying Gain

0
0 2 4 6 8 1

time
0

Figure 4-2: Compensation for Time-Varying Gain

- - channel gain G(t)

o compensating gain C(t)
- overall gain G(t)*C(t)



4.2 Fine Adjustment by Analysis of Chaos-to-

Error Ratio

If the gain is static, a more effective strategy may be implemented. Let G(t) = G, for

all t. Over a wide range of channel gains, the CER-vs-gain characteristic has a single

local extremum, which is its global maximum. Because the gain is not time-varying,

it is possible to calculate the CER at several values of C to pinpoint the location of

the maximum. The following method may be employed to determine the true value

of C:

STRATEGY G2:

* Set C = 1, and calculate the CER from Px(t) (known) and P~,(t) (varies as a
function of G).

* Vary the value of C slightly away from 1 and recalculate CERX.

* If the new value of CER, is greater than the old value, continue to vary C in
the same direction. If the new value is smaller than the old value, vary C in
the opposite direction. Continue in this manner until CER, ceases to increase.
The value of C at which this occurs is the correct compensating gain.

The system characteristics which we exploit in employing this strategy are (1) the

unimodality of the CER-vs-gain curve and (2) the stationary channel gain. The first

property permits gradient search; that is, iterating toward the peak of the curve by

examining its slope. The second allows an initial guess of the correct compensating

gain to be refined until it is as close to optimal as possible.

A combination of the two proposed methods can monitor a very slowly varying

channel gain. For example, we might achieve a rough estimate of C by comparing

average powers, and then performing fine-adjustment in the remaining time until the

channel gain variation is significant enough to force a new rough estimate to be made.



Chapter 5

Filter Compensation Strategies

5.1 Real-Time Coarse Adjustment by Spectral

Comparison

The more general channel compensation problem is the deconvolution of the (un-

known) transfer function of the transmission channel. Theoretically, the correct com-

pensating filter could be precisely determined using a method analogous to the com-

parison of average power strategy G1. An estimator, C(s), could be obtained by

computing an approximation to Sjj(s), the power spectral density of the received

signal. We would then have:

IO(s)I = VS 3 (sX)/Si(s)

In practice, however, there is a problem with this approach. Estimation of the

spectrum of a signal using averaged periodograms is only asymptotically efficient, re-

quiring a large amount of data before the variance of the spectral estimate decreases

to within some specified tolerance. Real-time estimation of the unknown, possibly

time-varying channel filter, is made much more tractable by assuming a model for the

type of filtering present. Given the model and a set of experimental data, a best-fit



analysis on the data can determine the most likely model parameters. In the con-

text of channel compensation, the equivalent goal is to specify the parameters of the

optimal compensating filter which must be applied to the received signal in order to

recover the original transmission.

Recall the all-pole channel filter of the form:

H(s) = u/(1 - ve-'NT),

The corresponding compensator, an all-zero filter, has frequency response C(s) =

H-l(s), and may be represented as an FIR filter of length (N + 1):

C(s) = - eSNT

Note, however, (N - 1) of these coefficients are zero; only the first and last co-

efficients are nonzero. The theoretical values of a and b in terms of u and v are

a = u- 1, b = vu - 1. We will apply essentially the same strategies to estimate the com-

pensator coefficients as were applied to the gain problem; the presence of additional

degrees of freedom (multiple coefficients to select as opposed to only one) only causes

slight modifications to the original compensation strategies. Also, although u, v, a,

and b may themselves be nonstationary, we choose to suppress the time parameter

in our filter expressions. Clearly, the limitations on compensation which apply to

time-varying gains similarly apply to time-varying filter coefficients.

The first strategy we will consider for estimation of the filter coefficients a and

b will be the comparison of power spectra technique. By definition, the following

relationships are true for the actual power spectral densities:

Sn(s) = H(s)H(-s)S,.(s) (5.1)



SjE(jw) = IH(jw)I2S..(jw)

The following strategy, then, estimates the two coefficients a and b which comprise

&(S) = a - be-.NT:

STRATEGY Fl:

* Compute a spectral estimate Sjj(jwk) for the spectrum of the received signal.

SIC(jwk)l = Sxx(jWk)/1S^(jWk)

* To locate the coefficients & and b, use a least-square-error optimization routine
to find the best-fit solution to the following set of k equations (choose k as large
as is feasible given computing constraints, choose the set of frequencies wk to
sample one period of the filter frequency response)

O(jwk) = a- bewkNT (5.3)

Figure 5-1 illustrates this compensation strategy. The recovered filter spectrum,

shown in the second plot, is an approximation to the actual filter spectrum shown in

the first plot. To estimate the coefficients of the all-pole filter which this spectrum is

supposed to represent, the above equations were evaluated at five frequencies equally

spaced over one period of the spectrum, drawn in as x's on the second plot. Within

a few percent, the filter coefficients were recovered, from which it was possible to

approximately determine an approriate compensating filter.

5.2 Fine Adjustment by Analysis of Chaos-to-

Error Ratio

The second strategy we will consider will be the technique based on minimization of

synchronization error. As we have seen earlier, the CER (as a function of the trans-

mission channel filter coefficients u and v) is unimodal over a wide range surrounding

the peak at the optimal (u, v) = (1, 0), at which synchronization occurs. Recall that

(5.2)
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u = 1 is not the cross-sectional peak for all values of v, and similarly v = 0 is not the

peak at all values of u. Therefore, it is not valid to first maximize the CER over one

of the variables, then maximize the remaining function of the other variable, in order

to locate the global maximum.

What is possible to implement, however, is a multi-dimensional gradient search

subroutine. Such an algorithm computes the direction of maximum (positive) vari-

ation in the CER at a particular point (uo, v0). This lends itself to the following

strategy, analogous to gain strategy G2:

STRATEGY F2:

* Set a = 1, b = 0, and calculate the CER from P.(t) (known) and Pe,(t) (varies
as a function of u and v).

* Compute the direction of maximum positive variation in the CER at the cur-
rent values of a and b.

* Vary the values of a and b in the direction of increasing CER. Repeat the
gradient search until the peak of the CER surface is located. The values of a
and b at which this occurs are the correct compensating coefficients.

The difficulty in implementing strategy F2 is in creating a real-time gradient-

search routine. Again, this strategy is more appropriate for channel compensation

which need not take place in real-time. As before, a combination of the above methods

may be very well-suited to monitor very slowly varying channel characteristics.



Chapter 6

Conclusions

6.1 Summary of Key Results of this Thesis

We have examined the behavior of self-synchronizing chaotic systems which are sub-

ject to transmission channel corruption. The quality of synchronization is greatest

when the transmission channel is unperturbed, and falls off uniformly when the chan-

nel contains gain or filtering effects. The unimodality of the CER-vs-gain curve

provides a means of compensating for static channel gains, but comparison of average

powers offers the ability for real-time compensation of time-varying channel gains.

In the channel filtering case, spectral comparison is a much more viable means of

compensation than multi-dimensional gradient search.

6.2 Suggestions for Further Work on this Topic

The many simplifying assumptions incorporated into this study point to avenues for

further research concerning self-synchronizing chaotic systems. Attempts to observe

similar behaviors to those exhibited by the Lorenz transmitter-receiver system within

other chaotic frameworks would certainly be worthwhile.

The filter compensation problem has only been touched on; relevant issues which

have not yet been explored include how well the spectrum of a chaotic signal can, in

general, be estimated; if it were the case that the entire spectrum could be exactly



computed, then the optimal compensator would be available in the form of the inverse

filter. Existing techniques for computing spectral estimates are subject to computa-

tional constraints; a better approach might include a search for compensators which

are nearly optimal and require only small amounts of computing resources to operate.



Appendix A

Calculations

Calculation of the periodogram of x[n]:

Let x[n] be a discrete-time signal whose spectrum is to be estimated.

Let w[n] be the window which captures a time-limited portion of x[n], yielding

v[n] = w[n]x[n].

Let L be the length of w[n]; w[n] is nonzero on [0, L - 1].

Then I(w), the periodogram estimate of IX(ejw)12, is given by:

L-1

V(ej ") = v[n]e-jwn (A.1)
n=o

I(w) = LIV(e"w)12 (A.2)

where U is the normalizing constant

1 L-1
U = L (~ [n])2 (A.3)

n=o

Calculation of the an averaged periodogram of x[n]:

Let K consecutive segments, each of length L, be chosen from x[n]. Denote these

by xi[n], i = 1, 2, .. , k.

Let w[n] be the window applied to each segment, yielding v[n] = w[n]xi[n].



Then I(w), the periodogram estimate of IX(eJw)12, is given by:

L-1

Vn(ej w) = vi[nje - j wn (A.4)
n=O

li(w) = 1 i (ejw) 2 (A.5)
LU

1(K
I(w) = E Ii(w) (A.6)

i=1



Appendix B

Source Code

The following Matlab scripts were made available by Dr. Kevin Cuomo for integration

of the Lorenz equations.

function [x1,x2,x3] = lorcirc(tinc,tf,x0,sig,rr,b,T);
%. This Matlab script integrates the Lorenz transmitter equations from

% 0 to tf with time increment tinc.
% xO is the initial state of the transmitter.
% sig, rr, b are the Lorenz parameters sigma, r, and b.

% T adjusts the signal timescale.

numinc=ceil(tf/tinc);
xl0=xO(1);
x20=x0(2);
x30=x0(3);
xl(1)=xlO;
x2(1)=x20;
x3(1)=x30;
for i=l:numinc

r=rr;
al=tinc*T*sig*(x20-xlO);

a2=tinc*T*(-xlO*x30+r*xlO-x20); a3=tinc*T*(xlO*x20-b*x30);
bl=tinc*T*sig*((x20+a2/2)-(xlO+al/2));
b2=tinc*T*((xlO+al/2)*(x30+a3/2)+r*(xlO+al/2)-(x20+a2/2));
b3=tinc*T*((xlO+al/2)*(x20+a2/2)-b*(x30+a3/2));
cl=tinc*T*sig*((x20+b2/2)-(xlO+bl/2));
c2=tinc*T* ((xlO+bl/2) * (x30+b3/2)+r*(xlO+bl/2)-(x20+b2/2));
c3=tinc*T* ((xlO+bl/2) * (x20+b2/2)-b* (x30+b3/2));



dl=tinc*T*sig ((x20+c2)-(xlO+cl));
d2=tinc*T*((xlO+cl)*(x30+c3)+r*(xlO+cl)-(x20+c2));
d3=tinc*T*((xl+cl)(x+c (x20+c2)-b*(x30+c3));

xl(i+1)=xl0+(al bl+*b+2.*cli+di)/6.;

x2(i+1)=x20+(a2+2.*b2+2.*c2+d2)/6.;
x3(i+1)=x30+(a3+2.*b3+2.*c3+d3)/6.;
xl0=xl (i+1);
x20=x2(i+l);
x30=x3(i+l);

end



function [xl,x2,x3] = lorrecr(tinc,tf,xO,sig,rr,b,d,T);
% This Matlab script integrates the Lorenz receiver equations from
% 0 to tf with time increment tinc.
% xO is the initial state of the receiver.

% d is the drive signal $s(t)$.

numinc=ceil(tf/tinc);
x10=x0(1);
x20=x0 (2);
x30=xO(3);

xl(1)=x10;

x2(1)=x20;
x3(1)=x30;
for i=l:numinc

r=rr;

al=tinc*T*sig*(x20-xlO);
a2=tinc*T*(-d(i)*x30+r*d(i)-x20);
a3=tinc*T*(d(i)*x20-b*x30);
bl=tinc*T*sig*((x20+a2/2)-(xlO+al/2));
b2=tinc*T*(-d(i)*(x30+a3/2)+r*d(i)-(x20+a2/2));
b3=tinc*T*(d(i)*(x20+a2/2)-b*(x30+a3/2));
cl=tinc*T*sig* ((x20+b2/2)- (xl0+bl/2));
c2=tinc*T*(-d(i)*(x30+b3/2)+r*d(i)-(x20+b2/2));
c3=tinc*T*(d(i)*(x20+b2/2)-b*(x30+b3/2));
dl=tinc*T*sig*((x20+c2)-(xlO+cl));
d2=tinc*T*(-d(i)*(x30+c3)+r*d(i)-(x20+c2));
d3=tinc*T*(d(i)*(x20+c2)-b*(x30+c3));

xl(i+l)=xlO+(al+2.+*bl+2.*cl+dl)/6.;
x2(i+l)=x20+(a2+2.*b2+2.*c2+d2)/6.;

x3(i+l)=x30+(a3+2.*b3+2.*c3+d3)/6.;
xlO=xl(i+l);
x20=x2(i+l);

x30=x3(i+l);
end
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