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Abstract

This thesis examines the problem of learning unknown target functions from examples.
In particular, we focus on the informational complexity of learning these classes, i.e., the
number of examples needed in order to identify the target with high accuracy and great
confidence. There are a number of factors affecting the informational complexity, and we
attempt to tease them apart in different settings, some of which are cognitively relevant.

1) We consider a wide class of pattern classification and regression schemes known
as regularization networks. We investigate the number of parameters and the number of
examples that we need in order to achieve a certain generalization error with prescribed
cofidence. We show that the generalization error is due in part to the representational
inadequacy (finite number of parameters) and informational inadequacy (finite number of
examples), and bound each of these two contributions. In doing so, we characterize a) the
inherent tension between these two forms of error: attempting to reduce one, increases the
other b) the class of problems effectively solved by regularization networks c) how to choose
an appropriately sized network for such a class of problems.

2) Rather than drawing its examples randomly (passively), suppose a learner were al-
lowed to choose its own examples. Does this option allow us to reduce the number of
examples? We derive a sequential version of optimal recovery allowing the active learner
to adaptively choose points of maximum information. We compare this against the passive
case, and classical optimal recovery, indicating superior performance.

3) We investigate the problem of language learning within the principles and parameters
framework. We show how certain memoryless algorithms operating on finite parameter
spaces can be effectively modeled as a Markov chain. This allows us to characterize the
learnability, and sample complexity of such linguistic spaces.

4) We consider a population of learners attempting to learn a target language using some
learning algorithm. We derive a dynamical system model (from the grammatical theory
and learning paradigm) characterizing the evolving linguistic composition of the population
over many generations. We examine the computational and linguistic consequences of this
derivation, and show that it allows us to formally pose an evolutionary criterion for the
adequacy of linguistic theories.

Thesis Supervisor: Tomaso Poggio
Title: Professor of Brain and Cognitive Science
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Chapter 1

Introduction

Abstract

We introduce the framework in which learning from examples is to be studied. We develop a precise
notion of informational complexity and discuss the factors upon which this depends. Finally, we
provide an outline of the four problems discussed in this thesis, our major contributions, and their
implications.

Learning is the centerpiece of human intelligence. Consequently any attempt to un-
derstand intelligence in the human being or to replicate it in a machine (as the field
of artificial intelligence is committed to doing) must of necessity explain this remark-
able ability. Indeed a significant amount of effort and initiative has gone into this
enterprise and a collective wisdom has emerged regarding the paradigms in which this
study is to be conducted.

Needless to say, learning can mean a variety of things. The ability to learn a
language, to recognize objects, to manipulate them and navigate through them, to
learn to play chess or to learn the theorems of geometry all touch upon different sectors
of this multifaceted activity. They require different skills, operate on different spaces
and use different procedures. This has naturally led to a spate of learning paradigms;
but most share one thing in common, i.e., learning as opposed to “preprogrammed”
or memorized behavior involves the updating of hypotheses on the basis of some kind
of experience: an adaptation if you will to the environment on the basis of stimuli
from it. The connection to complex adaptive systems springs to mind and later in
this thesis we will make this connection more explicit in a specific context.

How then does one begin to study such a multifaceted problem? In order to
meaningfully define the scope of our investigations, let us begin by considering a
formulation by Osherson et al (1986). They believe (as do we) that learning typically

involves

1. A learner

14



2. A thing to be learned.
3. An environment in which the thing to be learned is presented to the learner.

4. The hypotheses that occur to the learner about the thing to be learned on the

basis of the environment.

Language acquisition by children is a classic example which fits well into this
framework. “Children are the learners; a natural language is the thing to be learned;
the corpus of sentences available to the child is the relevant environment; grammars
serve as hypotheses.” (from Systems that Learn; Osherson et al 1986). In contrast.
consider an example from machine learning; the task of object recognition by the
computer. Here the computer (or the corresponding algorithm) is the learner, the
identity of objects (like chairs or tables, for example) are the things to be learned,
examples of these objects in the form of images are the relevant environment, and
the hypotheses might be decision boundaries which can be computed by a neural
network.

In this thesis we will concern ourselves with learning input-output mappings from
examples of these mappings; in other words, learning target functions which are as-
sumed to belong to some class of functions. The view of the brain as an information
processor (see Marr, 1982) suggests that in solving certain problems (like object recog-
nition, for example) the brain develops a series of internal representations starting
with the sensory (external) input; in other words, it computes a function. In some
cases, this function is hardwired (like detecting the orientations of edges in an image,
for example), in others the function is learned like learning to recognize individual
faces.! As another example of an input-output function the brain has to compute.
consider the problem of speech recognition. The listener is provided with an acoustic
signal which corresponds to some underlying sentence, i.e., a sequence of phonetic
(or something quite like it) categories. Clearly the listener is able to uncover the
transformation from this acoustic space to the lexical space. Note also that this
transformation appears to be different for different languages, i.e., different languages
have different inventories of phonetic symbols. Further, they carve up the acoustic
space in different ways; this accounts for why the same acoustic stimuli might be

perceived differently as belonging to different phonetic categories by a native speaker

'Functions mapping images of faces to the identity of the person possessing them may of course
themselves be composed of more primitive functions, like edge detectors, which are hardwired. There
is a considerable body of literature devoted to identifying the hardwired and learned components
of this entire process from a neurobiological perspective. The purpose of this example was merely
to observe that the brain appears to learn functions of various kinds; consequently studying the
complexity of learning functions is of some value.

15



of Bengali and a native speaker of English. Since children are not genetically predis-
posed to learn Bengali as opposed to English (or vice versa) one might conclude that
the precise nature of this transformation is learned. |

Not all the functions we consider in this thesis can be psychologically well-motivated;
while some chapters of this thesis deal with languages and grammars which are linguis-
tically well motivated, Chapter 2, which concentrates in large part on Sobolev spaces,
can hardly seem to be interesting psychologically. However, the central strand run-
ning through this thesis is the informational complexity of learning from examples.
In other words, if information is provided to the learner about the target function
in some fashion, how much information is needed for the learner to learn the target
well? In the task of learning from examples, (examples, as we shall see later are really
often nothing more than (z,y = f(z)) pairs where (z,y) € X xY and f: X —Y)
how many examples does the learner need to see? This same question is asked of
strikingly different classes of functions: Sobolev spaces and context free languages.
Certain broad patterns emerge. Clearly the number of examples depend upon the
algorithm used by the learner to choose its hypotheses, the complexity of the class
from which these hypotheses are chosen, the amount and type of noise and so on.
We will try in this thesis to tease apart the relative contributions of each in specific
settings in order to uncover fundamental constraints and relationships between oracle
and learner; constraints which have to be obeyed by nature and human in the process
of living.?

This then is our point of view. Let us now discuss some of the relevant issues in
turn, briefly evaluate their importance in a learning paradigm, and the conceptual

role they have to play in this thesis.

1.1 The Components of a Learning Paradigm

1.1.1 Concepts, Hypotheses, and Learners
Concept Classes

We need to define the “things” to be learned. In order to do this, we typically assume
the existence of identifiable entities (concepts) which are to be learned and which
belong perhaps to some set or class of entities (the concept class). Notationally, we

can refer to the concept class by C which is a set of concepts ¢ € C. These concepts

2Even if we are totally unconcerned with human learning and are interested only in designing
machines or algorithms which can learn functions from examples, a hotly pursued subject in machine
learning, the issue of number of examples is obviously of considerable importance
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need to be described somehow and various representation schemes can be used. For
example, researchers have investigated concept classes which can be expressed as
predicates in some logical system (Michalski, Carbonell, and Mitchell; 1986). For our
purposes we concentrate on classes of functions, i.e., our concept classes are collections
of functions from X to Y where X and Y are sets. We will define the specific nature
of these functions over the course of this thesis.

Information Sources

Information is presented to the learner about a target concept ¢ € C in some fashion.
There is a huge space of possibilities ranging from a “divine” oracle simply enlight-
ening the learner with the true target concept in one fell sweep to adversarial oracles
which provide information in a miserly, deliberately malicious fashion. We have al-
ready restricted our inquiry to studying the acquisition of function classes. A natural
and well studied form of information transmission is to allow the learner access to an
oracle which provides (z,y) pairs or “labelled examples” perhaps tinged with noise.
In a variant of the face recognition problem (Brunelli and Poggio, 1992; where one
is required to identify the gender of some unknown person), for example, labelled
examples might simply be (image,gender) pairs. On the basis of these examples then,
the learner attempts to infer the target function.

We consider several variants to this theme. For example, in Chapter 2, we allow the
learner access to (z,y) pairs drawn according to a fixed unknown arbitrary probability
distribution on some space X x Y. This represents a passive learner who is at the
mercy of the unknown probability distribution, which could, in principle provide
unrepresentative data with high probability. In Chapter 3 we explore the possibility
of reconstructing functions by allowing the learner to choose his or her own examples,
i.e., an active collector rather than a passive recipient of examples. This is studied in
the context of trying to learn functional mappings of various sorts. Mathematically,
there are connections to adaptive approximation, a somewhat poorly studied problem.
Active learning (as we choose to call it) is inspired by various strategies of selective
attention that the human brain develops to solve some cognitive tasks. In Chapters
4 and 5 which concentrate on learning the class of natural languages, the examples
are sentences spoken by speakers of the target language. We assume again that
these sentences are spoken according to a probability distribution on all the possible
sentences; there are two further twists: 1) no negative examples occur and 2) typically
a bound on the length of the sentences is observed. In all these cases, the underlying
question of interest is: given the scheme of presenting examples to the learner, how

many examples does the learner need to see to learn well? This question will be
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sharpened as we progress.

The Learner and Its Hypotheses

The learner operates with a set of hypotheses about reality. As information is pre-
sented to it, it updates its hypothesis, or chooses® among a set of alternate hypotheses
on the basis of the experience (evidence, data depending upon your paradigm of think-
ing). Clearly then, the learner is mapping its data onto a “best” hypothesis which it
chooses in some sense from a set of hypotheses (which we can now call the hypothesis
class, H). This broad principle has found instantiations in many differing forms in
diverse disciplines.

Consider an example chosen from the world of finance. A stockbroker might wish
to invest a certain amount of money on stock. Given the variation of share values over
the past few years (a time series) and given his or her knowledge or understanding
of the way the market and its players operate, he or she might choose to invest in a
particular company. As the market and the share prices unfold, he (or she) might vary
the investments (buying and selling stock) or updating the hypotheses. Cumulative
experience then might “teach” him/her (or in other words, he/she might “learn”) to
play this game well.

Or consider another mini-example from speech recognition (specifically phonetic
recognition) mapping data to hypotheses. Among other things, the human learner
has to discriminate between the sounds /s/ and /sh/. He or she learns to to do
this by being exposed to examples (instances) of each phoneme. Over the course of
time, after exposure to several examples, the learner develops a perceptual decision
boundary to separate /s/ sounds from /sh/ sounds in the acoustic domain. Such
a decision boundary is clearly learned; it marginally differs from person to person
as evidenced by differing responses humans might have when asked to classify a
particular sound into one of the two categories. This decision boundary, h, can be
considered to be the learner’s hypothesis of the s/sh distinction (which he or she
might in principle pick from a class of possible decision boundaries H on the basis of
the data).

As a matter of fact, the scientific enterprise itself counsists of the development of
hypotheses about underlying reality. These hypotheses are developed by observing
patterns in the physical world and represented as models, schema or theories which

describe these patterns concisely.

3In artificial intelligence, this task of “searching” the hypothesis space has been given a lot of
attention resulting in a profusion of searching heuristics and characterizations of the computational
difficulty of this problem. In this thesis, we ignore this issue for the most part.
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If indeed the learner is performing the task of mapping data to hypotheses, it
becomes of interest to study the space of algorithms which can perform this task.
Needless to say, the operating assumption is that the human learner is also following
some algorithm; insights from biology or psychology might help the computer scientist
to narrow the space of algorithms and a biologically plausible computational theory
(Marr, 1982) might emerge. For our purposes then the learner is an algorithm (or a
partial recursive function) from data sets to hypothesis classes.

There is a further important connection between concepts and hypotheses which
should be highlighted here. In our scheme of things, concepts are assumed to be
the underlying reality; hypotheses are models of this reality. Clearly for successful
learning (we discuss learnability in the next section) to occur, the elements of H should
be able to approximate the elements of C, in other words, H should have sufficient
power or complexity to express C. For learnability in the limit (Gold, 1967) or PAC-
style (Probably Approximately Correct; Valiant, 1984) models for learnability, this
notion can be made more precise. For example, if C is some class of real valued

functions, ‘H should probably be dense in C.

1.1.2 Generalization, Learnability, Successful learning

In addition to the four points noted earlier, another crucial component of learning
is a criterion for success. Formally speaking, one needs to define a metric on the
space of hypotheses in order to measure the distance between differing hypotheses, as
also between the target concept and the learner’s hypothesis. It is only when such a
metric is imposed, that one can meaningfully decide whether a learner has “learned”
the target concept. There are a number of related notions which might be worthwhile
to introduce here.

First, there is the issue of generalization. It can be argued, that a key component
of learning is not just the development of hypotheses on the basis of finite experience
(as experience must be), but the use of those hypotheses to generalize to unseen ex-
perience. Clearly successful generalization necessitates the closeness (in some sense)
of the learner’s hypothesis and the target concept, for it is only then that unseen data
(consistent with the target concept) can be successfully modeled by the learner’s hy-
pothesis. Thus successful learning would involve successful generalization; this thesis
deals with the informational complexity of successful generalization. The learnability
of concepts implies the existence of algorithms (learners) which can develop hypothe-
ses which would eventually converge to the target. This convergence “in the limit” is
analogous to the notion of consistency in statistical estimators and was introduced to
the learning community by Gold (1967) and remains popular to this day as a criterion
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for language learning.

In our case, when learning function classes, H and C contain functions from some
space X to some space Y, examples are (x,y) pairs consistent with some target func-
tion ¢ € C. Let the learner’s hypothesis after m such examples be h,, € H. According
to some pre-decided criterion, we can put a distance metric d on the space of functions
to measure the distance between concept and hypothesis (this is our generalization
error) d(hm,c). Learnability in the limit would require d(h,c) to go to zero as the
number of examples, m, goes to infinity. The sense in which this convergence occurs
might depend upon several other assumptions; one might require this convergence to
hold for every learning sequence, i.e., for every sequence of examples, or one might
want this to be satisfied for almost every sequence in which case one needs to assume
some kind of measure on the space according to which one might get convergence in
measure (probability).

Convergence in the limit measures only the asymptotic behavior of learning algo-
rithms; they do not characterize behavior with finite data sets. In order to correct
for this it is required to characterize the rates of the above-mentioned convergence;
roughly speaking how many examples does the learner need to collect so that the gen-
eralization error will be small. Again depending upon individual assumptions, there
are several ways to formally pose this question. The most popular approach has been
to provide a probabilistic formulation; Valiant (1984) does this in his PAC model
which has come to play an increasingly important role in computational learning the-
ory. In PAC learning, one typically assumes that examples are drawn according to
some unknown probability distribution on X x Y and presented to the learner. If
there exists an algorithm A which computes hypotheses from data such that for every
e >0and 0 <8 <1, A collects m(e, §) examples and outputs a hypothesis h,, satis-
fying d(hm,c) < € with probability greater than 1 — é, then the algorithm is said to
PAC-learn the concept c. If the algorithm can PAC-learn every concept in C then the
concept class is said to be PAC-learnable. Looking closely, it can be realized that PAC
learnability is essentially the same as weak convergence in probability of hypotheses
(estimators) to their target functions with polynomial rates of convergence. In any
case, PAC like formulations play a powerful role in characterizing the informational
complexity of learning; we have a great intellectual debt to this body of literature
and its influence in this thesis cannot be overemphasized.

Remark Sometimes, an obsession with proving the convergence of learning algorithms
might be counterproductive. A very good example of that considered in this thesis is
the problem of language learning and language change. We need to be able to explain

how children learn the language of their social environment on the basis of example
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sentences. In particular, researchers have postulated algorithms by means of which
they can do this; considerable effort has gone into showing that these algorithms suc-
cessfully converge to the target. However, this does not explain the simultaneously
confounding fact that languages change with time. If generation after generation,
children successfully converge to the language of their parental generation, then lan-
guages would never change. The challenge lies in constructing learning paradigms
which can explain both. In our thesis, we demonstrate this by moving into a model
for language change by starting out with a model for language learning. The lan-
guage change model is a dynamical system characterizing the historical evolution of

linguistic systems; a formalization of ideas in Lightfoot (1991) and Gell-Mann (1989).

1.1.3 Informational Complexity

We have discussed how the learner chooses hypotheses from H on the basis of data
and how one needs to measure the relative “goodness” of each hypothesis to set a
precise criterion for learning. We have also introduced the spirit of the Gold and
Valiant formulations of learning and their relationship to the issues of the number of
examples and successful generalization. We pause now to comment on some other
aspects of this relationship.

First, note that for a particular concept ¢ € C, given a distance metric d, there
exists a best hypothesis in H given by

he = arg min d(e, h)

Clearly, if H has sufficient expressive power, then d(h,c) will be small (precise
learnability would actually require it to be 0). If H is a small class, then d(c, ko)
might be large for some ¢ € C and even in the case of infinite data, poor generalization
will result. This is thus a function of the complexity of the model class H and how
well matched it is to C, a matter discussed earlier as well.

Having established that h. is the best hypothesis the learner can possibly pos-
tulate; it is consequently of interest to be able to characterize the convergence of the
learner’s hypothesis h,, to this best hypothesis as the number of data, m, goes to
infinity. The number of examples the learner needs to see before it can choose with
high confidence a hypothesis close enough to the best will be our notion of informa-
tional complexity. A crucial observation we would like to make is that the number
of examples depends (among other things, and we will discuss this soon) upon the
size of the class H. To intuitively appreciate this, consider the pathological case of H

consisting of just one hypothesis. In that case, h,, € H is always equal to h, € H
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and the learner needs to see no data at all. Of course, the expressive power of such
a class H would be extremely limited. If on the other hand, the class H is very com-
plex and for a finite data set has a large number of competing hypotheses which fit
the data but extend in very different ways to the complete space, then considerably
more data would be needed to disambiguate between these hypotheses. For certain
probabilistic models (where function learning is essentially equivalent to statistical
regression) Vapnik and Chervonenkis studied this problem closely and developed the
notion of VC-dimension: a combinatorial measure of the complexity of the class H
which is related to its sample complexity (see also Blumer et al (1986) for applications
to computational learning theory).

Thus broadly speaking, the more constrained the hypothesis class H, the smaller
is the sample complexity (i.e. the easier it is to choose from finite experience the
best hypothesis) but then again, the poorer is the expressive power and consequently
even h,, might be far away from the reality c¢. On the other hand, increasing the
expressive power of H might decrease d(h,c) but increase the sample complexity.
There is thus an inherent tension between the complexity of H and the number of
examples; finding the class H of the right complexity is the challenge of science. Part
of the understanding of biological phenomena involves deciding where on the tightrope
between extremely complex and extremely simple models the true phenomena lie. In
this respect, informational complexity is a powerful tool to help discriminate between
models of different complexities to describe natural phenomena.

One sterling example where this information-complexity approach has startlingly
revised the kinds of models used can be found in the Chomskyan revolution in linguis-
tics. Humans develop a mature knowledge of language which is both rich and subtle
on the basis of example sentences spoken to them by parents and guardians during
childhood. On observing the child language acquisition process, it is remarkable how
few examples they need to be able to generalize in very sophisticated ways. Further
it is observed that children generalize in roughly the same way; too striking a coin-
cidence to be attributed purely to chance. Languages are infinite sets of sentences;
yet on the basis of exposure to finite linguistic experience (sentences) children gen-
eralize to the infinite set. If it were the case that children operated with completely
unconstrained hypotheses about languages, i.e., if they were willing to consider all
possible infinite extensions to the finite data set they had, then they would never be
able to generalize correctly or generalize in the same manner. They received far too
few examples for that. This “poverty of stimulus” in the child language acquisition
process motivated Chomsky to suggest that children operate with hypotheses about |

language which are constrained in some fashion. In other words, we are genetically
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Figure 1-1: The space of possibilities. The various factors which affect the informa-
tional complexity of learning from examples.

predisposed as human beings to choose certain generalizations and not others; we
operate with a set of restricted hypotheses. The goal of linguistics then shifted to
finding the class ‘H with the right complexity; something which had large enough
expressive power to capture the natural languages, and low enough to be learned by
children. In this thesis we spend some time on models for learning languages.

Thus we see that an investigation of the informational complexity of learning
has implications for model building; something which is at the core of the scientific
enterprise. Particularly when studying cognitive behavior, it might potentially allow
us to choose the right complexity, i.e., how much processing is already built into the
brain (the analog of Hubel and Wiesel’s orientation-specific neurons or Chomsky’s
universal grammar) and how much is acquired by exposure to the environment. At
this point. it would be worthwhile to point out that the complexity of H is only one
of the factors influencing the informational complexity. Recall that we have already
sharpened our notion of informational complexity to mean the number of examples
needed by the learner so that d(A,,, he) is small. There are several factors which
could in principle affect it and Figure 1.1 shows them as decomposed along several
different dimensions in the space of possibilities. '

('learly. informational complexity might depend upon upon the manner in which
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examples are obtained. If one were learning to discriminate between the sounds
/s/ and /sh/, for example, one could potentially learn more effectively if one were
presented with examples drawn from near the decision boundary, i.e., examples of
sounds which were likely to be confused. Such a presentation might conceivably
help the learner acquire a sharper idea of the distinction between the two sounds
rather than if it were simply presented with canonical examples of each phoneme. Of
course, it might well be the case that our intuition is false in this case, but we will
never know unless the issue is formally addressed. In similar fashion, the presence
and nature of the noise corrupting the examples could affect sample complexity. In
the case of s/sh classification, a lot of noise in high frequency bands of the signal
could affect our perception of frication and might delay learning; on the other hand
noise which only affects volume of the signal might have less effect. The algorithm
used to compute a best hypothesis h,, from the data might affect both learnability
and sample complexity. A muddle-headed poorly motivated algorithm might choose
hypotheses at random or it might choose hypotheses according to some criterion which
has nothing to do with the metric d by which success is to be measured. In such cases,
it is possible that h,, might not converge to h at all, or it might take a very long
time. Finally the metric d according to which success is to be measured is clearly a
factor.

These different factors interact with each other; our central goal in this thesis is
to explore this possibility-space at many different points. We will return to this space
and our points of exploration later. It is our hope that after seeing the interaction
between the different dimensions and their relation to informational complexity, our

intuitions about the analysis of learning paradigms will be sharpened.

1.2 Parametric Hypothesis Spaces

We have already introduced the notion of hypotheses and hypothesis classes from
which these hypotheses are chosen. We have also remarked that the number of ex-
amples needed to choose a “best” hypothesis (or at any rate, one close enough to
the best according to our distance metric) depends inherently upon the complexity
of these classes. Another related question of some interest is: how do we represent
these hypotheses? One approach pervasive in science is to capture the degree of vari-
ability amongst the hypotheses in a parametric fashion. The greater the flexibility
of the parameterization, the greater the allowed variability and the less is the inbuilt’
constraints, i.e., the larger the domain and consequently the larger the search space.

One can consider several other examples from the sciences where parametric models
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Figure 1-2: The structure of a Hyper Basis Function Network (same as regularization
network).

have been developed for some task or other.

In our thesis. we spend a considerable amount of time and energy on two paramet-
ric models which are remarkably different in their structural properties and analyze
issues of informational complexity in each. It is worthwhile perhaps to say a few

words about each.

Neural Networks

Feed-forward “neural networks” (Lippman, 1987) are becoming increasingly popular
in science and engineering as a modelling technique. We consider a class of feed-
forward networks known as Gaussian regularization networks (Poggio and Girosi,
1990). Essentially, such a network performs a mapping from R* to R given by the

following expression
n

y= Z CiG(L_til)

=1 g;
Fig. 1-2 shows a diagrammatic (it is particularly popular in the neural net communi-
ties to show the diagrams or architecture and we see no need to break with tradition
here) representation of the network. The ¢;’s are real-valued, G is a Gaussian func-
tion (activation function), the t;’s are the centers, and the o;’s are the spreads of the
Gaussian functions.
Clearly then, one can consider H, to be the class of all functions which can be

represented in the form above. This class would consist of functions parameterized by
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3n parameters; corresponding to the free variables ¢;, t;, and o;. One can make several
alterations to the architecture; changing for example the number of layers, changing
the activation functions, putting constraints on the weights and so on thereby arriving
at different kinds of parameterized families, e.g., the multilayer perceptrons with
sigmoidal units, hierarchical mixture of experts (Jacobs et al, 1991) etc. Such feed
forward networks have been used for tasks as diverse as discriminating between virgin
and non-virgin olive oil, speech recognition, predicting the stock market, robotic
control and so forth. Given the prevalence of such neural networks, we have chosen in

this thesis to investigate issues pertaining to informational complexity of networks.

Natural Languages

Natural languages can be described by their grammars which are essentially functional
mappings from strings to the set {0,1}. According to conventional notation, there is
an alphabet set ¥ which is a finite set of symbols. In the case of a particular natural
language, like English, for example, this set is the vocabulary: a finite set of words.
These symbols or words are the basic building blocks of sentences which are just
strings of words. X denotes the set of all finite sentences and a language L is a
subset of Yx, i.e., some collection of sentences which belong to the language. For
example, in English,[ eat bananas is a sentence (an element of ¥*), being as it is a
string of the three words (elements of ¥), [, eat, and bananas. Further, this sentence
belongs to the set of valid English sentences. On the other other hand, the sentence
[ bananas eat, though a member of ¥* is not a member of the set of valid English
sentences.

The grammar Gpassociated with the language L then is a functional description
of the mapping from ¥* to {0,1}, all sentences belonging to ¥* which belong to L
are mapped onto 1 by G, the rest are assigned to 0. According to current theories of
linguistics which we will consider in this thesis, it is profitable for analysis to let the
set ¥ consist of syntactic categories like verbs, adverbs, prepositions; nouns, and so
on. A sentence could now be considered to be a string of such syntactic categories:
each category then maps onto words of the vocabulary. Thus the string of syntactic
categories Noun Verb Noun maps onto [ eat bananas; the string Noun Noun Verb
maps onto [ bananas eat. A grammar is a systematic system of rules and principles
which pick out some strings of syntactic categories as valid, others as not. Most of
linguistic theory concentrates on generative grammars; grammars which are able to
build the valid sentences out of the syntactic components according to certain rules.
Phrase structure grammars build sentences out of phrases; and phrases out of other

phrases or syntactic categories.

26



Over the last decade, a parametric theory of grammars (Chomsky, 1981) has
begun to evolve. According to this, a grammar G(py,...,p,) is parameterized by a
finite (in this case, n) number of parameters p, through p,. If these parameters are
set to one set of values, one would obtain the grammar of a specific language, say,
(GGerman. Setting them to another set of values would define the grammar of another
language, say Eunglish. To get a feel for what parameters are like, consider an example
from X-bar theory; a subcomponent of grammars. According to X-bar theory, the
structure of an X P or X-phrase (where X could stand for adjective, noun, verb, etc.)
is given by the following context-free production rules which are parameterized by

two parameters p; and ps.
XP — Spec X'(p; = 0) or X’ Spec (p; =1)

X" — Comp X'(py = 0) or X' Comp (p2 = 1)
X' — Comp X(p, =0) or X Comp (p2 = 1)
Comp — YP

For example, English is a comp-final language (p; = 1) while Bengali is a comp-
first language(p; = 0). Notice how all the phrases (irrespective of whether it is a noun
phrase, verb phrase etc.) in English have their complement in the end, while Bengali
is the exact reverse. This is one example of a parameterized difference between the
two languages.

Also shown in figures 1-4, and 1-5, we have the tree diagrams corresponding to
the sentence “with one hand” in English and Bengali. English is spec-first and comp-
final (i.e., p; = 0 and p, = 1); Bengali on the other hand is spec-first and comp-first
(;m =0 and p, =0).

1.3 The Thesis: Technical Contents and Major

Contributions

So far we have discussed in very general terms, the various components of a learning
paradigm and their relationship to each other. We have stated our intention of ana-
lyzing the informational complexity of learning from examples; we have thus defined
for ourselves the possibility space of Figure 1.1 that needs to be explored. In this
thesis, we look at a few specific points in this space; in doing so, the issues involved
in informational complexity can be precisely formalized and sharper results obtained.
Chapters 2 and 3 of this thesis are completely self contained. Chapters 4 and 5 should
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be read as a unit; together they form another stand-alone part of this thesis.
Chapter 2 of this thesis examines the use of neural networks of a certain kind
(the so called regularization networks) in solving pattern classification and regression
problems. This corresponds to a point in the space of Figure 1.1 where the concept
class is a Sobolev space of functions, the hypothesis class is the class of all feed forward
regularization networks (with certain restrictions on their weights), the examples are
drawn according to a fixed, unknown, arbitrary probability distribution, the distance
metric is a Ly(P) norm on the space of functions, the algorithm used to choose the
best hypothesis is by training a finite sized network on labelled examples according
to least-squares criterion. The concept class is infinite-dimensional; on using a finite
network and finite amount of data, a certain amount of generalization error is made.
We observe that the generalization error can be decomposed into an approximation
error due to the finite number of parameters of the network and an estimation error
due to the finite number of data points. Using techniques from approximation theory
and VC theory, we obtain a bound on the generalization error in terms of the number
of parameters and number of examples. Our main contributions in this chapter

include:

o Formulation of the trade-off between hypothesis complexity and sample com-

plexity when using Gaussian regularization networks.

o Combining results from approximation theory and the theory of empirical pro-
cesses to obtain a specific bound on the total generalization error as a function

of the number of examples and number of parameters.

o Using the bound above to provide guidelines for choosing an optimal network

architecture to solve certain regression problems.

Chapter 3 explores the issue of active learning. We are specifically interested in
investigating whether allowing the learner to choose examples helps in learning with
fewer examples. This chapter consists of two parts which include several forays into
this question. The first part explores this issue in a function approximation setting.
[t is not immediately clear that even if the learner were allowed to choose his/her
own examples, there exist principled ways of doing this. We develop a framework
within which meaningful adaptive sampling strategies can be obtained for arbitrary
function classes. As specific examples we consider cases where the concept classes
are real-valued classes like monotonic functions and functions with bounded first
derivative, hypothesis classes are spline functions, there is no noise, the learner chooses

an interpolating spline as a best hypothesis and examples are obtained passively
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(by random draw) or adaptively (according our strategy) by the active learner. We
obtain theoretical and empirical bounds on the sample complexity and generalization
error for this task. In the second part, we discuss the idea of epsilon-focusing; a
strategy whereby the learner can adaptively focus on smaller and smaller regions of
the domain to solve certain pattern classification problems. We derive conditions
on function classes where epsilon-focusing would result in faster learning. Our main

contributions here include:

o A formulation of active learning in approximation theoretic terms as an adaptive

approximation problem.

e Development of active strategies for learning classes of real valued functions.
These active strategies differ from traditional adaptive approximation strategies
in optimal sampling theory in that examples are adaptively selected on the basis
of previous examples as opposed to preselected on the basis of knowledge about

the concept class.

e Explicit computation of theoretical upper and lower bounds on the sample com-
plexity of PAC learning real classes using passive and active strategies. Sim-
ulations with some test target functions allows us to compare the empirical

performance against the theoretical worst case bounds.

e Introduction of the idea of epsilon-focusing which provides a theoretical mo-
tivation for pattern classification schemes where more data is collected near
the estimated class boundary. The computation of explicit sample complexity

bounds for algorithms motivated by epsilon-focusing.

Chapters 4 and 5 of this thesis concentrate on a very different region of the
possibility space of Figure 1.1. Here the concept class is a restricted subclass of
natural languages, the hypothesis class consists of parameterized grammars including
X-bar theory, verb movement and case theory, examples are assumed to be drawn
according to some distribution on the sentences of the target, there might or might
not be noise, there is a discrete distance metric which requires exact identification of
the target, the algorithm used to choose the best hypothesis is the Triggering Learning
Algorithm (Gibson and Wexler, 1993).

The TLA was proposed recently by Gibson and Wexler as a possible mechanism
by which children set parameters and learned the language to which they were ex-
posed. Chapter 4 originated as an attempt to analyze the TLA from the perspective
of informational complexity and to derive conditions for convergence and rates of

convergence of the TLA to the target. We explore the TLA and its variants under
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the diverse influence of noise, distributional assumptions on the data, and explore the
linguistic consequences of this. In Chapter 5, we study another important facet of the
language learning puzzle. Starting with a set of grammars and a learning algorithm,
we are able to derive a dynamical system whose states correspond to the the linguistic
composition of the population, i.e., the relative percentage of people in a community
speaking a particular language. For the TLA, we give the precise update rules for the
states of this system, analyze conditions for stability and carry out several simula-
tions in linguistically plausible systems. This serves as a formal model for describing
the historical evolution of languages and formalizes ideas inherent in Lightfoot (1991)
and and Hawkins and Gell-Mann (1989) for the first time. These two chapters make

several important contributions including:

o The development of a mathematical framework (a Markov structure) to formally

study the issues relating to the learnability and sample complexity of the TLA.

o The investigation of variants of TLA, the effect of noise, distributional assump-
tions and parameterization of the space in a systematic manner on linguistically

natural spaces.

o The derivation of algorithm-independent bounds on the sample complexity us-
ing results from computational learning theory.

o The derivation of a linguistic dynamical system starting from the TLA operating

on parameterized grammars.

o Utilizing the dynamical system as a model for language change, running sim-
ulations on linguistically natural spaces and comparison of the results against
historically observed patterns.

e Introduction of the diachronic criterion for deciding the plausibility of any learn-

ing algorithm.

1.3.1 A Final Word

Over the last decade, there has been a explosion of interest in formal learning theory
(see the Proceedings of ACM COLT for a whiff of this). This has brought in its wake a
perspective on learning paradigms which we greatly share and this thesis reflects that
perspective strongly. In addition, as with all interdisciplinary pieces of work, we have
an intellectual debt to many different fields. The areas of approximation theory and

statistics, particularly the part of empirical procéss theory beautifully worked out by
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Vapnik and Chervonenkis, model selection, pattern recognition, decision theory, and
nonparametric regression play an important role in Chapter 2. Ideas from adaptive
integration and numerical analysis play an important role in chapter 3. Chapters
4 and 5 have evolved from the application of our computational perspective to the
analysis of learning paradigms which are considered worthwhile in linguistic theory
(our decision of what is linguistically worthwhile has been influenced greatly by schol-
arly works in the Chomskyan tradition). Here, there is some use of Markov chain
theory and dynamical systems theory. In all of this, we have brought to bear well
known results and techniques from different areas of mathematics to formally pose
and answer questions of interest in human and machine learning; questions previously
unposed or unanswered or both. In this strict sense, there is little new mathematics
here; though an abundant demonstration of its usefulness as a research tool in the
cognitive and computer sciences. This reflects our purpose and our intended audi-
ence for this thesis, namely, all people interested in human or machine learning from

a computational perspective.
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Chapter 2

On the Relationship Between Generaliza-
tion Error, Hypothesis Complexity, and
Sample Complexity in Radial Basis Func-
tions

Abstract

Feedforward networks are a class of approximation techniques that can be used to learn to perform
some tasks from a finite set of examples. The question of the capability of a network to generalize
from a finite training set to unseen data is clearly of crucial importance. In this chapter, we bound the
generalization error of a class of Radial Basis Functions, for certain well defined function learning
tasks, in terms of the number of parameters and number of examples. We show that the total
generalization error is partly due to the insufficient representational capacity of the network (because
of the finite size of the network being used) and partly due to insufficient information about the
target function because of the finite number of samples. Prior research has looked at representational
capacity or sample complexity in isolation. In the spirit of A. Barron, H. White and S. Geman we
develop a frammework to look at both. While the bound that we derive is specific for Radial Basis
Functions, a number of observations deriving from it apply to any approximation technique. Our
result also sheds light on ways to choose an appropriate network architecture for a particular problem
and the kinds of problems which can be effectively solved with finite resources, i.e., with finite number
of parameters and finite amounts of data.

2.1 Introduction

Many problems in learning theory can be effectively modelled as learning an input
output mapping on the basis of limited evidence of what this mapping might be.
The mapping usually takes the form of some unknown function between two spaces
and the evidence is often a set of labelled, noisy, examples i.e., (z,y) pairs which are
consistent with this function. On the basis of this data set, the learner tries to infer
the true function. '

We have discussed in Chapter 1, several examples from speech recognition, object

recognition, and finance where such a scenario exists. At the risk of belaboring this
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point consider two more examples which illustrate this approach. In economics, it is
sometimes of interest to predict the future foreign currency rates on the basis of the
past time series. There might be a function which captures the dynamical relation
between past and future currency rates and one typically tries to uncover this relation
from data which has been appropriately processed. Similarly in medicine, one might
be interested in predicting whether or not breast cancer will recur in a patient within
five years after her treatment. The input space might involve dimensions like the age
of the patient, whether she has been through menopause, the radiation treatment
previously used etc. The output space would be single dimensional boolean taking on
values depending upon whether breast cancer recurs or not. One might collect data
from case histories of patients and try to uncover the underlying function.

The unknown target function is assumed to belong to some class F which using
the terminology of computational learning theory we call the concept class. Typi-
cal examples of concept classes are classes of indicator functions, boolean functions,
Sobolev spaces etc. The learner is provided with a finite data set. One can make many
assumptions about how this data set is collected but a common assumption which
would suffice for our purposes is that the data is drawn by sampling independently
the input output space (X x Y) according to some unknown probability distribution.
On the basis of this data, the learner then develops a hypothesis (another function)
about the identity of the target function i.e., it comes up with a function chosen from
some class, say H (the hypothesis class) which best fits the data and postulates this to
be the target. Hypothesis classes could also be of different kinds. For example, they
could be classes of boolean functions, polynomials, linear functions, spline functions
and so on. One such class which is being increasingly used for learning problems is
the class of feedforward networks ((Lippmann, 1987; Hertz, Krogh, and Palmer, 1991;
Girosi, Jones, and Poggio, 1993). A typical feedforward network is a parameterized

function of the form

f(x) = iciH(X;Wi)

where {¢;}%, and {w;}%, are free parameters and H(:;-) is a given, fixed function
(the “activation function”). Depending on the choice of the activation function one
gets different network models, such as the most common form of “neural networks”,
the Multilayer Perceptron (Rumelhart, Hinton, and Williams, 1986; Cybenko, 1989;
Lapedes, and Farmer, 1988; Hertz, Krogh, and Palmer, 1991; Hornik, Stinchcombe.,
and White, 1989; Funahashi, 1989; Mhaskar, and Micchelli, 1992; Mhaskar, 1993;
Irie, and Miyake, 1988) , or the Radial Basis Functions network (Broomhead, and
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Lowe, 1988; Dyvn, 1987; Hardy, 1971,1990; Micchelli, 1986; Powell, 1990; Moody,
and Darken, 1989; Poggio, and Girosi, 1990; Girosi, 1992; Girosi, Jones, and Poggio,
1993).

If, as more and more data becomes available, the learner’s hypothesis becomes
closer and closer to the target and converges to it in the limit, the target is said to
be learnable. The error between the learner’s hypothesis and the target function is
defined to be the generalization error and for the target to be learnable the gener-
alization error should go to zero as the data goes to infinity. While learnability is
certainly a very desirable quality, it requires the fulfillment of two important criteria.

First, there is the issue of the representational capacity (or hypothesis complezity)
of the hypothesis class. This must have sufficient power to represent or closely approx-
imate the concept class. Otherwise for some target function f, the best hypothesis h
in H might be far away from it. The error that this best hypothesis makes is formal-
ized later as the approzimation error. In this case, all the learner can hope to do is
to converge to h in the limit of infinite data and so it will never recover the target.
Second, we do not have infinite data but only some finite random sample set from
which we construct a hypothesis. This hypothesis constructed from the finite data
might be far from the best possible hypothesis, h, resulting in a further error. This
additional error (caused by finiteness of data) is formalized later as the estimation
error. The amount of data needed to ensure a small estimation error is referred to as
the sample complezity of the problem. The hypothesis complexity, the sample com-
plexity and the generalization error are related. If the class H is very large or in other
words has high complexity, then for the same estimation error, the sample complexity
increases. If the hypothesis complexity is small, the sample complexity is also small
but now for the same estimation error the approximation error is high. This point
has been developed in terms of the Bias-Variance trade-off in (Geman, Bienenstock,
and Doursat, 1992) in the context of neural networks, and others (Rissanen, 1933;
Grenander, 1951; Vapnik, 1982; Stone, 1974) in statistics in general.

The purpose of this chapter is two-fold. First, we formalize the problem of learning
from examples so as to highlight the relationship between hypothesis complexity,
sample complexity and total error. Second, we explore this relationship in the specific
context of a particular hypothesis class. This is the class of Radial Basis function
networks which can be considered to belong to the broader class of feed-forward
networks. Specifically, we are interested in asking the following questions about radial
basis functions.

Imagine you were interested in solving a particular problem (regression or pattern

classification) using Radial Basis Function networks. Then, how large must the net-
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work be and how many examples do you need to draw so that you are guaranteed with
high confidence to do very well? Conversely, if you had a finite network and a finite
amount of data, what are the kinds of problems you could solve effectively?

Clearly, if one were using a network with a finite number of parameters, then its
representational capacity would be limited and therefore even in the best case we
would make an approximation error. Drawing upon results in approximation theory
(Lorentz, 1986) several researchers (Cybenko, 1989; Hartman, Keeler, and Kowalski,
1989; Barron, 1991; Hornik, Stinchcombe, and White, 1989; Chui, and Li, 1990; Arai,
1989; Mhaskar, and Micchelli, 1992; Mhaskar, 1993; Irie, and Miyake, 1988; Chen,
Chen, and Liu, 1990) have investigated the approximating power of feedforward net-
works showing how as the number of parameters goes to infinity, the network can
approximate any continuous function. These results assume infinite data and ques-
tions of learnability from finite data are ignored. For a finite network, due to finiteness
of the data, we make an error in estimating the parameters and consequently have an
estimation error in addition to the approximation error mentioned earlier. Using re-
sults from Vapnik and Chervonenkis (Vapnik, 1982; Vapnik, and Chervonenkis, 1971,
1981, 1991) and Pollard (Pollard, 1984) , work has also been done (Haussler, 1989;
Baum, and Haussler, 1988) on the sample complexity of finite networks showing how
as the data goes to infinity, the estimation error goes to zero i.e., the empirically opti-
mized parameter settings converge to the optimal ones for that class. However, since
the number of parameters are fixed and finite, even the optimal parameter setting
might yield a function which is far from the target. This issue is left unexplored by
Haussler (1989) in an excellent investigation of the sample complexity question.

In this chapter, we explore the errors due to both finite parameters and finite
data in a common setting. In order for the total generalization error to go to zero,
both the number of parameters and the number of data have to go to infinity, and we
provide rates at which they grow for learnability to result. Further, as a corollary, we
are able to provide a principled way of choosing the optimal number of parameters
so as to minimize expected errors. It should be mentioned here that White (1990)
and Barron (1991) have provided excellent treatments of this problem for different
hypothesis classes. We will mention their work at appropriate points in this chapter.

The plan of the chapter is as follows: in section 2.2 we will formalize the problem
and comment on issues of a general nature. We then provide in section 2.3 a precise
statement of a specific problem. In section 2.4 we present our main result, whose
proof is postponed to appendix 2-D for continuity of reading. The main result is
qualified by several remarks in section 2.5. In section 2.6 we will discuss what could

be the implications of our result in practice and finally we conclude in section 2.7
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with a reiteration of our essential points.

2.2 Definitions and Statement of the Problem

In order to make a precise statement of the problem we first need to introduce some
terminology and to define a number of mathematical objects. A summary of the most

common notations and definitions used in this chapter can be found in appendix 2-A.

2.2.1 Random Variables and Probability Distributions

Let X and Y be two arbitrary sets. We will call x and y the independent variable and
response respectively, where x and y range over the generic elements of X and Y. In
‘most cases X will be a subset of a k-dimensional Euclidean space and Y a subset of
the real line, so that the independent variable will be a k-dimensional vector and the
response a real number. We assume that a probability distribution P(x,y) is defined
on X x Y. P is unknown, although certain assumptions on it will be made later in
this section.

The probability distribution P(x,y) can also be written as*:

P(x,y) = P(x)P(y[x) , (2.1)

where P(y|x) is the conditional probability of the response y given the independent
variable x. and P(x) is the marginal probability of the independent variable given

by:

P,

P(x) = /y dy P(x,y) .

Expected values with respect to P(x,y) or P(x) will be always indicated by E[].

Therefore, we will write:

Elgx.v)] = [ dxdy P(xy)g(x,y)

and

E[h(x)] = /X dx P(x)h(x)

for any arbitrary function g or h.

*Note that we are assuming that the conditional distribution exists, but this is not a very restric-
tive assumption.
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2.2.2 Learning from Examples and Estimators

The framework described above can be used to model the fact that in the real world we
often have to deal with sets of variables that are related by a probabilistic relationship.
For example, y could be the measured torque at a particular joint of a robot arm,
and x the set of angular position, velocity and acceleration of the joints of the arm in
a particular configuration. The relationship between x and y is probabilistic because
there is noise affecting the measurement process, so that two different torques could
be measured given the same configuration.

In many cases we are provided with ezamples of this probabilistic relationship,

that is with a data set D, obtained by sampling [ times the set X x Y according to
P(x,y):

Dy ={(xiy;) e X x Y}, .

From eq. (2.1) we see that we can think of an element (x;,y;) of the data set D; as
obtained by sampling X according to P(x), and then sampling ¥ according to P(y|x).
In the robot arm example described above, it would mean that one could move the
robot arm into a random configuration x,, measure the corresponding torque y,, and
iterate this process [ times.

The interesting problem is, given an instance of x that does not appear in the
data set D;, to give an estimate of what we expect y to be. For example, given a
certain configuration of the robot arm, we would like to estimate the corresponding
torque.

Formally, we define an estimator to be any function f : X — Y. Clearly, since the
independent variable x need not determine uniquely the response y, any estimator
will make a certain amount of error. However, it is interesting to study the problem of
finding the best possible estimator, given the knowledge of the data set D, and this
problem will be defined as the problem of learning from examples, where the examples
are represented by the data set D;. Thus we have a probabilistic relation between x
and y. One can think of this as an underlying deterministic relation corrupted with

noise. Hopefully a good estimator will be able to recover this relation.

2.2.3 The Expected Risk and the Regression Function

In the previous section we explained the problem of learning from examples and stated
that this is the same as the problem of finding the best estimator. To make sense of

this statement, we now need to define a measure of how good an estimator is. Suppose

40



we sample X x Y according to P(x,y), obtaining the pair (X,y). A measure® of the
error of the estimator f at the point x is:

(y — f(x))*.

In the example of the robot arm, f(x) is our estimate of the torque corresponding to
the configuration x, and y is the measured torque of that configuration. The average

error of the estimator f is now given by the functional

1) = Elly = f0)) = [, dxdy P(x,y)(y = (),

that is usually called the expected risk of f for the specific choice of the error measure.

Given this particular measure as our yardstick to evaluate different estimators,
we are now interested in finding the estimator that minimizes the expected risk.
In order to proceed we need to specify its domain of definition . Then using the
expected risk as a criterion, we could obtain the best element of . Depending on the
properties of the unknown probability distribution P(x,y) one could make different
choices for 7. We will assume in the following that F is some space of differentiable
functions. For example, F could be a space of functions with a certain number of
bounded derivatives (the spaces A™(R?) defined in appendix 2-A), or a Sobolev space
of functions with a certain number of derivatives in L, (the spaces H™P(R?) defined
in appendix 2-A).

Assuming that the problem of minimizing I{f] in F is well posed, it is easy to
obtain its solution. In fact, the expected risk can be decomposed in the following way

(see appendix 2-B):

I[f] = E[(fo(x) = f(x))’] + El(y — fo(x))*] (2.2)

where fo(x) is the so called regression function, that is the conditional mean of the
response given the independent variable:

folx)= [ dy yPylx) - (23)

From eq. (2.2) it is clear that the regression function is the function that minimizes

the expected risk in F, and is therefore the best possible estimator. Hence,

5Note that this is the familiar squared-error and when averaged over its domain yields the mean
squared error for a particular estimator, a very common choice. However, it is useful to remember
that there could be other choices as well.
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fo(x) = arg mig 1[f].

However, it is also clear that even the regression function will make an error equal
to E[(y — fo(x))?], that is the variance of the response given a certain value for the
independent variable, averaged over the values the independent variable can take.
While the first term in eq. (2.2) depends on the choice of the estimator f, the second
term is an intrinsic limitation that comes from the fact that the independent variable
x does not determine uniquely the response y.

The problem of learning from examples can now be reformulated as the problem
of reconstructing the regression function fy, given the example set D;. Thus we have
some large class of functions F to which the target function f, belongs. We obtain
noisy data of the form (x,y) where x has the distribution P(x) and for each x, y is
a random variable with mean fo(x) and distribution P(y|x). We note that y can be
viewed as a deterministic function of x corrupted by noise. If one assumes the noise
is additive, we can write y = fo(x) + 7, where 7,°® is zero-mean with distribution
P(y|x). We choose an estimator on the basis of the data set and we hope that
it is close to the regression (target) function. It should also be pointed out that
this framework includes pattern classification and in this case the regression (target)
function corresponds to the Bayes discriminant function (Gish, 1990; Hampshire, and
Pearlmutter, 1990; Richard, and Lippman, 1991) .

2.2.4 The Empirical Risk

If the expected risk functional I[f] were known, one could compute the regression
function by simply finding its minimum in F, that would make the whole learning
problem considerably easier. What makes the problem difficult and interesting is
that in practice I[f] is unknown because P(x.,y) is unknown. Our only source of
information is the data set D; which consists of [ independent random samples of
X x Y drawn according to P(x,y). Using this data set, the expected risk can be

approximated by the empirical risk lopyp:

l

el = 7 (00 = S0

1=1

For each given estimator f, the empirical risk is a random variable, and under fairly

SNote that the standard regression problem often assumes 7, is independent of . Our case is
distribution free because we make no assumptions about the nature of 7.

42



general assumptions’, by the law of large numbers (Dudley, 1989) it converges in

probability to the expected risk as the number of data points goes to infinity:

,“_‘2, P{I[f] — Lewplf]l >} =0 Ve> 0. (2.4)

Therefore a common strategy consists in estimating the regression function as the
function that minimizes the empirical risk, since it is “close” to the expected risk if
the number of data is high enough. For the error metric we have used. this yields
the least-squares error estimator. However, eq. (2.4) states only that the expected
risk is “close” to the empirical risk for each given f, and not for all f simultaneously.
(‘onsequently the fact that the empirical risk converges in probability to the expected
risk when the number, [, of data points goes to infinity does not guarantee that the
minimum of the empirical risk will converge to the minimum of the expected risk
(the regression function). As pointed out and analyzed in the fundamental work of
Vapnik and Chervonenkis the notion of uniform convergence in probability has to be

introduced, and it will be discussed in other parts of this chapter.

2.2.5 The Problem

The argument of the previous section suggests that an approximate solution of the

learning problem consists in finding the minimum of the empirical risk, that is solving

min Lemp[f] -

However this problem is clearly ill-posed, because, for most choices of F, it will have
an infinite number of solutions. In fact, all the functions in F that interpolate the
data points (x;,y;), that is with the property

f(x,')=y,- 1,...,1

will give a zero value for Iemp. This problem is very common in approximation theory
and statistics and can be approached in several ways. A common technique consists
in restricting the search for the minimum to a smaller set than F. We consider the
case in which this smaller set is a family of parametric functions, that is a family of
functions defined by a certain number of real parameters. The choice of a parametric
representation also provides a convenient way to store and manipulate the hypothesis
function on a computer.

We will denote a generic subset of F whose elements are parametrized by a number

“For example, assuming the data is independently drawn and I[f] is finite.
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of parameters proportional to n, by H,. Moreover, we will assume that the sets H,
form a nested family, that is

H1CH2CCH1;CCH

For example, H,, could be the set of polynomials in one variable of degree n— 1, Radial
Basis Functions with n centers, multilayer perceptrons with n sigmoidal hidden units,
multilayer perceptrons with n threshold units and so on. Therefore, we choose as

approximation to the regression function the function f,; defined as:®

fng = arg }E}JI}. Lemplf] - (2.5)

Thus, for example, if H, is the class of functions which can be represented as f =
Y1 ca H(x;w,) then eq. (2.5) can be written as
Jua = arg min Lomp[f] -

A number of observations need to be made here. First, if the class F is small (typically
in the sense of bounded VC-dimension or bounded metric entropy (Pollard, 1984) ),
then the problem is not necessarily ill-posed and we do not have to go through the
process of using the sets H,,. However, as has been mentioned already, for most inter-
esting choices of F (e.g. classes of functions in Sobolev spaces, continuous functions
etc.) the problem might be ill posed. However, this might not be the only reason
for using the classes H,. It might be the case that that is all we have or for some
reason it is something we would like to use. For example, one might want to use a
particular class of feed-forward networks because of ease of implementation in VLSI.
Also, if we were to solve the function learning problem on a computer as is typically
done in practice, then the functions in F have to be represented somehow. We might
consequently use H, as a representation scheme. It should be pointed out that the
sets H, and F have to be matched with each other. For example, we would hardly
use polynomials as an approximation scheme when the class F consists of indicator

functions or for that matter use threshold units when the class F contains continuous

8Notice that we are implicitly assuming that the problem of minizing lemp[f] over H, has a
solution, which might not be the case. However the quantity

Eng= fierg.. Iemp[f]
is always well defined, and we can always find a function f,._; for which Temp| f,,,l] is arbitrarily close

to Ep ;. It will turn out that this is sufficient for our purposes, and therefore we will continue,
assuming that f, ; is well defined by eq. (2.5)
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functions. In particular, if we are to recover the regression function, H must be dense
in F. One could look at this matching from both directions. For a class F, one might
be interested in an appropriate choice of H,. Conversely, for a particular choice of
H,,, one might ask what classes F can be effectively solved with this scheme. Thus,
if we were to use multilayer perceptrons, this line of questioning would lead us to
identify the class of problems which can be effectively solved by them.

Thus, we see that in principle we would like to minimize /[f] over the large
class F obtaining thereby the regression function f,. What we do in practice is to
minimize the empirical risk emp[f] over the smaller class H,, obtaining the function
fn,;. Assuming we have solved all the computational problems related to the actual

computation of the estimator f,;, the main problem is now:

how good is f',,yl?

Independently of the measure of performance that we choose when answering this
question, we expect fn,, to become a better and better estimator as n and [ go to
infinity. In fact, when [ increases, our estimate of the expected risk improves and our
estimator improves. The case of n is trickier. As n increases, we have more parameters
to model the regression function, and our estimator should improve. However, at the
same time, because we have more parameters to estimate with the same amount of
data, our estimate of the expected risk deteriorates. Thus we now need more data and
n and [ have to grow as a function of each other for convergence to occur. At what
rate and under what conditions the estimator fn,z improves depends on the properties
of the regression function, that is on F, and on the approximation scheme we are
using, that is on H,,.

2.2.6 Bounding the Generalization Error

At this stage it might be worthwhile to review and remark on some general features of
the problem of learning from examples. Let us remember that our goal is to minimize
the expected risk I[f] over the set F. If we were to use a finite number of parameters,
then we have already seen that the best we could possibly do is to minimize our
functional over the set H,,, yielding the estimator f,:

n = in I[f] .
fu = arg min I[f]

However, not only is the parametrization limited, but the data is also finite, and we
can only minimize the empirical risk I¢,p, obtaining as our final estimate the function
fug. Our goal is to bound the distance from fn,I that is our solution, from fy, that is
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the “optimal” solution. If we choose to measure the distance in the L?( P) metric (see
appendix 2-A), the quantity that we need to bound, that we will call generalization
error, 1s:

E[(fo— fn.l)zl = [y dx P(x)(fo(x) — f,,,;(x))z _

= |1fo ~ fuilltzp)

There are 2 main factors that contribute to the generalization error, and we are going

to analyze them separately for the moment.

1.

A first cause of error comes from the fact that we are trying to approximate an
infinite dimensional object, the regression function fo € F, with a finite number
of parameters. We call this error the approzimation error, and we measure it by
the quantity E[(fo— fx)?], that is the Ly(P) distance between the best function
in H, and the regression function. The approximation error can be expressed
in terms of the expected risk using the decomposition (2.2) as

E[(fo—fn)z] ‘—’I[fn]_l[fo] . (26)

Notice that the approximation error does not depend on the data set D;, but de-
pends only on the approximating power of the class H,. The natural framework
to study it is approximation theory, that abound with bounds on the approx-
imation error for a variety of choices of H, and F. In the following we will

always assume that it is possible to bound the approximation error as follows:

E[(fo— fn)?] < e(n)

where €(n) is a function that goes to zero as n goes to infinity if H is dense in
F. In other words, as shown in figure (2-6), as the number n of barameters gets
larger the representation capacity of H,, increases, and allows a better and better
approximation of the regression function fo. This issue has been studied by a
number of researchers (Cybenko, 1989; Hornik, Stinchcombe, and White, 1989;
Barron, 1991, 1993; Funahashi, 1989; Mhaskar, and Micchelli, 1992; Mhaskar,

1993) in the neural networks community.

. Another source of error comes from the fact that, due to finite data, we minimize

the empirical risk Imp[f], and obtain fn,l, rather than minimizing the expected

risk I[f], and obtaining f,. As the number of data goes to infinity we hope that
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f',hl will converge to f,, and convergence will take place if the empirical risk
converges to the expected risk uniformly in probability (Vapnik, 1982) . The
quantity

|Iemp[f] - I[f“

is called estimation error, and conditions for the estimation error to converge
to zero uniformly in probability have been investigated by Vapnik and Cher-
vonenkis Pollard , Dudley (1987) , and Haussler (1989) . Under a variety of
different hypothesis it is possible to prove that, with probability 1 —§, a bound

of this form is valid:

Hemplf] = I[fll S w(lin,6) Vfe€H, (2.7)

The specific form of w depends on the setting of the problem, but, in general, we
expect w(l,n,d) to be a decreasing function of {. However, we also expect it to
be an increasing function of n. The reason is that, if the number of parameters
is large then the expected risk is a very complex object, and then more data
will be needed to estimate it. Therefore, keeping fixed the number of data and
increasing the number of parameters will result, on the average, in a larger

distance between the expected risk and the empirical risk.

The approximation and estimation error are clearly two components of the gen-
eralization error, and it is interesting to notice, as shown in the next statement, the

generalization error can be bounded by the sum of the two:

Statement 2.2.1 The following inequality holds:
Ifo = fuillizpy < (n) + 2w(l,n,6) . | (2.8)

Proof: using the decomposition of the expected risk (2.2), the generalization error
can be written as:

”fo - fn,l”iz(P) = E[(fo - fn,l)Z] = I[fn,l] - [[fo] . i (2())

A natural way of bounding the generalization error is as follows:

E[(fo - fqt.l)zl < ll[fn] - l{fo]l + ll[fn] - I[fn,l“ . (2~10)
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In the first term of the right hand side of the previous inequality we recognize the
approximation error (2.6). If a bound of the form (2.7) is known for the generalization
error, it is simple to show (see appendix (2-C) that the second term can be bounded

as

II[f'n] - I[fn,l]l < 2“)(13 n, 6)

and statement (2.2.1) follows O.

Thus we see that the generalization error has two components: one, bounded
by &(n), is related to the approximation power of the class of functions {H,}, and is
studied in the framework of approximation theory. The second, bounded by w({,n, §),
is related to the difficulty of estimating the parameters given finite data, and is studied
in the framework of statistics. Consequently, results from both these fields are needed
in order to provide an understanding of the problem of learning from examples. Figure

(2-6) also shows a picture of the problem.

Figure 2-6: This figure shows a picture of the problem. The outermost circle repre-
sents the set F. Embedded in this are the nested subsets, thq H,’s. fois an arbitrary
target function in F, f, is the closest element of H, and f,; is the element of H,
which the learner hypothesizes on the basis of data.
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2.2.7 A Note on Models and Model Complexity

From the form of eq. (2.8) the reader will quickly realize that there is a trade-off
between n and ! for a certain generalization error. For a fixed I, as n increases, the
approximation error £(n) decreases but the estimation error w(l, n, §) increases. Con-
sequently. there is a certain n which might optimally balance this trade-off. Note that
the classes H,, can be looked upon as models of increasing complexity and the search
for an optimal n amounts to a search for the right model complexity. One typically
wishes to match the model complexity with the sample complexity (measured by how
much data we have on hand) and this problem is well studied (Eubank, 1988; Stone,
1974; Linehart, and Zucchini, 1986, Rissanen, 1989; Barron, and Cover, 1989; Efron,
1982; Craven, and Wahba, 1979) in statistics. -

Broadly speaking, simple models would have high approximation errors but small
estimation errors while complex models would have low approximation errors but high
estimation errors. This might be true even when considering qualitatively different
models and as an illustrative example let us consider two kinds of models we might use
to learn regression functions in the space of bounded continuous functions. The class
of linear models, i.e.. the class of functions which can be expressed as f = w-x+6, do
not have much approximating power and consequently their approximation error is
rather high. However, their estimation error is quite low. The class of models which
can be expressed in the form H = Y1, ¢; sin(w; - x + 6;) have higher approximating
power (Jones, 1990) resulting in low approximation errors. However this class has an
infinite VC-dimension and its estimation error can not therefore be bounded.

So far we have provided a very general characterization of this problem, without
stating what the sets 7 and H, are. As we have already mentioned before, the set
F could be a set of bounded differentiable or integrable functions, and H,, could be
polynomials of degree n, spline functions with n knots, multilayer perceptrons with
n hidden units or any other parametric approximation scheme with n parameters. In
the next section we will consider a specific choice for these sets, and we will provide

a bound on the generalization error of the form of eq. (2.8).

2.3 Stating the Problem for Radial Basis Func-

tions

As mentioned before the problem of learning from examples reduces to estimating
some target function from a set X to aset Y. In most practical cases, such as character

recognition. motor control, time series prediction, the set X is the k-dimensional
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Euclidean space R*, and the set Y is some subset of the real line, that for our purposes
we will assume to be the interval [—M, M|, where M is some positive number. In
fact, there is a probability distribution P(x,y) defined on the space R* x [—~M, M]
according to which the labelled examples are drawn independently at random, and
from which we try to estimate the regression (target) function. It is clear that the
regression function is a real function of k variables.

In this chapter we focus our attention on the Radial Basis Functions approximation
scheme (also called Hyper-Basis Functions; Poggio and Girosi, 1990 ). This is the
class of approximating functions that can be written as:

fx) = Y acAx =t (211)
i=1

gy

where G is some given basis function (in our case Gaussian) and the 3;, t;, and
o; are free parameters. We would like to understand what classes of problems can
be solved “well” by this technique, where “well” means that both approximation
and estimation bounds need to be favorable. It is possible to show that a favorable
approximation bound can be obtained if we assume that the class of functions F to

which the regression function belongs is defined as follows:

fE{flf:/\*Gm,7n>k/z,‘/\“ikSA/[}_ (212)

Here ) is a signed Radon measure on the Borel sets of R, G, is the Bessel-Macdonald

kernel, i.e., the inverse fourier transform of

~ 1
N T IO

The symbol * stands for the convolution operation, |A|g« is the total variation® of
the measure A and M is a positive real number. The space F as defined in eq. 2.12 is
the so-called Liouville Space of order m. If m is even, this contains the Sobolev Space
H™! of functions whose derivatives upto order m are integrable.

We point out that the class F is non-trivial to learn in the sense that it has infinite
pseudo-dimension (Pollard, 1984).

In order to obtain an estimation bound we need the approximating class to have

bounded variation, and the following constraint will be imposed:

9A signed measure A can be decomposed by the Hahn-Jordan decomposition into A = A* —A~.
Then |A| = A* + A~ is called the total variation of A. See Dudley (1989) for more information.
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‘: Bl <M.

i=1
This constraint does not affect the approximation bound, and the two pieces fit to-
gether uicely. Thus the set H,, is defined now as the set of functions belonging to L,

such that

£(x) =f:,3i((“x tll Z|/3| <M, t,eR o €eR (2.13)

=1 i
Having defined the sets H,, and F we remind the reader that our goal is to recover
the regression function, that is the minimum of the expected risk over 7. What we
end up doing is to draw a set of [ examples and to minimize the empirical risk lopy,

over the set H,, that is to solve the following non-convex minimization problem:

fnl = drg min Z Z BaG( llx, — a”)) (2.14)

Oa -
a;aa_ a=1

Notice that assnmption that the regression function

fo(x) = Elylx]

belongs to the class F correspondingly implies an assumption on the probability
distribution P(y|x), viz., that P must be such that E[y|x] belongs to F. Notice also
that since we assumed that Y is a closed interval, we are implicitly assuming that
P(y|x) has compact support.

Assuming now that we have been able to solve the minimization problem of eq.
(2.14), the main question we are interested in is “how far is f",l from fp?”. We give

an answer in the next section.

2.4 Main Result

The main theorem is:

Theorem 2.4.1 For any 0 < § < 1, for n nodes, | data points, input dimensionality
of k, and H,,F, fo,fnJ also as defined in the statement of the problem above, with
probability greater than 1 — 6,

nkln(nl) —In 8§12
”fo—‘fnl“L2(P <O( )+O(|:7r ( l) ] )
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Proof: The proof requires us to go through a series of propositions and lemmas which

have been relegated to appendix (2-D) for continuity of ideas.0

2.5 Remarks

There are a number of comments we would like to make on the formulation of our
problem and the result we have obtained. There is a vast body of literature on
approximation theory and the theory of empirical risk minimization. In recent times,
some of the results in these areas have been applied by the computer science and
neural network community to study formal learning models. Here we would like to
make certain observations about our result, suggest extensions and future work, and

to make connections with other work done in related areas.

2.5.1 Observations on the Main Result

o The theorem has a PAC (Valiant, 1984) like setting. It tells us that if we
draw enough data points (labelled examples) and have enough nodes in our
Radial Basis Functions network, we can drive our error arbitrarily close to
zero with arbitrarily high probability. Note however that our result is not
entirely distribution-free. Although no assumptions are made on the form of
the underlying distribution, we do have certain constraints on the kinds of
distributions for which this result holds. In particular, the distribution is such
that its conditional mean E[y|x] (this is also the regression function fo(z))
must belong to a the class of functions F defined by eq. (2.12). Further the
distribution P(y|x) must have compact support '°.

e The error bound consists of two parts, one (O(1/n)) coming from approxima-
tion theory, and the other O(((nkIn(nl) + In(1/6))/1)"/?) from statistics. It is
noteworthy that for a given approximation scheme (corresponding to {H,}), a
certain class of functions (corresponding to F) suggests itself. So we have gone
from the class of networks to the class of problems they can perform as opposed
to the other way around, i.e., from a class of problems to an optimal class of

networks.

10This condition, that is related to the problem of large deviations , could be relaxed, and will be
subject of further investigations.
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o This sort of a result implies that if we have the prior knowledge that fo belongs to
class F, then by choosing the number of data points, [, and the number of basis
functions, n, appropriately, we can drive the misclassification error arbitrarilv
close to Bayes rate. In fact, for a fixed amount of data, even before we have
started looking at the data, we can pick a starting architecture, i.e., the number
of nodes. n, for optimal performance. After looking at the data, we might be
able to do some structural risk minimization (Vapnik, 1982) to further improve
architecture selection. For a fixed architecture, this result sheds light on how
much data is required for a certain error performance. Moreover, it allows us
to choose the number of data points and number of nodes simultaneously for
guaranteed error performances. Section 2.6 explores this question in greater

detail.

2.5.2 Extensions

e There are certain natural extensions to this work. We have essentially proved
the consistency of the estimated network function f,;. In particular we have
shown that f'n,l converges to fo with probability 1 as [ and n grow to infinity.
It is also possible to derive conditions for almost sure convergence. Further,
we have looked at a specific class of networks ({ H,,}) which consist of weighted
sums of GGaussian basis functions with moving centers but fixed variance. This
kind of an approximation scheme suggests a class of functions F which can be
approximated with guaranteed rates of convergence as mentioned earlier. We
could prove similar theorems for other kinds of basis functions which would have
stronger approximation properties than the class of functions considered here.
The general principle on which the proof is based can hopefully be extended to

a variety of approximation schemes.

e We have used notions of metric entropy and covering number (Dudley. 1987;
Pollard, 1984) in obtaining our uniform convergence results. Haussler (1989)
uses the results of Pollard and Dudley to obtain uniform convergence results and
our techniques closely follow his approach. It should be noted here that Vapnik
deals with exactly the same question and uses the VC-dimension instead. It
would be interesting to compute the VC-dimension of the class of networks and
use it to obtain our results.

e While we have obtained an upper bound on the error in terms of the number

of nodes and examples, it would be worthwhile to obtain lower bounds on the
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same. Such lower bounds do not seem to exist in the neural network literature
to the best of our knowledge.

e We have considered here a situation where the estimated network i.e., fn,, is
obtained by minimizing the empirical risk over the class of functions H,. Very
often, the estimated network is obtained by minimizing a somewhat different
objective function which consists of two parts. One is the fit to the data and
the other is some complexity term which favors less complex (according to the
defined notion of complexity) functions over more complex ones. For example
the regularization approach (Tikhonov, 1963; Poggio and Girosi, 1992; Wahba,

1990) minimizes a cost function of the form

N
H[f]= Z:(yi = f(xi) + A®[/]

over the class H = Un>1 H,,. Here X is the so called “regularization parameter”
and ®[f] is a functional which measures smoothness of the functions involved.
It would be interesting to obtain convergence conditions and rates for such
schemes. Choice of an optimal A is an interesting question in regularization
techniques and typically cross-validation or other heuristic schemes are used. A

result on convergence rate potentially offers a principled way to choose A.

e Structural risk minimization is another method to achieve a trade-off between
network complexity (corresponding to n in our case) and fit to data. However it
does not guarantee that the architecture selected will be the one with minimal
parameterization!!. In fact, it would be of some interest to develop a sequential
growing scheme. Such a technique would at any stage perform a sequential
hypothesis test (Govindarajulu, 1975) . It would then decide whether to ask
for more data, add one more node or simply stop and output the function it
has as its e-good hypothesis. In such a process, one might even incorporate
active learning (Angluin, 1988) so that if the algorithm asks for more data,
then it might even specify a region in the input domain from where it would
like to see this data. It is conceivable that such a scheme would grow to minimal
parameterization (or closer to it at any rate) and require less data than classical

structural risk minimization.

! Neither does regularization for that matter. The question of minimal parameterization is related
to that of order determination of systems, a very difficult problem!
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e [t should be noted here that we have assumed that the empirical risk 3¢, (y; —
f(x;))* can be minimized over the class H, and the function fn,; be effectively
computed. While this might be fine in principle, in practice only a locally
optimal solution to the minimization problem is found (typically using some
gradient descent schemes). The computational complexity of obtaining even
an approximate solution to the minimization problem is an interesting one and
results from computer science (Judd, 1988; Blum and Rivest, 1988) suggest that

it might in general be N P-hard.

2.5.3 Connections with Other Results

e In the neural network and computational learning theory communities results
have been obtained pertaining to the issues of generalization and learnability.
Some theoretical work has been done (Baum and Haussler, 1989; Haussler, 1989;
Ji and Psaltis, 1992) in characterizing the sample complexity of finite sized net-
works. Of these, it is worthwhile to mention again the work of Haussler from
which this chapter derives much inspiration. He obtains bounds for a fixed
hypothesis space i.e. a fixed finite network architecture. Here we deal with
families of hypothesis spaces using richer and richer hypothesis spaces as more
and more data becomes available. Later we will characterize the trade-off be-
tween hypothesis complexity and error rate. Others (Levin, Tishby, and Solla.
1990; Opper, and Haussler, 1991) attempt to characterize the generalization
abilities of feed-forward networks using theoretical formalizations from statisti-
cal mechanics. Yet others (Botros, and Atkeson, 1991; Moody, 1992; Cohn and
Tesauro. 1991; Weigand, Rumelhart, and Huberman, 1991) attempt to obtain

empirical bounds on generalization abilities.

e This is an attempt to obtain rate-of-convergence bounds in the spirit of Barron’s
work , but using a different approach. We have chosen to combine theorems from
approximation theory (which gives us the O(1/n) term in the rate, and uniform
convergence theory (which gives us the other part). Note that at this moment,
our rate of convergence is worse than Barron’s. In particular, he obtains a
rate of convergence of O(1/n + (nkln(l))/l). Further, he has a different set of
assumptions on the class of functions (corresponding to our F). Finally, the
approximation scheme is a class of networks with sigmoidal units as opposed to
radial-basis units and a different proof technique is used. It should be mentioned
here that his proof relies on a discretization of the networks into a countable

family, while no such assumption is made here.

55



e [t would be worthwhile to make a reference to (Geman, Bienenstock, and Dour-
sat, 1992) which talks of the Bias-Variance dilemma. This is another way of
formulating the trade-off between the approximation error and the estimation
error. As the number of parameters (proportional to n) increases, the bias
(which can be thought of as analogous to the approximation error) of the esti-
mator decreases and its variance (which can be thought of as analogous to the
estimation error) increases for a fixed size of the data set. Finding the right
bias-variance trade-off is very similar in spirit to finding the trade-off between
network complexity and data complexity.

e Given the class of radial basis functions we are using, a natural comparison
arises with kernel regression (Krzyzak, 1986; Devroye, 1981) and results on the
convergence of kernel estimators. It should be pointed out that, unlike our
scheme, Gaussian-kernel regressors require the variance of the Gaussian to go
to zero as a function of the data. Further the number of kernels is always equal
to the number of data points and the issue of trade-off between the two is not

explored to the same degree.

¢ In our statement of the problem, we discussed how pattern classification could be
treated as a special case of regression. In this case the function fy corresponds to
the Bayes a-posterior: decision function. Researchers (Richard, and Lippman,
1991; Hampshire, and Pearlmutter, 1990; Gish, 1990) in the neural network
community have observed that a network trained on a least square error criterion
and used for pattern classification was in effect computing the Bayes decision
function. This chapter provides a rigorous proof of the conditions under which
this is the case.

2.6 Implications of the Theorem in Practice: Putting
| In the Numbers

We have stated our main result in a particular form. We have provided a provable
upper bound on the error (in the || . ||f2(p) metric) in terms of the number of examples
and the number of basis functions used. Further we have provided the order of the
convergence and have not stated the constants involved. The same result could be
stated in other forms and has certain implications. It provides us rates at which
the number of basis functions (n) should increase as a function of the number of
examples ({) in order to guarantee convergence(Section 2.6.1). It also provides us

with the trade-offs between the two as explored in Section 2.6.2.
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2.6.1 Rate of Growth of n for Guaranteed Convergence

From our theorem (2.4.1) we see that the generalization error converges to zero only
if n goes to infinity more slowly than I. In fact, if n grows too quickly the estimation
error w(l, n,é) will diverge, because it is proportional to n. In fact, setting n = I", we

obtain

limi_ 4o w(l,n,é) =

: rk T 1/2
= limy— 40 O ([‘ kln(l “l)+ln(1/5)] / ) _

= lmyyoo " 'inl .

Therefore the condition » < 1 should hold in order to guarantee convergence to zero.

2.6.2 Optimal Choice of n

In the previous section we made the point that the number of parameters n should
grow more slowly than the number of data points [, in order to guarantee the consis-
tency of the estimator f,,;. It is quite clear that there is an optimal rate of growth of
the number of parameters, that, for any fixed amount of data points I, gives the best
possible performance with the least number of parameters. In other words, for any
fixed [ there is an optimal number of parameters n*(I) that minimizes the general-
ization error. That such a number should exist is quite intuitive: for a fixed number
of data, a small number of parameters will give a low estimation error w(l,n, é), but
very high approximation error €(n), and therefore the generalization error will be
high. If the number of parameters is very high the approximation error ¢(n) will be
very small, but the estimation error w(l,n,§) will be high, leading to a large gener-
alization error again. Therefore, somewhere in between there should be a number of
parameters high enough to make the approximation error small, but not too high, so
that these parameters can be estimated reliably, with a small estimation error. This
phenomenon is evident from figure (2-7), where we plotted the generalization error as
a function of the number of parameters n for various choices of sample size I. Notice
that for a fixed sample size, the error passes through a minimum. Notice that the
location of the minimum shifts to the right when the sample size is increased.

In order to find out exactly what is the optimal rate of growth of the network size
we simply find the minimum of the generalization error as a function of n keeping the

sample size [ fixed. Therefore we have to solve the equation:
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Figure 2-7: Bound on the generalization error as a function of the number of basis
functions n keeping the sample size [ fixed. This has been plotted for a few different
choices of sample size. Notice how the generalization error goes through a minimum
for a certain value of n. This would be an appropriate choice for the given (constant)
data complexity. Note also that the minimum is broader for larger [, that is, an
accurate choice of n is less critical when plenty of data is available.
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0 A
g ElUo = i) =0

for n as a function of I. Substituting the bound given in theorem (2.4.1) in the

previous equation, and setting all the constants to 1 for simplicity, we obtain:

0 [l (nkln(nl)—ln(cS))%] —0.

on

n l
Performing the derivative the expression above can be written as

1 1[knln(nl)—1Iné
n? 2 )
We now make the assumption that [ is big enough to let us perform the approximation

}_5 ?[ln(nl) +1].

In(nl) + 1 =~ In(nl). Moreover, we assume that

1 .
- << (nl)™

)

in such a way that the term including é in the equation above is negligible. After some
algebra we therefore conclude that the optimal number of parameters n*(l) satisfies,

for large [, the equation:

R E
0= [ewgeam]

From this equation is clear that n* is roughly proportional to a power of I/, and
therefore we can neglect the factor n* in the denominator of the previous equation,
since it will only affect the result by a multiplicative constant. Therefore we conclude
that the optimal number of parameters n*(!) for a given number of examples behaves

as

e
n*(l)oc[m] . (2.15)

In order to show that this is indeed the optimal rate of growth we reported in figure
(2-8) the generalization error as function of the number of examples [ for different
rate of growth of n, that is setting n = [ for different values of r. Notice that the
exponent r = 1, that is very similar to the optimal rate of eq. (2.15), performs better
than larger (r = %) and smaller (r = 116 exponents. .

While a fixed sample size suggests the scheme above for choosing an optimal network
size, it is important to note that for a certain confidence rate () and for a fixed error

rate (¢€), there are various choices of n and ! which are satisfactory. Fig. 2-9 shows n
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Figure 2-8: The bound on the generalization error as a function of the number of
examples for different choices of the rate at which network size n increases with
sample size [. Notice that if n = [, then the estimator is not guaranteed to converge,
i.e., the bound on the generalization error diverges. While this is a distribution free-
upper bound, we need distribution-free lower bounds as well to make the stronger

claim that n = [ will never converge.
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as a function of {, in other words (/,n) pairs which yield the same error rate with the

same confidence.
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Figure 2-9: This figures shows various choices of ({,n) which give the same generaliza-
tion error. The r-axis has been plotted on a log scale. The interesting observation is
that there are an infinite number of choices for number of basis functions and number
of data points all of which would guarantee the same generalization error (in terms
of its worst case bound).

If data are expensive for us, we could operate in region A of the curve. If network size
1s expensive we could operate in region B of the curve. In particular the economics
of trading off network and data complexity would yield a suitable point on this curve
and thus would allow us to choose the right combination of n and [ to solve our
regression problem with the required accuracy and confidence.

Of course we could also plot the error as a function of data size ! for a fixed
network size (n) and this has been done for various choices of n in Fig. 2-10.
We see as expected that the error monotonically decreases as a function of I. However
it asymptotically decreases not to the Bayes error rate but to some value above it
(the approximation error) which depends upon the the network complexity.

Finally figure (2-11) shows the result of theorem (2.4.1) in a 3-dimensional plot.
The generalization error, the network size, and the sample size are all plotted as a

function of each other.
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Figure 2-10: The generalization error as a function of number of examples keeping the
number of basis functions (n) fixed. This has been done for several choices of n. As
the number of examples increases to infinity the generalization error asymptotes to
a minimum which is not the Bayes error rate because of finite hypothesis complexity
(finite n).
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Figure 2-11: The generalization error, the number of examples ({) and the number of
basis functions (n) as a function of each other.

2.7 Conclusion

For the task of learning some unknown function from labelled examples where we
have multiple hypothesis classes of varying complexity, choosing the class of right
complexity and the appropriate hypothesis within that class poses an interesting
problem. We have provided an analysis of the situation and the issues involved and in
particular have tried to show how the hypothesis complexity, the sample complexity
and the generalization error are related. We proved a theorem for a special set of
hypothesis classes, the radial basis function networks and we bound the generalization
error for certain function learning tasks in terms of the number of parameters and
the number of examples. This is equivalent to obtaining a bound on the rate at
which the number of parameters must grow with respect to the number of examples
for convergence to take place. Thus we use richer and richer hypothesis spaces as
more and more data become available. We also see that there is a tradeoff between
hypothesis complexity and generalization error for a certain fixed amount of data and
our result allows us a principled way of choosing an appropriate hypothesis complexity
(network architecture). The choice of an appropriate model for empirical data is a

problem of long-standing interest in statistics and we provide connections between
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our work and other work in the field.

2-A Notations

e A: a set of functions defined on S such that, for any a € A,

0<a(§)<U* VEE€S.

Ag: the restriction of A to the data set, see eq. (2.23).

B: it will usually indicate the set of all possible {-dimensional Boolean vectors.
B: a generic e-separated set in S.

C(e, A,dp1): the metric capacity of a set A endowed with the metric dp1(p).
d(-,-): a metric on a generic metric space S.

dpi(-,+), dppy(s,-): L' metrics in vector spaces. The definition depends on
the space on which the metric is defined (k-th dimensional vectors, real valued

functions, vector valued functions).

1. In a vector space R* we have

1 l
d(x,y) = 33 fo* — 3]

u=1

where x, y € R*, z* and y* denote their u-th components.
y y © P

. In an infinite dimensional space F of real valued functions in k variables

we have

dum(f9) = [, 17x) = g(x)|4P(x)

where f,g € F and dP(x) is a probability measure on R*.

3. In an infinite dimensional space F of functions in k variables with values

in B* we have

Ly~ [ 160 - gix)ldP ()

ni

where £(x) = (fi(x),- - fi(X)s- - fulx)), 8(X) = (g:1(%). .. :(x), ... gu(x))

are elements of F and dP(x) is a probability measure on R*.

dpypy(f,g) =
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Dy: it will always indicate a data set of [ points:

D= {(xi,yi) € X x Y}

=1 -
The points are drawn according to the probability distribution P(x,y).

E[-]: it denotes the expected value with respect to the probability distribution
P(x,y). For example

If]= El(y - f(x))"] ,

and

1 fo = fliiap) = El(fo(x) — f(x))?].

f: a generic estimator, that is any function from X to Y:

f: X=Y.

fo(x): the regression function, it is the conditional mean of the response given
the predictor:

fox) = [, dy yP(ylx) -

It can also be defined as the function that minimizes the expected risk I[f] in
U. that is

fo(x) = arg jnf I[f].

Whenever the response is obtained sampling a function & in presence of zero

mean noise the regression function coincides with the sampled function A.

fu: it is the function that minimizes the expected risk I[f] in H,:

fn=arg ;'enzf,. 1[f]

Since
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I[f] = ||fo - f”%ﬁ(P) + I[fo]

fn it is also the best L?(P) approximation to the regression function in H, (see
figure 2-6).

° fnJ: is the function that minimizes the empirical risk lemp[f] in Hy:

fny = arg f{sn}gn Temp(f]

In the neural network language it is the output of the network after training

has occurred.

e F: the space of functions to which the regression function belongs, that is the
space of functions we want to approximate.

F: X=Y

where X € R? and Y € R. F could be for example a set of differentiable
functions, or some Sobolev space H™?(R*)

e G: it is a class of functions of k variables

g: R = 1[0,V]

defined as

G == {g:9(x) = G(||x - t||), t € R*}.
where G is the gaussian function.

o (3: it is a k + 2-dimensional vector space of functions from R* to R defined as

Gl = Spa'n{lv xla z2’ Rl -'L'ks ”x“z}
where x € R¥ and z* is the u-th component of the vector x.

e (I5: it is a set of real valued functions in k variables defined as

1

Gy={aed:feCG, a=
2= lae™ € Gy e =I5

}
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where o is the standard deviation of the Gaussian G.

Hy: it is a class of vector valued functions

g(x): RF - R"

of the form

g(x) = (G(lIx = ta]l), G(llx = t2]), ..., G(IIx = tal]))

where (7 is the gaussian function and the t; are arbitrary k-dimensional vectors.

Hpg: it is a class of real valued functions in n variables:

f:0,VI* >R

of the form

f(x)=p8-x

where 3 = (f1,...,3) is an arbitrary n-dimensional vector that satisfies the

constraint

n

YIBl <M.

1=1
H.,: a subset of F, whose elements are parametrized by a number of parameters
proportional to n. We will assume that the sets H,, form a nested family, that

is

HcH,c...CH,C..

For example H,, could be the set of polynomials in one variable of degree n — 1,
Radial Basis Functions with n centers or multilayer perceptrons with n hidden
units. Notice that for Radial Basis Functions with moving centers and Multi-
layer perceptrons the number of parameters of an element of H, is not n, but it
is proportional to n (respectively n(k + 1) and n(k + 2), where k is the number

of variables).
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H: it is defined as H = U,2; H,, and it is identified with the approximation
scheme. If H,, is the set of polynomials in one variable of degree n — 1, H is the
set of polynomials of any degree.

H™P(R*): the Sobolev space of functions in k variables whose derivatives up to
order m are in LP(R*).

I[f]: the expected risk, defined as

1M1= [ dxdy Plx,y)(y - f(x))* .

where f is any function for which this expression is well defined. It is a measure
of how well the function f predicts the response y.

Iemp[f]: the empirical risk. It is a functional on U defined as

I

Fonglf) = 7 (0= Fx)?
where {(x;,yi)}\_, is a set of data randomly drawn from X x Y according to the
probability distribution P(X,y). It is an approximate measure of the expected
risk, since it converges to I[f] in probability when the number of data points [
tends to infinity.

k: it will always indicate the number of independent variables, and therefore
the dimensionality of the set X.

I: it will always indicate the number of data points drawn from X according to
the probability distribution P(x).

L?(P): the set of function whose square is integrable with respect to the measure
defined by the probability distribution P. The norm in L?(P) is therefore
defined by

sy = [, dx POOSH)

A™(R*) (Mo, My, My, ..., M,,): the space of functions in k variables whose deriva-

tives up to order m are bounded:

IDfl < My o) =1,2,...,m
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where o 1s a multi-index.

M: a bound on the coefficients of the gaussian Radial Basis Functions technique

considered in this paper, see eq. (2.13).
M(e.S.d): the packing number of the set S, with metric d.
N(e.S.d): the covering number of the set S, with metric d.

n: a positive number proportional to the number of parameters of the approx-
imating function. Usually will be the number of basis functions for the RBF

technique or the number of hidden units for a multilayer perceptron.

P(x): a probability distribution defined on X. It is the probability distribution

according to which the data are drawn from X.

P(y|x): the conditional probability of the response y given the predictor x. It
represents the probabilistic dependence of y from x. If there is no noise in the
system it has the form P(y|x) = §(y — h(x)), for some function h, indicating

that the predictor x uniquely determines the response y.

P(x,y): the joint distribution of the predictors and the response. It is a prob-

ability distribution on X x Y and has the form

P(x,y) = P(x)P(y|x) .
St it will usually denote a metric space, endowed with a metric d.
S: a generic subset of a metric space 5.
T: a generic e-cover of a subset S C S.

U: it gives a bound on the elements of the class A. In the specific case of the

class A considere in the proof we have U =1+ MV.

U: the set of all the functions from X to Y for which the expected risk is well

defined.

V: a bound on the Gaussian basis function G

0<G(x)<V, VYxe Rk
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o X: a subset of R, not necessarily proper. It is the set of the independent

variables, or predictors, or, in the language of neural networks, input variables.

e x: a generic element of X, and therefore a k-dimensional vector (in the neural

network language is the input vector).

e Y: a subset of R, whose elements represent the response variable, that in the
neural networks language is the output of the network. Unless otherwise stated
it will be assumed to be compact, implying that F is a set of bounded functions.
In pattern recognition problem it is simply the set {0,1}.

e y: a generic element of Y, it denotes the response variable.

2-B A Useful Decomposition of the Expected Risk

We now show that the function that minimizes the expected risk

1= [ Pecy)dxdy(y = F(x))*

is the regression function defined in eq. (2.3). It is sufficient to add and subtract the

regression function in the definition of expected risk:

I[f] = Jxxy dxdyP(x,y)(y — fo(x) + fo(x) — f(x))* =

=[xy dxdyP(x,y)(y — fo(x))*+
+ [xxy dxdy P(x,y)(fo(x) — f(x))* +

+ 2 [xxy dxdy P(x,y)(y — fo(x))(fo(x) = f(x))

By definition of the regression function fo(x), the cross product in the last equation

is easily seen to be zero, and therefore

111 = [ dxP(x)alx) = f(0)* + I1f]

Since the last term of I[f] does not depend on f, the minimum is achieved when the
first term is minimum, that is when f(x) = fo(x).
In the case in which the data come from randomly sampling a function f in

presence of additive noise, ¢, with probability distribution P(¢) and zero mean, we
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have P(y|x) = P(y — f(x)) and then

[h)= [ dxdyP(x.y)ly - fo(x))* = (2.16)
= [ axP(x) [ (v = Fx)*Ply - f(x)) = (2.17)
- /X dxP(x) fy eP(e)de = o (2.18)

where o2 is the variance of the noise. When data are noisy, therefore, even in the most
favourable case we cannot expect the expected risk to be smaller than the variance

of the noise.

2-C A Useful Inequality

Let us assume that, with probability 1 — é a uniform bound has been established:

[Lemplf] = I[f]] Lw(l,n,8) VfeH,.

We want to prove that the following inequality also holds:

[ {fu] = I fad] < 20(1,1,6) . (2.19)

This fact is easily established by noting that since the bound above is uniform, then
it holds for both f, and f,,'l, and therefore the following inequalities hold:

I[fn,l] S Iemp[in,l] +w

Iemp[fn] S I[fn] +w

Moreover, by definition, the two following inequalities also hold:

I[fn] < I[fn.l]

Iemp[fn.l] S Iemp[fn]

Therefore tha following chain of inequalities hold, proving inequality (2.19):
[[fn] S [[fn,l] S [emp[fn,l] +w _<_ Ielnp‘[f'n.] +w S I[fn] + 2w .
An intutitive explanation of these inequalities is also explained in figure (2-12).
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Figure 2-12: If the distance between I[f,] and I[f,,] is larger than 2¢, the condition
Lemp| frt) < Lemplfn] 1s violated.

2-D Proof of the Main Theorem

The theorem will be proved in a series of steps. Conceptually, there are four major
steps in the proof outlined in the proof structure below.
Structure of Proof

Step 1

The total generalization error is decomposed into its approximation and estimation
components. Using the derivations outlined in appendices 2-B, and 2-C, we are able
to show that the decomposition has the form of statement 2.2.1 of section 2.2, viz.,
with probability 1 — 6,

”fO - fAnJ“‘i?(P) <en)+ 2w(l,n,6) . (2.20)

We now need to compute €(n) and w(l,n,8) and these constitute steps 2 and 3 of the
proof structure.

Step 2

We obtain a bound on ¢(n) (the approximation error) in section 2-D.1. The funda-
mental lemma used here is the Maurey-Jones-Barron lemma (Lemma 2-D.1) and the
approximation bound is obtained.

Step 3

We obtain a bound on the estimation error w(l,n,d) in section 2-D.2. Recall that we

need to be able to prove a uniform law of large numbers of the form:

Vf € Hy, [I[f] = Iemp[f]] Sw(l,n,é)
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with probability greater than 1 — 4.

Starting with a uniform law of the form stated in Claim 2-D.1 and refining it
further we arrive at Claim 2-D.3. In doing this, we introduce notions of covering
numbers and metric entropy. The form of this refined uniform law of large numbers

182

P(Vh € Hy,, [ Lemplh] — I[A]] < €) >

> 1 —4C(e/16, A, dy1 )] e Tmvn <!

In order to let 1 —4C(€¢/16,.A,d )]6_-1_2?117‘-521 be greater than 1 — §, we need to obtain
an expression for C(¢/16, A, dp1)] in terms of the number of parameters. Claims 2-D.4
through 2-D.9 go through this computation.

Finally. in claim 2-D.10, we show how to use this result to compute an expression
for w(l,n,d) which is what we originally set out to do.
Step 4
Putting together the approximation and estimation bounds of steps 2 and 3, we
obtain in section 2-D.3 how the expression for the total generalization error in the

appropriate form in order to prove the main theorem.

2-D.1 Bounding the approximation error

In this part we attempt to bound the approximation error. In section 2.3 we assumed
that the class of functions to which the regression function belongs, that is the class

of functions that we want to approximate, is

f_:_{flf-———A*Gm,a"l>k/2,|/\|Rk SM}.

where A is a signed Radon measure on the Borel sets of R*, G,, is the Bessel-
Macdonald kernel as defined in section 2.3 and M is a positive real number. Our

approximating family is the class:

(lx=

Hy={f € Ly|f = Z/i(' t”) Zlﬂl<M & € BY)

[t has been shown in [50, 51] that the class H, uniformly approxmla.te elements of F,
and that the following bound is valid:

E{(fo—-f)?1 <0 (%) . (2.21)

This result is based on a lemma by Jones {71] on the convergence rate of an

iterative approximation scheme in Hilbert spaces. A formally similar lemma, brought
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to our attention by R. Dudley [38] is due to Maurey and was published by Pisier
[105]. Here we report a version of the lemma due to Barron (8, 9] that contains a

slight refinement of Jones’ result:

Lemma 2-D.1 (Maurey-Jones-Barron) If f is in the closure of the convex hull
of a set G in a Hilbert space H with ||g|]| < b for each g € G, then for every n > 1
and for ¢ > b — || f||? there is a f, in the convex hull of n points in G such that

TRV

In order to exploit this result one needs to define suitable classes of functions which
are the closure of the convex hull of some subset G of a Hilbert space H. One way
to approach the problem consists in utilizing the integral representation of functions.

Suppose that the functions in a Hilbert space H can be represented by the integral

f(x) = /M Gl (%; t)dar(t) (2.22)

where o is some measure on the parameter set M, and G,,(x;t) is a function of H
parametrized by the parameter t, whose norm ||G,,(x;t)|| is bounded by the same
number for any value of t. In particular, if we let G,,(x;t) be translates of G,,, by
t, i.e.,, Gn(x —t), and « be a finite measure, the integral (2.22) can be seen as an
infinite convex combination of translates of G,,.

We now make the following two observations. First, it is clear that elements of
F have an integral representation of the type (2.22) and are members of the Hilbert
space H. Second, since X is a finite measure (bounded by M) elements of F are infinite
convex combinations of translates of (7,,. We now make use of the important fact that
convex combinations of translates of (7,, can be represented as convex combinations
of translates and dilates of Gaussians (in other words sets of the form of H,, for some
n).

This allows us to define G of lemma 2-D.1 to be the parametrized set G = {g|g(x) =
G( ijT"tu)} Clearly, elements of F lie in the convex hull of G as defined above and
therefore, applying lemma (2-D.1) one can prove ({50, 51]) that there exist n coeffi-

cients ¢;, n parameter vectors t;, and n choices for o; such that

n

n ) 1
= aG(x;t5504)||* < O(=)
=1

Notice that the bound (2.21), that is similar in spirit to the result of A. Barron
on multilayer perceptrons [8, 10], is interesting because the rate of convergence does
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not depend on the dimension d of the input space. This is apparently unusual in
approximation theory, because it is known, from the theory of linear and nonlinear
widths [[21, 104, 87, 88, 32, 31, 33, 91], that, if the function that has to be approxi-
mated has d variables and a degree of smoothness s, we should not expect to find an
approximation technique whose approximation error goes to zero faster than O(n=1).
Here “degree of smoothness” is a measure of how constrained the class of functions
we consider is, for example the number of derivatives that are uniformly bounded, or
the number of derivatives that are integrable or square integrable. Therefore, from
classical approximation theory, we expect that, unless certain constraints are imposed
on the class of functions to be approrimated, the rate of convergence will dramatically
slow down as the number of dimensions increases, showing the phenomenon known
as “the curse of dimensionality” [13].

In the case of class F we consider here, the constraint of considering functions
that are convolutions of Radon measures with Gaussians seems to impose on this
class of functions an amount of smoothness that is sufficient to guarantee that the
rate of convergence does not become slower and slower as the dimension increases. A
longer discussion of the “curse of dimensionality” can be found in [51].

We notice also that, since the rate (2.21) is independent of the dimension, the
class F, together with the approximating class H,, defines a class of problems that

are “tractable” even in a high number of dimensions.

2-D.2 Bounding the estimation error

In this part we attempt to bound the estimation error |I[f] — lemp[f]|- In order to do
that we first need to introduce some basic concepts and notations.

Let S be a subset of a metric space S with metric d. We say that an e-cover with
respect to the metric d is a set 7 € S such that for every s € S, there exists some
t € T satisfying d(s,t) < e. The size of the smallest e-cover is V(¢, S, d) and is called
the covering number of S. In other words

N(e,8,d) =min|T|,
TCS

where T runs over all the possible e-cover of § and |7| denotes the cardinality of 7.
A set B belonging to the metric space S is said to be e-separated if for all
z,y € B, d(x,y) > e. We define the the packing number M(e,S,d) as the size of the

largest e-separated subset of S. Thus
M(e,S,d) = max |B|
Bcs
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where B runs over all the e-separated subsets of S. It is easy to show that the covering
number is always less than the packing number, that is M(e,S,d) < M(e, S, d).

Let now P(¢) be a probability distribution defined on S, and A be a set of real-
valued functions defined on S such that, for any a € A,

0<a(f)<U* VEe€S.

Let also £ = (£y,..,&) be a sequence of [ examples drawn independently from S ac-
cording to P(¢). For any function a € A we define the empirical and true expectations
of a as follows:

Ela) = IZ(L

]
=1
Bla] = [ d€P(€)a(¢)

The difference between the empirical and true expectation can be bounded by the

following inequality, whose proof can be found in [109] and [63], that will be crucial

in order to prove our main theorem.
Claim 2-D.1 ([109], [63]) Let A and £ be as defined above. Then, for all € > 0,
P(3ae A:|E[a] - Ela)| > ¢) <

2]

<4F [N(ﬁ;, .Ag, dLl )] e_lzslUIE
In the above result, Az is the restriction of A to the data set, that is:

As = {(a(&),....a(&)) s a € A} . | (2.23)

The set Ag is a collection of points belonging to the subset [0, U ] of the I-dimensional
euclidean space. Each function a in A is represented by a point in Ag, while every
point in Ag represents all the functions that have the same values at the points
&1, ...,&. The distance metric dy1 in the inequality above is the standard L' metric
in R, that is

dpi(x,y) Z l* — y*|

u—l
where x and y are points in the /-dimensional euclidean space and z* and y* are their

u-th components respectively.
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The above inequality is a result in the theory of uniform convergence of empirical
measures to their underlying probabilities, that has been studied in great detail by
Pollard and Vapnik. and similar inequalities can be found in the work of Vapnik
[125. 126. 124], although they usually involve the VC dimension of the set A, rather

than its covering numbers.

Suppose now we choose S = X x Y, where X is an arbitrary subset of R* and
Y = [-M.M] as in the formulation of our original problem. The generic element of
S will be written as £ = (x,y) € X x Y. We now consider the class of functions A

detined as:

A={a: X xY > R|a(x,y) = (y - h(x))’, h € Hu(R*)}

where H,, (R*) is the class of k-dimensional Radial Basis Functions with n basis func-

tions defined in eq. 2.13 in section 2.3. Clearly,

ly = h(x)| < [yl + [h(x)| < M + MV,

and therefore

where we have defined

U=M+MV.

We notice that, by definition of £(a) and E(a) we have

l
'l‘ ‘L__: r T h X, = [emp[h]

and

B(a)= [ dxdy Plx,y)(y— h(x))* = I[h]

Therefore, applying the inequality of claim 2-D.1 to the set A, and noticing that the
elements of A are essentially defined by the elements of H,,, we obtain the following

result:
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P(Vh € Hy, [lemp[h] — I[R]| <€) >
(2.24)
> 1 — 4E[N(¢/16, Az, dpi)|e !
so that the inequality of claim 2-D.1 gives us a bound on the estimation error. How-
ever, this bound depends on the specific choice of the probability distribution P(x,y),
while we are interested in bounds that do not depend on P. Therefore it is useful to
define some quantity that does not depend on P, and give bounds in terms of that.

We then introduce the concept of metric capacity of A, that is defined as

C(E,A, dLl) = Sl;,p{N(é, .A, dLl(p))}

where the supremum is taken over all the probability distributions P defined over S,
and dp1(p) is standard L'(P) distance?
induced by the probability distribution P:

dpip(an,a) = [ dEP©Olar(6) = aaf€)] ar,az € A.

The relationship between the covering number and the metric capacity is showed in
the following

Claim 2-D.2
E[N(G,AE, dLl)] < C(f, .A, (lLl) .

Proof: For any sequence of points £ in S, there is a trivial isometry between (Ag, dp1)
and (A, de(pE)) where P is the empirical distribution on the space S given by
15i16(€ — &). Here 6 is the Dirac delta function, £ € S, and & is the i-th el-
ement of the data set. To see that this isometry exists, first note that for every
element @ € A, there exists a unique point (a(&;),...,a(&)) € Ag Thus a simple
bijective mapping exists between the two spaces. Now consider any two elements g
and h of A. The distance between them is given by

2Note that here A is a class of real-valued functions defined on a general metric space S. If we
consider an arbitrary A defined on S and taking values in R"™, the dpi(p), norm is appropriately
adjusted to be

dum(€8) =7 3 [ 1700) = s P(x)x
i=] "

where f(x) = (f1(x), ... fi(x),... fa(x)), g(x) = (91(X),...¢i(X),...gn(x)) are elements of A and
P(x) is a probability distribution on 5. Thus dz1 and dg1(py should be interpreted according to the
context.
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dueg(9sh) = [ 19(6) = R(OIP(E)dE = ZU(a — h(&).

This is exactly what the distance between the two points (g(&1), ... g(&/)) and (h(&;), ... A{(&}).
which are elements of Ag, is according to the dp: distance. Thus there is a one-to-one
correspondence between elements of A and Ag and the distance between two elements
in A is the same as the distance between their corresponding points in Az. Given
this isometry, for every e-cover in A, there exists an e-cover of the same size in Ag,

so that

N(t’, .Ag, dLl) = N(f, A, dLl(Pe)) < C(E,A, de).
and consequently E[N (e, Ag,dp1)] < C(e, A, dp). O

The result above, together with eq. (2.24) shows that the following proposition holds:

Claim 2-D.3
P(Vh € an IIemp[h] - I[h” S 6) 2

(2.25)
> 1 —4C(¢/16, A, dp1 e mem

Thus in order to obtain a uniform bound w on |lemp[h] — I[A]], our task is reduced to
computing the metric capacity of the functional class A4 which we have just defined.
We will do this in several steps. In Claim 2-D.4, we first relate the metric capacity of
A to that of the class of radial basis functions H,,. Then Claims 2-D.5 through 2-D.9
go through a computation of the metric capacity of H,,.

Claim 2-D.4
C(f,.A, dLl) S C(6/4U, Hn,dbx)

Proof: Fix a distribution P on S = X xY. Let Px be the marginal distribution with
respect to X. Suppose K is an e/4l/-cover for H, with respect to this probability
distribution Py. i.e. with respect to the distance metric dpi(py) on H,. Further let
the size of K be N(e/4U, H,,dp1(py)). This means that for any h € H,, there exists
a function h* belonging to K, such that:

/Ih — h*(x)|Px (x)dx < ¢/4U

Now we claim the set H(K) = {(y — h(x))?: h € K} is an € cover for A with respect
to the distance metric dz1(p). To see this, it is sufficient to show that
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Sy = h(x))? — (y — A*(x))?| P(x,y)dxdy <
< [2|(2y = b — B*)||(k — k)| P(x, y)dxdy <

< [2(2M +2MV)|h — b*|P(x,y)dxdy < ¢

which is clearly true. Now
N(e, A dpypy) S JH(K)| =
= calN(e/4U, Hn,dLl(px)) S

< C(e/4U, H,,,d1)

Taking the supremum over all probability distributions, the result follows. O

So the problem reduces to finding C(€, H,,dp1), i.e. the metric capacity of the class
of appropriately defined Radial Basis Functions networks with n centers. To do this

we will decompose the class H,, to be the composition of two classes defined as follows.
Definitions/Notations

H; is a class of functions defined from the metric space (R¥,dy:) to the metric space

(R™,dgt). In particular,

Hy = {g(x) = (G(lIx = t:])), G(lIx = tall), . ., G(l}x = ta]]))}

where GG is a Gaussian and t; are k-dimensional vectors.

Note here that G is the same Gaussian that we have been using to build our Radial-
Basis-Function Network. Thus H| is parametrized by the n centers ¢; and the variance
of the Gaussian o2, in other words nk + | parameters in all.

Hp is a class defined from the metric space ([0,V]",dL1) to the metric space

(R,dr1). In particular,

Hp = {h(x)=8-x, x€[0,V]" and i |3 < M}

i=1
where 8 = (f1,...,3,) is an arbitrary n-dimensional vector.

Thus we see that
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H,={hpoh;:hp € Hr and h; € H;}

where o stands for the composition operation, i.e., for any two functions f and g,
fog = f(y(x)). It should be pointed out that H, as defined above is defined from
R* to R.

Claim 2-D.5 (e+2)
Cle, Hydp ) < 2" (ﬂ In (EK))

€ €

Proof: Fix a probability distribution P on RF. Consider the class

G ={g:9(x)=G(llx —t||), t € R*}.

Let K be an NV (e.G.dp(p))-sized € cover for this class. We first claim that

T = {(hy, ., hn) : hi € K}

is an e-cover for Hj with respect to the dpi(py metric.
Remember that the dzi(p) distance between two vector-valued functions g(x) =
(91(X)s .. gu{x)) and g*(x) = (g7(x), .., g5(x)) is defined as

du(p)(8:87) Z [ l9i(x) = g7 ()| P(x)dx

To see this, pick an arbitrary g = (g1,...,9,) € Hj. For each g;, there existsa g7 € K

which is e-close in the appropriate sense for real-valued functions, i.e. dpi(py(gi,97) <

e. The function g = (¢7,.-,95) is an element of T. Also, the distance between
(1,-..9n) and (g7, ..,g;) in the dp1(py metric is

. 1 n
dpypy(g,8") < ;Zf =e.

Thus we obtain that

./\/r(t, Hl, (lLl(p)) S [.NF(C, g, dLL(p))]"

and taking the supremum over all probability distributions as usual, we get

C(E, H],dLl) S (C(e,g,du))n .

Now we need to find the capacity of G. This is done in the Claim 2-D.6. From this
the result follows. O

81



Definitions/Notations

Before we proceed to the next step in our proof, some more notation needs to be
defined. Let A be a family of functions from a set S into R. For any sequence
€ = (&, ..,&4) of points in S, let Ag be the restriction of F to the data set, as per
our previously introduced notation. Thus Az = {(a(&1),...,a(&4)) : a € A}. If there
exists some translation of the set Ag, such that it intersects all 24 orthants of the
space R%, then £ is said to be shattered by A. Expressing this a little more formally,
let B be the set of all possible [-dimensional boolean vectors. If there exists a trans-
lation t € R? such that for every b € B, there exists some function ay, € A satisfying
ap(&) —t; > b; & b, = 1for all : =1 to d, then the set (&1, ..,&,) is shattered by A.
Note that the inequality could easily have been defined to be strict and would not
have made a difference. The largest d such that there exists a sequence of d points

which are shattered by A is said to be the pseudo-dimension of A denoted by pdim.A.
O

In this context, there are two important theorems which we will need to use. We give
these theorems without proof.

Theorem 2-D.1 (Dudley) Let F be a k-dimensional vector space of functions from
a set S into R. Then pdim(F) = k.

The following theorem is stated and proved in a somewhat more general form by
Pollard. Haussler, using techniques from Pollard has proved the specific form shown

here.

Theorem 2-D.2 (Pollard, Haussler) Let F' be a family of functions from a set
S into [My, Ms], where pdim(F) = d for some 1 < d < co. Let P be a probability
distribution on S. Then for all 0 < e < M, — M,

1 1 ¢
M(e, Fydppy) < 2 (-ze(M2 ~ My) log ~2e(M; — Ml))
€
Here M(e, F,dpi(p)) is the packing number of F' according to the distance metric

dLl(P).

Claim 2-D.6 (k42)
¢ 'S /V ¢
Cle.G.dp) <2 (2—6‘1 In (z"—))
€

€
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Proof: Consider the k+2-dimensional vector space of functions from R* to R defined
as

Gh = span{l,z', 2%, -, 2%, ||x||?}
where x € R* and ¢* is the u-th component of the vector x. Now consider the class

1

Gy={ae:feG, a=
2o

}

where o is the standard deviation of the Gaussian, and f € G;. We claim that the

pseudo-dimension of G denoted by pdim(G) fulfills the following inequality,

pdim (G) £ pdim (G;) = pdim (G1) = (k +2).

To see this consider the fact that G C G;,. Consequently, for every sequence of points
X = (X1,-.-,%X4), Gz C (G2)z.- Thus if (xi,...,Xq) is shattered by G, it will be
shattered by (. This establishes the first inequality.

We now show that pdim(G;) < pdim(G)). It is enough to show that every set shat-
tered by (53 is also shattered by (G1. Suppose there exists a sequence (X1, Xy, ..., Xq)
which is shattered by (7,. This means that by our definition of shattering, there
exists a translation t € R? such that for every boolean vector b € {0.1}* there
is some function g, = ae™/b where f, € Gy satisfying gp(z;) > t; if and only if
b; = 1. where t; and b; are the ¢-th components of t and b respectively. First notice
that every function in (7 is positive. Consequently, we see that every #; has to be
greater than 0. for otherwise, gy(x;) could never be less than ¢; which it is required
to be if b; = 0. Having established that every ¢; is greater than 0, we now show
that the set (xy,Xy,...,X4) is shattered by G;. We let the translation in this case
be t' = (log(t:/a),log(ta/a), ..., log(ta/c)). We can take the log since the ¢;/a’s are
greater than 0. Now for every boolean vector b, we take the function —f, € G; and

we see that since

gbzae‘f" >t o b =1.

if follows that

—fy > log(ti/a) = t’,' S b= 1.

Thus we see that the set (xq,X3,...,Xq) can be shattered by Gy. By a similar argu-
ment, it is also possible to show that pdim(G,) > pdim(G,).

Since (7 is a vector space of dimensionality k+2, an application of Dudley’s Theorem
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[37] yields the value k + 2 for its pseudo-dimension. Further, functions in the class G
are in the range [0, V]. Now we see (by an application of Pollard’s theorem) that

N(Ev g? dL’(P)) S /M(e,g,du(f,)) S

<2 (g-fz In (2_iz))pdim(g) <

<2 (%Y n (221)) "

€

Taking the supremum over all probability distributions, the result follows.O

Claim 2-D.7

Cle Hp dy) < 2 (4MeVln (4M.eV))

€ €

Proof: The proof of this runs in very similar fashion. First note that

Hrc{B-x:x, B8 € R"}.

The latter set is a vector space of dimensionality n and by Dudley’s theorem(37], we
see that its pseudo-dimension pdim is n. Also, clearly by the same argument as in the
previous proposition, we have that pdim(Hr) < n. To get bounds on the functions

in Hp, notice that

I Bizi <Y Billzil <V Y (B < MV.
i=1 =1

=1
Thus functions in Hr are bounded in the range [-MV, MV]. Now using Pollard’s
result [63], [109], we have that

N(f, HF, dLl(p)) S ./M((‘, HF, dLl(p)) _<_

< 9 (41\/I€eV In (4]\/:eV))" )
Taking supremums over all probability distributions, the result follows. O
Claim 2-D.8 A uniform first-order Lipschitz bound of Hr is Mn.

Proof: Suppose we have x, y € R" such that

dpi(x,y) < e
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The quantity Mn is a uniform first-order Lipschitz bound for Hr if, for any element

of Hp, parametrized by a vector 3, the following inequality holds:
x-B—y- Bl < Mne
Now clearly,
x-B =y Bl =Ty Ailwi — yi)| <
< T 1Bill(e — ya)| <

SMYL e —yi)| £ Mne

The result is proved. O

Claim 2-D.9

C (6 H",dLl) < O( HI,dLl)C( Hp,dbx)

2M’

Proof: Fix a distribution P on R*. Assume we have an ¢/(2Mn)-cover for H; with

respect to the probability distribution P and metric dy1(p). Let it be K where

“\,‘ = N(f/'ZMn, H], dLl(P)).

Now each function f € K maps the space R* into R", thus inducing a probability
distribution Py on the space R". Specifically, P; can be defined as the distribution
obtained from the measure u; defined so that any measurable set A C R™ will have

measure

ur(A) = /f_lm P(x)dx .

Further, there exists a cover Ky which is an €/2-cover for Hr with respect to the

probability distribution Pf. In other words

leI = ./V(f/‘z, Hp, dLl(Pf))-

We claim that
H(K)={fog:9€ K and f € K,}

85



is an € cover for H,. Further we note that
|H(K)| = Zrex | K|l < ek Cle/2, Hp,dp) <

< N(e/(2Mn), Hy, dpypy)C(e/2, Hp, dpy)

To see that H(K) is an e-cover, suppose we are given an arbitrary function Ay o h; €
H,,. There clearly exists a function A7 € K such that

/R dya (hi(x), B(%)) P(x)dx < €/ (2Mn)
Now there also exists a function A} € Kj: such that
Jie b7 0 b3 () = b 0 B3 ()| P(x)dx =

= [pn lhs(y) = BH(Y)| Pre (y)dy < €/2.

To show that H(K) is an e-cover it is sufficient to show that
[ Vb 0 Bufx) = B 0 B3 ()| P(x)dx < .
Now
i Thy  hi(x) = 3 0 A ()| P(x)dx <
< Jre{lhs 0 hi(x) — hg 0 A7 (x)[+

+|hy o ki (x) — h} o hi(x)| P(x)dx}
by the triangle inequality. Further, since hy is Lipschitz bounded,

Jrr |hg o hi(x) — hy o hI(x)|P(x)dx <
< Jpe Mndpi (Ri(x), B (x)) P(x)dx < Mn(e/2Mn) < e/2 .
Also,
Jre [hy 0 hi(x) — h} o B} (x)|P(x)dx =
= [pn |hs(y) = R3(¥)|Prz(y)dy < €/2 .

Clonsequently both sums are less than €/2 and the total integral is less than €. Now

we see that
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N (e Hyodpypy) SN (e/(2Mn), H,,du(p)) C(e/2, Hr, dps).

Taking supremums over all probability distributions, the result follows. O

Having obtained the crucial bound on the metric capacity of the class H,, we can

now prove the following

Claim 2-D.10 With probability 1 — 6, and Yh € H,,, the following bound holds:

nkln(nl) + In(1/6)]"?
‘Iemp[h] - I[h” S 0 ([ I ] )

Proof: We know from the previous claim that

(e, Hyydpt) <

. k+2
< 2n+1 [4M:Vn lll (4MeVn)]"’( ) [BA{eV In (SIVZeV)]"

€

IN

n(k+3)

< [SM:Vn In( SM:Vn )]

From claim (2-D.3), we see that

P(Vh € H’m lIemp[h] - I[h” S 6) >
(2.26)
>1—§

as long as

6
C(e/16, A,dp1)e” P < Z
which in turn is satisfied as long as (by Claim 2-D.4)
)
C(e/64U, H,,dpn)e™mor™! < =

which implies

(%‘ZSGM&VUn In (%256M6V(/n>)"(k+3) .

- 1 621
-e 12802 <

o

In other words,
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n(k+3)
(ﬂ In (f‘ﬁ)) o—lB < 8
€ € 4

for constants A, B. The latter inequality is satisfied as long as

(An/e)211(k+3)e—rzl/3 < 216_

which implies

2n(k + 3)(In(An) — In(€)) — €21/ B < In(6/4)

and in turn implies

2l > Bln(4/6) + 2Bn(k + 3)(In(An) — In(e)).

We now show that the above inequality is satisfied for

l

Putting the above value of € in the inequality of interest, we get

. (B [In(4/6) + 2n(k + 3)In(An) + n(k + 3) 111(1)])‘/2

€2(!/B) = In(4/8) + 2n(k + 3) ln(An) + n(k + 3) In({) >

> In(4/6) + 2n(k + 3) In(An)+

NI !
+2n(k +3)3 In (B[I.n(4/6)+‘2n(k+3)ln(An)+n(k+3) m(z)])

In other words,

n(k +3)In(l) >

. I
> n(k+3)In ( Bln(4/5)+2n(k+3) In(An)+n(k+3) 111(()])

Since

B(In(4/6) + 2n(k + 3) In(An) + n(k + 3) In(l)] > 1

the inequality is obviously true for this value of €. Taking this value of ¢ then proves

our claim. O
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2-D.3 Bounding the generalization error

Finally we are able to take our results in Parts [l and III to prove our main result:

Theorem 2-D.3 With probability greater than 1 — § the following inequality is valid:

F ; kl D—=1Iné 1/2
Hfo—fn,llliz(mg()(T_IJ +O([n n(nl) ] )

Proof: We have seen in statement (2.2.1) that the generalization error is bounded
as follows:

| fo — fn,l”i?(f’) <e(n)+2w(l,n,d) .

In section (2-D.1) we showed that

e(n)=0 (%)

and in claim (2-D.10) we showed that

| _ 3 1/2
w(l,n,8) = 0 (l:nkln(n? 1116] ) .

Therefore the theorem is proved putting these results together. O
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Chapter 3

Investigating the Sample Complexity of
Active Learning Schemes

Abstract

In the classical learning framework of the previous chapter (akin to PAC) examples were randomly
drawn and presented to the learner. In this chapter, we consider the possibility of a more active
learner who is allowed to choose his/her own examples. Our investigations can be divided into two
natural parts. The first, is in a function approximation setting, and develops an adaptive sampling
strategy (equivalent to adaptive approximation) motivated from the standpoint of optimal recovery
(Micchelli and Rivlin, 1976). We provide a general formulation of the problem. This can be regarded
as sequential optimal recovery. We demonstrate the application of this general formulation to two
special cases of functions on the real line 1) monotonically increasing functions and 2) functions
with bounded derivative. An extensive investigation of the sample complexity of approximating
these functions is conducted yielding both theoretical and empirical results on test functions. Our
theoretical results (stated in PAC-style), along with the simulations demonstrate the superiority of
our active scheme over both passive learning as well as classical optimal recovery. The second part
of this chapter is in a concept learning framework and discusses the idea of ¢-focusing: a scheme
where the active learner can iteratively draw examples from smaller and smaller regions of the input
space thereby gaining vast improvements in sample complexity.

In Chapter 2, we considered a learning paradigm where the learner’s hypothesis
was constrained to belong to a class of functions which can be represented by a
sum of radial basis functions. It was assumed that the examples ((x,y) pairs) were
drawn according to some fixed, unknown, arbitrary, probability distribution. In this
important sense, the learner was merely a passive recipient of information about
the target function. In this chapter, we consider the possibility of a more active
learner. There are of course a myriad of ways in which a learner could be more active.
Consider, for example, the extreme patholdgical case where the learner simply asks for
the true target function which is duly provided by an obliging oracle. This, the reader
will quickly realize is hardly interesting. Such pathological cases aside, this theme of

activity on the part of the learner has been explored (though it is not always conceived
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as such) in a number of different settings (PAC-style concept learning, boundary-
hunting pattern recognition schemes, adaptive integration, optimal sampling etc.) in
more principled ways and we will comment on these in due course.

For our purposes, we restrict our attention in this chapter to the situation where

13 in other words, decide where

the learner is allowed to choose its own examples
in the domain D (for functions defined from D to Y) it would like to sample the
target function. Note that this is in direct contrast to the passive case where the
learner is presented with randomly drawn examples. Keeping other factors in the
learning paradigm unchanged, we then compare in this chapter, the active and passive
learners who differ only in their method of collecting examples. At the outset, we are
particularly interested in whether there exist principled ways of collecting examples
in the first place. A second important consideration is whether these ways allow the
learner to learn with a fewer number of examples. This latter question is particularly
in keeping with the spirit of this thesis, viz., the informational complexity of learning
from examples.

This chapter can be divided into two parts which are roughly self-contained. In
Part I, we consider active learning in an approximation-theoretic setting. We develop
a general framework for collecting examples for approximating (learning) real-valued
functions. We then demonstrate the application of these to some specific classes
of functions. We obtain theoretical bounds on the sample complexity of the active
and passive learners, and perform some empirical simulations to demonstrate the
superiority of the active learner. Part II discusses the idea of e-focusing-a paradigm
in which the learner iteratively focuses in on specific “interesting” regions of the input
space to collect its examples. This is largely in a concept learning (alternatively,
pattern classification) setting. We are able to show how using this idea, one can get

large gains in sample complexity for some concept classes.

Part I: Active Learning for Approximation of Real
Valued Functions

3This can be regarded as a computational instantiation of the psychological practice of selective
attentzon where a human might choose to selectively concentrate on interesting or confusing regions
of the feature space in order to better grasp the underlying concept. Consider, for example, the
situation when one encounters a speaker with a foreign accent. One cues in to this foreign speech by
focusing on and then adapting to its distinguishing properties. This is often accomplished by asking
the speaker to repeat words which are confusing to us.
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3.1 A General Framework For Active Approxi-

mation

3.1.1 Preliminaries

We need to develop the following notions:

F: Let F denote a class of functions from some domain D to Y where Y is a subset
of the real line. The domain D is typically a subset of R though it could be more
general than that. There is some unknown target function f € F which has to be

approximated by an approximation scheme.

D: This is a data set obtained by sampling the target f € F at a number of points
in its domain. Thus,

D = {(zi, yi)|zi € D,y = fzi), i=1...n}
Notice that the data is uncorrupted by noise.

H: This is a class of functions (also from D to Y') from which the learner will choose
one in an attempt to approximate the target f. Notationally, we will use H to refer
not merely to the class of functions (hypothesis class) but also the algorithm by means
of which the learner picks an approximating function h € H on the basis of the data
set D. In other words, H denotes an approximation scheme which is really a tuple
< H,A > . Ais an algorithm that takes as its input the data set D, and outputs an
h e H.

Examples: If we consider real-valued functions from R* to R, some typical examples
of H are the class of polynomials of a fixed order (say q), splines of some fixed order,
radial basis functions with some bound on the number of nodes, etc. As a concrete
example, consider functions from [0, 1] to R. Imagine a data set is collected which
consists of examples, i.e., (x;,y;) pairs as per our notation. Without loss of generality,
one could assume that z; < ;4 for each :. Then a cubic (degree-3) spline is obtained
by interpolating the data points by polynomial pieces (with the pieces tied together
at the data points or “knots”™) such that the overall function is twice-differentiable at

the knots. Fig. 3-13 shows an example of an arbitrary data set fitted by cubic splines.

dc : We need a metric to determine how good the approximation learner’s approxi-

mation is. Specifically, the metric dc measures the approximation error on the region
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Figure 3-13: An arbitrary data set fitted with cubic splines

(' of the domain D. In other words, d¢, takes as its input any two functions (say f;
and f;) from D to R and outputs a real number. It is assumed that d¢ satisfies all
the requisites for being a real distance metric on the appropriate space of functions.
Since the approximation error on a larger domain is obviously going to be greater
than that on the smaller domain, we can make the following two observations: 1) for
any two sets (/7 and (', such that Cy C Cy, de, (f1, f2) < de,(f1, f2), 2) dp(fi1, f2) is
the total approximation on the entire domain; this is our basic criterion for judging
the “gooduness” of the learner’s hypothesis.

Examples: For real-valued functions from R* to R, the L% metric defined as dc( f1, f2)

(o | fu = f2|Pdx)/P serves as a natural example of an error metric.

C: This is a collection of subsets C of the domain. We are assuming that points in the
domain where the function is sampled, divide (partition) the domain into a collection
of disjoint sets (’; € C such that UL ,C; = D.
Examples: For the case of functions from [0, 1] to R, and a data set D, a natural
way in which to partition the domain [0, 1] is into the intervals [z;, z;4+1), (here again,
without loss of generality we have assumed that z; < z;4,). The set C could be the
set of all (closed, open, or half-open and half-closed) intervals [a, b] C [0, 1].

The goal of the learner (operating with an approximation scheme H) is to provide
a hypothesis h € H (which it chooses on the basis of its example set D) as an
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approximator of the unknown target function f € F. We now need to formally lay
down a criterion for assessing the competence of a learner (approximation scheme).
In recent times, there has been much use of PAC (Valiant 1984) like criteria to assess
learning algorithms. Such a criterion has been used largely for concept learning but
some extensions to the case of real valued functions exist (Haussler 1989). We adapt
here for our purposes a PAC like criterion to judge the efficacy of approximation
schemes of the kind described earlier.

Definition 3.1.1 An approzimation scheme is said to P-PAC learn the function f €
F if for every e > 0 and 1 > 6 > 0, and for an arbitrary distribution P on D,
it collects a data set D, and computes a hypothesis h € H such that dp(h, f) < €
with probability greater than 1 — 8. The function class F is P-PAC learnable if the
approzimation scheme can P-PAC learn every function in F. The class F is PAC

learnable if the approzimation scheme can P-PAC learn the class for every distribution

P.

There is an important clarification to be made about our definition above. Note
that the distance metric d is arbitrary. It need not be naturally related to the distri-
bution P according to which the data is drawn. Recall that this is not so in typical
distance metrics used in classical PAC formulations. For example, in concept learning,
where the set F consists of indicator functions, the metric used is the L,(P) metric
given by d(1a,18) = [p|la — 15|P(z)dx. Similarly, extensions to real-valued func-
tions typically use an Ly(P) metric. The use of such metrics imply that the training
error is an empirical average of the true underlying error. One can then make use of
convergence of empirical means to true means (Vapnik, 1982) and prove learnability.
In our case, this is not necessarily the case. For example, one could always come up
with a distribution P which would never allow a passive learner to see examples in
a certain region of the domain. However, the arbitrary metric d might weigh this
region heavily. Thus the learner would never be able to learn such a function class for
this metric. In this sense, our model is more demanding than classical PAC. To make
matters easy, we will consider here the case of P — PAC learnability alone, where
P is a known distribution (uniform in the example cases studied). However, there is
a sense in which our notion of PAC is easier —the learner knows the true metric d
and given any two functions, can compute their relative distance. This is not so in
classical PAC, where the learner cannot compute the distance between two functions
since it does not know the underlying distribution.

We have left the mechanism of data collection undefined. Our goal here is the

investigation of different methods of data collection. A baseline against which we will
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compare all such schemes is the passive method of data collection where the learner
collects its data set by sampling D according to P and receiving the point (z, f(z)). If
the learner were allowed to draw its own examples, are there principled ways in which
it could do this? Further, as a consequence of this flexibility accorded to the learner
in its data gathering scheme, could it learn the class F with fewer examples? These
are the questions we attempt to resolve in this chapter, and we begin by motivating
and deriving in the next section, a general framework for active selection of data for

arbitrary approximation schemes.

3.1.2 The Problem of Collecting Examples

We have introduced in the earlier section, our baseline algorithm for collecting ex-
amples. This corresponds to a passive learner that draws examples according to the
probability distribution P on the domain D. If such a passive learner collects ex-
amples and produces an output h such that dp(h, f) is less than € with probability
greater than [ — §, it P-PAC learns the function. The number of examples that a
learner needs before it produces such an (e-good,é-confidence) hypothesis is called its
sample complezity.

Against this baseline passive data collection scheme, lies the possibility of allowing
the learner to choose its own examples. At the outset it might seem reasonable to
believe that a data set would provide the learner with some information about the
target function; in particular, it would probably inform it about the “interesting”
regions of the function, or regions where the approximation error is high and need
further sampling. On the basis of this kind of information (along with other infor-
mation about the class of functions in general) one might be able to decide where to
sample next. We formalize this notion as follows:

Let D = {(x;,y:);7 = l...n} be a data set (containing n data points) which the
learner has access to. The approximation scheme acts upon this data set and picks an
h € H (which best fits the data according to the specifics of the algorithm A inherent
in the approximation scheme). Further, let C;;i = 1,..., K(n)' be a partition of the

domain D into different regions on the basis of this data set. Finally let

Fo ={f € Flf(x:) = yi Y(2i,9i) € D}

1*The number of regions K(n) into which the domain D is partitioned by n data points depends
upon the geometry of D and the partition scheme used. For the real line partitioned into intervals
as in our example, K(n) = n + 1. For k-cubes, one might obtain Voronoi partitions and compute
K(n) accordingly.
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This is the set of all functions in F which are consistent with the data seen so far.
The target function could be any one of the functions in Fp.
We first define an error criterion ec (where C is any subset of the domain) as

follows:

ec(H,D,F) = sup dg(h, f)

feFp

Essentially, ec is a measure of the maximum possible error the approximation
scheme could have (over the region C) given the data it has seen so far. It clearly
depends on the data, the approximation scheme, and the class of functions being
learned. It does not depend upon the target function (except indirectly in the sense
that the data is generated by the target function after all, and this dependence is
already captured in the expression). We thus have a scheme to measure uncertainty
(maximum possible error) over the different regions of the input space D. One possible
strategy to select a new point might simply be to sample the function in the region
C; where the error bound is the highest. Let us assume we have a procedure P to
do this. P could be to sample the region C at the centroid of C, or sampling C
according to some distribution on it, or any other method one might fancy. This can
be described as follows:

Active Algorithm A

1. [Initialize] Collect one example (zq,y1) by sampling the domain D) once ac-

cording to procedure P.

2. [Obtain New Partitions] Divide the domain D into regions (4, ..., Ck(1) on

the basis of this data point.
3. [Compute Uncertainties] Compute e, for each z.

4. [General Update and Stopping Rule] In general, at the jth stage, suppose
that our partition of the domain D is into Cy,z = 1... K(7). One can compute
ec, for each 7 and sample the region with maximum uncertainty (say C) accord-
ing to procedure P. This would provide a new data point (;41,Y;4+1). The new
data point would re-partition the domain D into new regions. At any stage, if

the maximum uncertainty over the entire domain ep is less than ¢ stop.

The above algorithm is one possible active strategy. However, one can carry the

argument a little further and obtain an optimal sampling strategy which would give us
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a precise location for the next sample point. Imagine for a moment, that the learner
asks for the value of the function at a point x € D. The value returned obviously

belongs to the set

Fo(z) = {f(2)|f € Fp}

Assume that the value observed was y € Fp(z). In effect, the learner now has one
more example, the pair (z,y), which it can add to its data set to obtain a new, larger
data set D' where

D' =DU(z,y)

Once again, the approximation scheme H would map the new data set D’ into a

new hypothesis A’. One can compute

ec(H, D', F) = sup d(F, f)
feFp
('learly, ep(H, D', F) now measures the maximum possible error after seeing this
new data point. This depends upon (z,y) (in addition to the usual H, D, and F). For
a fixed x, we don’t know the value of y we would observe if we had chosen to sample
at that point. Consequently, a natural thing to do at this stage is to again take a
worst case bound, i.e., assume we would get the most unfavorable y and proceed.
This would provide the maximum possible error we could make if we had chosen to

sample at . This error (over the entire domain) is

sup ep(H,D',F)= sup ep(H,DU(x,y),F)
yeFp(z) y€Fp(z)

Naturally, we would like to sample the point x for which this maximum error is

minimized. Thus, the optimal point to sample by this argument is

Inew = argmin sup ep(H,DU(z,y),F) (3.27)
*€D yerp(z)

This provides us with a principled strategy to choose our next point. The following

optimal active learning algorithm follows:

Active Algorithm B (Optimal)

1. [Initialize] Collect one example (x1,y;) by sampling the domain D once accord-
ing to procedure P. We do this because without any data, the approximation
scheme would not be able to produce any hypothesis.
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2. [Compute Next Point to Sample] Apply eq. 3.27 and obtain z,. Sampling
the function at this point yields the next data point (x,,y,) which is added to
the data set.

3. [General Update and Stopping Rule] In general, at the jth stage, assume
we have in place a data set D; (consisting of j data). One can compute x4,
according to eq. 3.27 and sampling the function here one can obtain a new hy-
pothesis and a new data set D;4+;. In general, as in Algorithm A, stop whenever
the total error ep(H, D, F) is less than e.

By the process of derivation, it should be clear that if we chose to sample at some
point other than that obtained by eq. 3.27, an adversary could provide a y value and
a function consistent with all the data provided (including the new data point), that
would force the learner to make a larger error than if the learner chose to sample at
Tnew- In this sense, algorithm B is optimal. It also differs from algorithm A, in that it
does not require a partition scheme, or a procedure P to choose a point in some region.
However, the computation of z,.,, inherent in algorithm B is typically more intensive
than computations required by algorithm A. Finally, it is worthwhile to observe that
crucial to our formulation is the derivation of the error bound ep(H, D, F). As we
have noted earlier, this is a measure of the maximum possible error the approximation
scheme H could be forced to make in approximating functions of F using the data
set D. Now, if one wanted an approximation scheme independent bound, this would

be obtained by minimizing ep over all possible schemes, i.e.,
i%f ep(H,D.F)

Any approximation scheme can be forced to make at least as much error as the above
expression denotes. Another bound of some interest is obtained by removing the
dependence of ep on the data. Thus given an approximation scheme H. if data D is

drawn randomly, one could compute
P{ep(H,D,F) > €}
or in an approximation scheme-independent setting, one computes
P{i%f ep(H,D.F) > €}

The above expressions would provide us PAC-like bounds which we will make use of

later in this chapter.
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3.1.3 In Context

Having motivated and derived two possible active strategies, it is worthwhile at this
stage to commeunt on the formulation and its place in the context of previous work in
similar vein executed across a number of disciplines.

1) Optimal Recovery: The question of choosing the location of points where the
unknown function will be sampled has been studied within the framework of opti-
mal recovery (Micchelli and Rivlin, 1976; Micchelli and Wahba, 1981; Athavale and
Wahba, 1979). While work of this nature has strong connections to our formulation,
there remains a crucial difference. Sampling schemes motivated by optimal recovery
are not adaptive. In other words, given a class of functions F (from which the target
f is selected), optimal sampling chooses the points z; € D,i = 1,...,n by opthnizing
over the entire function space F. Once these points are obtained, then they remain
fixed irrespective of the target (and correspondingly the data set D). Thus, if we
wanted to sample the function at n points, and had an approximation scheme H with
which we wished to recover the true target, a typical optimal recovery formulation
would involve sampling the function at the points obtained as a result of optimizing

the following objective function:

arg min supd(f, k(D = {(zi, f(x:))i=1..m})) (3.28)

LleeenZn fer
where h(D = {(x; f(2;))i=1..n}) € H is the learner’s hypothesis when the target is
f and the function is sampled at the z;’s. Given no knowledge of the target, these

points are the optimal to sample.
In contrast, our scheme of sampling can be conceived as an iterative application
of optimal recovery (one point at a time) by conditioning on the data seen so far.

Making this absolutely explicit, we start out by asking for one point using optimal
recovery. We obtain this point by

arg minsup d(f, h(D; = {(z1, f(z1))}))

Tt ferF

Having sampled at this point (and obtained y; from the true target), we can now
reduce the class of candidate target functions to Fp, the elements of F which are

consistent with the data seen so far. Now we obtain our second point by

arg 11}i11 sup d(f, h(D; = {(z1, 1), (z2, f(z2))}))
2 ferR

Note that the supremum is done over a restricted set F; the second time. In this
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fashion, we perform optimal recovery at each stage, reducing the class of functions
over which the supremum is performed. It should be made clear that this sequential
optimal recovery is not a greedy technique to arrive at the solution of eq. 3.28. It
will give us a different set of points. Further, this set of points will depend upon the
target function. In other words,the sampling strategy adapts itself to the unknown
target f as it gains more information about that target through the data. We know
of no similar sequential sampling scheme in the literature.

While classical optimal recovery has the formulation of eq. 3.28, imagine a sit-
uation where a “teacher” who knows the target function and the learner, wishes to
communicate to the learner the best set of points to minimize the error made by
the learner. Thus given a function g, this best set of points can be obtained by the

following optimization

arg_min d(g, h({(zi,9(2i))}i=1..n)) (3.29)

T] yeees®

Eq. 3.28 and eq. 3.29 provide two bounds on the performance of the active learner
following the strategy of Algorithm B in the previous section. While eq. 3.28 chooses
optimal points without knowing anything about the target, and, eq. 3.29 chooses
optimal points knowing the target completely, the active learner chooses points opti-
mally on the basis of partial information about the target (information provided by
the data set).

2) Concept Learning: The PAC learning community (which has traditionally fo-
cused on concept learning) typically incorporates activity on the part of the learner
by means of queries, the learner can make of an oracle. Queries (Angluin, 1988)
range from membership queries (is z an element of the target concept c) to statistical
queries (Kearns, 1993 ; where the learner can not ask for data but can ask for esti-
mates of functionals of the function class) to arbitrary boolean valued queries (see
Kulkarni etal for an investigation of query complexity). Our form of activity can be
considered as a natural adaptation of membership queries to the case of learning real-
valued functions in our modified PAC model. It is worthwhile to mention relevant
work which touches the contents of this chapter at some points. The most significant
of these is an investigation of the sample complexity of active versus passive learning
conducted by Eisenberg and Rivest (1990) for a simple class of unit step functions. It
was found that a binary search algorithm could vastly outperform a passive learner
in terms of the number of examples it needed to (¢, §) learn the target function. This
chapter is very much in the spirit of that work focusing as it does on the sample com-
plexity question. Another interesting direction is the transformation of PAC- lea.mmg
algorithms from a batch to online mode. While Littlestone etal (1991) consider online
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learning of linear functions, Kimber and Long (1992) consider functions with bounded
derivatives which we examine later in this chapter. However the question of choosing
one’s data is not addressed at all. Kearns and Schapire (1990) consider the learn-
ing of p-concepts (which are essentially equivalent to learning classes of real-valued
functions with noise) and address the learning of monotone functions in this context.
Again, there is no active component on the part of the learner.

3)Adaptive Integration: The novelty of our formulation lies in its adaptive nature.
There are some similarities to work in adaptive numerical integration which are worth
mentioning. Roughly speaking, an adaptive integration technique (Berntsen et al
1991) divides the domain of integration into regions over which the integration is
done. Estimates are then obtained of the error on each of these regions. The region
with maximum error is subdivided. Though the spirit of such an adaptive approach is
close to ours, specific results in the field naturally differ because of differences between
the integration problem (and its error bounds) and the approximation problem.

4) Bayesian and other formulations: It should be noted that we have a worst-case
formulation (the supremnm in our formulation represents the maximum possible error
the scheme might have). Alternate bayesian schemes have been devised (Mackay,
1991; Cohn, 1994) from the perspective of optimal experiment design (Fedorov).
Apart from the inherently different philosophical positions of the two schemes, an
indepth treatment of the sample complexity question is not done. We will soon
give two examples where we address this sample complexity question closely. In a
separate piece of work (Sung and Niyogi, 1994) , the author has also investigated such
bayesian formulations from such an information-theoretic perspective. Yet another
average-case formulation comes from the information-complexity viewpoint of Traub
and Wozniakovski (see Traub etal (1988) for details). Various interesting sampling
strategies are suggested by research in that spirit. We do not attempt to compare
them due to the difficulty in comparing worst-case and average-case bounds.

Thus, we have motivated and derived in this section, two possible active strategies.
The formulation is general. We now demonstrate the usefulness of such a formulation
by considering two classes of real-valued functions as examples and deriving specific
active algorithms from this perspective. At this stage, the important question of
sample complexity of active versus passive learning still remains unresolved. We
investigate this more closely by deriving theoretical bounds and performing empirical

simulation studies in the case of the specific classes we consider.
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3.2 Example 1: A Class of Monotonically Increas-
ing Bounded Functions

Consider the following class of functions from the interval [0,1] C R to R :

F={f:0<f<M, and f(z) 2 f(y)Vz > y}

Note that the functions belonging to this class need not be continuous though they
do need to be measurable. This class is PAC- learnable (with an L;(P) norm, in
which case our notion of PAC reduces to the classical notion) though it has infinite

pseudo-dimension'®(in the sense of Pollard (1984)). Thus, we observe:

Observation 1 The class F has infinite pseudo-dimension (in the sense of Pollard
(1984); Haussler (1989),).

Proof: To have infinite pseudo-dimension, it must be the case that for every n > 0,
there exists a set of points {z1,...,z,} which is shattered by the class F. In other
words, there must exist a fixed translation vector t = (¢4,...,t,) such that for every
boolean vector b = (by,...,b,), there exists a function f € F which satisfies f(xz;) —
t; > 0 & b; = 1. To see that this is indeed the case, let the n points be z; = ¢/(n+ 1)
for ¢ going from 1 to n. Let the translation vector then be given by ¢; = z;. For an
arbitrary boolean vector b we can always come up with a monotonic function such
that f(z;) =¢/(n+1)—1/3(n+1)if by = 0 and f(z;) =¢/(n+ 1) +1/3(n + 1) if
b;=1.0

We also need to specify the terms H, d¢, the procedure P for partitioning the
domain D = [0, 1] and so on. For our purposes, we assume that the approximation
scheme H is first order splines. This is simply finding the monotonic function which
interpolates the data in a piece-wise linear fashion. A natural way to partition the
domain is to divide it into the intervals [0, 1), [z1,22), ..., [Zi, Zit1)s - - ., [0, 1]. The
metric d¢ is an L, metric given by de( fi, f2) = (3 1f1 = folpdx)V/P.

Note that we are specifically interested in comparing the sample complexities of
passive and active learning. We will do this under a uniform distributional assump-
tion, i.e., the passive learner draws its examples by sampling the target function
uniformly at random on its domain [0, 1]. In contrast, we will show how our gen-
eral formulation in the earlier section translates into a specific active algorithm for

choosing points, and we derive bounds on its sample complexity. We begin by first

I5Finite pseudo-dimension is only a sufficient and not necessary condition for PAC: learnability as
this example demonstrates.
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providing a lower bound for the number of examples a passive PAC learner would

need to draw to learn this class F.

3.2.1 Lower Bound for Passive Learning

Theorem 3.2.1 Any passive learning algorithm (more specifically, any approzima-
tion scheme which draws data uniformly at random and interpolates the data by any
arbitrary bounded function) will have to draw at least 3(M/2€)PIn(1/6) ezamples to

P-PAC learn the class where P is a uniform distribution. '

Proof: Consider the uniform distribution on [0, |] and a subclass of functions which
have value 0 on the region A = [0,1 — (2¢)?] and belong to F. Suppose the passive
learner draws [ examples uniformly at random. Then with probability (1 —(2¢/M)P)!,
all these examples will be drawn from region A. It only remains to show that for
the subclass cousidered, whatever be the function hypothesized by the learner, an
adversary can force it to make a large error.
Suppose the learner hypothesizes that the function is k. Let the value of

(Ja=(zeymp.1) |h(z)|Pdz)'/? be x. Obviously 0 < x < (MP(2¢/M)P)'/?P = 2¢. If x < ¢,
then the adversary can claim that the target function was really

() = 0 forzel0,1—(2¢/M)P]
=N M for z € (1 — (2¢/M)P, 1]

If, on the other hand x > ¢, then the adversary can claim the function was really
g=0.

[n the first case, by the triangle inequality,
d(h,y) = (Joaplg = RIPA)YP 2 (fy—aeymypny 9 — hlPdz)t/?

> (Ji—amypay MPAE)? — (f_aearypy 1RIPdZ)VP = 2 — x > ¢

In the second case,

d(h,g) = (|

[0.1]

— h|Pd 1/”>/ 0— hPdz)'/P =x > ¢
o= hPae) 2 ([ o hlrda)' = x
Now we need to find out how large | must be so that this particular event of
drawing all examples in A is not very likely, in particular, it has probability less than
b.
For (1 —(2¢/M)P)" to be greater than &, we need [ < W)—p) In(3}). It is a fact
that for a < 1/2, = < _—m‘l——_-a—) Making use of this fact (and setting o = (2¢/M)?, we
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see that for e < (2)(1)1/7 we have $(M/2¢)PIn(1/6) < —_lnTl——(llWW In(4). So unless
l is greater than §(M/2¢)P In(1/6), the probability that all examples are chosen from
A is greater than ¢. Consequently, with probability greater than &, the passive learner

is forced to make an error of atleast €, and PAC learning cannot take place. O

3.2.2 Active Learning Algorithms

In the previous section we computed a lower bound for passively PAC learning this

class for a uniform distribution?®.

Here we derive an active learning strategy (the
CLA algorithm) which would meaningfully choose new examples on the basis of in-
formation gathered about the target from previous examples. This is a specific in-
stantiation of the general formulation, and interestingly yields a “divide and conquer”
binary searching algorithm starting from a different philosophical standpoint. We for-
mally prove an upper bound on the number of examples it requires to PAC learn the
class. While this upper bound is a worst case bound and holds for all functions in
the class, the actual number of queries (examples) this strategy takes differs widely
depending upon the target function. We demonstrate empirically the performance of
this strategy for different kinds of functions in the class in order to get a feel for this
difference. We derive a classical non-sequential optimal sampling strategy and show
that this is equivalent to uniformly sampling the target function. Finally, we are able
to empirically demonstrate that the active algorithm outperforms both the passive

and uniform methods of data collection.

Derivation of an optimal sampling strategy

Consider an approximation scheme of the sort described earlier attempting to ap-
proximate a target function f € F on the basis of a data set D. Shown in fig. 3-14
is a picture of the situation. We can assnme without loss of generality that we start
out by knowing the value of the function at the points + = 0 and & = 1. The points
{z;71 = 1,...,n} divide the domain into n + 1 intervals (*; (i going from 0 to n)
where C; = [z;, zi41](zo = 0, &y41 = 1).The monotonicity constraint on F permits us
to obtain rectangular boxes showing the values that the target function could take
at the points on its domain. The set of all functions which lie within these boxes as
shown 1s Fp.

Let us first compute ec,(H, D, F) for some interval C;. On this interval, the func-

'SNaturally, this is a distribution-free lower bound as well. In other words, we have demonstrated
the existence of a distribution for which the passive learner would have to draw at least as many
examples as the theorem suggests.
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Figure 3-14: A depiction of the situation for an arbitrary data set. The set Fp consists
of all functions lying in the boxes and passing through the datapoints (for example,
the dotted lines). The approximating function k is a linear interpolant shown by a
solid line.

tion is constrained to lie in the appropriate box. We can zoom in on this box as
shown in fig. 3-15.

The maximum error the approximation scheme could have (indicated by the
shaded region) is clearly given by

B A
([ 1h = fepda)'e = ([ (Gapda)r = ABY7/(p+ )7

where A = f(x;41) — f(z;) and B = (ziy1 — i).

(learly the error over the entire domain ep is given by

n
eh =) el (3.30)

i=0
The computation of ec is all we need to implement an active strategy motivated
by Algorithm A in section 3.1. All we need to do is sample the function in the interval
with largest error; recall that we need a procedure P to determine how to sample this
interval to obtain a new data point. We choose (arbitrarily) to sample the midpoint

of the interval with the largest error yielding the following algorithm.
The Choose and Learn Algorithm (CLA)

l. [Initial Step] Ask for values of the function at points £ = 0 and = = 1. At this
stage. the domain [0, 1] is composed of one interval only, viz., [0, 1]. Compute
E, = _(FF_}_)—‘E(I —0)'?|(f(1) = f(0))] and Ty = E;. If Ty < ¢, stop and output
the linear interpolant of the samples as the hypothesis, otherwise query the
midpoint of the interval to get a partition of the domain into two subintervals
[0,1/2) and [1/2,1].
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Figure 3-15: Zoomed version of interval. The maximum error the approximation
scheme could have is indicated by the shaded region. This happens when the adver-
sary claims the target function had the value y; throughout the interval.

2. [General Update and Stopping Rule] In general, at the kth stage, suppose
that our partition of the interval [0, 1] is [zo = 0,21),[z1. 22), ..., [Zr=1, 2k = 1].
We compute the normalized error E; = W(xi — i )YP|(f () = flxin)]
for all « = 1,.., k. The midpoint of the interval with maximum F; is queried
for the next sample. The total normalized error Ty, = (X5, EF)V/? is computed
at each stage and the process is terminated when T < e. Our hypothesis h
at every stage is a linear interpolation of all the points sampled so far and our

final hypothesis is obtained upon the termination of the whole process.

Now imagine that we chose to sample at a point € C; = [z, riy1] and received
the value y € Fp(z) (i.e., y in the box) as shown in the fig. 3-16. This adds one
more interval and divides C; into two subintervals (';; and (7;; where (;y = [y, 2] and
("iy = [z, 2i41]. We also correspondingly obtain two smaller boxes inside the larger
box within which the function is now constrained to lie. The uncertainty measure e

can be recomputed taking this into account.

Observation 2 The addition of the new data point (x,y) does not change the un-
certainty value on any of the other intervals. It only affects the interval C'; which got

subdivided. The total uncertainty over this interval is now given by

6(,7,(7'(» D’,f) = ("l”)l/p ((J? - Jii)(y - f(?L'i))p + (171'-}—1 - 413))((f(-”i+1) — fe:)) — .‘/)p)l/p =

p+1

=G (2r® + (B—2)(A—r)7)'/"
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Figure 3-16: The situation when the interval C; is sampled yielding a new data point.
This subdivides the interval into two subintervals and the two shaded boxes indicate
the new counstraints on the function.

where for conventence we have used the substitution = = x — z;, r =y — f(z;), and
A and B are f(r;4) — f(x;) and z;4y — z; as above. Clearly z ranges from 0 to B

while v ranges from 0 to A.
We first prove the following lemma:

Lemma 3.2.1

B/2 =arg min sup G (z1P 4+ (B — z)(A — r)P)!/?
/ 8 D, sup, (2P + (B - z)(A = 1))

Proof: Cousider any = € [0, B]. There are three cases to consider:
Case Iz > B/2:let z = B/2 + a where a > 0. We find

1/p
sup G'(zr” + (B —2)(A— 1')"')1/” = ( sup G(zrP +(B—-2)(A— 7')’”))
r&(0,4] r€(0,4]
Now.

sUP,eo,4) G (2P + (B — 2)(A —1)P) =

SUP,epo,4) (7 ((B/2+ a)r* + (B/2 — a)(A —r)?)

= (7 sup,¢p, 4] B2(rP + (A=71)P)+ a(rP — (A —71)P)
Now for = A, the expression within the supremum B/2(r?+(A—r)?)+a(r?—(A—r)?P)
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is equal to (B/2 4+ «)AP”. For any other r € [0, A], we need to show that
B2 + (A=r)P)+ a(rP — (A—r)P) < (B/2 + a)AP

or

B/2((r/A) + (1 = (r/A))P) + o((r/A)? = (1 —=r/AP) < B[2 + «
Putting 8 = r/A (clearly 3 € [0, 1], and noticing that (I — #)? < 1—3” and 37 — (1 —

B)? <1 the inequality above is established. Consequently, we are able to see that

sup G (21" + (B —z)(A— r)p)l/p = G(B/2+a)'/?A
r€[0,4]
Case II Let z = B/2 — a for a > 0. In this case, by a similar argument as above, it
is possible to show that again,

sup G(2rP +(B—2)(A— r)p)l/p =G(B/2+ o)A
r€[0,A]

Case III Finally, let z = B/2. Here

sup G(zr® + (B — z)(A —r)P)"/? = G(B/2)'/? sup (17 + (A —r)P)'/"
r€[0,A4] ref0,4]

Clearly, then for this case, the above expression is reduced to G A(B/2)!/?. Considering
the three cases, the lemma is proved.O

The above lemma in conjunction with eq. 3.30 and observation 2 proves that if we
choose to sample a particular interval C; then sampling the midpoint is the optimal

thing to do. In particular, we see that
Milgefs, zi41] SUPyelf (i), f(mipr)] €C: (H P U (2,y), F) =

(S ) P(ZE=E N fzi4y) — f(22)) = ec,(H, D, F) /2117

p+1

In other words, if the learner were constrained to pick its next sample in the interval
(;, then by sampling the midpoint of this interval C;, the learner ensures that the
maximum error it could be forced to make by a malicious adversary is minimized. In
particular, if the uncertainty over the interval C; with its current data set D is e,
the uncertainty over this region will be reduced after sampling its midpoint and can
have a maximum value of e, /2!/7.

Now which interval must the learner sample to minimize the maximum possible

uncertainty over the entire domain D = [0,1]. Noting that if the learner chose to
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sample the interval C*; then

n P 1/p
min s e-r)=[o.u<wu<w,y>,f>=( S e, m,D,7) + BULDT) ))

€=, reg1] yEFDP §=0,7%i 2

From the decomposition above, it is clear that the optimal point to sample according
to the principle embodied in Algorithm B is the midpoint of the interval C; which
has the maximum uncertainty ec,(H,D, F) on the basis of the data seen so far, i.e.,

the data set D. Thus we can state the following theorem

Theorem 3.2.2 The ('LA is the optimal algorithm for the class of monotonic func-

tions

Having thus established that our binary searching algorithm (CLA) is optimal,
we now turn our efforts to determining the number of examples the CLA would need
in order to learn the unknown target function to € accuracy with § confidence. In

particular, we can prove the following theorem.

Theorem 3.2.3 The CLA converges in at most (M/e€)P steps. Specifically, after col-
lecting at most (M/e)P examples, its hypothesis is € close to the target with probability
1.

Proof Sketch: The proof of convergence for this algorithm is a little tedious. How-
ever. to convince the reader, we provide the proof of convergence for a slight variant
of the active algorithm. It is possible to show (not shown here) that convergence
times for the active algorithm described earlier is bounded by the convergence time
for the variant. First, consider a uniform grid of points (¢/M)? apart on the domain
[0, 1]. Now imagine that the active learner works just as described earlier but with a
slight twist. viz., it can only query points on this grid. Thus at the kth stage, instead
of querying the true midpoint of the interval with largest uncertainty, it will query
the gridpoint closest to this midpoint. Obviously the intervals at the kth stage are
also separated by points on the grid (i.e. previous queries). If it is the case that the
learner has queried all the points on the grid, then the maximum possible error it
could make is less than €. To see this, let @« = ¢/M and let us first look at a specific

small interval [k, (k 4+ 1)a]. We know the following to be true for this subinterval:
flka) = hka) < f(2), h(z) < f((k + Da) = h((k + )a)

Thus
|f(2) = h(2)| < f((k+ D) - flka)
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and so over the interval [ke, (k + 1)q]
1S (@) = h(@)Pde < fa ™ (F((k + Da) ~ f(ka))da

< (f((k + Da) = f(ka))Pa
It follows that

Jo|f = hlPde = fig oy If = hIPdz + ... + fy_quy If — hlPdz <
a((fle) = f(0)) + (f(2a) = f(a))" + ...+ (f(1) = f(1 —))?) <
a(f(e) = f(0) + f(2a) = fla) + ...+ f(1) = f(1 —a))P <

< a(f(1) = f(0))P < aMP

So if & = (¢/M)?, we see that the L, error would be at most (f[m] If - h|”d,v)1/p <e
Thus the active learner moves from stage to stage collecting examples at the grid
points. [t could converge at any stage, but clearly after it has seen the value of the
unknown target at all the gridpoints, its error is provably less than e and consequently

it must stop by this time. O

3.2.3 Empirical Simulations, and other Investigations

Our aim here is to characterize the performance of CLA as an active learning strat-
egy. Remember that CLA is an adaptive example choosing strategy and the number
of samples it would take to converge depends upon the specific nature of the target
function. We have already computed an upper bound on the number of samples it
would take to converge in the worst case. In this section we try to provide some
intuition as to how this sampling strategy differs from random draw of points (equiv-
alent to passive learning) or drawing points on a uniform grid (equivalent to optimal
recovery following eq. 3.28 as we shall see shortly). We perform simulations on ar-
bitrary monotonic increasing functions to better characterize conditions under which
the active strategy could outperform both a passive learner as well as a uniform

learner.
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Figure 3-17: How the ("LA chooses its examples. Vertical lines have been drawn to
mark the x-coordinates of the points at which the algorithm asks for the value of the
function.

Distribution of Points Selected

As has been mentioned earlier, the points selected by CLA depend upon the specific
target function.Shown in fig. 3-5 is the performa‘nce of the algorithm for an arbitrarily
constructed monotonically increasing function. Notice the manner in which it chooses
its examples. Informally speaking, in regions where the function changes a lot (such
regions can be considered to have high information density and consequently more
“interesting”), CLA samples densely. In regions where the function doesn’t change
much (correspoundingly low information density), it samples sparsely. As a matter of
fact, the density of the points seems to follow the derivative of the target function as
shown in fig. 3-18.

Consequently, we conjecture that

Conjecture 1 The density of points sampled by the active learning algorithm is pro-
portional to the derivative of the function at that point for differentiable functions.

Remarks:

I. The CLA seems to sample functions according to its rate of change over the
different regions. We have remarked earlier, that the best possible sampling

strategy would be obtained by eq. 3.29 earlier. This corresponds to a teacher
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Figure 3-18: The dotted line shows the density of the samples along the x-axis when
the target was the monotone-function of the previous example. The bold line is a
plot of the derivative of the function. Notice the correlation between the two.

(who knows the target function and the learner) selecting points for the learner.
How does the CLA sampling strategy differ from the best possible one? Does
the sampling strategy converge to the best possible one as the data goes to
infinity? In other words, does the CLA discover the best strategy? These are

interesting questions. We do not know the answer.

. We remarked earlier that another bound on the performance of the active strat-

egy was that provided by the classical optimal recovery formulation of eq. 3.28.
This, as we shall show in the next section, is equivalent to uniform sampling.
We remind the reader that a crucial difference between uniform sampling and
CLA lies in the fact that CLA is an adaptive strategy and for some functions
might actually learn with very few examples. We will explore this difference

soo1.

Classical Optimal Recovery

For an L, error criterion, classical optimal recovery as given by eq. 3.28 yields a

uniform sampling strategy. To see this, imagine that we chose to sample the function

at points ;32 = 1,...,n. Pick a possible target function f and let y; = f(«x;) for each

i. We then get the situation depicted in fig. 3-19. The n points divide the domain into
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Figure 3-19: The situation when a function f € F is picked, n sample points (the
£’s) are chosen and the corresponding y values are obtained. Each choice of sample
points corresponds to a choice of the a’s. Each choice of a function corresponds to a
choice of the b's.

n+ | intervals. Let these intervals have length a; each as shown. Further, if [z;_,, z;]
corresponds to the interval of length a;, then let y; — y;_; = b;. In other words we
would get n 4 | rectangles with sides a; and b; as shown in the figure.

It is clear that choosing a vector b = (b,...,b,41)" with the constraint that
Yurlb, = M and b; > 0 is equivalent to defining a set of y values (in other words,
a data set) which can be generated by some function in the class F. Specifically, the
data values at the respective sample points would be given by y; = by, yo = b, + b,
and so on. We can define F, to be the set of monotonic functions in F which are
consistent with these data points. In fact, every f € F would map onto some b, and

thus belong to some Fy,. Consequently,

F= U{b:b,‘ZO,Z b,-:lﬂ}]:b

Given a target function f € Fp, and a choice of n points x;, one can con-
struct the data set D = {(&;, f(2i))}iz1..n and the approximation scheme generates
an approximating function k(D). It should be clear that for an L; distance metric

(d(f. k) = [j |f — R|dz), the following is true:

1R 1
sup d(f,h) == ) a;b;=—-ab -
sup (fsh) 2; 5

Thus, taking the supremum over the entire class of functions is equivalent to

1
supd(f,h(D)) = sup =a.b
JeF {b:b.‘ZO,E b;=M} 2
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The above is a straight forward linear programming problem and yields as its solution
the result M max{a;,i =1,....(n+ 1)}.

Finally, every choice of n points z;,z = 1,...,n results in a corresponding vector
a wherea; > 0 and }_a; = 1. Thus minimizing the maximum error over all the choice

of sample points (according to eq. 3.28) is equivalent to

arg min sup d(f, h(D = {(z;, f(zi))}i=1..n) = arg min max{a;;:=1...n+1}
Tleinfn feF {2:0,20, " a,=1}

Clearly the solution of the above problem is a; = # for each 1.

In other words, classical optimal recovery suggests that one should sample the
function uniformly. Note that this is not an adaptive scheme. In the next section, we
compare empirically the performance of three different schemes to sample. The pas-
sive, where one samples randomly, the non-sequential “optimal”, where one samples

uniformly, and the active which follows our sequentially optimal strategy.

Error Rates and Sample Complexities for some Arbitrary Functions: Some
Simulations

In this section, we attempt to relate the number of examples drawn and error made
by the learner for a variety of arbitrary monotone increasing functions. We begin
with the following simulation:

Simulation A:

1. Pick an arbitrary monotone-increasing function.

2. Decide (N), the number of samples to be collected. There are three methods of
collection of samples. The first is by randomly drawing N examples according to
a uniform distribution on [0, 1] (corresponding to the passive case). The second
is by asking for function values on a uniform grid on [0, 1] of grid spacing 1/N.
The third is the CLA.

3. The three learning algorithms differ only in their method of obtaining samples.
Once the samples are obtained, all three algorithms attempt to approximate the

target by the monotone function which is the linear interpolant of the samples.

4. This entire process is now repeated for various values of V for the same target

function and then repeated again for different target functions.

Results: Let us first consider performance on the arbitrarily selected monotonic

function of the earlier section. Shown in fig. 3-20 are performance for the three
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Figure 3-20: Error rates as a function of the number of examples for the arbitrary
monotone function shown in a previous figure.

different algorithms. Notice that the active learning strategy (CLA) has the lowest
error rate. On an average, the error rate of random sampling is 8 times the rate of
(LA and nniform sampling is 1.5 times the rate of CLA.

Figure 3-21 shows four other monotonic functions on which we ran the same
simulations comparing the three sampling strategies. The results of the simulations
are shown in Fig. 3-22 and Table 3.2.3. Notice that the active strategy (CLA) far
outperforms the passive strategy and clearly has the best error performance. The
comparison between uniform sampling and active sampling is more interesting. For
functions like function-2 (which is a smooth approximation of a step function), where
most of the “information” is located in a small region of the domain, CLA outperforms
the uniform learner by a large amount. Functions like function-3 which don’t have
any clearly identified region of greater information have the least difference between
('LA and the uniform learner (as also between the passive and active learner). Finally
on functions which lie in between these two extremes (like functions 4 and 5) we see
decreased error-rates due to CLA which are in between the two extremes.

In conclusion, the active learner outperforms the passive learner. Further, it is
even better than classical optimal recovery. The significant advantage of the active
learner lies in its adaptive nature. Thus, for certain “easy” functions, it might con-

verge very rapidly. For others, it might take as long as classical optimal recovery,
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Function No. | Average Random/CLA | Average Uniform/CLA
1 7.23 1.66
2 61.37 10.91
3 6.67 1.10
4 8.07 1.62
5 6.62 1.56

Table 3.1: Shown in this table is the average error rate of the random sampling and
the uniform sampling strategies when as a multiple of the error rates due to CLA.
Thus for the function 3 for example, uniform error rates are on an average 1.1 times
('LA error rates. The averages are taken over the different values of N (number of
examples) for which the simulations have been done. Note that this is not a very
meaningful average as the difference in the error rates between the various strategies
grow with .V (as can be seen from the curves)if there is a difference in the order of
the sample complexity. However they have been provided just to give a feel for the
numbers.

though never more.

3.3 Example 2: A Class of Functions with Bounded

First Derivative

Here the class of functions we consider are from [0, 1] to R and of the form

F = {f|f(x) is differentiable and |%| <d}

Notice a few things about this class. First, there is no direct bound on the values
that functions in F can take. In other words, for every M > 0, there exists some
function f € F such that f(z) > M for some z € [0,1]. However, there is a bound
on the first derivative, which means that a particular function belonging to F cannot
itself change very sharply. Knowing the value of the function at any point, we can
bound the value of the function at all other points. So for example, for every f € F,
we see that | f(z)| < dz f(0) < df(0).

We observe that this class too has infinite pseudo-dimension. We state this without

proof.
Observation 3 The class F has infinite pseudo-dimension in the sense of Pollard.

As in the previous example we would like to investigate the possibility of devising
active learning strategies for this class. We first provide a lower bound on the number

of examples a learner (whether passive or active) would need in order to € identify this
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Figure 3-22: This figure plots the log of the error (L, error) against N the number
of examples for each of the 4 monotonic functions shown in fig. 3-21. The solid
line represents error rates for random sampling, the line with small dashes represents
uniform sampling and the line with long dashes represents results for CLA. Notice
how CLA beats random sampling by large amounts and does slightly better than
uniform sampling.
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class. We then derive in the next section, an optimal active learning strategy (that is.
an instantiation of the Active Algorithm B earlier). We also provide an upper bound
on the number of examples this active algorithm would take.

We also need to specify some other terms for this class of functions. The approxi-
matiou scheme H is a first order spline as before, the domain D = [0, 1] is partitioned
into intervals by the data [z;, 2,41] (again as before) and the metric d; is an L; metric
given by de-(fi, f2) = [-1fi(z) — fa(x)|dz. The results in this section can be extended

to an L, norm but we confine ourselves to an L; metric for simplicity of presentation.

3.3.1 Lower Bounds

Theorem 3.3.1 Any learning algorithm (whether passive or active) has to draw at
least Q((d/¢€)) examples (whether randomly or by choosing) in order to PAC learn the
class F.

Proof Sketch: Let us assume that the learner collects m examples (passively by
drawing according to some distribution, or actively by any other means). Now we
show that an adversary can force the learner to make an error of atleast e if it draws
less than §)((d/e€)) examples. This is how the adversary functions.

At each of the m points which are collected by the learner, the adversary claims
the function has value 0. Thus the learner is reduced to coming up with a hypothesis
that belongs to F and which it claims will be within an € of the target function.
Now we need to show that whatever the function hypothesized by the learner, the
adversary can always come up with some other function, also belonging to F, and
agreeing with all the data points, which is more than an € distance away from the
learner’s hypothesis. In this way, the learner will be forced to make an error greater
than e.

The m points drawn by the learner, divides the region [0, 1] into (at most) m + 1
different intervals. Let the length of these intervals be by, by, b3, ..., bpyq1. The “true”
function. or in other words, the function the adversary will present, should have value

0 at the endpoints of each of the above intervals. We first state the following lemma.

Lemma 3.3.1 There exists a function f € F such that f interpolates the data and

kd
/[0,1] |flde > 4(m + 1)

where k is a constant arbitrarily close to 1.

Proof: Consider fig. 3-23. The function f is indicated by the dark line. As is shown.

f changes sign at each x = z;. Without loss of generality, we consider an interval
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[zi,zis1] of length b;. Let the midpoint of this interval be z = (&; + x;41)/2. The

function here has the values

d(z — ;) for z € [z;,z — q]
f(z) =9q —d(z —z:41) for z € [z + @, ziy1]
2
dz=z) 4 da) for €z —a,2+q]

Simple algebra shows that

[ e > d(P 22 4 ad B0 4wt - a4

; 2 2

Clearly, a can be chosen small, so that

Figure 3-23: Construction of a function satisying Lemma 2.

Tig1 . .2
/ | flde > "‘141"

where k is as close to 1 as we want. By combining the different pieces of the function

we see that
. m+l

1 kd
de > — Y b
[ e > 25
Now we make use of the following lemma,

Lemma 3.3.2 For a set of numbers by,..,b,, such that by + by + .. +b,, = 1. the

following inequality is true
B 4+bi4.+0>1/m

Proof: By induction. O
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Now it is easy to see how the adversary functions. Suppose the learner postulates
that the true function is h. Let [j |hlde = x. If x > ¢, the adversary claims that
the true function was f = 0. In that case [y |h — fldz = y > €. If on the other hand,

x < ¢, then the adversary claims that the true function was f (as above). In that

case,
1 h|d 1 d 1 h|d kd
—hldz > [ |fldz — [ |hlds = —— -
J) 15 = hide > [ 1flde ~ [ hlde = 7 — X
Clearly, if m is less than ’;—f — 1, the learner is forced again to make an error greater

than e¢. Thus in either case, the learner is forced to make an error greater than or
equal to e if less than §)(d/¢) examples are collected (howsoever these examples are
collected). O

The previous result holds for all learning algorithms. It is possible to show the

following result for a passive learner.

Theorem 3.3.2 A Passive learner must draw at least max(§2((d/¢), \/zd/e)-ln(l/5)))

to learn this class.

Proof Sketch: The d/¢ term in the lower bound follows directly from the previous
theorem. We show how the second term is obtained.

(‘onsider the uniform distribution on [0, 1] and a subclass of functions which have
value 0 on the region A = [0,1 — «] and belong to F. Suppose the passive learner
draws | examples uniformly at random. Then with probability (1 — «), all these
examples will be drawn from region A. It only remains to show that for this event,
and the subclass considered, whatever be the function hypothesized by the learner,
an adversary can force it to make a large error.

[t is easy to show (using the arguments of the earlier theorem) that there exists
a function f € F such that fis 0 on A and [f{__ |f|dz = 1a?d. This is equal to 2¢
it o = \ﬂtlf/d). Now let the learner’s hypothesis be k. Let [ |hldz = x. If x is
greater than e, the adversary claims the target was ¢ = 0. Otherwise, the adversary
claims the target was ¢ = f. In either case, [ |g — h|dz > .

[t is possible to show (by an identical argument to the proof of theorem 1), that
unless [ > i\/((/,/c) In(1/6), all examples will be drawn from A with probability greater
than ¢ and the learner will be forced to make an error greater than €. Thus the second

term appears indicating the dependence on é in the lower bound.O

3.3.2 Active Learning Algorithms

We now derive in this section an algorithm which actively selects new examples on

the basis of information gathered from previous examples. This illustrates how our
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formulation of section 3.1.1 can be used in this case to effectively obtain an optimal
adaptive sampling strategy.
Derivation of an optimal sampling strategy

Fig. 3-24 shows an arbitrary data set containing information about some unknown

target function. Since the target is known to have a first derivative bounded by d, it is

Figure 3-24: An arbitrary data set for the case of functions with a bounded derivative.
The functions in Fp are constrained to lie in the parallelograms as shown. The slopes
of the lines making up the parallelogram are d and —d appropriately.

clear that the target is constrained to lie within the parallelograms shown in the figure.
The slopes of the lines making up the parallelogram are d and —d appropriately. Thus,
Fp consists of all functions which lie within the parallelograms and interpolate the
data set. We can now compute the uncertainty of the approximation scheme over
any interval,C, (given by ec(H, D, F)), for this case. Recall that the approximation
scheme H is a first order spline, and the data D consists of (z,y) pairs. Fig. 3-25
shows the situation for a particular interval (C; = [z;, zi41]). Here i ranges from 0 to
n. As in the previous example, we let zo = 0, and rp4y = 1.

The maximum error the approximation scheme H could have on this interval is

given by (half the area of the parallelogram).

d*B? — A?
ec;(H,D,F) = sup lh — fldz = (—2__1_)_
fe€Fp C 4d

where A; = |f(zis1) — f(x:)] and B; = ziy1 — ;. Clearly. the maximum error the

approximation scheme could have over the entire domain is given by

ep—pon( M, D, F) = sup 3 [ 1f = hlde = Y e, (3.31)
7 1=0

f€Fp j=0
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The computation of e¢: is crucial to the derivation of the active sampling strategy.
Now imagine that we chose to sample at a point « in the interval C; and received
a value y (belonging to Fp(x)). This adds one more interval and divides C; into
two wntervals (5 and (' as shown in fig. 3-26.. We also obtain two correspondingly

smaller parallelograms within which the target function is now constrained to lie.

Figure 3-25: A zoomed version of the ith interval.

The addition of this new data point to the data set (D' = DU(x,y)) requires us to
recompute the learner’s hypothesis (denoted by A’ in the fig. 3-26). Correspondingly,
1t also requires us to update ec, i.e., we now need to compute ec(H, D', F). First
we observe that the addition of the new data point does not affect the uncertainty
measure on any interval other than the divided interval C;. This is clear when we
notice that the parallelograms (whose area denotes the uncertainty on each interval)
for all the other intervals are unaffected by the new data point.

Thus,
1
4d

For the ith interval C;, the total uncertainty is now recomputed as (half the sum of

e, (H, D'\ F)= ec,(H,D,F) = (dzBf = AJZ) for j #

the two parallelograms in fig. 3-26)

e, (H. D' F)= ﬁ ((d*u? = v?) + (d*(B; — u)? — (A; — v)?))
(3.32)
= ZIE ((d?u?® + (lz(Bi —u)?) — (v? + (A —v)?))
where w = & — ¢y, v = y — y;, and A; and B; are as before. Note that u ranges

from 0 to B;, for «; < x < ;4. However, given a particular choice of z (this fixes
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a value of u), the possible values v can take are constrained by the geometry of the
parallelogram. In particular, v can only lie within the parallelogram. For a particular
x, we know that Fp(x) represents the set of all possible y values we can receive. Since
v =1y — y;, it is clear that vE Fp(x) — y;. Naturally, if y < y;, we find that v < 0,
and A; — v > A;. Similarly, if y > y;41, we find that v > A;.

>
*

e e —
>

Figure 3-26: Subdivision of the ith interval when a new data point is obtained.

We now prove the following lemma:

Lemma 3.3.3 The following two identities are valid for the appropriate mini-maz
problem.

(I)TI;2 = arg MiNuefo,B] SUPye{Fp(z)-ui} ((d*u* + &*(B —u)?) = (v’ 4+ (A = v)?)

2) 1(d?B? — A?) = minyejo.5] SUPye (Fp(c)-yi) ((TU* + (B —u)?) — (v? + (A - v)?%))

Proof: The expression on the right is a difference of two quadratic expressions and
can be expressed as q;(u) — q2(v). For a particular u, the expression is maximized
when the quadratic ¢;(v) = (v? 4+ (A —v)?) is minimized. Observe that this quadratic
is globally minimized at » = A/2. We need to perform this minimization over the set
v € Fp(x)—y; (this is the set of values which lie within the upper and lower boundaries
of the parallelogram shown in fig. 3-27). There are three cases to consider.

Case I: u € [A/2d, B — A/2d)

First, notice that for u in this range, it is easy to verify that the npper boundary
of the parallelogram is greater than A/2 while the lower boundary is less than A/2.
Thus we can find a value of v (viz. v = A/2) which globally minimizes this quadratic
because A/2 € Fp(z) — yi- The expression thus reduces to d?u® + d*( B — u)? — A?/2.
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Over the interval for u considered in this case, it is minimized at u = B/2 resulting
in the value

(d*B* — A%)/2

Case II: u € [0, A/2d]
In this case, the upper boundary of the parallelogram (which is the maximum value
v can take) is less than A/2 and hence the ¢;(v) is minimized when v = du. The total

expression then reduces to
2+ d*H(B—u)’—((du)?+(A—du)?) = &*(B—u)*—(A—du)? = (d* B>~ A?)—2ud(dB—A)

Since, dB > A, the above is minimized on this interval by choosing © = A/2d resulting

in the value

dB(dB — A)

Case III: By symmetry, this reduces to case II.

Figure 3-27: A figure to help the visualization of Lemma 4. For the z shown, the set
Fp is the set of all values which lie within the parallelogram corresponding to this z,
i.e., on the vertical line drawn at x but within the parallelogram.

Since (d*B* — A%)/2 < dB(dB — A) (this is easily seen by completing squares), it
follows that u = B/2 is the global solution of the mini-max problem above. Further,
we have shown that for this value of u, the sup term reduces to (d*B?* — A?)/2 and

the lemma is proved.O
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Using the above lemma along with eq. 3.32, we see that

min sup e, (H, DU (z,y),F) = L(d'zBf — A} = .le(;.('H, D.F)
c€Ci yeFp(z) 8d 2

In other words, by sampling the midpoint of the interval C;, we are guaranteed to
reduce the uncertainty by 1/2. As in the case of monotonic functions now, we see
that using eq. 3.31, we should sample the midpoint of the interval with largest un-
certainty ec,(H, D, F) to obtain the global solution in accordance with the principle
of Algorithm B of section 3.1.

This allows us to formally state an active learning algorithm which is optimal in

the sense implied in our formulation.

The Choose and Learn Algorithm - 2 (CLA-2)

1. [Initial Step] Ask for values of the function at points & = 0 and = 1. At this
stage, the domain D = [0,1] is composed of one interval only, viz., Cy = [0, 1].
Compute ec, = o (d* —|f(1) — f(0)|*) and ep = ec,. If ep < ¢, stop and
output the linear interpolant of the samples as the hypothesis, otherwise query

the midpoint of the interval to get a partition of the domain into two subintervals
[0,1/2) and [1/2,1].

2. [General Update and Stopping Rule] In general, at the kth stage, suppose
that our partition of the interval [0, 1] is [zo = 0, z1),[Z1, L2),. . .,
[€k-1,zx = 1]. We compnte the uncertainty ec, = 5 (d*(z; — i=1)? — lyi — yi-1]?)
for each t = 1,..., k. The midpoint of the interval with maximum e¢, is queried
for the next sample. The total error ep = Y5, ec, is computed at each stage
and the process is terminated when ep < €. Our hypothesis h at every stage is
a linear interpolation of all the points sampled so far and our final hypothesis

is obtained upon the termination of the whole process.

It is possible to show that the following upperbound exists on the number of

examples CLA would take to learn the class of functions in consideration
Theorem 3.3.3 The CLA-2 would PAC learn the class in at most 4'—1, + | examples.

Proof Sketch: Following a strategy similar to the proof of Theorem 3, we show how
a slight variant of CLA-2 would converge in at most (d/4¢ 4 1) examples. Imagine a
grid of n points placed 1/(n — 1) apart on the domain D = [0, 1] where the kth point.
is k/(n — 1) (for k going from 0 to n — 1). The variant of the CLA-2 operates by
confining its queries to points on this grid. Thus at the kth stage, instead of querying

the midpoint of the interval with maximum uncertainty, it will query the gridpoint
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closest to this midpoint. Suppose it uses up all the gridpoints in this fashion, then

there will be n — | intervals and by our arguments above, we have seen that the

maximum error on each interval is bounded by
Lo, 1

—(d?
4(1( (n— l

) ) | 1
) =y — yia?) < ‘A‘—ddz(

)2

n—1
Since there are n — | such intervals, the total error it could make is bounded by

L, 1
(n—-l)al (—n—l

1

n—1

, 1
)" =14 )
It is easy to show that for n > d/4e + 1, this maximum error is less than e. Thus
the learner need not collect any more than d/4e + | examples to learn the target
function to within an ¢ accuracy. Note that the learner will have identified the target
to ¢ accuracy with probability 1 (always) by following the strategy outlined in this
variant of CLA-2. O

We now have both an upper and lower bound for PAC-learning the class (under
a uniform distribution) with queries. Notice that here as well, the sample complexity
of active learning does not depend upon the confidence parameter 6. Thus for
arbitrarily small, the difference in sample complexities between passive and active

learning becomes arbitrarily large with active learning requiring much fewer examples.

3.3.3 Some Simulations

We now provide some simulations conducted on arbitrary functions of the class of
functions with bounded derivative (the class F). Fig. 3-28 shows 4 arbitrary selected
functions which were chosen to be the target function for the approximation scheme
considered. In particular, we are interested in observing how the active strategy
samples the target function for each case. Further, we are interested in comparing
the active and passive techniques with respect to error rates for the same number of
examples drawn. In this case, we have been unable to derive an analytical solution to
the classical optimal recovery problem. Hence, we do not compare it as an alternative

sampling strategy in our simulations.

Distribution of points selected

The active algorithm ('LA-2 selects points adaptively on the basis of previous ex-
amples received. Thus the distribution of the sample points in the domain D of the
function depends inherently upon the arbitrary target function. Consider for exam-

ple, the distribution of points when the target function is chosen to be Function-1 of
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Figure 3-28: Four functions with bounded derivative considered in the simulations.
The uniform bound on the derivative was chosen to be d = 10.
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Figure 3-30: How CLA-2 chooses to sample its points. The solid line is a plot of
| f'(z)| where f is Function-1 of our simulation set. The dotted line shows the density
of sample points (queried by CLA-2) on the domain.

Error Rates:

In an attempt to relate the number of examples drawn and the error made by the
learner, we performed the following simulation.

Simulation B:

1. Pick an arbitrary function from class F.

b

Decide N, the number of samples to be collected. There are two methods of
collection of samples. The first (passive) is by randomly drawing N examples

according to a uniform distribution on [0, 1]. The second (active) is the ('LA-2.

3. The two learning algorithms differ only in their method of obtaining samples.
Once the samples are obtained, both algorithms attempt to approximate the

target by the linear interpolant of the samples (first order splines).

4. This entire process is now repeated for various values of N for the same target
function and then repeated again for the four different target functions of fig. 3-
28

The results are shown in fig. 3-31. Notice how the active learner ontperforms the
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the set shown in fig. 3-28.

Notice (as shown in fig. 3-29) that the algorithm chooses to sample densely in
places where the target is flat, and less densely where the function has a steep slope.
As our mathematical analysis of the earlier section showed, this is well founded.
Roughly speaking, if the function has the same value at z; and z;4, then it could
have a variety of values (wiggle a lot) within. However. if, f(x;4,) is much greater (or
less) than f(x;), then, in view of the bound, d, on how fast it can change, it would
have had to increase (or decrease) steadily over the interval. In the second case, the
rate of change of the function over the interval is high, there is less uncertainty in the
values of the function within the interval, and consequently fewer samples are needed

in between.

1.5

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3-29: How CLA-2 chooses to sample its points. Vertical lines have been drawn
at the r values where the CLA queried the oracle for the corresponding function
value.

In example 1, for the case of monotone functions, we saw that the density of
sample points was proportional to the first derivative of the target function. By
contrast, in this example, the optimal strategy chooses to sample points in a way
which is inversely proportional to the magnitude of the first derivative of the target

function. Fig. 3-30 exemplifies this.

129



passive learner. For the same number of examples, the active scheme having chosen

its examples optimally by our algorithm makes less error.
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Figure 3-31: Results of Simulation B. Notice how the sampling strategy of the active
learner causes better approximation (lower rates) for the same number of examples.

We have obtained in theorem 6, an upper bound on the performance of the active
learner. However, as we have already remarked earlier, the number of examples the
active algorithm takes before stopping (i.e., outputting an e-good approximation)
varies and depends upon the nature of the target function. “Simple” functions are
learned quickly. “difficult” functions are learned slowly. As a point of interest, we
have shown in fig. 3-32, how the actual number of examples drawn varies with e. In
order to learn a target function to e-accuracy, CLA-2 needs at most nyax(€) = d/4e+1
examples. However, for a particular target function, f, let the number of examples it

actnally requires be ns(¢). We plot 240 55 a function of . Notice, first, that this

Nmax (€)
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ratio is always much less than 1. In other words, the active learner stops before the
worst case upper bound with a guaranteed e-good hypothesis. This is the significant
advantage of an adaptive sampling scheme. Recall that for uniform sampling (or
classical optimal recovery even) we would have no choice but to ask for d/4¢ examples
to be sure of having an e-good hypothesis. Further, notice that that as ¢ gets smaller,
the ratio gets smaller. This suggests that for these functions, the sample complexity
of the active learner is of a different order (smaller) than the worst case bound. Of
course, there always exists some function in F which would force the active learner

to perform at its worst case sample complexity level.
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Figure 3-32: Variation with epsilons.
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3.4 Conclusions, Extensions, and Open Problems

This part of the chapter focused on the possibility of devising active strategies to
collect data for the problem of approximating real-valued function classes. We were
able to derive a sequential version of optimal recovery. This sequential version, by
virtue of using partial information about the target function is superior to classical
optimal recovery. This provided us with a general formulation of an adaptive sam-
pling strategy, which we then demonstrated on two example cases. Theoretical and
empirical bounds on the sample complexity of passive and active learning for these
cases suggest the superiority of the active scheme as far as the number of examples
needed is concerned. It is worthwhile to observe that the same general framework
gave rise to completely different sampling schemes in the two examples we consid-
ered. In one, the learner sampled densely in regions of high change. In the other,
the learner did the precise reverse. This should lead us to further appreciate the fact
that active sampling strategies are very task-dependent.

Using the same general formulation, we were also able to devise active strategies
(again with superior sample complexity gain) for the following concept classes. 1)
For the class of indicator functions {14 : 0 < @ < b < 1} on the interval [0, 1],
the sample complexity is reduced from 1/eln(1/6) for passive learning to In(1/¢€) by
adding membership queries. 2) For the class of half-spaces on a regular n-simplex, the
sample complexity is reduced from n/eln(1/6) to n?ln(s/e) by adding membership
queries. Note that similar gains have been obtained for this class by Eisenberg (1992)
using a different framework.

There are several directions for further research. First, one could consider the
possibility of adding noise to our formulation of the problem. Noisy versions of
optimal recovery exist and this might not be conceptually a very difficult problem.
Although the general formulation (at least in the noise-free case) is complete, it might
not be possible to compute the uncertainty bounds ec for a variety of function classes.
Without this, one could not actually use this paradigm to obtain a specific algorithm.
A natural direction to pursue would be to investigate other classes (especially in more
dimensions than 1) and other distance metrics to obtain further specific results. We
observed that the active learning algorithm lay between classical optimal recovery and
the optimal teacher. It would be interesting to compare the exact differences in a more
principled way. In particular, an interesting open question is whether the sampling
strategy of the active learner converges to that of the optimal teacher as more and
more information becomes available. It would not be unreasonable to expect this,
though precise results are lacking. In general, on the theme of better characterizing
the conditions under which active learning would vastly outperform passive learning
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for function approximation, much work remains to be done. While active learning
might require fewer examples to learn the target function, its computational burden
is significantly larger. It is necessary to explore the information/computation trade-
off with active learning schemes. Finally, we should note, that we have adopted in
this part, a model of learning motivated by PAC but with a crucial difference. The
distance metric, d, is not necessarily related to the distribution according to which
data is drawn (in the passive case). This prevents us from using traditional uniform
convergence (Vapnik, 1982) type arguments to prove learnability. The problem of
learning under a different metric is an interesting one and merits further investigation

in its own right.

Part II: Epsilon Focusing: A Strategy for Active
Learning

In Part I, we discussed a principled strategy by means of which an active learner
could choose its own examples, thereby potentially reducing the informational com-
plexity of learning real-valued functions. The formalization adopted ideas from op-
timal recovery, and active learning reduced to a sequential version of the optimal
recovery problem. In this part of the chapter, we discuss another possible scheme for
choosing examples.

Recall that according to the PAC criterion for learning, we need to learn the
target function to € accuracy (according to some distance metric d on the space of
functions, F), with confidence greater than 1 — §. Sometimes, knowledge that the
function lies within some e-ball (in function space) might directly translate (due to
locality properties) into knowledge about the regions of the domain X over which the
target function valnes are uncertain. The learner can then zoom (epsilon-focus) in on
this region of uncertainty, and sample there. As a motivating real, world example, one
could imagine that in a pattern classification task, the knowledge that the learner is
within € of the optimal discriminant boundary, might inform the learner about which
regions of the feature space are worth sampling to a greater degree. Intuitively, one
might think that regions close to the decision boundary are such worthwhile regions.

We formally illustrate this idea with a simple example in the next section. In all
the cases we consider, the concept class (class of indicator functions) have bounded
VC dimension. Consequently. they are learnable. and upper and lower bounds on
the sample complexity of passive learning exist for these function classes. Roughly
speaking, instead of learning to (¢.8) accuracy at one shot by collecting the requisite

number of examples, the learner attempts to obtain a loose estimate of the target.
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Making use of locality properties, then, the learner obtains a loose estimate of the
regions of the domain to sample more closely. On the basis of these fresh samples, the
learner tightens its estimate of the target, thereby reducing the region of uncertainty.
It then freshly samples this new, reduced, region of uncertainty and carries on in this
fashion. The learner can arbitrarily reduce the sample complexity of learning by this
scheme.

After our motivating example, we provide some generalizations, and finally end

with some open questions.

3.5 A Simple Example

Suppose we want to PAC-learn (with (e, ) accuracy) the following class of indicator
functions from [0, 1] to {0, 1}.

f= {l[a.l] : 0 S al}

Further suppose the distribution P on [0, 1] according to which data is drawn is known
and is uniform. It is known that a passive learner would take atleast Q((1/¢)In(1/6))
examples to do so. We suggest the following k-step strategy which seeks examples
from successively smaller well-focused regions of the domain to learn this class in
Q((k/e**)In(k/8) examples.

The e-focusing Algorithm (1)
The learning occurs over k (k can be arbitrarily chosen) stages.

I. Draw enough examples to learn the target with €!/¥ accuracy with §/k confi-

dence. Obtain hypothesis 1;dy, 1].

2. Now ask for examples drawn uniformly at random from the region [d; —e€!/*, d; +
¢'/*] and try to learn the target function with '/%/2 accuracy with §/k confi-
dence (with respect to this new distribution over the smaller region). Obtain

hypot‘, hesis 1 {u2,1]-

3. Repeat like step 2, i.e., ask for enough examples drawn uniformly at random
from the region [dy — €¥/*,dy + €/*] in order to learn the target function to
€'/*/2 accuracy with &/k confidence. Obtain hypothesis 1z 4. In general at
the jth step, ask for examples drawn uniformly at random from the region
[aj_1 —eU=D/k o +€=1/¥] to learn the target to within €!/%/2 accuracy with
6/k confidence. Obtain hypothesis L, 13-
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4. Stop with hypothesis 15 1)

Proof of Correctness: Let the target be 1, 1. At the end of the first step, the target

is within €'/* of the hypothesis with probability greater than 1 — §/k. This means

Uk or in other words dy — e'/* < a; < dy + €'/,

that with high probability |a; — a1 < €

We now draw examples only from the region [d; — ek d +€1/‘”']. Let this distribu-
tion be P,. By a theorem of Vapnik and Chervonenkis, we need to draw 4/¢2/* In(k/8)
examples to learn the target to within ¢'/¥/2 with §/k confidence (for an arbitrary

distribution) at this stage. This means that

dpy (L) Ln) = 1/(26/%)a, — o] < /%72

In other words,
S EZ/k

I(lt — d;

Thus after two steps, the above inequality is true. We now draw examples only
from the region [ay — €¥/% ay + €2/*].

In general, at the jth step, if we draw 4/€*/*In(k/8) examples, we would have
learnt the target to €'/¥/2 accuracy with §/k confidence. The distribution (£;) accord-
ing to which examples are drawn at this stage is uniform over [a;_, — V=V/* q;_; +
¢=1/¥], Thus,

dp,(Napaps Ly ) = 1/(269795) |ag — @ < /2,

So we have,
< Ik,

s — a;

This happens with probability greater than 1 —§/k. Thus with high probability, from
the (j — 1)th stage to the jth stage, we have “focused” more closely onto a,. If this

is true at every stage, we would eventually have after k steps ensured that
|(ik — (lt| S €

which would mean that we have learnt the target to within an e width.

If we fail at any stage, the eventual hypothesis aj is not necessarily within an €
width of the target. The probability of failing at each stage is less than than 6 /k so the
probability of failing in at least one stage is less than k.6/k = 6. Thus the probability
of failing is less than & or in other words with greater than 1 — & probability. we would
have learnt the target to within an ¢ width which was onr goal.

The total number of examples drawn at each stage is 4/¢2/* lu(k/8) and since

there are k stages in all. the total number of examples in the whole process is

136



4k/(e2/%) In(k/$).0

3.6 (Generalizations

This geueral strategy can be extended to several other scenarios. We introduce the
notion of localized function classes. These classes which have a local focusing property
can be learued faster by the method of e-focusing. We mentiou some concrete results
obtained by using this scheme for n-dimensional cases, and for the case of noisy
examples. No proofs or formal arguments are provided for these extensions. We

hope. though, that the reader will appreciate the spirit of this idea.

3.6.1 Localized Function Classes

The previous sections showed how to use the e-focusing strategy to obtain superior
sample complexity results for some simple concept classes. It is of interest to charac-
terize general conditions on function classes for which the e-focusing strategy would
yield such a superior performance. It is noteworthy that the previous function class
had the property that knowledge of the distance between any two functions f and g
in F (in the dp metric) allowed us to focus in on a region of interest in the domain
X =[0.1] where f aud ¢ differ. We formalize this notion to derive a general bound
on sample complexity for the e-focusing strategy.

Let F be a concept class (i.e. class of indicator functions) on some compact
domain X. Let P be the uniform distribution on this domain, i.e., the distribution
which corresponds to the normalized Lebesgue measure on it. We define the usual

Li(p) distance metric on the space functions by

du(f,9) = /X |f — gldu

(where u is a probability measure on the set X.)
We define the local focusing property of such an arbitrarily defined concept class

as follows:

Definition 3.6.1 For a given f belonging to some concept class F on X, and for
any given ¢ > 0, its e-region of interest, R.(f) is given by

{r € X|f(r) # g(x) for some g € F such that dp(f,g) < €}

Definition 3.6.2 The concept class F is said to be locally focused with focusing bound
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g (9 is a real valued function taking values on [0,1]) if for every e > 0,

sup Volume(R.(f)) < g(e)
feF

Here, Volume(s) for any set s C X, is simply the volume!7 of that set. We assume
that Volume(X) = 1.

Clearly, locally focused classes are those with bounded € regions of interest into
which we can focus in the iterative manner of Algorithm 1.

3.6.2 The General e-focusing strategy;

The general algorithm to learn such e-focused classes is as follows:
Algorithm 2

1. Begin with the entire class F, draw examples according to the uniform distri-
bution P on X, (call this P) and attempt to learn the target (f, € F) to e/*
with probability at least 1 —§/k. Obtain hypothesis fi. Also obtain the reduced

set of candidate target functions (version space),

Fi={f € Fldn(f. ) < €%}

Finally, also obtain the e-region of interest:
R] — Rcl/k(fl).

2. Draw examples according to a uniform distribution on R; (call this distribution
P;) and learn the target to ¢2/%/g(e'/*) (according to P;) with probability greater
than 1 — §/k. Now obtain hypothesis f, € Fi, the reduced version space:

2/k

. - ¢
Fa={f € Rildn(f.f2) €

).

and Ry = Rﬂ/k(f'z)-

3. Repeat step 2. In general, at the jth step, learn the target to m—) (ar(‘ordmg

to distribution P;), and obtain f;, F;, and R; in the obvions way.

17From a more formal perspective, one should really replace Volume(s) by the measure on the set
s, i.e., P(s). Clearly, P(X) = L. In our case, we assume that Volume(X) = 1. Since P is a uniform
distribution, i.e., any point in this set is as likely as any other point, it follows that P(s) is simply
Volume(s). We will continue to use this notation, but the reader will easily see that P can be used
in general, and in fact, need not even be uniform.
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4. Stop at the kth step and output hypothesis fk.

Proof of Learnability:

Recall that our eventual goal is to learn the unknown target f; within € accuracy
(according to the distance metric dp) with probability greater than 1 — 4.

Cousider the first step. The target has been learned to €'/* accuracy with high
confidence. The learner’s hypothesis is fl. Clearly, with high probability (greater
that 1 — §), the target lies within in an ¢/* ball around fl (this is denoted by F;).
According to our definition, all functions in F; agree on the region outside of R;. So
we only need to sample the region Ry which is what we do in the second step.

In the second step, we learn the target to €2/%/g(e!/¥). This is according to a
distribution P (uniform on the region R;). Again, the target, is within an 2/%/g(el/¥)

ball of the hypothesis at this stage (f}) Thus,

Volume({x € Ry|fa(z) # fi(z)})
Volume(R;)

But. Volume(Ry) = y(¢'/*). Therefore,

df‘g(fhft) =

S fz/k/g(fl/k)

Volume({x € Rl|f2(;1;) £ fi(x)}) < 2k

('learly, then,

dp(f2, f2) = Volume(X \ R1)(0) + Volume({z € Ry|fa(z) # fi(z)}) < e¥/*

Thus. after the second step, we see that the target f, is within ¢/ accuracy
(with respect to our original distribution P). By our definition of the local focusing
property, we know that f; € F,, and the points on which f; and fz disagree must lie
within R,.

[n general, before the jth step, the points on which the target and the (j —1)th hy-
pothesis disagree must lie within R;_;. Since, we sample according to a uniform distri-
bution on this (F;). and attempt to learn the target to an accuracy of €//¥/g(eli=1/k),

by a similar argument,

i Volume({x € R,_\|fi(x) # ful2)}) _ ko (=1)/k
dp (f2. fi) = Volume(R;_,) < e g(eV )

But, Volume(R;_;) = ¢(¢=Y/¥), Therefore,

Volume({z € Rj—l‘fj(w) £ fi(x)}) < cilk
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and.,

dp(fj,ft) = Volume(X.\ R;—1)(0) + Volume({x € R;_y|f;(x) # fi(z)}) < e/*

Thus, after the jth step, the learner has learned the target to ¢//* accuracy. Fur-
ther, according to our definition of the local focusing property, the points on which
the learner and target disagree must lie within the set R; = ’Rf,/;.-(fj).

Clearly, after the kth step, the learner will have learned the target to € accuracy.
The only way, in which the learner could have made a mistake, is if it made a mistake
on any one of the steps. The probability of making a mistake in each step is §/k. The
probability of making a mistake in any one is bounded by 8. Thus, the learner would
have identified the target to € accuracy with confidence greater than 1 — 4.

Sample Complexity: By the standard Vapnik Chervonenkis theorem, we see that
at the jth stage, the learner will have to draw at most O( ﬂ%#l In(k/6)) examples
to satisfy the learnability requirement of that stage. The total number of examples

the learner needs would be

k20 i=1)/k
v g (€ )
()(Z €2k

I=

In(k/6))

3.6.3 Generalizations and Open Problems

Now we are in a position to re-evaluate our simple example from this general per-

spective. It is easy to see that

1. Opening Example: For an arbitrary fo = l[a,1], We see that
Re(fa) =la—€,a+¢€]

Clearly, g(€) = 2¢. The sample complexity is O((k/e**)In(k/6)).

2. Box Functions: Consider the following class of indicator functions on [0. 1].
F={la,0]:0<a<b< 1}
For an arbitrary f.s = lj,, we see that

R(far)=[a—€,;at+e]Ub—¢,b+¢€]

Clearly, g(e) = 4¢. The sample complexity O((k/e**)In(k/§)) follows.
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Some other generalizations should be noted. We do not attempt to provide any
formal arguments.

I. Ertensions to n-dimensions: It is possible to extend the ¢ focusing strategy of
our opening example to an n-dimensional situation. A concrete example includes the
PAC learning of a concept class of hyperplanes dividing an n-simplex into two regions.
Essentially, the hyperplane cuts the simplex at its edges. Consequently, along each
edge, the poiuts on one side of the cut are labelled 0, while the points on the other
side are labelled 1. Thus, if one confines oneself to finding the intersection of the
hyperplane with the simplex edge, the problem reduces to a single dimensional case
exactly like our opening example. If n such edge-intersection problems are solved,
then the total n-dimensional problem can be solved.

In view of the fact that we have an effective e-focusing strategy for box functions.
we can even address concept classes represented by multilayer perceptrons with two
hidden layers. In such a case, there are at most two hyperplanes intersecting each
edge. The single-dimensional problem associated with each edge is like a box function.

2. Handling misclassification noise: The e-focusing strategy in this part has been
developed for a noise-free case. Extensions to cover a situation with a bound on the
misclassification noise (the label of the example can be flipped with probability at
most 77) can easily be considered as well.

Finally, some natural questions arise at this stage. First, what kinds of concept
classes have the locally focusing property? Second, given the existence of the locally
focusing property, how easy is it to compute the e-region of interest R, for such

concept classes. Further research on these questions is awaited.
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Chapter 4

Language Learning Problems in the
Principles and Parameters Framework

Abstract

This chapter considers a learning problem in which the hypothesis class is a class of parameterized
grammars. After a brief introduction to the “principles and parameters” framework of modern
linguistic theory, we consider a specific learning problem previously analyzed in a seminal work
by Gibson and Wexler (1994). With our informational-complexity point of view developed in this
thesis, we reanalyze their learning problem. This puts particular emphasis on the sample complexity
of learning, in contrast to previous research in the inductive inference, or (Gold frameworks (see
Osherson and Weinstein, 1986). We show how to formally characterize this problem in particular, and
a class of learning problems in finite parameter spaces in general, as a Markov structure. Important
new language learning results follow directly: we explicitly compute sample complexity bounds under
different distributional assumptions, learning regimes, and grammatical parameterizations. Briefly,
we may view this as a precise way to model the “poverty of stimulus” children face in language
acquisition. Our reanalysis alters several conclusions made by Gibson and Wexler. We therefore
consider this chapter as a useful application of learning-theoretic notions to natural languages. and

their acquisition. Finally, we describe several directions for further research.

[n Chapters 2 and 3, we cousidered the problem of learning target functions
(belonging to certain classes) from examples. Particular emphasis was given to the
sample complezity of learning such functions, and we have seen how it depends upon
the complexity of the hypothesis classes concerned. The classes of functions we have
investigated, have arguably, very little cognitive relevance. However, the investiga-
tions have helped us to develop a point of view crucial to the analysis of learning
systems—a point of view which allows us to appreciate the inherent tension between
the approximation error, and the estimation error, in learning from examples. In
particular we have seen how the hypothesis classes used by the learner must be large
to reduce the approximation error, and small to reduce the estimation error. In the
rest of the thesis (Chapters 4 and 5), we remedy our cognitive irrelevance by con-

sidering some classes of functions which linguists and cognitive scientists believe the
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brain must compute. As we shall soon see, there is a learning-theoretic argument
at the heart of the modern approach to linguistics—hence our choice of linguistic
structures tfor analysis. The origin of the research presented in this chapter lies in the
paper “Triggers” (Gibson and Wexler, 1994; henceforth GW) which marks a seminal
attempt to formally investigate language learning within the “principles and parame-
ters” framework (Chomsky, 1981). The results presented in this chapter emerged out
of a reanalysis of “Triggers” using more sophisticated mathematical techniques, than
had previously been used in this context. One can, thus, regard this as a demonstra-
tion, of how our information-theoretic point of view, and the arguments and tools of
current learning theory. can help us to sharpen certain important questions, and lead
to insightful analysis of relevant linguistic theories. _

[n the next section, we provide a brief account of the learning-theoretic considera-
tions inherent in the modern approach to linguistics. We then give a brief account of
the principles and parameters framework, and the issues involved in learning within
this framework. This sets the stage for our investigations, and we use as a start-
ing point the Triggering Learning Algorithm (TLA) working on a three-parameter
syntactic subsystem first analyzed by Gibson and Wexler. The rest of the chapter
analyzes the TLA from the perspective of learnability and sample complexity. Issues
pertaining to parameter learning in general, and the TLA in particular, are discussed
at appropriate points. Finally, we suggest various directions for further research—
this chapter marks only the opening of our research on this theme. Very little work
has been done on the formal. computational, aspects of parameter setting, and we

attempt here to pose questions which we think are of importance in the field.

4.1 Language Learning and The Poverty of Stim-

ulus

The inherent tension between having large hypothesis classes, for greater expressive
power, and small ones, for better learnability, is beautifully instantiated in the human
language system. Humans develop a mature knowledge of language that is both rich
and subtle, on exposure to fairly limited number (the so called “poverty of stimulus”)
of example sentences spoken by parents and guardians in childhood. Languages are

infinite sets of sentences'®. Yet on exposure to a finite number of them (during the

!®There are an infinite number of sentences in the English language. You haven’t heard all of
thermn, yet you can judge the grammaticality of sentences you have not heard before. In the view of
many linguists, you have internalized a grammar-a set of rules, a theory, or schema, by means of
which you are able to generalize to unseen sentences (examples).
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language acquisition phase in childhood) children correctly generalize to the infinite
set. Further, they generalize in exactly the same way: too striking a coincidence to
be attributed to chance. This motivated Chomsky (1965) to argue that children must
operate with constrained hypotheses about language—constraints which restrict the
sorts of generalizations that they can make. These constrained hypothesis classes
which children operate with, in the language context, are classes of grammars. Chil-
dren choose one particular grammar!® from this class, on the basis of the examples
they have seen. Thus, a child born in a Spanish speaking environment would choose
the grammar which appropriately describes the data it has seen (Spanish sentences),
and, similarly, a child born in a Chinese speaking environment chooses a different
grammar, and so on. Of course, children might make mistakes. and they do. These
mistakes are often resolved as more data becomes available to the child. Sometimes
(when this happens, is undoubtedly, of great interest), these mistakes might never be
resolved—a possibility which we explore in the next chapter.

Thus, we see, that if we were totally unconstrained in the kinds of hypotheses we
could make, then, on the basis of a finite data set, we would all generalize in wildly
different ways, implying, thereby, that we would never be able to learn languages.
Yet, we learn languages, apparently with effortless ease as children. This realization is
crucial to linguistics. Humans, thus, are predisposed to choose certain generalizations
over others, they are predisposed to choose hypotheses belonging to a constrained
class of grammars—this predisposition is the essence of the innatist view of language;
the universal constraints on the class of grammars belong to universal grammar.
Furthermore, such a class of grammars must be large enough to capture the richness
of language, yet small enough to be learned— exemplifying the tension discussed
previously. The thrust thus shifted to finding the right constraints incorporated
in such a class of grammars, in other words, finding the class of grammars of the
right complexity. Notice, here, the similarity in spirit to the problem of finding a

regularization network of the right complexity. Consequently, we see that an analysis

191t should be pointed out that there are various components of a language. There is its syntax.
that concerns itself with syntactic units like verbs, noun phrases, etc. and their appropriate com-
binations. Further, there is its phonology that deals with its sound structure, its morphology that
deals with word structure, and finally, the vocabulary or “words” which are the building blocks out
of which sentences are ultimately composed. Acquisition of a language involves the acquisition of
all of this. We have been using the term grammar in a loose sort of way—it is a system of rules and
principles which govern the production of acceptable sentences of the language. The grammar too
could be broken into its syntactic parts, its phonological parts and so on. Some readers, recalling
vivid memories of stuffy English school teachers, might have a natural resistance to the idea of rigid
rules of grammaticality. For such people, we note, that while there is undoubtedly greater flexibility
in word order than such teachers would suggest, it is a fact, that no one speaks “word salad” —with
absolutely no attention to word order combinations at all.
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of the complexity of language learning coupled with a computational view of the
language acquisition device is crucial to the theoretical underpinnings of modern
linguistics (see Wexler and Culicover (1980) for an excellent formal exposition of this

idea).

4.2 Constrained Grammars—Principles and Param-

eters

Having recognized the need for constraints on the class of grammars (this can be
regarded as an attempt to build a hypothesis class with finite learnability dimension?°)
researchers have investigated several possible ways of incorporating such constraints
in the classes of grammars to describe the natural languages of the world. Examples
ot this range from linguistically motivated grammars such as Head-driven Phrase
Structure Grammars (HPSG), Lexical-Functional grammars, Optimality theory for
phouological systems, to bigrams, trigrams and connectionist schemes suggested from
an engineering consideration of the design of spoken language system. Note that
every such grammar suggests a very specific model for human language, with its own
constraints and its own complexity. Model-free, unconstrained, tabula rasa learning
schemes correspond to hypothesis classes with infinite dimension, and these can never
be learned in finite time. An important program of research consists of computing
the sample complexity of learning each of these diverse classes of grammars.

In this chapter, we conduct our investigations within the purview of the principles
and parameters framework (Chomsky, 1981). Such a framework attempts to capture
the “universal” principles common to all the natural languages of the world, (part of
our biological endowment as human beings possessed of the unique language faculty)
and the parameters of variation across languages of the world. Roughly speaking,
there are a finite number of principles governing the production of human languages.
These abstract principles, can take one of several (finite) specific forms—this spe-
cific form manifests itself as a rule, peculiar to a particular language (or classes of
languages). The specific forms that such an abstract principle can take is governed
by setting an associated parameter to one of several values. In typical versions of

theories constrineted within such a framework. one ends up with a parameterized

2%[n previous chapters, we have utilized the notion of V(-dimension, and pseudo-dimension to
characterize the complexity of learning real-valued function classes. It is not immediately clear,
what cornplexity measure should be used for characterizing classes of grammars—the development
of a suitable measure, in tune with the demands of the language acquisition process, is an open
question.
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class of grammars. The parameters are boolean valued-setting them to one set of
values, defines the grammar of German (say), setting them to another set of values,
defines the grammar, perhaps, of Chinese. Specific examples of theories within such
a framework could include Government and Binding, Head-driven Phrase Structure
Grammar, Optimality Theory, varieties of lexical-functional grammars and so forth.
The idea is best illustrated in the form of examples. We provide, now, two examples,
drawn from syntax, and phonology, respectively.

4.2.1 Example: A 3-parameter System from Syntax

Two X-bar parameters: A classic example of a parametric grammar for syntax
comes from X-bar theory (Chomsky, 1981; Haegeman, 1991). This describes a param-
eterized phrase structure grammar, which defines the production rules for phrases,
and ultimately sentences in the language. The general format for phrase structure is

summarized by the following parameterized production rules:

XP — SpecX'(py = 0) or X'Spec(p = 1)
X' — CompX'(p; =0) or X'Comp(p, = 1)
X - X

X P refers to an X-phrase, where X, or the “head”, is a lexical category like N
(Noun), V (Verb), A (Adjective), P (Preposition), and so on. Thus, one could gen-
erate NP, or Noun Phrases, V P, or Verb Phrases, and other phrases in this fashion.
Spec refers to specifier, in other words, that part of the phrase that “specifies” it,
roughly like the old in the old book. Comp refers to the complement, ronghly a phrase’s
arguments, like an ice-cream in the Verb Phrase ate an ice-cream, or with envy in the
Adjective Phrase green with envy. Both Spec and Comp can themselves be phrases
with their own specifiers and complements. Furthermore, in a particular phrase, the
spec-position, or the comp-position might be blank (in these cases, Spec — 0, or
Comp — 0 respectively). Applying these rules recursively, one can thus generate
embedded phrases of arbitrary length in the language. Further, these rules are pa-
rameterized. Languages can be spec-first (p; = 0) or spec-final (p1 = 1). Similarly,
they can be comp-first, or comp-final. For example. the parameter settings of English
are (spec-first,comp-final). Shown in fig. 4-33 is an embedded phrase which demon-
strates the use of the X-bar production rules (with the English parameter settings)-

to generate an arbitrary English phrase.

In contrast, the parameter settings of Bengali are (spec-first.comp-first). The
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Figure 4-33: Analysis of an English sentence. The parameter settings for English are
spec-first, and comp-tinal.

translation of the same sentence is provided in fig. 4-34. Notice, how a difference in
the comp-parameter setting causes a difference in word orders. It is claimed that as far
as basic, underlying word order is concerned, X-bar theory covers all the possibilities
for natural languages®'. Languages of the world simply differ in their parameter
settings.

One transformational parameter (V2): The two parameters described above de-
fine generative rules to obtain basic word-order combinations permitted in the world’s
languages. As mentioned before, there are many other aspects which govern the for-
mation of sentences. For example, there are transformational rules which determine
the production of surface word order from the underlying (base) word-order structure
obtained from the production rules above. One such parameterized transformational
rule that governs the movement of words within a sentence is associated with the
V2 parameter. [t is observed that in German and Dutch declarative sentences, the
relative order of verbs and their complements seem to vary depending upon whether

the clause in which they appear is a root clause or subordinate clause. Consider, the

*IThere are a variety of other formalisms developed to take care of finer details of sentence struc-
ture. This has to do with case theory, movement, government, binding and so on. See Haegeman
(1991).

147



/’ XP ~-> Spec X*

Spec
!
om
(eme) V' X > Comp X’
B

Spec P Ly
' PP(Comp) —~~"
-~ /\ /\
NP (Comp) P
I Spec P v
|
A P /\
Spec N
| NP (Comp) P
- |
|
| b
; Spec N ) i
| | ! L |
] i (empty) i ; :
| | N : '
! | :
or paisa niye shekhan theke dourato
(bis) (money)  (with) {thore)  (from) (ran)

Figure 4-34: Analysis of the Bengali translation of the English sentence of the earlier
figure. The parameter settings for Bengali are spec-first, and comp-first.
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following German sentences:

(1)...dass (that) Karl das (the) Buch (book) kauft (buys).
...that Karl buys the book.

(2)...Karl kanft das Buch.

...karl buys the book.

This seems to present a complication in that from these sentences it is not clear
whether German is comp-first (as example 1 seems to suggest) or comp-final (as
example 2 seems to suggest). It is believed (Haegeman, 1991) that the underlying
word-order form is comp-first (like Bengali, and unlike English, in this respect); how-
ever. the V2 parameter is set for German (p; = 1). This implies that finite verbs must
appear in the exact second position in root declarative clauses (p3 = 0 would mean
that this need not be the case). This is a specific application of a transformational
rule Move-a. For details and analysis, see (Haegeman, 1991).

Each of these three parameters can take one of two values. There are, thus, 8
possible grammars, and correspondingly 8 languages by extenéion, generated in this
fashion. At this stage, the languages are defined over a vocabulary of syntactic cat-
egories, like N, V etec. Applying the three parameterized rules, one would obtain
different ways of combining these syntactic categories to obtain sentences. Appendix
A is a list of the set of unembedded (degree-0) sentences obtained for each of the lan-
guages, Ly throngh Lys in this parametric system. The vocabulary has been modified

so that sentences are now defined over more abstract units than syntactic categories.

4.2.2 Example: Parameterized Metrical Stress in Phonol-
ogy

The previous example dealt with a parameterized family for syntax. As we mentioned
before, syntax is only one component of language. Here we consider an example from
phonology: in particular, our example deals with metrical stress which describes the
possible ways in which words in a language can be stressed.

Consider the English word, “candidate”. This is a three syllable word, com-
posed of the three syllables, /can/,/di/,and, /date/. A native speaker of American
English typically pronounces this word by stressing the first syllable of this word.
Similarly, such a native speaker would also stress the first syllable of the tri-syllabic
word, */al/-/pha/-/bet/” so that it almost rhymes with “candidate”. In contrast, a
French speaker would stress the final syllable of both these words—a contrast which
is perceived as a “French™ acceut by the English ear.

For simplicity, assume that stress has two levels, i.e., each syllable in each word
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22 Thus, an n-svllable long word could have,

can be either stressed, or unstressed
in principle, as many as 2" different possible ways of being stressed. For a particu-
lar language, however, only one of these wavs is phonologically well-formed. Other
stress patterns sound accented, or awkward. Words could potentially be of arbitrary
length?. Thus one could write phonological grammars—a functional mapping from
these words to their correct stress pattern. Clearly, this is another example of a
functional mapping the brain must compute. Further, different languages correspond
to different such functions,i.e., they correspond to different phonological grammars.
Within the principles and parameters framework, these grammars are parameterized
as well.

Let us consider a simplified version of two principles associated with 3 boolean
valued parameters which play a role in the Halle and Idsardi metrical stress system.
These principles describe how a multisyllable word can be broken into its constituents
(recall how sentences were composed of constituent phrases in syntax) before stress
assignment takes place. This is done by a bracketing schema which places brackets
at different points in the word, thereby marking (bracketing) off different sections as
constituents. A constituent is then defined as a syllable sequence between consecutive
brackets. In particular, a constituent must be bounded by a right bracket on its right
edge, or, a left bracket on its left edge (both these conditions need not be satistied
simultaneously). Further, it cannot have any brackets in the middle. Finally, note
that not all syllables of the word need be part of a constituent. A sequence of
syllables might not be bracketed by either an appropriate left, or right bracket—
such a sequence, cannot have a stress-bearing head, and might be regarded as an
extra-metrical sequence.

1) the edge parameters: there are two such parameters.

a) put a left (p; = 0) or right (p; = 1) bracket

b) put the above mentioned bracket exactly one syllable after the left (py = 0) edge
or before the right (p; = 1) edge of the word.

2) the head parameter: each constituent (made np of one or more syllables) has a

22While we have not provided a formal definition of either stress, or syllable, it is hoped, that at
some level, the concepts are intuitive to the reader. It should, however. be pointed out that linguists
differ on their characterization of both these objects. For example, how many levels can stress have?
Typically, (Halle and Idsardi, 1991) three levels are assumed. Similarly, syllables are classified into
heavy and light syllables. We have discounted such niceties for ease of presentation.

230ne shouldn’t be misled by the fact that that a particular language has only a finite number
of words. When presented with a foreign word, or a “non-sense” word one hasn't heard before. one
can still attempt to pronounce it. Thus, the system of stress assignment rules in our native language
probably dictates the manner in which we choose to pronounce it. Speakers of different languages
would accent these non-sense words differently.
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“head”™. This i1s the stress hearing syllable of the coustituent, and is in some sense,
the primary. or most important syllable of that constituent (recall how syntactic
constitueuts, the phrases, had a lexical head). This phonological head could be the
leftmost (p3 = 0), or, the rightmost (p3 = 1) syllable in the constituent.

Suppose, the parameters are set to the following set of values: [py = 0, p; =
0, ps = 0]. Fig. 4-35 shows how some multisyllable words would have stress assigned
to them. In this case, any n-syllable word would have stress in exactly the second
position (if such a position exists) and no other. In contrast, if [p; =0, p, =0, p; =
1], the corresponding language would stress the final syllable of all multi-syllable

words. Monosyllabic words are unstressed in both languages.

H
; y
X(X X X XX XX X XXX
H H
¥ v
X{X X X X X(X X X X
X( X{
=0 p =0 p=0 - - -1
P, 2 3 p‘(anO[-‘»3

Figure 4-35: Depiction of stress pattern assignment to words of different syllable
length under the parameterized bracketing scheme described in the text.

These 3 parameters represent a very small (almost trivial) component of stress
pattern assignment. There are many more parameters which describe in more com-
plete fashion, metrical stress assignment. At this level of analysis, for example, the
language Koya has p3 = 0, while Turkish has p; = 1; see Kenstowicz (1992) for more
details. The point of this example was to provide a flavor or how the problem of
stress-assignment can be described formally by a parametric family of functions. The
analysis of parametric spaces developed in this chapter can be equally well applied to

such stress systems.

4.3 Learning in the Principles and Parameters

Framework

Language acquisition in the principles and parameters framework reduces to the set-
ting of the parameters corresponding to the “target” language. A child is born in an

arbitrary linguistic environment. [t receives examples in the form of sentences it hears
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in its linguistic environment. On the basis of example sentences it hears, it presum-
ably learns to set the parameters appropriately. Thus, referring to our 3-parameter
system for syntax, if the child is born in a German speaking environment. and hears
German sentences, it should learn to set the V2 parameter, and the spec-parameter
to spec-first. Similarly, a child hearing English sentences, should learn to set the
comp-parameter to comp-final. In principle, the child is thus solving a parameter
estimation problem—an unusual class of parameter estimation problems, no doubt,
but in spirit, little different from the parameter estimation problem associated with
the regularization networks of Chapter 2. One can thus ask a number of questions
about such problems. What sort of data does the child need in order to set the target
parameters? [s such data readily available to the child? How often is such data made
available to the child? What sort of algorithms does the child nse in order to set the
parameters? How efficient are these algorithms? How much data does the child need?
Will the child always converge to the target “in the limit” ??

Language acquisition, in the context of parameterized linguistic theories, thus,
gives rise to a class of learning problems associated with finite parameter spaces.
Furthermore, as emphasized particularly by Wexler in a series of works (Hamburger
and Wexler, 1975; Culicover and Wexler, 1980; and Gibson and Wexler, 1994), the
finite character of these hypothesis spaces does not solve the language acquisition
problem. As Chomsky noted in Aspects of the Theory of Syntax (1965), the key point
is how the space of possible grammars— even if finite-is “scattered” with respect to
the primary language input data. It is logically possible for just two grammars (or
languages) to be so near each other that they are not separable by psychologically
realistic input data. This was the thrust of Wexler and Hamburger, and Wexler and
Culicover’s earlier work on the learnability of transformational grammars from simple
data (with at most 2 embeddings). More recently, a significant analysis of specific
parameterized theories has come from Gibson and Wexler (1994). They propose the
Triggering Learning Algorithm—a simple, psychologically plausible algorithm which
children might conceivably use to set parameters in finite parameter spaces. Inves-
tigating the performance of the TLA on the 3-parameter syntax subsystem shown
in the example yields the surprising result, that the TLA cannot achieve the target
parameter setting for every possible target grammar in the system. Specifically, there
are certain target parameter settings, for which the TLA could get stuck in local
mazima from which it would never be able to leave. and consequently. learnability
would never result.

We are interested. both in the learnability. and the sample complexity of the finite
hypothesis classes suggested by the principles and parameters theory. An investi-
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gation of this sort requires us to define the important dimensions of the learning
problem—the issues which need to be systematically addressed. The following figure
provides a schematic representation of the space of possibilities which need to be
explored in order to completely understand and evaluate a parameterized linguistic

theory from a learning perspective. The important dimensions are as follows:

Parametrization

|
|
|
{
I
l
|
1
i
|
i

Distribution of
Data

Noise

Memory Requirements

Learning Algorithm

Figure 4-36: The space of possible learning problems associated with parameterized
linguistic theories. Each axis represents an important dimension along which spe-
cific learning problems might differ. Each point in this space specifies a particular
learning problem. The eutire space represents a class of learning problems which are
interesting.

1) the parameterization of the language space itself: a particular linguistic theory
would give rise to a particular choice of universal principles, and associated param-
eters. Thus, one could vary along this dimension of analysis, the parameterization
hypothesis classes which need to be investigated. The parametric system for metrical
stress (Example 2) is due to Halle and Idsardi. A variant, investigated by Dresher
and Kaye (1990). can equally well be subjected to analysis.

2)the distribution of the input data: once a parametric system is decided upon,
one must, then, decide the distribution according to which data (i.e., sentences gener-
ated by some target grammar belonging to the parameterized family of grammars) is
presented to the learner. ('learly, not all sentences occur with equal likelihood. Some

are more likely than others. How does this affect learnability? How does this affect
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sample complexity? One could, of course, attempt to come np with distribution-
independent bounds on the sample complexity. This, as we shall soon see, is not
possible.

3) the presence, and nature, of noise, or extraneous examples: in practice, children
are exposed to noise (sentences, which are inconsistent with the target grammar) due
to the presence of foreign, or idiosyncratic speakers, disfluencies in speech, or a variety
of other reasons. How does one model noise? How does it affect sample complexity
or learnability or both?

4) the type of learning algorithm involved: a learning algorithm is an effective
procedure mapping data to hypotheses (parameter values). Given that the brain has
to solve this mapping problem, it then becomes of interest. to study the space of
algorithms which can solve it. How many of them converge to the target? What is
their sample complexity? Are they psychologically plausible?

5) the use of memory: this is not really an independent dimension, in the sense,
that it is related to the kind of algorithms used. The TLA, and variants, as we shall
soon see, are memoryless algorithms. These can be modeled by a Markov chain.

This is the space which needs to be explored. By making a specific choice along
each of the five dimensions discussed (corresponding to a single point in the 5-
dimensional space of fig. 4-36, we arrive at a specific learning problem. Varying
the choices along each dimension (thereby traversing the entire space of fig. 4-36)
gives rise to the class of learning problems associated with parameterized linguistic
theories. For our analysis, we choose as a concrete starting point the Gibson and
Wexler Triggering Learning Algorithm (TLA) working on the 3-parameter syntactic
subsystem in the example shown. In our space of langnage learning problems, this
corresponds to (1) a 3-way parameterization. using mostly X-bar theory: (2) a uni-
form sentence distribution over unembedded (degree-0) sentences: (3) no noise; (4) a
local gradient ascent search algorithm: and (5) memoryless (online) learning. Follow-
ing our analysis of this learning system, we consider variations in learning algorithms,

sentence distribution, noise, and language/grammar parameterizations.

4.4 Formal Analysis of the Triggering Learning
Algorithm

Let us start with the TLA. We first show that this algorithm and others like it is
completely modeled by a Markov chain. We explore the basic computational conse-
quences of this fundamental result, including some surprising results about sample

complexity and convergence time, the dominance of random walk over gradient as-
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cent, and the applicability of these results to actual child language acquisition, and

possibly langnage change.

Background. Following Gold (1967) the basic framework is that of identification in
the limit. We assuime sume familiarity with Gold’s assumptions. The learner receives
an (infiuite) sequence of (positive) example sentences from some target language.
After each, the learner either (i) stays in the same state; or (ii) moves to a new state
(change its parameter settings). If after some finite number of examples the learner
converges to the correct target language and never changes its guess, then it has
correctly identified the target language in the limit; otherwise, it fails.

In the GW model (and others) the learner obeys two additional fundamental
constraints: (1) the single-value constraint—the learner can change only 1 parameter
value each step; and (2) the greediness constraint—if the learner is given a positive
example it cannot recognize and changes one parameter value, finding that it can
accept the example, then the learner retains that new value. The TLA can then be

precisely stated as follows. See Gibson and Wexler (1994) for further details.

o [Initialize] Step 1. Start at some random point in the (finite) space of possible
parameter settings. specifying a single hypothesized grammar with its resulting

extension as a language:

o [Process iuput sentence] Step 2. Receive a positive example sentence s; at time
t; (examples drawn from the language of a single target grammar, L(G,)), from
a uniform distribution on the degree-0 sentences of the language (we shall be

able to relax this distributional constraint later on);

o [Learnability on error detection] Step 3. If the current grammar parses (gener-

ates) s;, then go to Step 2; otherwise, continue.

o [Single-step gradient-ascent] Select a single parameter at random, uniformly
with probability 1/n, to flip from its current setting, and change it (0 mapped
to 1, [ to 0) iff that change allows the current sentence to be analyzed; otherwise
go to Step 2:

Of course, this algorithm never halts in the usual sense. GW aim to show under
what couditions this algorithm converges “in the limit”—that is, after some number,
n, of steps, where n is unknown, the correct target parameter settings will be selected
and never be changed. They iuvestigate the behavior of the TLA on the linguistically
natural 3-parameter syntactic subsystem of example 1. Note that a grammar in this

space is simply a particular rn-length array of 0’s and 1's; hence there are 2™ possible
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grammars (languages). Gibson and Wexler's surprising result is that the simple 3-
parameter space they consider is unlearnable in the sense that positive-only examples
can lead to local mazima- incorrect hypotheses from which a learner can never escape.
More broadly, they show that learnability in such spaces is still an interesting problem,
in that there is a substantive learning theory concerning feasibility, convergence time,
and the like, that must be addressed beyond traditional linguistic theory and that
might even choose between otherwise adequate linguistic theories.

Triggers: Various researchers (Lightfoot, 1991; Clark and Roberts, 1993; Gibson
and Wexler, 1994; Frank and Kapur, 1992) have explored the notion of triggers as a
way to model parameter space language learning. Intuitively, triggers are supposed to
represent evidence which allows the child to set the parameter for the target language.
Concretely, Gibson and Wexler define triggers to be sentences from the target which
allow a parameter to be correctly set. Thus, global triggers for a particular parameter
are sentences from the target language which force the learner to set that parameter
correctly (irrespective of the learner’s current hypothesis about the target parameter
settings). On the other hand, local triggers for a particular parameter depend upon
the learner’s hypothesis. Given values for all parameters but one (the parameter in
question), local triggers are sentences which force the learner to correctly set the value
of that parameter.

Gibson and Wexler suggest that the existence of local triggers for every (hypoth-
esis,target) pair in the space suffices for TLA learnability to hold. As we shall see
later, one important corollary of our stochastic formulation shows that this condition
does not suffice. In other words, even if a triggered path exists from the learner’s hy-
pothesis language to the target, the learner might, with high probability, not take this
path, resulting in non-learnability. A further consequence is that many of Gibson and
Wexler’s proposed cures for nonlearnability in their example system, such as “matu-
rational” ordering imposed on parameter settings, simply do not apply. Oun the other
hand, this result reinforces Gibson and Wexler's basic point that seemingly simple
parameter-based language learning models can be quite subtle—so subtle that even a

superficially complete computer simulation can fail to uncover learnability problems.

4.4.1 The Markov formulation

From the standpoint of learning theory, GW leave open several questions that can be
addressed by a more precise formalization of this model in terms of Markov chains (a
possible formalization suggested but left unpursued in footnote 9 of GW).

Consider a parameterized grammar (langnage) family with » parameters. We can

picture the hypothesis space, of size 2", as a set of points, each corresponding to
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one particular array of parameter settings (languages, grammars). Call each point
a hypothesis state or simply state of this space. As is conventional, we define these
languages over some alphabet ¥ as a subset of £*. One of them is the target language
(grammar). We arbitrarily place the (single) target grammar at the center of this
space. Since by the TLA the learner is restricted to moving at most 1 binary value
in a single step, the theoretically possible transitions between states can be drawn
as (directed) lines counecting parameter arrays (hypotheses) that differ by at most |
binary digit (a 0 or a 1 in some corresponding position in their arrays). Recall that
this is the so-called Hamming distance.

We may further place weights on the transitions from state : to state j. These
correspond to the probabilities that the learner will move from hypothesis state 2 to
state j. In fact. as we shall show below. given a distribution over L((;), we can
further carry ont the caleulation of the actual transition probabilities themselves.
Thus, we can picture the TLA learning space as a directed, labeled graph V with 2"
vertices.?* More precisely, we can make the following remarks about the TLA system
GW describe.

Remark. The TLA system is memoryless, that is, given a sequence s of sentences up
to time ¢;. the selection of hypothesis h(;4,1) depends only on sentence s(¢;), and not

(directly) on previous sentences, i.e.,

p{A(tiyr) = hlh(), s(t),t < t:} = P{h(tis1) = h|h(t:), s(t:)}

[n other words, the TLA system is a classical discrete stochastic process, in par-
ticular. a discrete Markov process or Markov chain. We can now use the theory
of Markov chains to describe TLA parameter spaces (Isaacson and Masden, 1976).
For example. as is well known, we can convert the graphical representation of an
n-dimensional Markov chain M to an n x n matrix T, where each matrix entry (z, j)
represents the transition probability from state i to state j. A single step of the
Markov process is computed via the matrix multiplication T x T'; n steps is given by
T™. A 1”7 entry in any cell (2. ) means that the system will converge with probability
1 to state j. given that it starts in state .

As mentioned, not all these transitions will be possible in general. For example,
by the single value hypothesis, the system can only move 1 Hamming bit at a time.
Also. by assumption, ouly ditferences in surface strings can force the learner from one

hypothesis state to another. For instan