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Abstract

This work addresses two transitions in material behavior: one, the initial peak in stress
response associated with dynamic recrystallization and two, the rapid increase in grain
growth rate associated with pore separation from grain boundaries. A criterion is derived
that predicts the initial peak in stress response associated with dynamic recrystallization,
and another criterion is derived that predicts the rapid increase in grain growth rate
associated with pore separation from grain boundaries.

The criterion for the initial peak in stress associated with dynamic recrystallization shows
the interaction between the rate of dislocation accumulation and the rate of
recrystallization, modified by the individual contribution of dislocation density and
recrystallized volume fraction. It is the first criterion for dynamic recrystallization that
shows explicitly the interaction of internal structure with temperature and strain rate. The
criterion for the rapid increase in grain growth rate associated with pore separation shows
the interaction between the grain growth rate and the densification rate, modified by the
grain size and relative porosity of the material. It is the first criterion for pore separation
that explicitly shows the effect of variations in temperature, pressure, and material
parameters on internal structure; none of the existing criteria account for all of these
quantities at once. Both criteria derived in this work show good agreement with
experimental data. The criteria's sensitivity to uncertainties in parameter values is shown.

The criteria are presented in two equivalent forms: as algebraic expressions and
graphically as processing envelopes. In either form the criteria can assist the planning of
component fabrication processes, such as hot rolling or sintering, because components
made from materials that sustain an unintended transition in material behavior are
rendered useless.

Finally, work is presented on a general, structured method to derive a convergence rate
criterion for complex transitions in material behavior governed by coupled, simultaneous
kinetic processes.

Thesis Supervisor: Professor Stuart B. Brown
Richard P. Simmons Associate Professor of Materials Manufacturing



Acknowledgments

Fifty years ago this month my mother wrote in her diary, "today I had a warm

meal". A few months later, diary in hand, she was straining to see the Statue of Liberty

from the deck of a crowded freighter.

Fifty years ago my father, despite profoundly poor eyesight, was conscripted into

the dying days of the war. He survived and emigrated to Canada. Together with my

mother they settling in Providence, Rhode Island and sold Fuller brushes door-to-door.

My first and final thanks go to my parents for providing opportunities that my

sister and I have been privileged to choose from.

Of course this is the page where thesis advisors are acknowledged too! I'd like to

tell you a little about Prof. Stuart Brown. His ideas have impact, his engineering solutions

simple and elegant. He has been advisor/mentor in the best tradition.

My officemates: Chris, Mayank, Patricio, Prat, and Will are why it is hard for me

to celebrate finishing my studies. Their day-to-day company will be sorely missed.



Table of Contents

Chapter Pa2e

1 - In tro d u ctio n ................................................................................. ............. 12

1.1 Previous Research to Predict Transitions in Material Behavior ......... 14
1.1.1 Standard Practices ..................................... ................... 15

1.1.2 Mathematically More Advanced Approaches ........................................... 16

1.2 Introduction to the Following Chapters ..................................... ..... 17
1.2.1 Chapter 2 - A Criterion for Dynamic Recrystallization...................... 18

1.2.2 Chapter 3 - A Criterion for Pore Separation ...................................... 18

1.2.3 Chapter 4 - Formulating a Characteristic Time ..................................... 18

1.2.4 Chapter 5 - Closing ...................................................... 19

2 - A Criterion for Dynamic Recrystallization ................... 20

2.1 Previous Work to Develop a Criterion for Dynamic Recrystallization .......... 23

2.2 Internal Variable Model ..................................... ....................... 24

2.2.1 General form of an Internal Variable Model ...................................... 24

2.2.2 Internal Variable Model Analyzed in this Work ..................................... 25

2.3 Evaluation of the Performance of the Internal Variable Model .................. 29

2.4 Derivation of A Criterion for Dynamic Recrystallization ............................ 37
2.4.1 A General Approach to Formulating a Criterion ..................................... 38

2.4.2 The General Approach Applied to Dynamic Recrystallization ................ 39

2.5 Evaluation of the Performance of the Criterion ..................................... 42

2.6 Discussion of Implications of the Criterion .................................... ... 43

N om enclature .......................................................... ............................................ 52



Chanter Page

3 - A Criterion for Pore Separation ................................................ 54

3.1 Previous Work to Develop a Criterion for Pore Separation ........................ 58

3.1.1 Previous Local Analyses of Pore Separation ............................................... 58

3.1.2 Previous Global Analyses of Pore Separation ...................................... 59

3.1.3 Selected Assumptions used in this Chapter from Previous Work ............. 60

3.2 Internal Variable Model of Grain Growth and Densification Kinetics ......... 62

3.3 Evaluation of the Performance of the Internal Variable Model .................. 64

3.4 A Criterion Based on a Global Analysis of Pore Separation ....................... 66

3.5 A Criterion Based on a Local Analysis of Pore Separation ......................... 71

3.6 Evaluation of the Performance of the Criteria ........................................ 80

3.7 Discussion of the Implications of the Criterion ........................................ 82

N om en clatu re ............................................................................................................ 89

4 - Formulating a Characteristic Time ................................... 92

4.1 Previous Work to Derive a Characteristic Time .............................................. 92

4.1.1 Widely Practiced Approaches ................................................ 93

4.1.2 Mathematically More Advanced Approaches ...................................... 94

4.2 Approach in General ......................................................... 95

4.3 Unresolved Issues of this Approach .............................................. 101

4.4 A Characteristic Time for Pore Separation ........................................ 105

4.5 Com parison to Sim ulations ........................................................................... 107



Chapter Page

5 - C lo sin g ....................................................................................... ............... 112

5.1 Main Results of this Work ................................. 112

5.2 Suggested Improvements to the Internal Variable Models ....................... 112

5.3 Preliminary Work on using the Models in an Adaptive Controller ............. 113
5.3.1 Feedback Linearization .................................................... 114

5.3.2 Adaptive Control with Dynamic Parameter Estimation ......................... 116

5.3.3 Simulation Results ...................................... 119

5.4 Suggested Future Work .................................... 121

R e fe r e n c e s ........................................................................................................... 124



List of Figures

Figure Page

2.1 (a) Schematic of the microstructural evolution characterizing dynamic
recrystallization, from Frost and Ashby [14]. (b) Micrograph on left shows an old,
deformed grain with the numerous dislocation structures while the micrograph on
the right shows a newly recrystallized grain with a relatively low dislocation
density, from Sakai and Ohashi [15].................................... .............. 21

2.2 Oscillating stress/strain curves for OFHC copper deformed at 0.002 1/s strain rate
and five different temperatures, from Blaz et. al. [29]. Micrographs used only to
roughly illustrate the linkage between the stress peak and the evolution in
microstructure. The micrographs are the same as those shown in figure 2.1 ...... 22

2.3 Simulated time-evolution in dislocation density (nondimesionalized by the steady
state dislocation density, pss ) and volume fraction recrystallized for OFHC copper
at 775 K and a strain rate of 0.002 s . .......................................... ....... 35

2.4 State trajectories showing the dislocation density (nondimesionalized by the
steady state dislocation density, Pss) and volume fraction recrystallized for OFHC
copper at a strain rate of 0.002 s and three different temperatures; 675 K, 775 K,
975 K . ................................................................................. ............................. 36

2.5 State trajectories of the dislocation density (nondimesionalized by the steady state
dislocation density, pss) and volume fraction recrystallized for OFHC copper at
775 K and two strain rates; 0.02 and 0.002 s-1 . ....................................... 37

2.6 Comparison of strain at peak stress as a function of temperature. Points are
predicted strains using the model and the criterion. Vertical bars show variation in
the strain at peak stress reported by Blaz et. al. [29] due to a variation in initial
grain size. ............................................................................................................. 43

2.7 Comparison of strain at peak stress as a function of temperature. Curved line is the
predicted strain using the model and the criterion. Points are experimental data
from Luton [40] for OFHC copper. Plot (a) is for 0.00049 s-1 strain rate and (b) is
for 0.00081 s-1 strain rate......................................44
for 0.00081 s strain rate. ................................................................ 4



Figure e

2.8 Comparison of strain at peak stress as a function of temperature. Curved line is the
predicted strain using the model and the criterion. Points are experimental data
from Luton 40] for OFHC copper. Plot (a) is for 0.0016 s-1 strain rate and (b) is
for 0.0049 s strain rate. ..................................... ................. 45

2.9 Numerical value of the criterion as a function of strain for isothermal, T = 775 K,
constant strain rate, i = 0.02 1/s conditions. ....................................... 46

2.10 Simulated state trajectory for T = 775 K and E = 0.002 l/s, until intersection
with the boundary denoting the first peak in stress, equation (2.32). ............... 47

2.11 Processing envelope. Surface gives strains at peak stress, as a consequence of
dynamic recrystallization, for isothermal, constant strain rate conditions. ........... 48

2.12 Effect of a -20% change in the activation energy for vacancy self diffusion, Qsd on
the criterion predicting the first peak in stress and the state trajectory (upper
trajectory corresponds to the unchanged case) ....................................... ............ 50

3.1 a) Schematic of the microstructural evolution characterizing pore separation. (b)
Micrograph on the left shows closed voids residing primarily on grain boundaries.
Micrograph on upper right shows pores separated from grain boundaries, from
Aigeltinger [42]. Micrograph on lower right is a copy of the one on the left to
roughly illustrate continued pore attachment............................. ....... 55

3.2 Simulated state trajectory showing the effect of pore separation for OFHC copper
at T = 1200 K and P = 50 MPa. Micrographs are the same used in figure 3.1 to
illustrate roughly the linkage with microstructural evolution ............................. 56

3.3 Global geometric model of a pore separation. ..................................... .... 57

3.4 Local geometric model of pore separation. ...................................... ..... 57

3.5 Vector field and a state trajectory using parameter values for copper tabulated in
[14], T = 1200K, P = 50MPa, Rmax = 80 gm, Ro = 0.35,and A0 = 0.92.65

3.6 Plot of Ashby's criterion, equation (3.19), and the criterion derived in this section,
equation (3.32), using parameter values for alumina [14] with T = 2123K. ...... 72



Figure e

3.7 Evolution of free-energy for the local geometric model of a pore separation ...... 73

3.8 Plot of the numerical values of Ts - u and a2 as a function of temperature
using values of s and u for iron from [65], andy= 0.78. The intersection of the
two curves is the point where the bracketed term in equation (3.35) is equal to
zero .................................................................................... .............................. 7 5

3.9 Comparison of the surface area of the cone and the catenoid of revolution for
r = 5 gm, R = 100 gm, and 0 = 450. Only a quarter-section is shown.....76

3.10 Separation criterion developed in this work and Ashby's criterion. Experimental
data for alumina from Patterson [67] and Long [68]. A solid circle denotes
experimental data for pores separated from grain boundaries. (a) Simulation for
T = 1873K and P = 1 atm. (b) for T = 2123K and P = 0.1atm .............. 81

3.11 Separation criterion developed in this work and Ashby's criterion. A solid circle
denotes experimental data for pores separated from grain boundaries. (a)
Simulation for T = 1523K and P = 1 atm, experimental data for nickel from
Watwe [69]. (b) Hollow circles denotes experimental data for pores attached to
grain boundaries. Simulation for T = 1278K and P = 1 atm, experimental data
for copper from Aigeltinger [42]. .................................................. 83

3.12 Separation criterion developed in this work and Ashby's criterion. A grey-filled
circle denotes experimental data showed pores were neither predominantly
attached nor separated. Simulation for T = 2123K and P = l atm, experimental
data for alumina from Patterson [67]. ....................................... ...... 84

3.13 Variation in the separation criterion as a function of changes in: (a) pressure, at
constant temperature T = 1523 K and (b) temperature, at constant pressure P = 50
M Pa, all for nickel with Rm = 7 9m ................................................................... 86

3.14 Simulated effect of a -5% change in the activation energy for core diffusion, Qc, on
the separation boundary. Simulation is for low carbon steel using parameter values
from [54], at T = 1500 K and P = 50 MPa ....................................... ...... 88

4.1 An example of the upper bound on D given by equation (4.6). ........................ 96

4.2 Example of mapping an evolution in (D (z) to X (z) ..................................... 100



Figure Pae

4.3 Example of mapping an evolution in Q (z) to X (z) ..................................... 100

4.4 Example of mapping an evolution in 4D (z) to X (z) ........................................ 101

4.5 Example of mapping an evolution in D (z) to (z) ......................................... 101

4.6 Geometric interpretation of the characteristic time based on the upper bound (u ,
for the specific evolution in 4 (z) shown. ...................................... ..... 102

4.7 Case in which Tu fails as a prediction of ttransition ........................................... 103

4.8 Example of changes in the shape of 4 (t) which result in the characteristic time,
tu, being not proportional to the time-to-transition, ttransition .......................... 104

4.9 Simulation of the upper bound on the free energy Gu (t) , equation (4.22), and the
free energy G (t) , equation (4.16) using copper parameter values listed in [54]
where A0 = 0.92 and Ro = 0.25 with T = 1300 K and P = latm .................... 07

5.1 Block diagram of the feedback linearization given by equations (5.1) to (5.5) and
(5.8) to (5.10). ...................................................................................................... 117

5.2 Block diagram of the resulting dynamics of the feedback-linearization system
illustrated in figure 5.1 ............................................... 118

5.3 Block diagram of one-half of the adaptive controller, equations (5.12) to (5.18),
with feedback-linearized plant, equations (5.6) ..................................... 120

5.4 Simulation of the adaptive control strategy using inputs and parameter values to
facilitate validation of the computer program ..................................... 121

5.5 Partial time-histories of temperature and strain rate inputs required to for the states
to evolve to vr = 0.3 and p = 1x10 14 /m ..................... . . . . . . . . . . . . . . . . . . . . . . 122



List of Tables

Table Page

2.1 Parameter values for OFHC copper. ........................................ ....... 31

3.1 Magnitude of equations (3.20) and (3.22) for R = 0.2, A = 0.92, and
T = 1500K . ............................................................. ............. .............. 71

3.2 Parameter values for iron used in equations (3.20) and (3.22) from [65][71].......72

3.3 Results of a sign test applied to the pore separation criteria and experimental data
in figures 3.9 through 3.12. .................................... ................. 84

4.1 Simulated time-to-separation compared to predictions by the characteristic time.
Unless otherwise noted, the initial state of each simulation was Ro = 0.4 and
A0 = 0.92, for T = 1573 K and P = 50 MPa. Simulations used parameter
values for alumina from [54]. ..................................... 109

4.2 Model-exact time-to-separation as a function of changes in initial state,
temperature, pressure, and material parameter values for alumina. Unless
otherwise noted, the initial state of each simulation was Ro = 0.4 and
A0 = 0.92, for T = 1573 K and P = 50 MPa. ........................................... 111



CHAPTER 1 Introduction

Hot working operations such as rolling, forging, and extrusion can trigger a rapid

transition in material behavior. A rapid transition in behavior, such as a sudden change in

deformation resistance, can complicate the control of hot working operations. In some

instances the transition is desired, for example when dynamic recrystallization is exploited

to refine grain size. Whether the transition is desirable or undesirable, control of the hot

working process is improved if the transition can be predicted.

The most widely practiced approach to derive criteria to predict transitions in material

behavior has been to model their governing kinetic processes as decoupled, parallel or

serial processes. The ability of this approach to continue to provide sufficient analysis is

being strongly challenged by a growing need to predict complex transitions governed by

multiple, simultaneous, coupled kinetic processes [1, 2, 3]. This work addressed complex

transitions in material behavior governed by multiple, simultaneous, coupled kinetic

processes that cannot be adequately modelled by decoupling the kinetic processes into

component parallel or serial processes.

The goal of this research was to develop criteria to predict complex transitions in

material behavior governed by simultaneous, coupled kinetic phenomena. A predictive

capability was defined as having three parts:

1. An expression relating the transition to the states of the material, processing

inputs, and material parameters.

2. An estimate of the rate of convergence to the transition as a function of the state

variables of the material, processing inputs, and material parameters.

3. An ability to evaluate the effect of uncertainty in material parameter values on

(1) and (2).

The predictive capability could be used to assist the planning of component fabrication

processes and the design of new component fabrication equipment. The mathematical
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expressions making up the predictive capability should be simple so that they can be

readily understood. A graphical interpretation of these relations, in the form of processing

envelopes, will help put the criteria into practice.

The approach to reach the goal was divided into three steps. Step one, investigate

several transitions in material behavior to find candidates for further analysis. Candidate

transitions in material behavior had to be complex, i.e. governed by simultaneous, coupled

kinetic processes. Candidate transitions also had to have a large body of published

experimental data showing the transition occurring for many process input values and

initial conditions. Experimental data would be necessary to validate the criteria and to

provide material parameter values for the models of the governing kinetic processes. Step

two, choose two or three transitions from amongst the candidates and derive criteria for

them. Step three, generalize the derivation of these criteria based on insight gained during

step two.

Four different transitions in material behavior were investigated: dynamic

recrystallization, shear localization, pore separation from grain boundaries, and

superplastic flow. Each of these transitions in material behavior have been characterized

by experiments for over forty years. Two of these were chosen for further analysis:

dynamic recrystallization and pore separation from grain boundaries, because they

appeared to have the largest amount of published experimental data giving quantifying

the evolution of microstructure during each transition.

There were two premises implicit to this approach. One, previous researchers have

published some mathematical models that characterize the simultaneous, coupled kinetic

processes governing complex transitions. Two, these models take the form of coupled,

nonlinear ordinary differential equations with a stability structure containing a boundary

corresponding to the transition in material behavior. The boundary might be the boundary

of a domain of attraction, a boundary manifold, a trajectory describing a limit cycle, or

even a bifurcation. If the transition in material behavior could be linked to the boundary,

then a mathematical expression for the boundary is also a criteria for the transition in

terms of the state of the material. An expression for the boundary might be derived using

analysis methods from nonlinear dynamics, given the assumed general form of the model.
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These two premises were found to be only partially valid. First, it was found that

mathematical models of the kinetic processes associated with complex transitions either

do not exist or are only partially developed. Therefore, it was necessary to first model the

kinetic processes associated with the two transitions chosen before criteria could be

derived. The modelling effort yielded a new model of the kinetics associated with

dynamic recrystallization and modifications of a model of the kinetics linked to pore

separation. These models are presented at the beginning of chapters 2 and 3, respectively.

Each model is comprised of two, first-order, coupled, nonlinear differential equations.

The time-evolution of the state variables governed by these models shows good agreement

with experimental data.

Second, it was found that neither model had a stability structure containing a boundary

that corresponds to the transition being investigated. Each model produced a gradient

field for a wide range of process inputs and parameter values. This fact will be shown in

chapters 2 and 3.

Nevertheless, chapters 2 and 3 show that it was still possible to use these models to

develop a criterion to predict the first peak in stress associated with dynamic

recrystallization and a criterion to predict the rapid increase in grain growth resulting from

pore separation from grain boundaries. The approach is to introduce an auxiliary, scalar-

valued function of the states of the system that has a feature in its time-evolution that

corresponds to the transition in material behavior. The model of the kinetic processes are

then mathematically linked to the auxiliary function to form a criterion. The criteria so

derived are the first to explicitly show the dependence of the transitions on the

microstructure of the material, processing inputs, and material parameters.

1.1 Previous Research to Predict Transitions in Material Behavior

This section describes some established approaches to derive criteria to predict transitions

in material behavior. The first section reviews standard practices and gives examples

taken from the literature. The second section discusses mathematically more advanced

methods than the standard practices. The beginning of chapters 2, 3, and 4 review

research efforts specific to each topic of those chapters.
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1.1.1 Standard Practices

The most commonly analyzed transitions governed by multiple kinetic processes are those

that can be analyzed by modelling the kinetic processes as decoupled parallel or serial

processes. Levenspiel 4 presents a good review of transitions that yield to this analysis

technique. Examples of such transitions occur in certain gas/solid reactions, such as

burning coal or wood, and fluid/fluid reactions, such as the nitration of sulfuric acid to

form nitroglycerin.

Consider gas/solid reactions. Under certain circumstances, this reaction can be

modelled as the dynamic interaction of two kinetic processes: mass transfer and a

chemical reaction 4. The mass transfer and chemical reaction are treated as processes in

series. At one extreme, when the processing temperature is such that the chemical

reaction is very fast, the mass transfer controls the overall rate of the phenomena. The

mass transfer is modelled by a single, first-order differential equation. It has the same

form as the constitutive equation for a conductance, i.e. a flow variable set equal to an

effort variable multiplied by an inverse resistance. Here, the flow variable is the time rate

of change of moles reactant in the gas phase and the effort variable is the concentration of

the reactant in the gas phase. The conductance is made up from the individual

contribution of two conductances: one, the conductance as modelled by the mass transfer

coefficient of the gas, and two, the conductance as modelled by the mass transfer

coefficient of the liquid, added according to the law for conductances in series. At the

other extreme, when the processing temperature is such that the mass transfer is very fast,

the chemical reaction rate controls the overall rate of the phenomena. The analysis

proceeds as just described for mass transfer control of the overall rate of the phenomena.

The result is another, single, first-order differential equation that governs the time rate of

the change of moles reactant in the gas phase.

The processing temperature determines the transition between these two extremes,

mass-transfer-control and chemical-reaction-control. The reaction rates change with

temperature since the conductances are functions of temperature. By plotting the two

reaction rates, one from the mass-transfer-control extreme and one from the chemical-

reaction-control extreme, versus temperature on a single plot, the transition boundary
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emerges. The plot shows two curves each curve giving a much larger reaction rate as

compared to the other for a certain range of temperature, as expected. The temperature

range in-between the two ranges where one reaction rate dominates over the other is

considered the transition boundary.

There are two commonly practiced methods of determining transitions in material

behavior governed by multiple kinetic processes that cannot be approximated by

decoupling the kinetics into component parallel or serial processes. The first method uses

linearization of the material behavior model and subsequent analysis of the linear system

by linear methods. Analysis of complex transitions by linear techniques may not be

sufficient since linearization results in the loss of subtle nonlinearities that may

characterize the coupling of the kinetic processes. The second method uses numerical

integration of the material behavior model for a set of initial conditions. Numerical

methods alone often do not give sufficient confidence that the behavior of a material has

been characterized for all initial conditions, processing inputs, and parameter values. In

addition, numerical methods do not explicitly show the dependence of the material

behavior on initial conditions, processing inputs, and parameter values.

1.1.2 Mathematically More Advanced Approaches

Investigators have applied more advanced mathematics to analyze transitions in material

systems. Penrose and Fife 5 used a requirement of stability to specify the proper form of

Lyapunov functions associated with phase transformations. Their Lyapunov functions

were correlated with measures of free energy and entropy. The results of their work did

not include specific kinetic equations for a given material process. Gegel 6 recommended

the use of Lyapunov stability methods to analyze internal variable models but did not

apply the methods to any particular system. Holmes 7 has investigated the stability

properties of models of systems from continuum mechanics. These models take the form

of systems of partial differential equations, unlike the models used in this work that take

the form of systems of nonlinear ordinary differential equations.

More generally, there are methods from nonlinear dynamics that have been developed

to investigate the stability structure of systems of nonlinear ordinary differential equations

that could be applied to models of kinetic processes governing material behavior. The
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texts by Strogatz 8, Slotine and Li 9, and Luenberger 10 give comprehensive introductions

to these methods. These texts give numerous examples of systems with stability structures

containing attractors, repellers, saddles, limit cycles, bifurcations, domains of attraction,

and boundary manifolds (also known as a separatrices). Hahn 11 also provides a review

of methods from nonlinear dynamics and shows more of the real analysis to prove many

of the theorems that comprise these methods. Hahn also provides some interesting

theorems not commonly found elsewhere. One such theorem is Zubov's theorem.

Fantastically, Zubov's theorem offers a way to derive an expression for the boundary of

the domain of attraction. An expression for the boundary of the domain of attraction has

great potential. If, for instance, a transition in material behavior was linked to the

boundary of a domain of attraction, then an expression for the domain of attraction is a

criteria for the transition in terms of the state variables of the material.

Finally, there are approximate solution methods for systems of nonlinear differential

equations, such as describing functions and perturbation methods. Describing functions

replace a nonlinear term in a system with a linear time-invariant system. The linear

system is chosen by fulfilling criteria that show it to be the best among alternative

candidate linear systems. Perturbation methods are used to compare the behavior of

systems where a particular term is at first present and then later missing. This can be used

to understand the effects of nonlinearities on the stability structure of a system. Walter 12,

Vidyasagar 13, and Hahn 11 give mathematically concise reviews of approximate solution

methods for systems of nonlinear differential equations. As mentioned previously, linear

techniques were not the focus of this research.

1.2 Introduction to the Following Chapters

The research reported in this document is interdisciplinary, including modelling of

material kinetic processes, methods from nonlinear system dynamics, and adaptive control

theory. To help the reader use the information in this text, each of the following chapters

starts with a description of the issues addressed in those chapters assuming only a general

engineering background. The following sections give a brief synopsis of each of the

remaining chapters.
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1.2.1 Chapter 2 - A Criterion for Dynamic Recrystallization

This chapter shows the derivation of a criterion for the first peak in stress response

associated with dynamic recrystallization. The derivation is first shown in general. Then

the general approach is applied to the specific problem of dynamic recrystallization. The

performance of the criterion is evaluated by comparing its predictions to experimental

data. Implications of this criterion to the design of hot deformation processes, such as

rolling or extrusion, are then discussed. The criterion is used to make processing

envelopes to help guide the selection of process inputs, such as temperature and strain

rate, or the materials themselves. The general approach that is applied to dynamic

recrystallization in this chapter is applied again in the next chapter to derive a criterion for

the onset of pore separation from grain boundaries during consolidation processing.

1.2.2 Chapter 3 - A Criterion for Pore Separation

Two criteria for the onset of pore separation are presented in this chapter. The derivation

of the first criterion takes pores separation as the simultaneous detachment of several

pores from a single grain. An existing, popular criterion for pore separation also takes

pore separation as the simultaneous detachment of several pores from a single grain. It is

shown, for the first time, that the popular criterion fails to account for the effect of

entropy transfer, which is included in the derivation of first criterion proposed in this

chapter. The derivation of the second criterion takes pore separation as the detachment of

a single, isolated pore from a two-grain boundary. Taking the onset of pore separation as

the detachment of a single, isolated pore from a two-grain boundary requires fewer

modelling assumptions than the approach taken by the first criterion and yields better

results. The second criterion is an explicit function of both temperature and pressure

whereas the first criterion accounts for temperature explicitly but only indirectly accounts

for processing pressure. Implications of the second criterion to guide the planning of

pressure and temperature schedules for hot isostatic pressing or sintering are discussed.

1.2.3 Chapter 4 - Formulating a Characteristic Time

Each criteria derived in chapters 2 and 3 can be mathematically interpreted as a boundary

that separates the state space of a material into two regions. One region corresponds to the

material prior to a transition in behavior, the other, after the transition. In this chapter the
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focus is on the region prior to the transition. An attempt is made to develop a systematic

approach to formulating a characteristic time for a state trajectory to cross the transition

boundary, given an initial state. As in the previous chapters, the material behavior is

assumed to be governed by coupled, simultaneous kinetic processes. The characteristic

time is a function of the internal variables, process input variables, and material

parameters. The characteristic time can aid the choice of processing inputs, such as

temperature and strain rate for an extrusion process, by predicting the rate of approach to

the transition.

The formulation of the characteristic time is shown, however, to be incomplete.

Approaches for improvement are given. The approach is then applied to pore separation

to highlight the unresolved issues.

1.2.4 Chapter 5 - Closing

This chapter begins by discussing the main results of this work. Following this

discussion, suggestions to improve the internal vaiable models and auxiliary functions are

summarized. Finally, some preliminary work on how the models can be used in an

adaptive control framework is presented.



CHAPTER 2 A Criterion for Dynamic

Recrystallization

This chapter considers the phenomenon of dynamic recrystallization within a state

variable, nonlinear system dynamics framework. Dynamic recrystallization is defined as

a recrystallization process that occurs while a material experiences a nonzero strain rate.

The effect of dynamic recrystallization on the evolution of a material's microstructure is

characterized by waves of recrystallization replacing old, deformed grains with new grains

having a relatively low dislocation density. Figure 2.1 illustrates this evolution in

microstructure. The old grains are many times harder than the new grains owing to the

much larger dislocation density in the old as compared to the new. The micrographs

shown in the figure are from experiments by Sakai and Ohashi using pure nickel at a

constant strain rate of 0.002 1/s and temperature of 923 K [15].

A common macroscopic effect of dynamic recrystallization on rate-dependent

constitutive behavior is to introduce a maximum in the stress/strain response, with

possible additional oscillations in the flow stress resulting from repeated cycles of

recrystallization. Figure 2.2 shows representative oscillating stress/strain curves for

OFHC copper at relatively high homologous temperatures [15]. A criterion to predict the

peak in stress associated with dynamic recrystallization would be useful because an

unexpected change in deformation resistance can complicate the control of hot working

operations. The phenomenon is normally associated with low stacking fault energy

materials that have a low rate of static and dynamic recovery, thereby permitting high

dislocation densities and consequently high stored elastic internal energy densities to drive

recrystallization.

The analysis presented here considers only the onset of dynamic recrystallization as

manifested by the first peak in deformation resistance. The first peak is the maximum in

the stress/strain curve where the deformation resistance begins to decrease with increasing
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a) Schematic of microstructural evolution

Old Hard Grain New Soft Grain

Recrystallization

specimen deformed to
0.002 strain

specimen deformed to
0.185 strain

b) Micrographs showing change in dislocation density

Figure 2.1 (a) Schematic of the microstructural evolution characterizing dynamic
recrystallization, from Frost and Ashby [14]. (b) Micrograph on left
shows an old, deformed grain with the numerous dislocation structures
while the micrograph on the right shows a newly recrystallized grain with
a relatively low dislocation density, from Sakai and Ohashi [15].
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T = 975 K

T = 1075 K

Softening

0 0.2 0.4 0.6 0.8 1.0

Strain

Figure 2.2 Oscillating stress/strain curves for OFHC copper deformed at 0.002 1/s
strain rate and five different temperatures, from Blaz et. al [29].
Micrographs used only to roughly illustrate the linkage between the stress
peak and the evolution in microstructure. The micrographs are the same as
those shown in figure 2.1.

strain. At constant temperature and strain rate, this corresponds to the first peak in stress

in the measured stress/strain response. The analysis does not attempt to predict the

transition from single to multiple peak behavior, nor does it consider steady state grain

sizes. As will be seen, modeling multiple peak behavior and steady state grain size is not

needed to predict the first peak in stress as a consequence of dynamic recrystallization.

This chapter is organized as follows. Section 2.1 reviews previous research to develop

a criterion for dynamic recrystallization. Section 2.2 starts with a description of the

100

I
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general form of an internal variable model and then derives the internal variable model

analyzed in this work. Section 2.3 uses numerical simulations to evaluate the

performance of the model with parameter values for OFHC copper. Section 2.4 first

presents a general approach to developing criteria for transitions in material behavior and

then applies this general approach to derive a criterion for the peak stress associated with

dynamic recrystallization. Section 2.5 evaluates the performance of the criterion given

two sets of data for OFHC copper. This chapter ends with section 2.6 by discussing some

implications and limitations of the criterion.

2.1 Previous Work to Develop a Criterion for Dynamic Recrystallization

Although criteria have been proposed to predict the onset of dynamic recrystallization,

most if not all of these criteria are applicable under a limited set of operating conditions.

Luton and Sellars [16] and Sakai and Jonas [17] define the onset of dynamic

recrystallization via critical strain criteria. The oscillations in macroscopic stress/strain

behavior are correlated with different threshold strains that represent the onset or

completion of cycles of recrystallization. These critical strain measures are valid only

under isothermal, constant strain rate conditions - conditions that are not frequently met

during typical hot working processes such as rolling, forging, or extrusion. The

shortcoming of a criterion based on strain derives from the inability of strain to represent

the state of a hot-worked metal under nonsteady conditions. Strain is not a state variable

at elevated temperatures since the microstructure continues to evolve through thermally-

activated processes that continue in the absence of deformation. Other variables are

therefore necessary to represent the true state of the material.

There appear to be two efforts to use scalar internal variable models to predict

dynamic recrystallization. Sandstrom and Lagneborg [18] employed a model consisting

of a dislocation density distribution and a variable representing volume fraction

recrystallized. Their formulation is rational physically since there is certainly a

distribution of dislocation densities within a given volume of deforming, recrystallizing

metal. Sandstrom, however, does not consider the metal flow to be rate-dependent, which

is non-physical. Adebanjo and Miller [19] proposed a modification to Miller's MATMOD

constitutive model [20] involving five internal variables consisting of an isotropic
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deformation resistance, an anisotropic backstress, two solute strengthening variables, and

a recrystallization variable representing the interfacial area of recrystallized material.

They consider the dynamically recrystallizing material deformation to be rate-dependent.

The Adebanjo and Miller model is particularly intricate, however, involving over 20

scaling parameters. Both models considered the mechanical response of a dynamically

recrystallizing material to large strain, and therefore included multiple cycles of

recrystallization and evolution of grain size. Excellent reviews of dynamic

recrystallization include those by Sakai and Jonas [17] and Cahn [21].

2.2 Internal Variable Model

In this section the general form of an internal variable model is shown, followed by a

presentation of the internal variable model of kinetic process associated with dynamic

recrystallization. The model of the kinetic processes associated with dynamic

recrystallization is comprised of three nonlinear, first order, ordinary differential

equations: dislocation density evolution, volume fraction recystallization rate, and

temperature evolution.

2.2.1 General form of an Internal Variable Model

A family of constitutive models of material behavior, called internal variable models,

characterizes the coupling between macroscopic measures of material behavior, such as

viscoplastic rate dependence, with microstructural evolution. Internal variables represent

microstructural features; examples are dislocation density and grain size. The general

form of an internal variable model is a system of first order, nonlinear, autonomous,

ordinary differential equations [3], analogous to the state-space representation used by the

system dynamics community to characterize dynamic systems [10]. The form of internal

variable models makes them particularly suited to analysis using methods from nonlinear

dynamics. Analysis of internal variable models by methods adapted from nonlinear

dynamics presents an opportunity to investigate the kinetic processes associated with

transitions in material behavior.

The complicated character of dynamic recrystallization is a convenient example to

present the general form of an internal variable formulation, where the evolution of
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multiple internal structure variables is defined via first order kinetic equations. An

internal variable model takes the form:

S= fn , T, s1,... ,sm, 1 nn m (2.1)

The internal variables sn may be scalars or higher order, even-ranked tensors. The

variables F, strain rate, and T, temperature, are process variables and represent the

nonstructure variables. The internal variables represent material microstructures such as

dislocation density, grains size and obstacles. Process variables and internal variables

taken together characterize the current state of the material. Internal and process

variables represent state variables from a systems viewpoint in that knowledge of those

state variables provides sufficient information to describe the particular phenomenon

completely. They are not necessarily thermodynamic state variables.

Internal variable models, like other dynamical models, are frequently represented via a

state-space formulation with the system dynamics modeled by a system of first order

differential equations that can be both nonlinear and highly coupled. Consider a state

vector

X = [X, x 2, X3 .... , Xn] . (2.2)

then the time history of this system is modeled by a set of dynamic functions

.c = f (x) (2.3)

In this case the system dynamics are assumed not dependent on time (autonomous).

2.2.2 Internal Variable Model Analyzed in this Work

The model presented here assumes a scalar deformation and stress space, where

tensorial variables such as stress and strain rate are assumed to be either single component

states or are expressed in scalar magnitude equivalents. This formulation also assumes

that the deformation field is homogeneous, and that dynamic recrystallization can occur at

any spatial point within the material. Nuclei for heterogeneous nucleation are assumed to
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be uniformly distributed throughout the material; deformation therefore continues

uniformly throughout the bulk of the material. Dynamic recrystallization can cause

oscillations in the microstructural state as waves of recrystallization "sweep"' through a

material. Here, however, only the onset of the first cycle of recrystallization is considered.

The model proposed below is not adequate to represent the subsequent cycles of

recrystallization, nor can it capture the three dimensional character of this cyclic material

response.

Four state variables are proposed: p , dislocation density, vr volume fraction

recrystallized, E, T. The first two state variables are internal variables representing the

microstructural state. The last two variables measure the imposed processing conditions.

To place the material model within a state space representation, a system of first order

differential equations characterizing the evolution of each state variable is required. The

following sections present coupled equations based on simple models of dislocation

density evolution, grain boundary migration, and energy balance. The equations have

been non-dimensionalized for analytical convenience. The dynamic response of the

equations remain unchanged.

Evolution equation for dislocation density

The evolution of dislocation density is a general form of the Bailey-Orowan relation,

where the dislocation density varies through separate hardening and recovery rates:

p = h[ , T, p] -r (p, T) (2.4)

The equation below combines the effect of hardening and dynamic recovery in a Voce

term [22] and includes the effect of static recovery in a power law form used by both Prinz

and Argon [23] and Nix and Gibeling [24]:

A -Qsd V T

p=-f P1 Ps -A 2 (b 2p)m exp kT b2 . (2.5)

Symbols used in equations in this chapter are defined at the end of this chapter. The
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constant pss represents a steady state value of dislocation density in the absence of static

recovery. Although several models for dynamic recovery have been proposed based on

thermally-activated cross slip [24][25], this phenomenological form is selected since it

matches hardening data well at strain rates associated with hot working procedures [3][26]

while remaining simple analytically. The steady state dislocation density pss can be

represented by:

EA (Qdr ~ m 2

Pss = p dmA3 exp kT) (2.6)

For moderate strain rates above 10-3 s-1 the effect of static recovery can be neglected and

equation (2.6) reduces to one that incorporates only hardening and dynamic recovery:

p • A 1fp(1 , . (2.7)

Evolution equation for volume fraction recrystallized grains.

This evolution equation assumes an initial density of recrystallization nuclei. A constant

site density was assumed since Roberts et. al. [27] suggests that existing nuclei are first

exhausted (site saturation) before new nuclei grow. Site saturation does not appear to

occur for vr < 0.3, therefore the assumption of constant site density is reasonable for low

values of v r . It also assumes that the nuclei grow in a hemispherical manner, growing

into a deformed grain with a given dislocation density. The grain boundary velocity

relation follows the treatment of Doherty [28], where the grain boundary mobility is a

function of the activation barrier to atomic migration across grain boundaries and the

difference in free energy between the deformed and dislocation free grains.

S= 3A NC acb v2/3exp )(b - Vr (2.8)r 5 s ac gb r kT kT 1-Vr "
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Here, the change in free energy per unit volume associated with recrystallization is

assumed equal to the reduction in elastic strain self-energy at a given dislocation density:

gb2
AG = 2 (2.9)

Here, g is the temperature-dependent shear modulus [14] and b is the magnitude of the

burgers vector. Changes in volumetric strain energy and configurational entropy between

the deformed and recrystallized conditions are assumed negligible. Additionally,

experimental data indicates that the vast majority of recrystallizing grains do not impinge

before causing sufficient recrystallization to reach the first peak in the stress/strain

response [29]. The effect of impingement is approximated by adding the (1 - Vr) term in

the rate equation. The effect of this term at the peak stress is less than 20%, however. The

effect of impurities such as precipitates or solute concentration on grain boundary mobility

may be included as described by Cahn [21]. Insufficient data was available on the

materials systems described later to include impurity effects explicitly. A relatively pure

material was selected for calibration of the model, thereby reducing the influence of

precipitates or solutes.

Evolution equation for temperature.

The temperature evolution equation results from an energy balance:

T - Cpd kthd 2 d + Vr- p . (2.10)

The last term represents the conversion of elastic energy into thermal energy as the high

dislocation density metal recrystallizes. Isothermal conditions yield only the second two

terms of the above equation.

Evolution equation for strain rate.

The strain rate is assumed to be imposed externally by the deformation process.

Therefore, the evolution equation is taken as an imposed strain rate history:
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S= f(t) (2.11)

such that

d
E - f(t) . (2.12)

2.3 Evaluation of the Performance of the Internal Variable Model

The performance of the model was evaluated by comparing numerical simulations of

the evolution of p and vr to experimental data. The simulations required numerical

values for the parameters in equations (2.5) and (2.8), and initial conditions of p and Vr.

Numerical values for the parameters, other than the scaling parameters (A 1, A 2, A3 , A5 )

were obtained from published data for OFHC copper [14][23][24][30][31]. Table 2.1 lists

these parameter values.

As previously mentioned, the nucleation site density was assumed constant [27]. The

nucleation site density value was chosen as an average value for single phase, high purity

polycrystalline metals based on classical theory of nucleation [32]. Numerical values for

the scaling parameters A 1, A 2, A 3 and A 5 were obtained by isolating each element of the

model in which a scaling parameter appeared, and then fitting the isolated function to

experimental data of the appropriate kinetic process. Fitting of scaling constants was

performed outside the range of conditions where dynamic recrystallization occurs. The

scaling parameters were therefore not chosen to fit the response of the entire model to

dynamic recrystallization data.

The scaling parameter A l modifies the function in the model that describes the rate of

dislocation density increase due to athermal hardening:

A1
Phard = P . (2.13)P

Dividing the expression above by E gives the increase in dislocation density for an

infinitesimal increment in strain:
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dp A
S- C (2.14)dE C

To first order, the increase in dislocation density for an infinitesimal increment in strain

can be derived from first principles [35] as:

dp - (2.15)de bC

where C is a constant equal to the mean number of dislocation line-lengths a dislocation

will traverse before being annihilated [23]. Comparing these two expressions results in a

numerical value for AI :

1
A, =  - (2.16)

The value C = 100 was chosen, which is supported by Nix and Gibeling [24].

The term A2 scales the function in the model that represents the rate of dislocation

decrease due to static recovery, reproduced below.

mA ( sd Vcm
static = -A 2 (b2Pstatic) exp k-T b2 T (2.17)

Collecting all constants and taking mi = 3 (as given by Prinz and Argon [23]) results in:

4 Tm ep sd _ _

Ps-A2v b 4  exp ) P static. (2.18)Pstatic 2 c T k T

A relation of the same form has been proposed by Prinz and Argon [23]:

Pstatic = -2K 3P 3 static (2.19)
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Parameter Value

b 2.56x10'- m

C, 0.5

k 1.38x10 -23 J/K

ml 3.0

m2  0.07

n 5.8

Ns  1.0x10 16 m-3

Qdr 117x10 3 J/mol

Qg 176x10 3 J/mol

Qgb 104x10 3 J/mol

Qsd 117x10 3 J/mol

Tm 1356 K

v 1.0xl013 s-1

Vdm 1.0xl0 11 s-1

Vgb 1.0x10 13s-1

g 42.1x109Pa

p 1.0x0 15 m 2

S 11.18x10 -29 m3

Table 2.1 Parameter values for OFHC copper.
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where

K 3 = 7  V(AD (2.20)
K3 = (1-v) c kT

and

AD = AD exp Qsd . (2.21)cc c oc kT

v is Poisson's ratio, Ac is the dislocation core cross-sectional area, and Dc is the

dislocation core diffusion constant. This expression was found to fit experimental data in

[23] well. The two expressions, (2.18) and (2.19), when compared yield a relation for A2:

A 2 = (2.22)
7t (1 - v) kv b4 T

Prinz and Argon [23] give a numerical value for K3 computed for aluminum. A2 was

computed for OFHC copper parameter values from [14]. The resulting relation for the

scaling factor A 2 was then inserted in the simulation code, where gt is temperature-

corrected.

The term A 3 appears in the model as a scaling factor on the phenomenological

expression for the temperature and strain rate dependence of the saturation dislocation

density:

, 8 dr) m2
pss = p  expV kT U) (2.23)

A 3 was evaluated numerically by assuming that at room temperature (300K), p, ,ss = p.

The expression above can then be solved for A 3 directly:
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A 3 = - exp 300k (2.24)
dm

This expression was inserted into the simulation code to compute numerical values of A 3 .

The term A 5 scales the relation of the evolution of volume fraction recrystallized in

the dynamic recrystallization model:

Vr = 3AsNsCacbVgb V2/3exp 2kT 1 - vr (2.25)

The numerical value for A 5 was computed by evaluating this expression from data

presented by Blaz et. al. in [29] on the evolution of volume fraction recrystallized. A

numerical value for the time rate of change of fraction recrystallized, i,, was estimated

by drawing a tangent at a point on a curve in figure 7 in [29] that relates total volume

fraction recrystallized to strain. The point chosen corresponds to the first peak in stress.

For a small change in vr a corresponding increment in strain (related to time since the

experiment was performed at a constant strain rate) was determined. Dividing the

increment in volume fraction recrystallized by the increment in time approximates vr near

a point (Vr , E) on the curve. The numerical value of the dislocation density for this

calculation was the value of the steady state dislocation density, 10' 3 r/m 3, given by

equation (2.6) using the temperature and strain rate from figure 7 in [29] .

Initial conditions for p and vr to start the simulation were chosen from a range of

values for annealed OFHC copper to duplicate experimental initial conditions. Initial

dislocation density was therefore set at 1010 m/m3 . The initial value of the volume

fraction recrystallized was based on a computation of the volume of a single nucleus,

containing about 100 atoms, summed over the assumed number of nucleation sites per

cubic meter. The result of this computation was an initial volume fraction recrystallized of

10-11.

There is a critical absence of appropriate physical data for calibrating internal variable

models for dynamic recrystallization. There appears to be no single investigation that has
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measured dislocation densities, volume fraction recrystallized material, nucleation site

densities, and flow stress data for a single material, at any one temperature and strain rate,

much less over a range of processing conditions. The data that does exist are results from

constant temperature, constant true strain rate experiments [16][17][29]. Rigorous

validation of the model presented in this article or other models is thus difficult, if not

impossible, without appropriate data on the state of the material throughout dynamic

recrystallization. The material constants used to calibrate the model therefore involved

inevitable compromises. Continued progress in coupling structure variables to dynamic

recrystallization will require such data, not just for isothermal constant strain rate

conditions, but also for more complicated temperature and strain rate histories.

Nevertheless, it was possible to evaluate the model by choosing a model material for

calibration and limiting the simulations to the isothermal, constant strain rate case. OFHC

copper was selected for the comparison since the largest amount of test data on structure

was available for this metal. Numerical integration of the internal variable model for the

isothermal, constant strain rate case was executed by a commercially available fourth

order Runge-Kutta subroutine [37]. Data showing peak strains for OFHC copper under

isothermal, constant strain rate conditions is available [29] for a quantitative comparison

of the internal variable model. Results from numerically integrating the model for a

constant temperature of 775 K and constant strain rate of 0.002 s-1 are plotted in figure

2.3. Above a strain of approximately 0.5, the rate of change in dislocation density

decreases as the dislocation density approaches the saturation value. Likewise, as the

volume fraction exceeds approximately 0.4, the rate of change of volume fraction

recrystallized switches from positive to negative denoting the asymptotic limit of volume

fraction at 1.0. The model simulates the dislocation density of unrecrystallized grains

only, therefore, the dislocation density at large strains does not represent the average

dislocation density of the material.

Figure 2.4 shows the numerical integration of the model plotted in state space where

the dislocation density has been normalized by the steady state dislocation density pss, for

a constant strain rate of 0.002 s-1 and three different temperatures: 675 K, 775 K, 975 K.

The normalization of the dislocation density curves by pss each used a value for pss
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Figure 2.3 Simulated time-evolution in dislocation density (normalized by the steady
state dislocation density, pss) and volume fraction recrystallized for OFHC
copper at 775 K and a strain rate of 0.002 s-1.

corresponding to one of the three temperatures in turn. The figure shows that for

increasing temperature the normalized saturation dislocation density decreases from 0.85

to 0.1. This is expected since the hardness of a material decreases with temperature, i.e.

the processes of annealing are thermally activated.

Figure 2.4 shows the model for a temperature of 775 K and two different strain rates;

0.02 s-1 and 0.002 s-1. Decreasing the strain rate yields a decrease in the normalized

saturation dislocation density. This behavior is anticipated because of the decrease in

dynamic hardening as strain rate decreases; i.e. dislocations are generated at a reduced

rate.

However, the phase planes in figures 2.4 and 2.4 also lack an anticipated behavior.

The trajectories in figure 2.4 suggest that the stability structure of the system given by
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Volume Fraction Recrystallized

State trajectories showing the dislocation density (nondimesionalized by the
steady state dislocation density, pss) and volume fraction recrystallized for-1
OFHC copper at a strain rate of 0.002 s- 1 and three different temperatures;
675 K, 775 K, 975 K

equations (2.5) and (2.8) does not contain a boundary that would indicate a transition in

microstructural evolution resulting in the first peak in the stress response of copper. The

first peak in stress would occur well before a volume fraction recrystallized of 0.50 [21].

Therefore, before proceeding further, the stability structure of this model should to be

examined in detail. Physically, the analysis will be limited to the region in the state space

givenby 9 = , vr / 0 < 1.0 < r < 1.0 } It can be easily verified that each
psN PSS

ODE in the model is continuous in this region and hence solutions are guaranteed to exist

and be unique. Further, the system has two nullclines, vr = 1 and = 1 (when static

ssrecovery is neglected). The system's one fixed point is vr = =s 1.

The rates for dislocation evolution and volume fraction rystallization given by the

model are positive semi-definite in 91. Therefore, - and vr increase monotonically. No
'"xx r
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Figure 2.5 State trajectories of the dislocation density (nondimesionalized by the steady
state dislocation density, pss) and volume fraction recr stallized for OFHC
copper at 775 K and two strain rates; 0.02 and 0.002 s- .

limit cycles exist within 91 since the vector field within 91 is a gradient field, as suggested

by the trajectories in figures 2.4 and 2.4. Figures 2.4 and 2.4 indicate that the fixed

point r = = 1 is an attracting node. This stability structure does not change over a
SSpoint vr

wide range of physically meaningful parameter values. The conclusion is that the model

does not have a stability structure containing a boundary, such as a boundary manifold or a

limit cycle, that might correspond to the first peak. The next section will show how this

model can still be used to derive a boundary in state space that corresponds to the first

peak in stress of pure metals.

2.4 Derivation of a Criterion for Dynamic Recrystallization

Once a particular system is modeled using the state-space formalism, a collection of

analytical methods (phase plane representations, perturbation methods, bifurcation
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analysis, Lyapunov methods, invariant set theorems) [8][9][10] becomes available to

investigate the dynamics of that system model. As was shown in the previous section, the

model does not contain a boundary that would indicate a change in the evolution of the

microstructure that corresponds to the first peak in stress. This section shows how such

models can still be used to form a criterion for a transition in material behavior.

The approach is given in two sections. First, an expression of a boundary in the state

space of the material which corresponds to the transition in material behavior is

formulated. Second, a characteristic time-to-transition as a function of material

parameters and initial conditions is derived. In each section the approach is described in

general and then followed by an application to the specific case of pore separation from

grain boundaries during hydrostatic, high temperature consolidation processes.

2.4.1 A General Approach to Formulating a Criterion

The approach begins by choosing a scalar-valued function QD of the system's state

variables, (D = [z l, z, Z2 ... Zn], with continuous first partial derivatives. D is C' and

maps the values of the state variables, as they evolve with time, to R+. D should undergo

a distinct transition coinciding with the onset of the transition in the material behavior.

The transition can be a zero crossing, a minima or a maxima for example. The system of

equations governing the evolution of the state variables need not represent the system

behavior after the transition. Kinetics equations governing the system behavior either

before or after the transition can be used to develop a criterion using this approach.

Corresponding to the distinct transition in 0 there exists a boundary in the state space

of the material denoting those states where the transition occurs. The boundary may or

may not form a bounded region. If the boundary does not form a bounded region, the

boundary combined with physically motivated limits on the values of the states constructs

a bounded region.

An example of a suitable function QD is given in the next section. In this section, 4)

is a scalar characterization of the stress response of a rate-dependent material. The stress

response of a rate-dependent material has a distinct peak as a result of the onset of

dynamic recrystallization. The peak in the stress response is the desired transition in D.
dA

A peak in the stress response is stated equivalently by a change in the sign of , from
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negative to positive. The region in state space described by { z, i such that 1 = V * z < 0 }

shows the states and their derivatives that avoid the first peak in stress associated with

dynamic recrystallization. Substituting the ODE's from the internal variable model for i

in this expression leads to a criterion solely in terms of the state variables.

2.4.2 The General Approach Applied to Dynamic Recrystallization

The general method outlined in the previous section is now applied to the internal variable

model presented in section 2.2. Since the model is valid in representing the first peak in

flow stress, but is not valid for subsequent peaks, the criterion is only valid for the first

peak in flow stress.

To begin the analysis, a standard, nondimensionalized power law representation of

viscoplastic strain rate [33]:

n

S= A4Vdm b [ ] exp ( (2.26)

is inverted to solve for the stress response:

1/n

A= , exp (k) RgbI I( 1-vr (2.27)
A4Vdm U

and taken as the summarizing function Q described in section 2.4.1.

The microstructural state of the material enters into the rate equation, equation (2.26),

as a scaling parameter for the applied stress. The square root of the dislocation density is

modified by the volume fraction unrecrystallized, (1 - vr) , to obtain an equivalent

effective dislocation density. This can also be interpreted as a volume average of

deformation resistance, where the deformation resistance of the recrystallized metal is

small compared to the unrecrystallized metal, so that it can be ignored.

The stress response, equation (2.27), is scalar-valued and has continuous first partial

derivatives. The activation energy Qg represents an average of the thermally-activated
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processes contributing to dislocation motion. For standard climb-controlled power law

behavior, Qg is expected to be very close to the activation energy for self-diffusion Qsd

Stress was selected as the summarizing function for several reasons. First, the

macroscopic manifestation of dynamic recrystallization during rate-dependent

deformation is the presence of a peak stress followed by softening. The peak stress can be

considered as a point of neutral stability, suggesting that stress could function as a

criterion. Similarly, the peak stress represents the macroscopically measurable quantity

frequently used to indicate the onset of dynamic recrystallization. Second, there is a large

body of literature describing the variation of peak stress with temperature and strain rate

available for correlation with a summarizing function based on stress. Third, the flow

equation expressed with stress as the dependent variable, a, directly correlates with rate-

dependent deformation processes. The power law relation has been explained via

thermally-activated recovery processes leading to power law creep [34]. Other flow

equations are also possible, including that proposed by Kocks, Argon, and Ashby [30] to

represent the kinetics of dislocation glide. In addition, one may interpret dynamic

recrystallization as a transition from an increasing energy state to a decreasing one.

Increasing stress represents an accumulation of dislocation density and elastic strain

energy that then decreases once dynamic recrystallization reaches a certain value.

Continuing with the derivation of a criterion, the derivative of the stress response is:

a•o p &o Dvr  Do aT •o •ae
S t "+ + V W i T t +  e " (2.28)

Substituting for the partial derivatives gives

G = a -p- vr]Vr+n T2 + -n . (2.29)
2p [1-vr nkT En

For the assumption of scalar stress states, a takes positive values only, a > 0. Therefore

a peak in stress is given by:
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-p 1 - + - t+ -- ~] = 0. (2.30)

For constant temperature, constant strain rate conditions, the criterion simplifies to:

1. 1
-p- [ Vr] Vr = 0. (2.31)

Equation (2.31) will be referred to as the criterion for the remainder of this chapter.

Qualitatively, according to this criterion, a peak in stress is a consequence of the dynamic

interaction between the rate of dislocation accumulation and the rate of recrystallization,

modified by the individual contribution of dislocation density and recrystallized volume

fraction. Although this makes sense intuitively, I believe that the criterion represents the

first criterion for dynamic recrystallization that makes the interaction of internal structure

explicit. Sandstrom and Lagneborg [18] alluded to this interaction, but did not attempt

any representation of this criterion. The first peak in flow stress as a consequence of

dynamic recrystallization will occur when the system internal states (p, vr) first result in

the equation (2.31) being satisfied.

Substitution of the rate equations for the dislocation density p and volume fraction

recrystallized vr produces a criterion based on the state variables alone:

2 b p( 1P -3AsN C by v2/3 exp( ) b 0. (2.32)
2b F Pss s ac gb r exp kT 2kT = . (2.32)

where static recovery has been neglected in the evolution equation of dislocation density.

This criterion for peak stress is different from those previously proposed for dynamic

recrystallization in that it depends only on internal structure (p, Vr) and operating

conditions (e, T). Strain, which is neither a state variable nor valid in nonisothermal,

nonsteady conditions, is not included in the criterion. Solving equation (2.32) for vr
yields:
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V - (2.33)

3A NC by b exp k \ k-5 s ac gb e xT

This expression plotted in the p, vr state space, as a function of temperature and strain

rate, can be used to produce a processing envelope that can assist the planning of

component fabrication processes such as hot rolling. In the next section such uses of

equation (2.33) will be discussed.

2.5 Evaluation of the Performance of the Criterion

The criterion was partially validated by comparison to existing data. Predictions of the

first peak in flow stress by the criterion can be compared to experimental data under

constant temperature, constant strain rate conditions. The experimental data required to

examine the criterion, equation (2.31), are values of the internal variables and their rates of

change. Alternatively, equation (2.32) could be used to verify the criterion based on

structure data alone. As previously mentioned, the necessary data to validate equations

(2.31) or (2.32) directly has not been found. Instead, the rate equations were numerically

integrated for p (t) and Vr (t) and the criterion was tested using the simulated values of

p and vr,. The code was structured such that the evolution of p and vr was allowed to

proceed until the criterion changed sign from positive to negative, i.e. the stress reaches a

peak. Equivalently, the criterion is satisfied by the numerical values of the rate of

dislocation accumulation and the rate of recrystallization, modified by the individual

contribution of dislocation density and recrystallized fraction. As one would expect, the

criterion predicts the first peak in stress as a consequence of dynamic recrystallization

before dislocation density reaches its saturation value. Peak stress and strain data are

available for constant strain rate conditions, therefore the performance of the criterion was

evaluated by comparing the peak strain predicted by the simulation with peak strain from

experiments.

Results of the criterion's ability to predict the peak stress is shown in figure 2.6 using

experimental data from Blaz et. al. [29] for OFHC copper. The experimental values have
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vertical bands for peak strain due to the reported variation in peak strain for various initial

grain sizes. As mentioned earlier, nucleation site density was chosen as a more
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Figure 2.6 Comparison of strain at peak stress as a function of temperature. Points are
predicted strains using the model and the criterion. Vertical bars show the
variation in the strain at peak stress reported by Blaz et. al. [29] due to
variations in the initial grain size.

fundamental parameter in the model rather than initial grain size. By assuming a constant

nucleation site density an average initial grain size is implied. The criterion fits this data

well and appears to capture the temperature dependence of dynamic recrystallization.

More results of the criterion's ability to predict the peak stress are shown in figures 2.7

and 2.7 using experimental data from Luton [40] for OFHC copper. There were no error

bars given for this data. The data in each plot in figures 2.7 and 2.7 is for a constant strain

rate. The data presented in figure 2.6 is for a strain rate between the low and high strain

rates of figures 2.7 and 2.7. These figures indicate that the criterion captures the

temperature dependence of dynamic recrystallization but shows departure from the

experimental data for variations in strain rate.
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Figure 2.7 Comparison of strain at peak stress as a function of temperature. Curved
line is the predicted strain using the model and the criterion. Points are
experimental data from Luton [40] for OFHC copper. Plot (a) is for
0.00049 s-1 strain rate and plot (b) is for 0.00081 s-1 strain rate.
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2.6 Discussion of Implications of the Criterion

It should be emphasized that this chapter is not highlighting a dramatically new model for

dynamic recrystallization. Instead, it presents an analysis methodology for evaluating the

onset of dynamic recrystallization. The methodology is not limited to the model presented

in this paper, nor is it necessarily limited to the physical process of dynamic

recrystallization. This approach, in the case of dynamic recrystallization, permits

evaluation of aspects of the process that have not been previously considered, particularly

since it uses only microstructural state variables instead of strain that has no

microstructural analogue. The criterion proposed here is therefore dramatically different

from previously proposed measures for the onset of dynamic recrystallization.

The behavior of the criterion reflects the kinetic processes represented by the model.

Figure 2.9 plots the numerical value of the criterion versus strain for the same temperature

and strain rate as figure 2.6. The vertical axis is the numerical sum of the terms on the left

Strain

Figure 2.9 Numerical value of the criterion as a function of strain for isothermal
constant strain rate conditions (T = 775 K, i = 0.02 l/s).
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hand side of the criterion. The point where the numerical value of the criterion crosses the

strain axis denotes the first peak in stress. The criterion can be interpreted as the evolution

of the copper state trajectory towards the first peak in stress. For values of strain below

0.05 the criterion is dominated by the dislocation and dislocation rate. With increasing

strain, the rate of volume fraction increases and the rate of increase of dislocation density

decreases. For strain values approaching the peak strain, the value of the criterion shows a

dependence on both the dislocation density term and the volume fraction recrystallized

term. The criterion predicts what is qualitatively understood: namely, the kinetic

processes at the first peak in stress are coupled and multivariable.

Figure 2.10 is an example of how the criterion can be used to produce a processing

envelope. It shows a plot of the criterion for isothermal, constant strain rate conditions.

The state space is defined by p and Vr. The curve sloping to the right marks the boundary

of the domain of attraction for the case where T = 775K and i = 0.002 s-1. The boundary

was generated by solving equation (2.33) for vr as a function of p. The state trajectory is

the result of a simulation using the internal variable model. The simulation was

terminated when the criterion was satisfied. The point where the state trajectory crosses

the boundary marks the first peak in stress due to dynamic recrystallization.

Figure 2.10 shows another example of how the criterion can be used to make a

processing envelope. The figure shows the strain at peak stress as a function of

temperature and strain rate assuming isothermal, constant true strain rate conditions.

Figure 2.10 is a composite of many model simulations for OFHC copper that shows this

dependence on temperature and strain rate. The volume below the surface depicted in the

figure gives those temperatures, strain rates, and strains that avoid the first peak in flow

stress as a consequence of dynamic recrystallization for OFHC copper. The contour lines

are constant strain contours. The volume qualitatively duplicates experimental results: the

strain at peak stress increases both with decreasing temperature and increasing strain rate.

The jagged edge at the upper boundary of the volume is due to discrete integration steps.

Figure 2.10 represents a constant strain rate slice of this surface.

The internal variable model for isothermal, constant strain conditions showed

sensitivity to variations in key parameters. Sensitivity was measured by comparing values
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Figure 2.10 Simulated state trajectory for T = 775 K and i = 0.002 1/s, until
intersection with the boundary denoting the first peak in stress, given by
equation (2.32).

of volume fraction recrystallized and strain at peak stress to values reported Blaz et. al. in

[29] for 4 different temperatures (725K, 775K, 875K, and 975K) at a constant strain rate

of 0.002 s-1. The model is more sensitive to variations in initial dislocation density than

initial volume fraction recrystallized by many orders of magnitude. The model deviates

from expected values by one order of magnitude due to variations of 50% in nucleation

site density (likewise for the scaling parameter A 5 ). For 50% variations in activation

energies of vacancy self-diffusion and grain boundary atomic migration the model showed

deviations of approximately five-fold. Variation in the numerical values of the scaling

parameter for hardening and dynamic recovery, A 1 , within one order of magnitude,

resulted in the magnitude of the accumulated dislocation density varying by greater than

an order of magnitude. Variations as large as 100% of the values of the scaling parameter

for static recovery, A2 , changed resulting model variables by less than 5%.
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Figure 2.11 Processing envelope. Surface gives strains at peak stress, as a consequence
of dynamic recrystallization, for isothermal, constant strain rate
conditions.

Figure 2.12 shows a way to evaluate the sensitivity of the criterion to uncertainties in

parameter values. The variation in the criterion is due solely to a -20% change in the

activation energy for vacancy self diffusion, Qsd. A reduction in the activation energy for

vacancy self diffusion increases the static recovery rate, which leads to a reduced steady

state dislocation density, pss, without influencing the final value of the volume fraction

recrystallized, namely vr = 1.0. The reduced value for pss makes the trajectory

corresponding to the smaller value for Qsd appear below trajectory corresponding to the

unmodified value for Qsd " Since Qgd is correlated with Qsd' the simulation in figure

2.12 should have included the effect of the reduction in value of Qgd. The figure presents

the simulation without a corresponding decrease in the value of Qgd to emphasize the

ability of the model-based approach taken by this work to interpret the the consequences

of variations in parameter values unambiguously.
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Figure 2.12 Effect of a -20% change in the activation energy for vacancy self diffusion,
Qsd on the criterion predicting the first peak in stress and the state
trajectory (upper trajectory corresponds to the unchanged case).

The criteria represented by equation (2.30) is not limited to isothermal, constant strain

rate conditions, and can accommodate arbitrary deformation and temperature histories. It

was not possible to validate this general criterion with experimental data since data in the

literature is not given for conditions where the temperature and strain rate vary.

Calibration of microstructurally-based models of dynamic recrystallization will require

data taken under more complicated, nonsteady conditions, both to test whether the model

is sufficiently robust to handle these conditions and to simulate true processing conditions.

The model can increase in complexity without necessarily changing the manner in

which the criterion is determined. Nucleation kinetics, for example, can be added through

another state variable that represents nucleation site density. This would require another

kinetic equation for the evolution of nucleation sites, but there is no fundamental

restriction to two internal state variables. A recent review by Peczak and Luton [41] of
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nucleation models offers a logical place to start an investigation. The lack of a nucleation

model may account for the criterion's inability to reproduce the dependence on strain rate

as seen exhibited in figures 2.7 and 2.7 by the increasing departure of the simulated strain

at peak stress from the experimental data for increasing strain rate. By taking nucleation

site density as a constant, instead of increasing with increasing dislocation density, the

volume fraction recrystallized increases more slowly and hence the strain at the first peak

in stress is larger than would otherwise occur. Larger than expected strains at peak stress

are seen in figure 2.7.

Similarly, the characterization of the flow response of a material to an applied stress,

equation (2.27), includes the effect of the recrystallizing material in a very simple manner

by using a volume average of unrecrystallized material. Flow equations that use other

approaches to obtain the macroscopic viscoplastic strain rate, for example by assuming

multiple phases with different viscoplastic flow behavior, can be used without loss of

generality.

The model of the stress response is not unique, so other scalar-valued functions that

have alternative physical interpretations should be considered. Candidate functions

include the energy dissipation rate and a measure of the free energy of the metal that

includes the contribution of lattice strain energy, dislocation elastic self energy, and grain

boundary energy. The different functions will establish different criteria, i.e., different

regions of temperature, strain rate, dislocation density, and volume fraction recrystallized

that denote a peak in stress.
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2.7 Nomenclature

Symbol Definition

Al Scaling constant for athermal hardening.

A2  Scaling constant for static recovery.

A3  Scaling constant for saturation dislocation density.

A4  Scaling constant for viscoplastic strain rate.

A5  Scaling constant for volume fraction recystallization evolution.

b Magnitude of Burgers vector.

Cac Accommodation coefficient.

cp Specific heat.

k Boltzman's constant.

kth Thermal conductivity.

mI Power law dependence of static recovery on p.

m2 Power law exponent.

n Power law exponent.

N s  Nucleation site density.

Qdr Activation energy for cross-slip.

Qg Activation energy for glide.

Qgb Activation energy of grain boundary atomic migration.

Qsd Activation energy for vacancy self-diffusion.

T Absolute temperature.

Tm Melting temperature.

Vr Volume fraction recrystallized grains.

to Fraction of plastic work converted to heat, approximately 0.9.

AG Change in free energy due to recrystallization.

C Viscoplastic strain rate.

Ip Shear modulus.

v c Attempt frequency for climb.



Chapter 2 A Criterion for Dynamic Recrystallization

Symbol Definition

Vdm Attempt frequency for dislocation motion.

Vgb Atomic grain boundary jump frequency.

p Dislocation density in unrecrystallized grains.

Pd Mass density.

Pss Steady-state dislocation density.

p Scaling constant representing a maximum dislocation density.

S Stress response.

0 Atomic volume.



CHAPTER 3 A Criterion for Pore Separation

This chapter considers the phenomenon of pore separation within a state variable,

nonlinear system dynamics framework. Pore separation is defined as the detachment of

closed voids from a migrating grain boundary. The effect of pore separation on the

evolution of a material's microstructure is characterized by a large increase in the rate of

grain growth and a sharp curtailment in the rate of pore shrinkage. Figure 3.1 illustrates

this characteristic evolution in microstructure. The micrographs shown in the figure are

from Aigeltinger for OFHC copper sintered in air at a temperature of 1278 K [42].

A macroscopic effect of pore separation is the steep reduction in rate of consolidation

of a material with closed voids. Figure 3.1 shows a simulated state trajectory before and

after pore separation. The simulation uses a model described in detail in section 3.2 and

parameter values for OFHC copper tabulated by Frost and Ashby in [14]. A criterion to

predict pore separation would be useful because an unexpected decrease in the

densification rate during a consolidation process can lead to a component with an

unacceptably large residual porosity. It is assumed in this chapter that the driving force for

grain boundary migrating arises solely from a distribution of grain sizes in the material.

The analysis presented here results in two criteria for pore separation. The derivation

of the first criterion assumes a global model for pore separation, i.e. the simultaneous

detachment of several pores from a single grain, as depicted in figure 3.3. The derivation

uses the same global model used to derive an existing, popular criterion for pore

separation. It is shown, for the first time, that this popular criterion fails to account for the

effect of entropy transfer, which is accounted for by the first criterion proposed in this

chapter. The derivation of the second criterion assumes a local model for pore separation,

i.e. the detachment of a single, isolated pore from a two-grain boundary, as illustrated in

figure 3.4. The second criterion is an improvement over the first criterion. The second
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a) Schematic of microstructural evolution
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b) Micrographs showing accelerated growth of grains for pore separation

Figure 3.1 (a) Schematic of the microstructural evolution characterizing pore separa-
tion. (b) Micrograph on the left shows closed voids residing primarily on
grain boundaries. Micrograph on upper right shows pores separated from
grain boundaries, from Aigeltinger [42]. Micrograph on lower right is a
copy of the one on the left to roughly illustrate continued pore attachment.
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Figure 3.2 Simulated state trajectory showing the effect of pore separation for OFHC
copper at T = 1200 K and P = 50 MPa. Micrographs are the same used in
figure 3.1 to illustrate roughly the linkage with microstructural evolution.

criterion is an explicit function of both temperature and pressure whereas the first criterion

accounts for temperature explicitly but only indirectly accounts for processing pressure.

Implications of the second to planning pressure and temperature schedules for hot isostatic

pressing are discussed.

The derivation of both criteria assumes a single phase, polycrystalline material with a

uniform temperature field, T, and surface energy, 7. In this treatment pores are assumed

closed, i.e. relative densities greater than about 0.92, and grain boundary migration is

modeled as driven only by the reduction in energy associated with decreasing grain

surface area.

~___ ~_ ~
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Figure 3.3 Global geometric model of a pore separation.
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Figure 3.4 Local geometric model of pore separation.
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3.1 Previous Work to Develop a Criterion for Pore Separation

Previous efforts to derive criteria for separation are classified here as global or local.

Global analyses treat separation as the simultaneous detachment of many pores from a

single grain. Local analyses treat separation as the detachment of an isolated, single pore

from a grain boundary. The following review of previous research focuses on initial

contributions to the analysis of pore separation from grain boundaries.

3.1.1 Previous Local Analyses for Pore Separation

This section begins by categorizing local analyses of pore separation into three

approaches; one, a balance of forces acting on a pore attached to a grain boundary; two,

equating the grain boundary migration rate with the pore velocity during drag; and three, a

free energy balance of the region local to a pore attached to a grain boundary. The section

concludes by reviewing models of the grain boundary geometry local to a dragged pore.

Zener [43] proposed a model of pore separation as a force imbalance acting on a single

spherical pore attached to a migrating grain boundary. His approach is independent of the

shape of the grain boundary and implicitly assumes a single value of surface energy

throughout the system. Ignoring the shape of the grain boundary implies neglecting the

contribution of curvature local to a pore to the driving forces of separation. However,

estimates of the contribution of local curvature to the free energy of the region local to a

pore show that this contribution is small compared to the free energies associated with the

local pore-grain and grain-grain surface areas.

By comparing the velocity of a pore with the grain boundary migration rate, Nichols

[44], Brook [45], and Kingery and Francois [46] developed separation criteria. Their

analysis asserts that the pore velocity and grain boundary migration rate must be unequal

in order for a pore to separate. Yet, forces acting on a pore and grain boundary are

assumed to remain in equilibrium during separation. The resulting criterion is a function

of pore size, grain size, and temperature. The grain boundary geometry local to a pore

does not enter into their analysis. Also, pores are assumed to be randomly distributed

throughout the material. This assumption is not valid for analyzing the first occurrence of

pore separation from grain boundaries during consolidation processing because, initially,

all pores reside on grain boundaries for powdered materials.
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Speight and Greenwood [47] investigated pore separation by examining the change in

free energy local to a pore subject to grain boundary displacements. The model predicts

that the equilibrium grain boundary geometry changes as pores near separation. They use

approximate values for the maximum deflection of the grain boundary and pore spacing at

separation to simplify a differential expression characterizing the grain boundary. Hence,

their criterion does not require an model for the grain boundary shape.

Several researchers have proposed models of the grain boundary shape local to a pore

prior to separation. Gladman [48] postulated a simple grain boundary shape local to a

single pore. His expression correlates well with micrographs of pores in various

equilibrium configurations prior to separation, but it is not derived from first principles.

Hellman and Hillert [49] derived an expression for the shape of the grain boundary local

to a single pore by minimizing the surface area of the grain boundary local to the pore.

The resulting shape is a catenoid of revolution. In their derivation they assumed a

constant surface energy local to the pore. Hazzledine et. al. [50] derived an expression for

the shape of the grain boundary local to a single pore by requiring that the grain boundary

local to the pore have zero net curvature. They also assume a constant surface energy

local to the pore. Worner and Cabo [51] showed that the expressions for the grain

boundary shape local to a pore by Hellman and Hillert are equivalent to the shape derived

by Hazzledine et. al.. They show that the radial extent of the catenoid model has an upper

bound due to the assumption that growing grains must have an expanding grain boundary.

They also indicate a lower bound for the catenoid radial extent linked to the assumption

that the catenary is tangent to the spherical grain boundary at their point of contact [52].

Elst et. al. [53] subsequently reviewed several separation criteria and argue that the

refinements by Worner and Cabo to the catenoid model by Hellman and Hillert result in a

suitable description the shape of a two-grain boundary local to a pore prior to separation.

3.1.2 Previous Global Analyses for Pore Separation

Ashby [54] has proposed a pore separation criterion for hot isostatic pressing and

sintering. The criterion does not predict the evolution of grain boundary configurations

prior to separation. Separation is modeled as discrete, rather than gradual, detachment of

multiple pores simultaneously from a single grain. His analysis is predicated on an energy
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balance for a single grain. The grain's internal energy change is modeled by the change in

its grain boundary area, and an energy transfer is given by the approximate work done by

the grain boundary during separation. An entropy balance is not included in his

development.

The global and local analyses reviewed so far idealize the shape of pores and

undistorted grains as spherical. Liu and Patterson [55] arrive at a separation criterion

given grain-boundary-pinning particles that are not well approximated as spheres. They

achieve this result by making an order-of-magnitude approximation of the maximum

deflection of the grain boundary at the onset of separation. Hence, there is no use for an

expression of the grain boundary shape. The derivation of their criterion incorporates an

argument similar to Brook and Nichols.

3.1.3 Selected Assumptions used in this Chapter from Previous Work

This section reviews selected analysis and experimentation by researchers investigating

consolidation processing. The following results are used to restrict the extent of the

internal variable model used in this chapter.

Gore et. al. [56] examined the role of thermal activation to the onset of separation. For

thermally activated separation to be of primary importance the required ratio of pore

radius to grain radius translates to relative densities of at least 0.999. The range of

relative densities in this analysis is restricted from 0.92 (approximately the relative density

of pore closure) to 0.99. Thermally-activated pore separation from a grain boundary does

not therefore enter the analysis. Given the contribution of thermal activation in

densification (i.e. pore shrinkage) kinetics and grain growth, temperature should still

appear as a state variable in any criterion for pore separation.

The analysis of pore separation kinetics requires a model of the "forces" acting on a

grain boundary. In isothermal consolidation processes the primary driving force for grain

boundary migration is associated with a distribution in grain sizes. Hillert's [57] standard

expression characterizing the driving "pressure" of secondary recrystallization due to a

variation in grain sizes is selected. Gladman's [48] modification to the Hillert formulation

shows better correlation with experimental data. The Hillert expression is retained in the
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analysis given its fundamental form. Gladman's modification can be incorporated if

required.

Several researchers have examined pore, grain, and grain boundary geometries, and

have suggested how the geometries alter an analysis of separation. Ashby [58] showed

that the grain boundary geometry local to a pore is a function of the pore-grain and grain-

grain surface energies local to a pore. A variation in these two surface energies results in

grain boundary geometries local to a pore that are more complex than the geometric

models discussed so far. A single value for surface energy is assumed in this work as it

corresponds to a wide class of materials used by consolidation processes. The

consequence is that in the local model used here of a pore attached to a grain boundary, the

grain boundary will intersect the pore perpendicularly. The analysis presented in this

chapter is not applicable to the more complicated case of variations in surface energy.

More specifically, the approach can be applied to variable surface energy conditions, but

then the analysis presented here would require at least another state variable to

accommodate the increased complexity of the grain boundary geometry. Spears and

Evans [59] base their separation criterion on an entirely different model of the grain

boundary geometry than has been so far reviewed. They modeled pore geometries at four-

grain junctions, rather than two-grain boundaries. Based on evidence presented by Hseuh

et. al. [60] it is assumed that pores migrate from four-grain junctions to two-grain

junctions prior to separation from grain boundaries. Therefore, the internal variable

model for pore separation assumes pores residing on two-grain junctions.

Ringer et. al. [61] reported a series of experiments examining the role of pore

geometry to the onset of separation, particularly in changing the drag a pore exerts on a

grain boundary. The criterion derived in this chapter is limited to those cases where a

spherical pore geometry is a suitable approximation of the pore shape. Kellet and Lange

[62] examined the effects of pore size distributions on densification kinetics and showed

that particle distribution has an important influence on densification kinetics. The internal

variable model used in this work very roughly characterizes a distribution of particle sizes

with a mean particle dimension and a maximum particle size. So, the accuracy of the
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predictions by the criterion derived here decreases as the particle size distribution

becomes broad.

3.2 Internal Variable Model of Grain Growth and Densification Kinetics
The analysis is limited to the consolidation of single phase metals, ceramics, and

compounds. The pressure and temperature are assumed given by a consolidation

processing schedule and hence evolution equations for pressure and temperature are not

included in the internal variable model. The consolidation process is modelled as

providing a uniform temperature field within the powder compact and isostatic pressure

on the compact. The states chosen to describe grain growth and the evolution of relative

density are: relative density A, nondimensionalized mean grain radius R, temperature T,

and pressure P (symbols are defined at the end of this chapter).

The modeling requirements are simplified by the following assumptions. The analysis

focuses on a single grain of average size within a distribution of sizes. The mean grain

size of the powder particles is assumed to equal the mean particle size when pores first

close. All pores are assumed closed, and like grains and powder particles, they are

modeled as spheres. Pores are not randomly dispersed throughout the material [54]

because they are initially located at the junctions where four particles meet. The analysis

only considers the first occurrence of pore separation and does not consider reattachment

of pores and subsequent separations. It is further assumed that pores do not coalesce,

deviate from a spherical shape, or change size as a consequence of separation.

Ashby derived a model of the grain growth and consolidation of powder compacts

during hot isostatic pressing or sintering [63][64]. To illustrate the system dynamics

approach of this work, a new internal variable model is not derived in this chapter. Rather,

the kinetic equations proposed by Ashby in [54] are used, with four modifications. One,

of the two grain growth rate equations available, one assuming pore drag and the other

assuming pore separation, only the pore drag equation is used. This is because physically,

grain growth begins with pores attached. Two, only those portions of the model that

characterize when pores are closed and attached to grain boundaries (i.e. the start of stage

2 densification using Ashby's nomenclature, or equivalently, relative densities greater than

approximately 0.92) are used. Three, at pore closure most consolidation processing
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temperature and pressure schedules are in a regime where, using Ashby's nomenclature,

high-temperature creep dominates the overall densification rate. Therefore, the

contribution of low-temperature creep is neglected. The approach would be the same if

this low-temperature creep were not neglected; this choice is done solely for convenience.

Four, it is assumed that when pores have closed the average grain size is equal to the

average particle size. Hence, the contribution from Nabarro-Herring/Coble creep to

densification is small and is therefore neglected.

The evolution equation for grain growth with pore drag is, after Ashby [54]:

d - C37 t-R = - (3.1)
S 2RR kT

*[SDos( 113D Om)exp QM + Qs

Do 2/3ex( + C 4 (13D (1- A) 4/32R2exp(

where C4 = 0.175 and

C3 = (1 -R). (3.2)

Ashby models densification in a powder compact during hot isostatic pressing or

sintering by superimposing the densification rates of several mechanisms. These

densification mechanisms, given the modifications this model mentioned earlier, are:

volume diffusion, boundary diffusion, and power-law creep [54]:

dAvd (1 - A)4/3 D

S- ( 6A 2R F2  (3.3)
m

dAbd Db
- = 4 (1 -A) 3R3F2 (3.4)dt R3R3m

d I = 1.5A (1 - A) D (3.5)dtc n Sref(l (1 Aln))
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where

F2 = 2+ T- (3.6)

D = D exp [-] (3.7)

Dc = 10-6exp T -2] (3.8)

Db = 8Dobexp - . (3.9)

As previously mentioned, equation (3.5) reflects, using Ashby's nomenclature, only

the contribution of high-temperature creep. Nabarro-Herring/Coble creep is neglected

since the average grain radius is assumed to equal the average particle radius for relative

densities of 0.92 and greater. Equations (3.1) through (3.9) is the internal variable model

analyzed in this chapter.

3.3 Evaluation of the Performance of the Internal Variable Model

Equations (3.1) through (3.9) comprise a system of nonlinear, autonomous, coupled

ODEs in a state space representation. This system has two nullclines, R = 1 and A = 1.

The system's one fixed point is R = A = 1. Investigating the model by linearization

about this fixed point fails since the Jacobian is undefined at the fixed point (specifically,

in the region in state space, { R, A / 0 < iR 1.0, 0.92 < A < 1.0 } , the model is only Co).

The line A = 1 is neglected from the analysis since it can then be shown that each

ODE in the model is continuous, hence solutions are guaranteed to exist and be unique.

Excluding A = 1 from the investigation is physically justifiable since, as mentioned in

section 3.1.3, research by Gore et. al. [56] indicates that for relative densities in excess of

0.999, pore separation is dominated by thermally activated processes not considered by
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this model. Hence the analysis in the remainder of this chapter is limited to the region

given by 9Z = {•R, A / 0 < k < 1.0, 0.92 < A < 0.99 } .

The rates for grain growth and densification given by the model are positive semi-

definite in 91. Therefore, R and A increase monotonically, as is expected during hot

isostatic pressing or sintering. No limit cycles exist within 91 since the vector field within

S9 is a gradient field, as depicted by figure 3.5. The figure shows the model's vector field

for alumina parameter values as tabulated in [54]. The vector field also indicates that the

fixed point R = A = 1 is an attracting node. The solid line is a state trajectory generated

by numerically integrating the model starting with R• = 0.3 and Ao = 0.92 for a

constant temperature of 2000 K and pressure of 20 MPa. Ashby has calibrated this model

over the last decade [54][64] with a wide variety of materials. His model has been has

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Nondimensional Average Grain Radius

0.9 1.0

Figure 3.5 Vector field and a state trajectory using parameter values for copper tabu-
lated in [54], T = 1200 K, P = 50 MPa, Rmax = 80 pm, Ro = 0.35, and
A0 = 0.92.
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seen wide use in industry as the core of a PC-based software package that simulates the

stress response of a material as a function of strain rate, temperature, and pressure during

hot consolidation processing. The literature showing comparison of these simulations

with experimental data on the stress response is large and is too lengthy to review here.

Therefore, no further comparison of the Ashby model with experimental data is warranted

in this chapter.

However, as was the case with the internal variable model developed to investigate the

first peak in stress due to dynamic recrystallization (chapter 2) the vector field and state

trajectory in figure 3.5 has no feature which would indicate pore separation. The model

was not expected to show such a feature since the grain growth rate equation is for the

case of pore drag only. Therefore, the state space has none of the anticipated features,

such as a boundary manifold or a limit cycle, that would correspond to the pore separation.

In the following two sections criteria will be derived that predict the onset of pore

separation. In section 3.4 a criterion will be derived based on a global model of pore

separation. This global criterion is derived to correct a flaw in the most popular criterion

for pore separation. The global approach does not make use of the internal variable model

shown in section 3.2. Section 3.5 derives a criterion for the onset of pore separation that

shows how the internal variable model can be used to derive a boundary in state space

that corresponds to the onset of pore separation in metals and ceramics This second, local

criterion is then shown to be superior to the global criterion in section 3.6.

3.4 A Criterion Based on a Global Analysis of Pore Separation

For a system consisting of the grain boundary of a single, idealized spherical grain with

multiple spherical pores attached, figure 3.3, the fundamental relation from

thermodynamics is

dU = TdS + gdn + ydA (3.10)

where U, g, and S have their usual meanings, n is the number of atoms comprising the

grain boundary, and A is the grain boundary surface area. The system is like the skin of a

bubble with small bubbles on the surface. The energy balance for this system is

dU = 6W+ g'6n (3.11)
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where the energy transfer by work, 8W, is given by the work of the migrating grain

boundary driven by "force", F, through distance dR along the radius of the grain, R

6W = FdR . (3.12)

By mass balance, the incremental increase in the number of moles of the material making

up the system if equal to the flux of material entering the system:

dn = 8n , (3.13)

and by assuming the chemical potential of atoms diffusing to the grain boundary is

approximately that of atoms comprising the grain boundary:

gdn = g'8n . (3.14)

Setting equations (3.10) and (3.11) equal and substituting equations (3.12) and (3.14)

gives

FdR = TdS + ydA . (3.15)

As implied by Ashby in [54], by taking

TdS TdS
<< 1 and << 1 (3.16)

ydA FdR

equation (3.15) becomes

FdR = ydA . (3.17)

The criterion for pore separation presented by Ashby [53] follows directly from equation

(3.17). F is characterized by the Hillert expression for the driving "force" of secondary

grain growth in a polycrystalline material [57]

(Rm - R)
F = 2Y RmR -.4tR2  (3.18)

Y m
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where R,n is the largest commonly occurring grain radius. Ashby's pore separation

criterion is repeated here for later comparison to separation criteria developed in this work

2 - 3
A = 1-9(1-R) (3.19)

One other expression from previous work will be introduced here that will be used

repeatedly later. After Swinkels and Ashby [63], average pore radius, r, is related to

average grain radius, R, and relative density, A, by

r = 6 R . (3.20)

Care must be taken when using equation (3.20) when mapping r and R to A since it is not

diffeomorphic, i.e. the first partial derivative of r with respect to A is undefined when

A = 1.0.

I claim that the inequalities in equation (3.16) do not hold in general and therefore

equation (3.15), rather than equation (3.17), is a more appropriate basis to derive a

criterion of pore separation for the global geometric model depicted in figure 3.3. To

prove this claim, the magnitude of the ratios in equation (3.16) will be computed for

conditions typical for hot isostatic pressing and shown not to satisfy the inequalities. The

first quantity computed in equation (3.16) is dA. Taking separation as depicted in figure

3.3, dA is very well approximated by

AA = A lafterseparation -A Ibeforeseparation = N7tr2  (3.21)

where N is the number of pores attached to a grain; nominally 24 as supported by Ashby

[54]. A precise expression for AA would include the added grain boundary area due to

the increase in the grain radius by r. This added grain boundary area is small and can be

safely neglected. This enlargement in grain boundary area is small compared to the initial

grain boundary area, however the total cross sectional area of the pores is a significant

fraction of the initial grain boundary. Equation (3.22) compares the enlargement in grain
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boundary area and the total cross sectional area of the pores to the initial grain boundary

area:

4ntR 2  1=2 > 0.96
4n (R + r)2  1 + (r/R)2 -

(3.22)

Nitr2  N(y r2
4 -R2 = ! 0.244ZR 2

r
Equation (3.22) was evaluated numerically by solving equation (3.20) for R and

r
computing this ratio for closed porosity, i.e. A 2 0.92, which yields - < 0.24.

Continuing with the evaluation of the terms in equation (3.16), the term dS was

assigned a value by first starting with an expression of the entropy balance for the system

dS = sAn + 6Sirr ' (3.23)

Neglecting the entropy generated by irreversibility, 8Sirr, and using equation (3.13) yields

dS 2 sdn (3.24)

Taking separation as depicted in figure 3.3, equation (3.24) becomes

AS _s [n lafterseparation - n Ibeforeseparation] (3.25)

where n can be approximated as follows. The number of atoms that occupy a grain's

surface depends on the packing density of the atoms, f. Equating the fraction of the

surface area occupied by atoms to the cross sectional area of an atom, of radius a, gives

the number of atoms on the surface, n'

f(surfacearea) = n'a 2  n' f ( surfacear2 ea (3.26)

Characterizing the grain boundary as three atoms thick, the total number of atoms, n, is

f(surface arean = 3 . (3.27)
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To evaluate equation (3.27), the term "surface area" was assigned the value for AA from

equation (3.21), resulting in

3Nfsr 2
AS Nf 2  (3.28)

a2

The first inequality in equation (3.16) was now be evaluated by substituting equations

(3.21) and (3.28)

TAS 3fTs
y AŽ2 (3.29)'YAA -Tya2

The second inequality in equation (3.16) is simpler to evaluate than the first. The

remaining quantity to compute is the change in radius, dR. Taking separation as depicted

in figure 3.3, dR becomes:

AR = RlIafterseparation -Rlbeforeseparation = R + r-R = r . (3.30)

Substituting equations (3.18), (3.20), (3.28), and (3.30) into the second inequality in

equation (3.16) gives

TAS 0.206NfTs (1 - A)
FAR 2(3.31)S7 y (1 - R) a

where a nondimensional grain radius is defined R = R/Rm.

Table 3.1 shows the magnitude of equations (3.29) and (3.31) computed for parameter

values of y iron shown in table 3.2. The low and high magnitudes listed in table 3.1 are a

function of changes in the value of f. Originally, f was taken as varying from a high of

0.91 for close-packed atoms to a low of 0.64 for randomly packed atoms. Then f was

taken as varying from 1.0 to 0.1 to emphasize that the inequalities in equation (3.16) are

not satisfied even for a wide variation in the density of atoms characterizing a grain

boundary..
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Ratio High Low
value value

(f = 1.0) (f = 0.1)

TAS
8.0 0.8

TAS
FAR 0.21 0.021

Table 3.1 Magnitude of the ratios given by equations (3.20), top row, and (3.22),

bottom row, for R = 0.2, A = 0.92, and T = 1500 K.

Parameter Value Units

a 1.26 Angstrom

s 84.0 J/molK

y 2.0 J/m 2

Table 3.2 Parameter values for y iron used in equations (3.20) and (3.22) from [65][71].

A criterion for pore separation can now be derived based on equation (3.15).

Substituting equations (3.18), (3.20), (3.21), (3.28), and (3.30) into equation (3.15) gives

2
A2 1- 9 (3.32)

The affect of retaining the entropic term, TdS, can be seen by comparing equation (3.32)

with Ashby's criterion, equation (3.19). Figure 3.6 plots both Ashby's criterion, equation

(3.19), and equation (3.32), using parameter values for alumina [54] with T = 2123K.

3.5 A Criterion Based on a Local Analysis of Pore Separation

In this section pore separation is analyzed for a single pore attached to a two-grain
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Figure 3.6 Plot of Ashby's criterion, equation (3.19), and the criterion derived in this
section, equation (3.32), using parameter values for alumina [54] with
T = 2123K.

boundary, as illustrated in figure 3.4. The system considered in this section consists of a

single spherical pore and the grain boundary local to that pore.

Prior to separation the shape of the grain boundary local to the pore becomes distorted

from a spherical shape, as sketched in figure 3.4, where the angle 0 increases as the grain

boundary distorts. The free-energy of the system evolves as the pore-grain boundary

geometry changes from configurations associated with drag to a configuration

representing the onset of pore separation. Stable pore-grain boundary configurations

correspond to free-energy minima as shown in figure 3.7(a). As the pore progresses

toward the onset of separation, the free-energy of the system increases until, at the onset of

separation, the free-energy of the system attains a maximum, sketched in figure 3.7(b).

The system can then lower its free-energy by progressing to pore separation. Figure 3.7(b)
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a) Equilibrium pore/grain boundary b) The process of separation.
configurations prior to separation

Figure 3.7 Evolution of the free-energy of the system depicted by the local geometric
model of a pore separation, figure 3.4, where 6 characterizes the pore/grain
boundary configuration.

indicates the point where the free-energy is a maximum is a criterion for the onset of

separation. In the following analysis, an expression for the free-energy of this system is

derived and used to formulate a criterion for the onset of pore separation.

To begin the analysis, an expression for the free energy of the system is proposed:

dG = dU - TdS + ydA = udn - Tsdn + ydA (3.33)

where A is now the grain boundary area local to the pore and n, by the same argument

leading to equation (3.27), is n = 3fA/na2 . The curvature associated with the distorted

grain boundary is assumed large enough so that the variation in surface energy with

curvature can be neglected. Taking the time derivative of equation (3.37) gives

dG dn dn dA uf dA 3fTsdA dA F3f dA
dt - u -Ts + -t - a2dt - t (u-Ts) + . (3.34)

:,, ,:,

G i

1004
T
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The onset of separation is given by setting equation [3.34] equal to zero, because, as was

proposed, the onset of separation corresponds to the maximum in free energy, i.e. where

S= 0:

[3f dA
=a2 01) dt t 

(3.35)

The bracketed term in this equation represents thermodynamic driving force for pore

separation, given the assumptions of the local model, section 3.1.3. It is the magnitude of

the stored free energy of the system. It is comprised of a balance between internal energy
dA

and surface energy with entropy. The term T represents the rate of change of the size of

the system that is subject to the thermodynamic driving force. Since the size of the system

is related to some of the length scales of the diffusion processes associated with pore
dA

separation, the term A summarizes the effect of the underlying kinetic processes that
dA

evolve for a given material. a represents evolution in the pathways to release the stored

internal free energy. Together, the two terms measure the rate of change of free energy of

the system.
dA

For equation (3.35) to be satisfied, either the term in brackets is zero, is zero, or
ita2

both. The term in brackets in equation (3.34) is equal to zero when Ts- u- 3f . The

numerical values of these two terms are plotted in figure 3.7 for T = 300 K to T = 2200 K.

The figure uses values of s and u for iron from [65] and an average value of the packing

density, f, computed as follows. f ranges from a value of 0.64 for random packing to a

value of 0.91 for close packing. The figure assumes an average of these values, 0.78. The

point of intersection of the two curves in the figure is the temperature at which the

bracketed term in equation (3.35) is equal to zero. This temperature is well below the

temperature at which consolidation processing normally takes place for iron.

Nevertheless, the criterion predicts that there is no thermodynamic driving force available

for pore separation at this temperature, despite the availability of kinetic processes for

pore separation. Further investigation of cases where the bracketed term is equal to zero,
dA

for materials other than iron, was not pursued. When w is zero, there is both the

thermodynamic driving force and kinetic processes available for pore separation.
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Figure 3.8 Plot of the numerical values of Ts-u and as a function of

temperature using values of s and u for iron from M5], and f = 0.78. y
is taken constant with temperature. The intersection of the two curves is
the point where the bracketed term in equation (3.35) is equal to zero.

Therefore, by neglecting the bracketed term, the criterion for the onset of pore separation,

equation (3.35), simplifies to:

dAdA- 0. 
(3.36)

dt

An expression for the shape of the grain boundary local to the pore, A, is needed to
dA

compute t~ . Hellman and Hillert [49] derived an expression for the shape of the grain

boundary local to a single pore by minimizing the surface area of the grain boundary local

to the pore. The result is a catenoid of revolution. Worner et. al. [52] show that the radial

extent of the catenoid model has an upper bound due to the assumption that growing

grains must have an expanding grain boundary. They also indicate a lower bound for the

catenoid's radial extent by taking the catenoid tangent to the spherical grain boundary at

their point of contact. For a catenoid of revolution, A is given by [49]

2 [R(R 1/2 ac0( R 1/ 2

c c= C 1no + acosh C - acosh (csc) }A cat c sine c
(3.37)

c = -rsin202

n~A



Chapter 3 A Criterion for Pore Separation from Grain Boundaries

Therefore, evaluating equation (3.36) involves taking the time derivative of equation

(3.37). This derivative is potentially a very complex expression. Instead of evaluating

this derivative, I propose modelling the area of the distorted grain boundary local to a pore

as a simpler geometry; a right circular cone. The radius and height of the cone are taken

equal to the radial extent of the catenoid of revolution, acat = ~0.5rRsin20, as shown by

Worner et. al. [52], with two modifications. One, evaluate sin20 at 0 = 450 so that the

radius of the cone is acone = O63.5rR. Two, take the height of the cone such that it is

equal to the height of the catenoid at 0 = 450 and r/R = 0.05, i. e. hcone = JOf.174rR.

With these modifications the lateral surface area of the cone becomes

Acone = 0.432ntrR . (3.38)

Figure 3.9 compares the surface area of the cone and the catenoid for 0 = 450 and

r/R = 0.05. The figure shows that the cone's surface area deviates the most from the

Catenoid

Figure 3.9 Comparison of the surface area of the cone
for r = 5 .tm , R = 100 -m ,and0 =
shown.

and the catenoid of revolution
450 . Only a quarter-section is

catenoid's surface area near to the center where the pore is located. The cone is a better

approximation to the catenoid's surface area away from the pore. The constant in equation

(3.38) does not affect the criteria for separation.
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Like the surface area of the catenoid of revolution, equation (3.37), the lateral surface

area of the cone can have a maximum as r and R evolve since it is assumed here that r

shrinks monotonically, i < 0, and R grows monotonically, R > 0, and in addition, i > 0

and R < 0. A maximum in the surface area implies a maximum in free-energy, which in

turn denotes the onset of separation. Using Acone, equation (3.38), to evaluate the

criterion, equation (3.36), yields:

rR + Ri = 0 . (3.39)

Equation (3.39) can be put in terms of relative density, A, average grain size R, and their

time-derivatives, by differentiating equation (3.20) with respect to time and substituting

the result into equation (3.39), giving:

A R
(3.40)

1 -A 0.166R

This criterion for the onset of separation can be cast in terms of A, R, T, and processing

pressure, P, by substituting for A and A in equation (3.40) with the kinetics equations for

A and R presented in section 3.2. The result is:

C6R 6 + C4R 4 + C3R 3 + C2R 2 + CIR + CO = 0 (3.41)

where

Q.,

C6 = 0.318k (Cl/ 3Dom) 1.5 (n + 1)DcA 41 3 (1 -A) 10/ 3pnTekT

QM

C4 = 0.603k 2 8DosQ2/ 3 1.5 (n + 1)DcA 4/3 (1 - A) 2pnT2ekT +

0.525 (nSref) nn (Ql/ 3 Dom) D v (1 - A) 8/3 (1 - (1 - A)) PekT

C3 = 1.91 (21/3Dom) 0 (nSref) n (1 - A) 2 (1 - (1 - A) 4/3 [0.667DobP + yD] +

1.8178Dosk (nSref) ( 1 3Dm) (1-A) -( 1 - A) ) R
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Qm

C2 = k8Dos 5/3 (nSref) nDv (1 - A) 4/3 (1 - (1 -A))Pe- k +

4.620 (l/ 3Dom) Dob(nSref)n2/3 (1 A) 2 (1 - (1 -A))e ) kT-

1.817y6Dosk (nSref) n (Q/3Dom) (1 -A) (1 - (1 -A))

Qm,

C, = 3.62k8Dos5 25/3 (nSref) nD (1 - A) 4/3 (1 - (1 - A) ) 4/3Pe [0.6678DobP + yD,]

Q,

CO = 4.826k8Doby5Dos (nSref) nQ 5/ 3A2/ 3 (1 - A) 2/3 (1 - (1 - A) ) TekT

Numerically solving for the roots of equation (3.41), over a wide range of material

parameter values and values for T and P, yields one complex conjugate pair, two negative

reals, and two positive reals. This result can be shown analytically. Descartes theorem

states that the number of positive real roots of a polynomial with real coefficients is either

equal the number of changes in sign in the series of coefficients of the polynomial, or an

even number less [72]. Equation (3.41) has two changes in sign, as can be seen by

inspecting the signs of each of the coefficients, assuming parameter values within

physically meaningful limits. Equation (3.41) therefore has two positive real roots. Since

the number of negative real roots of a polynomial f (x) is equal to the number of positive

real roots of the polynomial f(-x) , it case be readily shown that equation (3.41) has two

negative real roots. The remaining roots of equation (3.41) must have an imaginary

component.

The roots of equation (3.41) represent the average grain radius for a value of relative

density, at the onset of pore separation. The complex roots and negative roots have no

physical meaning. One of the positive real roots is four orders of magnitude smaller than

the other. The smaller positive real root gives an unrealistically small ratio of average

grain radius to maximum grain radius. Such a small ratio implies an enormously large

driving force for grain boundary migration that would immediately lead to separation,

even for a relative density of 0.92. Experiments do not support this conclusion. The

larger positive real root is of the magnitude expected for the onset of separation. This

larger root will be used to plot the separation criterion in the next section. Since,as shown

by Ruffini and Abel [72] for the general case, polynomials of degree greater than four are
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not solvable by radicals, the next section will rely on numerical simulations to solve for

the roots of the criterion.

Before leaving this section an expression derived from equation (3.41) is given that

relates the separation boundary to material parameters and processing inputs that is much

simpler to solve than equation (3.41), but is less accurate. By Maclaurin's method, the

value of the positive roots of a polynomial like equation (3.41) can be bounded within an

interval (3.41). The lower value and upper value of the interval are both functions of the

coefficients of the polynomial. The method states that the smaller value of the interval is

given by:

lower value II 0ao

where B is the greatest of the absolute values of the negative coefficients of the

polynomial, ao is the leading coefficient, and I is equal to the subscript of the coefficient

in the polynomial given by B. In terms of the coefficients in equation (3.41), equation

(3.42) becomes:

Rlower value 1 + (3.43)

or

-(3.44)

(3.44)Rlower value = 1 +

where the first two terms in the coefficient C2 have been neglected before subsitution into

equation (3.43). Since, operationally, the term under the radical is much larger than 1,

equation (3.44) can be simplified to give an estimate of the dependence of the boundary on

material parameters and processing inputs:
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2.58Dob (2A) 2/ Texp [kt
1 (3.45)lower value ( ( 1/3 -[) D1/3

3.6 Evaluation of the Performance of the Criteria

The performance of the criterion based on the global model of pore separation, equation

(3.32), is not evaluated because, like Ashby's criterion, the criterion given by equation

(3.32) has many drawbacks as compared to the local approach. In contrast to the global

criteria, the local criterion is not only a function of A, and R, but also includes several

material parameters and all processing inputs, i.e. T and P. The local criterion is

mathematically more complex than the global criterion, but both criteria are simple

algebraic formulae which are easily implemented on a computer and have fast

computation times. In this section the criterion based on the local model of pore

separation, equation 3.40, is compared to experimental data. The performance of this

criterion is quantified using a form of nonparametric test from statistics. The performance

of Ashby's criterion is also evaluated since it serves as a convenient benchmark to

highlight the benefits of equation (3.40).

Figure 3.9 shows sintering data from Patterson [67] and Long [68] for alumina. In this

and all subsequent figures a hollow circle means that the data corresponds to micrographs

showing pores predominantly attached to grain boundaries while a solid circle denotes

pores were predominantly separated. The local criterion is plotted as a solid curve and

Ashby's criterion the dotted. The local criterion predicts separation to the left of the solid

curve. The Ashby criterion predicts pore separation to the left of the dotted line. Figure

3.9(a) indicates that both the local criterion and the Ashby criterion predict separation

equally well as compared to the experimental data for T = 1873K. Figure 3.9(b) shows

sintering data for alumina at T = 2123K . Figure 3.9(b) indicates that the local criterion

may be better in predicting pore separation as compared to the Ashby criterion, however

given the scarcity of data no conclusions can be drawn. Figure 3.9(a) plots sintering data

from Watwe using nickel [69] at T = 1523K. Figure 3.9(b) gives sintering data from

Aigeltinger [42] using copper at T = 1278K. Taken together, these plots suggest that the
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at T = 2123 K and
P = 1 atm.

Figure 3.10 Separation criterion developed in this work, equation (3.40), and Ashby's
criterion. Experimental data for alumina from Patterson [67] and Long
[68]. The solid circles denote experimental data corresponding to pores
that were separated from grain boundaries. (a) Simulation for
T = 1873K and P = 1 atm, (b) for T = 2123K and P = 1 atm.
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local criterion predicts pore separation better than Ashby's criterion. Figure 3.12 shows

sintering data from Patterson using alumina [67] at T = 2123K. The grey-filled circles

denote ambiguous data because pores were neither predominantly attached nor separated.

Figure 3.12 gives no indication as to which criterion is better.

Ashby's criterion and the criterion given by equation (3.40) were further evaluated

with a sign test; a form of nonparametric test from statistical methods. The test done in

two parts. First, the criteria were compared to all data points corresponding to separated

pores. The hypothesis for this first case was that the data for separated pores lay above

and to the left of the criteria. Second, the criteria were compared to all data points

corresponding to separated pores. The hypothesis for this second case was that the data

for attached pores lay below and to the right of the criteria. Both tests were conservative

since the data in figure 3.12 was taken as counter examples of the hypothesis. The level of

significance was set at 25% for both tests. That is, there is a 25% degree of risk that the

result of the tests are false. This value for the level of significance was a nearly arbitrary

choice based on the author's experience with all other separation criteria.

Table 3.3 summarizes the two sign tests, one for each criteria. "Threshold Level"

refers to the number of data points that must agree with the hypothesis in order for it to be

accepted at the 25% level of significance. "Sample Value" refers to the number of data

points that agreed with the hypothesis for each test "Decision" refers to whether or not the

hypothesis is upheld at the 25% level of significance. If the data points in figure 3.12 are

removed from the sign tests, the "decision" entry in the upper right hand corner of table

3.3 changes from reject to accept. All other entries remain the same.

3.7 Discussion of the Implications of the Criterion

The approach, in general, was to formulate a criterion that is a sufficient condition to show

transition from one type of material behavior to another, given that the material evolution

model is a system of coupled, nonlinear ODEs. This is no guarantee that the optimum

criterion has been found to predict the earliest transition in material behavior. The model

of grain growth rate and densification rate presented in section 3.2 yields order-of-

magnitude results, as detailed by Frost and Ashby in [14]. Consequently, the predictions

by the local criterion derived in section 3.5 serves as rough approximations only. The
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Figure 3.11 Separation criterion developed in this work, equation (3.40), and Ashby's
criterion. The solid circles denote experimental data corresponding to
pores that were separated from grain boundaries. a) Simulation for
T = 1523K and P = 1 atm, experimental data for nickel from Watwe

[69]. b) Hollow circles denote experimental data for pores attached to
grain boundaries. Simulation for T = 1278K and P = l atm,
experimental data for copper from Aigeltinger [42].
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0.1

Figure 3.12
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Nondimensional Grain Radius

Separation criterion developed in this work, equation (3.40), and Ashby's
criterion. Grey-filled circles denote experimental data corresponding to
pores that were neither predominantly attached nor separated. Simulation
for T = 2123K and P = l atm, experimental data for alumina from
Patterson [67].

Sign test using data for

separated pores.

Threshold Level = 17
Sample Value = 25

Decision: accept.

Threshold Level = 17
Sample Value = 15

Decision: reject.

Sign test using data for

attached pores.

Threshold Level = 5
Sample Value = 2

Decision: reject.

Threshold Level = 5
Sample Value = 0

Decision: reject.

criteria and experimental

Local criterion,
equation [3.39].

Ashby criterion,
equation [3.19].

Table 3.3 Results of a sign test applied to the pore separation
data in figures 3.9 through 3.12.
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predictions of the local pore separation criterion could be improved by using more

accurate models, without altering the approach, as long as the form of the new model is a

system of coupled, nonlinear, ODEs with monotonically increasing state variables.

The criterion is only applicable to relative densities where pores are closed. The

criterion by Liu and Patterson [55], while modeling the process of separation as a single

step, extends to accommodate open porosity.

The phase plane analysis presented in section 3.2 and the separation boundary

presented in section 3.5 have implications not described in this paper that may be helpful

in planning a consolidation process to either avoid pore separation or hasten its onset.

Figure 3.13 shows the effects of a wide variation in temperature and pressure on the

separation criterion. The maximum particle radius for this simulation was 7 microns. The

implication is that the onset of separation during hot consolidation of nickel powders is

sensitive to changes in temperature and pressure that the Ashby criterion is incapable of

predicting.

Mathematically, the effect of variations in temperature and pressure seen in figure 3.13

is a result of changes to the relative magnitudes of the terms in equations (3.40), or

equivalently, equation (3.41). The effect of variations in temperature and pressure on

these equations is not obvious. In the case of equation (3.40), an increase in pressure will

result in an increased rate of densification (since densification by power law creep

increases, see equation (3.5)), but the effect on pore separation in terms of the relative

density and average grain radius is difficult to determine since the densification rate and

grain growth rate are themselves functions of relative density and average grain radius. In

the case of equation (3.41), an increase in pressure changes the magnitude of a sixth-order

polynomial, making the effect on pore separation criterion not obvious.

Physically, the effect of variations in temperature and pressure seen in figure 3.13

might be explained as follows. An increase in temperature increases the free energy of the

system. This point is characterized in equation (3.33) where it can be seen that an increase

in temperature leads to an increase in the total derivative of the free energy. Referring to

figure 3.7(b), an increase in the total derivative of the free energy means that the free

energy of the system is not approaching a maximum, hence separation is postponed.
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Figure 3.13(b) shows a delay in the onset of separation as temperature increases. Physical

justification for the simulated effect of pressure on separation seen in figure 3.13 is left for

future work.

The effect of changing a parameter value on the pore separation criterion is shown in

figure 3.14 for low carbon steel. A variation in the activation energy for core diffusion,

Qc,, by only -5% results in a relatively large change in the onset of separation in terms of

the relative density and average grain radius. The effect of a reducing Qc is an increase in

the rate of densification by power law creep. The increase in densification rate implies

that the size of the system is shrinking faster than the case when Qc was unmodified. An

increase in the rate of shrinkage of the system implies that the free energy of the system is

approaching a maximum sooner, or equivalently, for larger values of A and smaller values

of R. The figure shows that the onset of separation is shifted towards larger values of A

and smaller values of R. As was the case for variations in temperature and pressure, the

effect of changes in material parameters on equations (3.40) and (3.41) is not obvious.

However, the relatively large variation in the separation criterion for the one case

illustrated by figure (3.14) serves to emphasize that the ability of the criterion to predict

the onset of pore separation is rough at best. Nevertheless, the criterion presented in this

chapter is the first to show the dependence of separation on internal structure, processing

inputs, and material parameters.
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Simulated effect of a -5% change in the activation energy for core
diffusion, Qc, on the separation boundary. Simulation is for low carbon
steel using parameter values from [54], at T = 1500 K and P = 50 MPa.
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3.8 Nomenclature

Symbol Definition

C4  Constant from derivation of grain growth rate equation, 0.0438.

8Db Boundary diffusion coefficient.

Dc  Core diffusion coefficient.

8 Dob Pre-exponential for boundary diffusion.

K 1/3Do0  Pre-exponential for boundary mobility.

8Dov Pre-exponential for surface diffusion.

Dov Pre-exponential for volume diffusion.

Dv  Volume diffusion coefficient.

F 2  Dimensionless driving force for densification.

k Boltzmann's constant.

n Power law creep exponent.

N Nominal number of pores attached to a grain boundary.

P Applied external pressure.

Pi Gas pressure inside a closed pore, as a function of relative density.

Po Outgassing pressure (atmospheric pressure usually).

Qb Activation energy for boundary diffusion.

Qc Activation energy for core diffusion.
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Symbol Definition

Qm Activation energy for boundary mobility.

Qs Activation energy for surface diffusion.

Qv Activation energy for volume diffusion.

r Mean pore radius.

R Mean grain radius.

Rg Ideal gas constant.

Rm Maximum grain radius (taken equal to maximum particle radius).

R Nondimensionalized grain radius, R = R/R
m

Sref Reference stress for power law creep.

T Temperature.

Tm Melting temperature.

zi, i= 1,2,3,... State variables in general.

A Relative density.

Abd Contribution of boundary diffusion to the densification rate.

Ac  Relative density at pore closure (approximately 0.92).

ANHC Contribution of Nabarro-Herring/Coble creep to the densification rate.

Avd Contribution of volume diffusion to the densification rate.

Y Surface energy.

G Free energy
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Symbol Definition

f Packing density of atoms in a grain boundary.

nI 3.1459265 ...

0 Angle of inclination of pore/grain boundary intersection, figure 3.4.

92 Atomic or molecular volume.



CHAPTER 4 Formulating a Characteristic Time

Each criterion derived in chapters 2 and 3 can be mathematically interpreted as a boundary

that separates the state space of a material into two regions. One region corresponds to the

material prior to a transition in behavior, the other region after the transition. In this

chapter the focus is on the region prior to the transition. An attempt is made to develop a

systematic approach to formulating a characteristic time for a state trajectory to cross the

transition boundary, given an initial state. Js in the previous chapters, the material

behavior is assumed to be governed by coupled, simultaneous kinetic processes. The

characteristic time is a function of the internal variables, process input variables, and

material parameters. Simulating the time to the transition by numerical integration of the

kinetic equations from an initial state does not provide as clear a relation between the

internal variables, process input variables, material parameters, and time. Conversely, a

characteristic time is approximate and will never be a substitute for numerical integration

when the goal is a (model-exact) time to the transition. The characteristic time can aid the

design of processing inputs, such as temperature and strain rate for an extrusion process,

to predict the rate of approach to the transition.

The formulation of the characteristic time is shown, however, to be incomplete.

Approaches for improvement are outlined. The approach is then applied to pore separation

to highlight the unresolved issues.

4.1 Previous Work to Derive a Characteristic Time

This section describes previous work to derive a characteristic time for phenomena

governed by multiple kinetic processes. The first section gives an example from chemical

engineering that is typical of the most widely-practiced approach to developing time

constants for phenomena governed by multiple kinetic processes. The approach divides

the analysis by considering process conditions whereby one of the kinetic processes

dominates over the others, and then analyzes each process separately in turn. The second

section discusses mathematically more advanced approaches to analyze systems of

92
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ordinary differential equations than the most widely-practiced approaches. The examples

in the second section are closer to the approach taken in this work to develop convergence

rate criteria for dynamic recrystallization and pore separation. These transitions have

coupled kinetic processes that are simultaneous over a wide region of operating conditions

and do not fall easily into categories whereby one of the kinetic processes dominates over

the others.

4.1.1 Widely Practiced Approaches

Chemical reactions of complex systems involve multiple kinetic processes. Levenspiel

[4] presents a good review of mathematical models of complex chemical reactions and

gas/solid reactions in particular. In the treatment by Levenspiel, gas/solid reactions are

treated as a single spherical particle interacting with a gaseous reservoir. This

development is valid for liquids as well as gases. The analysis is divided into two models:

one, the particle shrinks as it reacts with the gas, and two, the particle retains its original

size as it reacts. Both models follow similar lines to derive a characteristic time. The

development for a particle of unchanging size, called the unreacted core model, will be

discussed here.

The unreacted core model approximates reactions such as burning coal or wood. If

gaseous products are formed, there are five steps in the overall reaction. If no gaseous

products are formed, this model assumes the overall reaction proceeds with three

successive steps. The latter case is examined here without loss of generality. The three

steps are: one, diffusion of gaseous reactant to the surface of the ash surrounding the solid

particle, two, diffusion of the gaseous reactant through the ash to the solid surface of the

unreacted core, and three, chemical reaction of the of the gaseous reactant with the

unreacted core. Each of these three steps is considered a resistance to the overall progress

of the reaction. Depending on operating conditions (size of the solid particles, solid

porosity, and temperature of the reaction), one of these resistances may dominate the

others, then that one resistance is the rate-controlling step of the reaction. The analysis

proceeds by modelling each step, in turn, using conservation of mass and Fick's first law.

The result is a single, first order differential equation for each step. Each equation is

solved, independent of the others, for time. The characteristic time for each step is taken
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as the time for the unreacted core to vanish, i.e. solving for time when the radius of the

unreacted core is set to zero. The result is three characteristic times, each as a function of

the size of the particles, material parameters, and, implicitly, the process conditions

whereby the analysis was separate for each step.

4.1.2 Mathematically More Advanced Approaches

There have been efforts to analyze systems with multiple kinetic processes without

resorting to dividing the processes into categories where one process dominates over the

others. These efforts apply more advanced mathematics than is used in the previous

example of gas/solid interactions. Original work by Lyapunov, as detailed by Drazin [70],

and work by Slotine and Li [9] are more mathematically advanced than the approach

described for gas/solid reactions.

Lyapunov exponents are a measure of the growth or decay of the separation of

neighboring trajectories of an attractor. A Lyapunov exponent based on a system of

nonlinear, coupled ordinary differential equations summarizes the complex growth or

decay of the neighboring trajectories of this system as a single function. This concept of a

single function to describe the time-rate of change of simultaneous kinetic processes is

essential to the approach in my work, with one refinement. In the development presented

in section 4.2, the characteristic time is refers to the approximate time it takes for a

trajectory to reach a boundary in the state space of the system. The boundary is the same

boundary derived in section 2.4.1 that indicates the transition in material behavior in terms

of the states of the system and material parameters. In the Lyapunov analysis, the decay/

growth rate is with respect to neighboring trajectories of an attractor, equilibrium point, or

more generally, an omega-limit set.

Slotine and Li [9] estimate convergence rates for systems of nonlinear ordinary

differential equations, and implicitly, divergence rates as well. The rate of convergence

refers to the rate of convergence of a trajectory to an attractor, not the rate of convergence

of a trajectory to an arbitrary boundary in the state space of the system as is the goal of

section 4.2. Slotine and Li begin their analysis with a candidate Lyapunov function and its

derivative with respect to time. In some cases this derivative can be algebraically

manipulated into a differential equation that has a closed form solution. The solution can
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sometimes be solved directly for time, or have a form that can be bounded by a simpler

function which has an obvious convergence rate. Section 4.2 will detail this approach

with an example. The development in section 4.2 then goes on to propose a structured

approach to derive a characteristic time for systems with simultaneous, coupled kinetic

processes.

4.2 Approach in General

The approach is to bound the rate of convergence of O(z), where (4z) is the symbol

given in chapter 2, section 2.4 to the general form of a summarizing function, starting

with the initial value ~ z0), i.e. Iz) = Dz0) at t = 0, to a value • zb) associated

with the transition boundary. This section starts by giving an example of the bounding

approach and then proposing a generalization.

One example of a convergence rate criterion for O/z) may be obtained by

algebraically manipulating the terms in

(Z) (4.1)

to form the scalar linear differential equation

= -X(Z)> +f(z) . (4.2)

The general solution of this differential equation is [71]

D (t) = Cexp [f-,dt] + exp [f-,dt]l f exp [f dt] dt (4.3)

where C is a constant. If Xz) and f(z) are substituted by the upper the bounds on them,

Xu and fu , where the "u" subscript denotes "upper", then equation (4.3) simplifies to:

u (t) Cexp- + . (4.4)
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upplying the initial condition ( z) 11 = = Io) , results in:

Du (z) = (zfo) - exp - )t + u (4.5)

or

u (z) = [uss 1 - exp [-Iu t] + D (z0o) exp [-,ut] (4.6)

fu
where Quss = lim Q = - provided Xu > 0. Then if ,u = lubX (t) and )u > 0, and

t - oo

iffu = lubf(t) , then Du (t) > Q (t) Vt.

An example of the bound given by equation (4.6) is depicted in figure 4.1. The bound
1

given by equation (4.6) has the characteristic time =u =
Ta

U

t

Figure 4.1 An example of the upper bound on (D given by equation (4.6).

In addition to the requirements on ku above, if )Lu is also the same functional form of

the expression (z), say using the state's initial values ku = -(z)l = 0 uZo) , then

the characteristic time t u = 1/,U( Zo) is a function of material parameters and the initial

state of the system (the internal variables at t = 0). Process inputs, such as temperature

and strain rate, appearing in Xu(oz) can be treated as parameters if they are constant, a

reasonable assumption for many production processes. This example can be easily

(0
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extended to formulate a lower bound. Having both an upper and a lower bound would

provide insight into the tightness of the bound.

This approach is analogous to a solution estimation technique using matrix measures,

applicable to a certain class of nonlinear differential equations [13]. Matrix measures can

in some practical cases be used to upper and lower bound the convergence rate of the norm

of the state vector, Jx (t) . In this treatment (Z) and IQz) are analogous to a matrix

measure and Ix (t) respectively, noting that IIx(t)ll is a special kind of summarizing

function. Typically, convergence criteria are associated with the convergence of a state

trajectory to an equilibrium point. Here convergence criteria are adapted to obtain a

characteristic time associated with a boundary in state space, i.e. the boundary describing

the transition in material behavior developed in chapter 2, section 2.4.

The remainder of this section is an attempt at a systematic approach to formulating a

characteristic time. The approach I take is to propose a simple, canonical equation to

bound a function in the hope that a simple expression for a characteristic time will result

and that the tightness of the bound will be easy to evaluate. The development is shown to

be incomplete and approaches for improvement are outlined. The incomplete approach is

then applied to dynamic recrystallization and pore separation to explicitly show the

unresolved issues.

The functional form given by F = 1/ku Zo) is not unique. Alternate functions can be

obtained depending on how 4 = 4(z) is manipulated to yield Xz) and 1() in equation

(4.2). In addition, convergence rates with characteristic times different from

U = 1/•u zo) can be derived by choosing to solve differential equations other than

equation (4.2). For instance, a line 4 = constant, a parabola MD = constant, or

hyperbola d1/D2 = constant. From among these alternatives the best is the one which

relates a sufficient range of values of material parameters and internal variables with the

tightest bounds.

Rather than search for the tightest bound amongst alternatives, the following argues

that a simple alternative exists from which many others can be derived. Equation (4.2)

serves as a good example to present this argument. In equation (4.2), O/z) can be

factored from the two terms on the left hand side to yield:
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S= 1 (z) + z ) (z) (4.7)

The term in brackets could be called a new variable, say X:

( = iI (z) . (4.8)

Equation (4.8) can be used to form a bound on the evolution of D Dz) in a fashion similar

to the way equation (4.2) was used to bound the evolution of O ) z. The general solution

to equation (4.8) is:

S= 0 exp 0 (s) ds . (4.9)

If a constant, Xu, is chosen such that Xu Ž X (t) Vt, then the following inequality is

true.

u =  o0e u' t >  0expI (s) ds = D (z) (4.10)
0

where the characteristic time of the upper bound on the evolution in 4 z), Qu , is

u

Supposed, instead of starting with equation (4.2), the differential equation

$0 = constant had been used. 4D = constant can be algebraically manipulated to

give n = [ ta2  D. The term in brackets is then renamed X (z) and then equations

(4.8), (4.9), and (4.10) follow as before. Many differential equations can be manipulated

to form equation (4.8) because, as the step from equations (4.7) to (4.8) illustrates, O(z)
need only be factored out of the equation.

So far it has been argued that many differential equations can be used to bound the

evolution of Q z) and that these alternatives can be simplified to the form given by

equation (4.8). Each differential equation will result in a new expression for i (z) in
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equation (4.8). Instead of investigating all possible forms X (z) , a unique X (z) can be

obtained by defining i (z) as follows:

S(Z_) -- . (4.11)

Equation (4.11) is proposed as a single basis for bounding the evolution of a wide variety

of DIz) and deriving a characteristic time. This choice is motivated for two reasons.

One, its general solution, equation (4.9) is an exponential form, therefore a characteristic

time derived from this form has seen wide use in engineering. A characteristic time

derived from some other bound will not have such a wide-spread interpretation. Two, the

simplicity of equation (4.11) suggests that further analysis may be kept simple, as has

already been seen in forming a bound, equation (4.10).

Deriving a characteristic time based on equation (4.11) proceeds in the same way as

the example beginning with equation (4.8), i.e. equation [4.9] is the general solution of

equation (4.11) and equation (4.10) gives an upper bound on Dz() given the restriction on

Su. The characteristic time F = 1/Xl depends on the choice of khu In the example,

choosing ,u was ad-hoc. A better way to choose iu is to map the feature in the

evolution of (z), used to define the transition boundary, to the evolution in X (z) , and

then choose a suitable iu with this additional insight. This point is illustrated by the

following examples.

Figure 4.2 sketches an example of a i(z) evolving with time mapped to the evolution

in (z) . The maximum in D(z) corresponds to the zero-crossing in (z) . Using the

upper bound on ( (z) given by equation (4.11), the least conservative upper bound will

result from choosing ,u = lubi (t) = 0o -• F = -

If •Dz) evolves as sketched in figure 4.3 instead of the previous example, then the

least conservative upper bound will result from choosing

XU = lub (t) = - F =
1 = 0 max

If lkz) evolves as sketched in figure 4.4, then the least conservative lower bound
1will result from choosing , = glbX (t) [0 < t < ttrans] = X0 = = .
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Figure 4.2 Example of mapping an evolution in 1 (z) to L (z) .
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Figure 4.3 Example of mapping an evolution in D (z) to X (z) .
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after
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Figure 4.4 Example of mapping an evolution in (D (z) to X (z).

As a final example,

conservative lower bound

before
art 

nsition

if (IDz) evolves as sketched in figure 4.5, then the least
1

will result from choosing ,u = gibi (t) = j10 = t = .
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Figure 4.5 Example of mapping an evolution in (D (z) to , (z).

4.3 Unresolved Issues of this Approach

The approach described in the previous section to derive a characteristic time based on
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equation (4.11) does not guarantee that the characteristic time will remain proportional to

the actual time-to-transition. There are examples when a change in the value of an initial

condition will result in the characteristic time increasing while the actual time-to-

transition decreases. To illustrate, this section begins by interpreting the characteristic

time graphically for a particular D (z) , and then points out at least two cases when this

characteristic time fails to be proportional to the actual time-to-transition. LA solution to

the first case is proposed. JA solution for the second case is not offered. The approach

proposed here should not be used until it is proven that the characteristic time remains

proportional to the actual time-to-transition for any D (z) , or at least for a specific 4 (z) .

Figure 4.6 depicts a geometric interpretation of a characteristic time for the particular

D (z) depicted in figure 4.2, as follows. The equation for the tangent to (D (t) at (o is:

1 (t)

1 Ltransition
U

Figure 4.6 Geometric interpretation of the characteristic time based on the upper bound
CQu, for the specific evolution in (D (z) shown.

(4.12)

Solving equation (4.12) for the time t when uD = 0 gives:

(Do 1
tl - - ~- 'CT

IQp =0 A
-u 0

(4.13)
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So, the characteristic time of the upper bound Du is the familiar exponential time

constant of the decay of D u to zero as t -- -oo. Equivalently, the characteristic time

proposed by this approach amounts to a simple linear bound.

For Tu to be proportional to the actual time-to-transition, ttransition, the tangent at Do
must remain sandwiched between the upper bound ( uD and D (t) . The tangent at Do
does not remain sandwiched when (D (t) no longer has the shape in figure 4.6, but takes

on the shape shown in figure 4.7. D (t) could change shape like this as the result of

Figure 4.7 Case in which Tu fails as a prediction of ttransition.

changes in the parameter values or initial conditions of the kinetics expressions. But the

characteristic time, Tu, is only useful when changes in the values of the initial conditions

and parameter values can be explored for their approximate effect on the time-to-

transition.

One way to ensure that 4D (t) holds the shape depicted in figure 4.6, i.e. 4D (t)

evolves with a single maximum, is to require that D > 0, 4 > 0, and 4 < 0. These

requirements on 4D and its derivatives have the following implications on the function Xu ,

in addition to the conditions mentioned in section 4.2. The first two requirements, D > 0,

S> 0, give:

D= uD > 0 u > 0. (4.14)

103



Chapter 4 Formulating a Characteristic Time

Equation (4.14) is easily satisfied by ensuring that changes in the values of the initial

conditions and parameter values result in ku staying positive.

The third requirement, 1 < 0, gives:

= ,u ( + 1+U, < 0 I, 2 u+ u < 0 - ?2 <_, u (4.15)

These restrictions, equations (4.14) and (4.15), on the function X are equivalently

restrictions on the values of the initial conditions and parameter values because Xu is itself

a function of the states of the system and lu is a function of the states and their derivatives

(which are themselves a function of the states and parameter values as given by the

kinetics expressions comprising the internal variable model).

Equations (4.14) and (4.15) are difficult to evaluate except for the most simple cases

where the internal variable models are both low in order and have simple nonlinearities.

For this reason alone the approach taken in section 4.2 has to be investigated further.

Another drawback, for which no solution is offered, occurs when the shape of Q (t)

evolves in a more subtle manner than the change in shape illustrated in going from figure

4.6 to 4.7. Figure 4.8 depicts the problem. Again, the result is that the characteristic time,

Tu , is not proportional to the time-to-transition, ttransition. In the figure, for the change in

D (t)

Figure 4.8 Example of changes in the shape of Q (t) which result in the characteristic
time, Tu , not being proportional to the time-to-transition, ttransition.
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shape from CI1 (t) to (2 (t) the time-to-transition decreases from t1 to t2 but the

characteristic time increases from tul to Tu2 . As in the previous example, the change in

shape in D (t) could result from changes in the values of the initial conditions or

parameter values, which renders predictions by the time constant useless.

4.4 A Characteristic Time for Pore Separation

In this section a characteristic time for pore separation is derived to explicitly show how

the approach outlined in section 4.2 is implemented. Predictions by the time constant

agree well with numerical simulations of the model-exact time-to-separation, but, as

shown in section 4.3, the time constant has not been proven to be proportional to the time-

to-separation. The basis for the approach applied to pore separation is the local geometric

model depicted in figure 3.4.

The derivation of a time constant for pore separation follows the same steps as

outlined in section 4.2. Recall from section 3.5 that the free-energy of the system serves

as the function D (z) . Begin with the integrated form of equation (3.33) where

n = 3fA/7ra 2 and A = Acone = 0.4327nrR as discussed in section 3.5:

3fA 3fA 1 F3f

S= • - 2 · yA = 2 (u-Ts) +y] 0.432crR. (4.16)7ca 7ca Tia

The derivative of this equation with respect to time is

S= 0.432[ 3f (u- Ts) + ] [rI+R R] . (4.17)

Now using equation (4.16), solve for r

G
r= 3(4.18)

2 (u - Ts) + ](0.432nR)

and again from equation (4.16), solve for R

G
R = 3f  (4.19)

ia 2 (u- Ts) + (0.432xrr)
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Substituting equations (4.18) and (4.19) into equation (4.17) yields:

0 = ,G

/ ;· .(4.20)
X(t) -R+ r

The general solution of equation (4.20) is

G = Goexp  dXdt (4.21)

where Go = Glt = 0 . If a constant, call it Xu, can be found such that Xu > X (t) Vt ,then

Gu (t) = Goexp (Xt) =Goexp fd = G(t) , (4.22)
10 0

i.e. Gu (t) is an upper bound on G (t). LA suitable Xu based on the functional form of

X (t) in equation (4.20) is:

Ro o R
u - > - + - =  (t) (4.23)

R0  ro k r

where the subscript "0" denotes the variable's value at t = 0. This inequality is easily

verified given the following two assumptions. One, the initial grain growth rate and the

absolute value of the pore shrinkage rate are larger than subsequent rates, Ro > R (t) and

Kil > rI (t) l. Two, the average grain radius grows monotonically, Ro < R (t), and the

average pore radius shrinks monotonically, r° > r (t) .

Using equation (4.23), a characteristic time for the onset of pore separation is then

1 1 1 -Ao
u  - - (4.24)

u Ro o  Ao

R0 ro
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where the last term was formed by substituting equation (3.20), and its derivative at

t = 0, for ro and io respectively. Figure 4.9 shows a simulation comparing G (t) from

equation (4.16).to Gu (t) from equation (4.22) using the internal variable model for the

evolution of R and A given in section 3.2. The figure indicates that the characteristic

2

0Qw
00
U-

time, (hours)

Figure 4.9 Simulation of the upper bound on the free energy Gu (t) , equation (4.22), and
the free energy G (t) , equation (4.16) using copper parameter values listed in
[14] where A0 = 0.92 and Ro = 0.25 with T = 1300 K and P = latm.

time given by equation (4.24) yields very conservative estimates of the actual time-to-

transition. In the next section the accuracy of the upper bound on the characteristic time

will be investigated further.

4.5 Comparison to Simulations

Experimental data to test the characteristic time for pore separation, equation (4.24), is not

available. In this section the characteristic time is compared to simulations that show,

qualitatively, the ability of the characteristic time to predict the effect of changes in initial

conditions and parameter values on the time-to-separation.
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The method presented here to derive a characteristic time for separation is based on

the upper bound Gu (t) , equation (4.22). The characteristic time is therefore an

inherently conservative estimate of the time-to-transition. The approach can be easily

extended to generate another characteristic time based on a lower bound. This

characteristic time would nonconservative. Since a conservative characteristic time is of

greater practical interest to persons planning a consolidation process than a

nonconservative characteristic time, an analysis based on a lower bound is not presented.

On the other hand, having both an upper and a lower bound on a characteristic time

associated with a transition in material behavior would provide insight into the tightness

of the bounds.

The characteristic time for pore separation is conservative for two more reasons. One,

in this treatment ku is a constant such that ,u > 0 Vt and Xu> X(t) Vt , while X (t)

most often evolves from positive values to negative, meaning Gu (t) - Gmax much faster

than G (t) -> Gmax. Two, when the surface area of the cone is less than the surface area

of the catenoid, as indicated by figure 3.9, equation (4.22) implies that Gu, cone -' Gmax

much faster than Gu, cat --> Gmax since the additional area of the catenoid would appear

inversely in the exponential of the upper bound. Table 4.1 shows simulations of the time-

to-separation compared to predictions from the characteristic time, equation (4.24). The

characteristic time is conservative, as expected. Table 4.2 shows the simulated effect of

changes in initial conditions and parameter values on the model-exact time-to-separation.

Equation (4.24) correctly predicts the increase of decrease in the model-exact time-to-

separation. For instance, as the average starting grain size increases, table 4.2 shows the

time-to-separation increasing. Equation (4.24) predicts the same. Physically, a smaller

grain size implies that the driving force for grain boundary motion decreases, hence the

likelihood of separation is diminished. On the other hand, as the initial density increases,

table 4.2 shows the time-to-separation as decreasing. From equation (4.24) an increase in

the initial density leads to a reduction in the time-to-separation (assuming the

densification rate does not change much until the density is greater than 0.99). Physically,

as the initial density increases, the pores get smaller and hence there is a smaller drag force

on the grain boundaries, hastening the onset of separation. As another example, consider

the effect of increasing the processing temperature or pressure; table 4.2 shows both lead
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initial condition simulated
varied time-to-transition equation [4.24]

A0 = 0.92 4.2x10 4s 2.09x104s

Ao = 0.94 2 .8x104s 1.75x10 4s

initial condition simulated
varied time-to-transition equation [4.24]

Ro = 0.4 4.2x104s 2.09x10 4s

Ro = 0.6 1.2x10 5s 8.58x10 4s

Table 4.1 Simulated time-to-separation compared to predictions from the characteristic

time. Unless otherwise noted, the initial state of each simulation was Ro = 0.4 and

A0 = 0.92, for T = 1573 K and P = 50 MPa. Simulations used parameter values for

alumina from [14].

to a decrease in the time-to-separation. The decrease is much more dramatic for a

temperature increase than a pressure increase. The effect of temperature and pressure on

the time-to-separation predicted by equation (4.24) is found by interpreting the effect of

temperature and pressure on the rate of densification. Increasing the temperature or

pressure will increase the rate of densification, which equation (4.24) shows will decrease

the time-to-separation. The effect of temperature variations is more profound than

pressure variations on densification, hence equation (4.24) shows the time-to-separation is

more sensitive to a temperature increase than a pressure increase. Physically, diffusion is

a thermally activated processes, so greater sensitivity to temperature variations as opposed

to pressure variations is expected. In addition, for a constant average grain diameter

smaller pores translate to decreased likelihood for separation, so an increased rate of

densification would lead to an increase in the time-to-separation as equation (4.24)

predicts. As a final example, if a material is chosen that has an larger surface energy as

compared to some other material, table 4.2 shows the time-to-separation as nearly

constant. Equation (4.24) has a parameter for surface energy embedded in the expressions
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for densification rate. Surface energy appears in these rate equations linearly, so the effect

of an increase in surface energy leads to a small decrease in the time-to-separation as

compared to the parameters that appear exponentially. In fact, equation (4.24) indicates

that any changes to the value of a material parameter that is included in the densification

rate will tend to have the opposite effect on the time-to-separation; a prediction supported

by physical reasoning that was argued above.

While the predictions by the characteristic time shown in tables 4.1 and 4.2 appear to

agree well with physical arguments and simulations, this is not a proof of the validity if the

characteristic time. As detailed in section 4.3, there are issues that need to be resolved

before this characteristic time should be used.
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Quantity Varied Values

Ro 0.2 0.3 0.4 0.6 0.8

Time-to-
Separation (s) 7.0x10 3  2.0x10 4  4.2x10 4  1.2x10 5  4.0x10 5

A0  0.92 0.93 0.94 0.95 0.96

Time-to-
Separation (s) 4.2x10 4  3.5x10 4  2.8x10 4  2.0x10 4  8.0x10 3

T (K) 1200 1400 1600 1800 2000

Time-to-
Separation (s) 3.5x10 9  3.8x106  2.3x10 4  410 17

P (MPa) 10 20 30 40 50

Time-to-
Separation (s) 4.0x10 7  8.0x10 5  2.0x10 5  8.0x10 4  4.2x10 4

y (J/m2) 0.36 0.63 0.9 1.17 1.44

Time-to-
Separation (s) 4.4x10 4  4.2x10 4  4.2x10 4  4.0x10 4  3.8x10 4

Qb (J/mol) 168x10 3  293x10 3  419x10 3  545x10 3  670x 103

Time-to-
Separation (s) -0 3.5x10 3  4.2x10 4  4.2x10 4  4.2x10 4

Qc(J/mol) 191x10 3  334x10 3  477x10 3  620x10 3  763x10 3

Time-to- Trajectory Trajectory
Separation (s) stays in drag stays in drag 4.2xl04 850 17

region. region.

Sre(N/m2) 500x10 6  875x10 6  1250x10 6  1625x10 6  2000x10 6

Time-to-
Separation (s) 2.5x10 3 1.4x10 4 4.2x10 4 9.0x10 4 1.75x10 5

Table 4.2 Model-exact time-to-separation as a function of changes in initial state,

temperature, pressure, and material parameter values for alumina. Unless otherwise

noted, the initial state of each simulation was Ro = 0.4 and A0 = 0.92, for

T = 1573 K and P = 50 MPa.
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This chapter begins by discussing the main results of this work. Following this

discussion, suggestions to improve the internal variable models and auxiliary functions are

summarized. Finally, some preliminary work on how the models can be used in an

adaptive control framework is presented.

5.1 Main Results of this Work

This work uses a model-based approach to derive criteria that predict the onset of two

transitions in material behavior that are routinely encountered in processes of component

production. The first criterion shows explicitly the interaction of internal structure with

temperature and strain rate to predict the initial peak in stress associated with dynamic

recrystallization. No other criteria from previous research shows this explicit relation.

The second criterion shows the interaction between the grain growth rate and the

densification rate, modified by the grain size and relative porosity of the material to

predict the rapid increase in grain growth rate associated with pore separation. It is the

first criterion for pore separation that explicitly shows the effect of variations in

temperature, pressure, and material parameters on internal structure; none of the existing

criteria account for all of these quantities at once.

The benefit of taking a model-based approach as compared to an empirical approach is

the ability to use the models and the criteria beyond the data used to validate them. This

work presents three applications of the criteria and models: one, processing envelopes

that plot the onset of the transitions as a boundary in state space, two, a graphical way to

show the effect of uncertainties in the parameter values on the predictions made by the

criteria, and three, an adaptive control framework.

5.2 Suggested Improvements to the Internal Variable Models
The model of the kinetic processes associated with dynamic recrystallization

presented in chapter 2 treats the nucleation site density as constant, as argued by Roberts
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et. al. [27]. They state that the nucleation sites involved in the initial wave of

recrystallization remains constant. This research has evidence suggesting that the

nucleation site density is increasing during the first wave of recrystallization. The

evidence is given in figures 2.7 and 2.7. The figures show the predicted strain at peak

stress is too large as compared to the experimental data at the higher strain rates. If the

nucleation site density did increase, instead of remaining constant, then the simulated

volume fraction of recrystallized material would also increase, thereby reducing the

predicted strain at peak stress. Physically, it is reasonable to assume that the nucleation

site density may increase since the dislocation density is also increasing due to work

hardening. Peczak and Luton [41] present a model for the evolution of nuclei as a

function of dislocation density. While it is true that models of nucleation are still not well

established, it would be interesting to see if adding a characterization of nucleation to the

kinetic model presented in chapter 2 improved the ability of the criterion to predict the

strain at peak stress. Or, perhaps, the additional kinetic equation could possess a stability

structure that contains a boundary that corresponds to the first peak in stress.

In chapter 3, the idealized shape of a grain boundary local to a pore attached to a grain

boundary is given as a catenoid of revolution, as first reported by Hellman and Hillert

[49]. This research approximates the shape by a right circular cone, for mathematical

convenience. Better approximations of this shape should be investigated. Also, the data

presented in chapter 3 is for sintering only. To test the criterion further it is vital that data

from hot isostatic pressing experiments be collected.

Chapter 4 already has a section with detailed suggestions for improvement that do not

bear repeating in this last chapter.

5.3 Preliminary Work using the Models in an Adaptive Control Framework

The models of the kinetic processes presented in chapters 2 and 3 are each a system of

low-order, lumped-parameter ODEs. This mathematical form is suitable for building a

simulated control system. This section gives an example of the model of the kinetics

associated with dynamic recrystallization used in a simulated adaptive controller.

The objective of the control system is to compute the necessary temperature and strain

rate history in order for the system to reach desired final values of dislocation density and
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volume fraction recrystallized, in the presence of uncertainties in the values of two

parameters. There is one uncertain parameter per ODE in the formulation presented here.

The approach is to first feedback-linearize the ODEs and then embed the linearized plants

in an adaptive control structure. The adaptive controller is an indirect scheme called

dynamic parameter estimation [73]. Dynamic parameter estimation was chosen, because

it reduces overshoot in the system response as compared to simpler indirect schemes.

This control system has an obvious shortcoming. The adaptive controller does not

account for unmodelled dynamics. The controller could be improved by incorporating

robustness to unmodelled dynamics. This section does not consider robustness. The

control system is presented to illustrate how the models developed in chapters 2 and 3 can

be used in a control system. It is left for future work to improve on the control system

presented here.

5.3.1 Feedback Linearization

The objective of feedback linearization is to cancel the effect of nonlinear terms in the

system to be controlled and replace the cancelled terms with simpler terms [9]. The

feedback linearization presented here replaces the nonlinear terms in the model of the

kinetics associated with dynamic recrystallization with terms that make the system behave

as two decoupled, first-order linear ODE's. The feedback linearization is aided by the fact

that the two coupled, nonlinear ODE's comprising the model of the kinetic processes

associated with dynamic recrystallization is triangular.

To begin the description of the feedback linearization presented in this section, the rate

equation modelling the evolution of the volume fraction of recrystallized material given in

chapter 2, equation (2.8), is repeated below:

2/3 gb pb 2
v = 3A NC by v 2/ 3 exp- - v . (5.1)

r 5 sac gbr kT 2kT r

For notational simplicity, several of the material parameters in equation (5.1) are lumped

into fewer constants:

V =L exp (- L 2)Pv/3( r (5.2)
r--T 1 V (5.2)
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Now define

T exp(- L 2)  (5.3)

and substitute equation (5.3) into equation (5.2), yielding

2/3(1
vr = LITp PV 1- r . (5.4)

If the value of T 1 is given by

T = v + (5.5)1T1 Pv2/3 [1 - Vr] L,

then substituting equation (5.5) into equation (5.4) gives

v = L v + vrd (5.6)

which is a first order, linear ODE.

To continue the description of the feedback linearization presented in this section, the

rate equation modelling the evolution of the dislocation density given in chapter 2,

equation (2.5), is repeated below

p b F (5.7)

where

- dF, Qdrm2
ss PkT A exp U1 (5.8)

and the static recovery term does not appear because, as previously mentioned, for
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moderate strain rates above 10-3 s- 1 the effect of static recovery can be neglected. For

notational simplicity, several of the material parameters in equation (5.7) are lumped into

fewer constants yielding:

p = C, '1F[ C 1 (5.9)

C2 exp

where for mathematical simplicity the steady state dislocation density, pss, is taken as a

function of temperature only, i.e. the strain rate was fixed at 0.02 1/s for the computation

of C2 * If the value of i is chosen such that it solves the equation:

i: = - p CPd (5.10)

then substituting equation (5.10) into equation (5.9) gives

p = CIP + Pd. (5.11)

Figure 5.1 shows a block diagram of the feedback linearization procedure described by

equations (5.1) to (5.5) and (5.9) to (5.11). Figure 5.1 shows a block diagram of the

resulting dynamics of the feedback-linearized system, equations (5.6) and (5.11),

illustrated in figure 5.1.

5.3.2 Adaptive Control with Dynamic Parameter Estimation

This section applies an indirect adaptive control scheme to the plants given by equations

(5.6) and (5.11). A description of the theoretical foundations of many forms of adaptive

control are given by Narendra and Annaswamy [73]. The reference models used in the

adaptive controller was chosen as a first order linear ODE to complement the feedback-

linearized plants. The time constant for the reference models was chosen to be roughly

equal to the the time scale for dynamic recrystallization at a moderate strain rate, namely

25 seconds. The adaptive controller is given by the following two systems of equations.

The first system controls the dislocation density, the second controls the volume fraction

recrystallized. Together they compute the necessary values for the processing inputs,
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Vr(t)

T(t)

p (t)

i (t)

Figure 5.1 Block diagram of the feedback linearization given by equations (5.1) to (5.5)
and (5.9) to (5.11).
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Vr input 1 v (t)Ss-L 1 r

Pinput S 1
s-C 1

P (t)

Figure 5.2 Block diagram of the resulting dynamics of the feedback-linearization
system illustrated in figure 5.1.

temperature and strain rate, to achieve the desired values of dislocation density and

volume fraction recrystallized.

CONTROL OF VOLUME FRACTION RECRYSTALLIZED

PLANT

MODEL

rp 1 rp Vrd

S = 0.04v +r
rm rm

(5.12)

(5.13)

ESTIMATOR

ERROR

rp = 0.04rp + L" -0.04 v rp+ v rd

e =v -v
v rp rp

ADAPTATION LAW

FEEDBACK GAIN LAW
v

= -v[ p- v rp] -ev

= -e= -[ -L + - 0.04]6v I- ̂ I v

and 0 = 0.04-L
v 1

Vr = r +0 vrd v v rp

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)where
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CONTROL OF DISLOCATION DENSITY

PLANT p =Cp + Pd (5.19)

MODEL m = 0.04Pm + rp (5.20)

ESTIMATOR p =0.04p + I - 0.04 p + Pd (5.21)

ERROR ep = pp - p (5.22)

ADAPTATION LAW C = -p pP - p - e0  (5.23)

FEEDBACK GAIN LAW p = -ep - [- +0 - 0.04] (5.24)

where pd = rp + 0P p and p = 0.04- C. (5.25)

A block diagram for adaptive controller of volume fraction recrystallized, equations

(5.12) to (5.18), with feedback-linearized plant, equations (5.6) is shown in figure 5.1.

The adaptive controller of dislocation density has the same structure as the block diagram

in figure 5.1.

5.3.3 Simulation Results

Simulations of the adaptive controller, equations (5.12) to (5.25), were first conducted

using nonphysical, whole numbers for the inputs, rv and rp, and parameter values, C1

and L 1, to facilitate validation of the computer program. Figure 5.4 shows a typical

simulated response to a step input where the initial conditions for the states where

Vrp pp = 0. The estimators started with i1 = 1.5 and L1 = 2.0 while the plants

used C = 3.0 andL = 4.0.
I I

The adaptive controller was then simulated using parameter values for OFHC copper,

given in table (2.1). Using these parameter values, C = 35.2x10 6  and
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Estimator

= v -v

Srp
-V

Figure 5.3 Block diagram of one-half of the adaptive controller, equations (5.12) to
(5.18), with feedback-linearized plant, equations (5.6).
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1
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Figure 5.4 Simulation of the adaptive control strategy using inputs and parameter
values to facilitate validation of the computer program.

L = 12.6x10 - 22 . The simulations started with parameter values 50% less than the

values used by the plants. The initial conditions were pp = lxl 10 mrn/m 3 and

Vrp = lxlO and the inputs were r = 0.3 and rp = lx1014. The simulations were

performed on a 486 workstation using a fourth-order Runge-Kutta routine. The result of

typical simulation is given in figure 5.1. The figure gives the time history of temperature

and pressure inputs in order to achieve the desired state values. The simulation was

stopped at 1 second because the computation speed was excessively slow..

5.4 Suggested Future Work

A broader suggestion for future work is to include the state space representation into

the mainstream of analysis of material phenomena. The trajectories plotted in chapters 2

and 3 alone, without the criteria developed by this work, are valuable tools to plan process
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Temparature command input to the nonlinear plant
AAfI

430 -_Y
420

a-410
E

400

na' I t I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

x 104 Strain Rate command input to the nonlinear plant

a,

co15 0.5

in
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Figure 5.5 Partial time-histories of temperature and strain rate inputs required to for the
states to evolve to vr = 0.3 and p = 1x104 m/m 3.

schedules and aid in the design of machinery. With the addition of criteria to predict

transitions in material behavior, the state space representations could be used as

processing envelopes. These processing envelopes could provide manufacturers a means

of readily interpreting the effects of process inputs on material behavior. The process

inputs could be set to avoid or exploit a transition in material behavior. The envelopes

would also serve as a means of retaining processing knowledge and a record of

improvements to that knowledge.

The criterion might conceivably be used as a cost function in a control strategy that

computes processing input histories that simultaneously achieve a target state value while

avoiding a transition in material behavior.

Finally, even though this research shows that it is possible to develop criteria using a

low-order model that does not have a stability structure with a boundary that corresponds

to a transition being studied, it would be intriguing to model a transition with a stability
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structure that has such a boundary. The insight gained from this effort would likely help in

developing new models of complex material behavior.
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