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Abstract

A Survey of Primary Decomposition using GrSbner Bases

MICHELLE WILSON

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Master of Science

We present a survey of primary decomposition of ideals in a noetherian commuta-
tive polynomial ring R[x] = R[xi,..., x,]. With the use of ideal operations introduced
and the lexicographical Gr6bner bases of ideals in R[x], we show that it is possible
to compute a primary decomposition of these ideals. Our method involves the reduc-
tion of the general primary decomposition problem to the case of zero-dimensional
ideals. Furthermore, we solve the general primary decomposition problem when the
coefficient ring is a principal ideal domain.

For the zero-dimensional ideals in R[x], we compute inductively their irredundant
primary decomposition. In addition, we show that we can compute primary decom-
position of zero-dimensional ideals over a field of characteristic zero. We do this by
considering ideals in "general position".

Finally, we present algorithms to perform the computation of primary decompo-
sition in the cases discussed.

Thesis Advisor: Dr. Steven Kleiman
Title: Professor of Pure Mathematics
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Chapter 1

Introduction

1.1 Introduction

In a polynomial ring over a field, it is known that every ideal can be decomposed into

finitely many primary components (see [A-M], Chapter 4). This fact was discovered

by E. Lasker [L] and F. Macaulay [M]. By 1921, the special case of primary decom-

position of zero-dimensional ideals was introduced by E. Noether [N]. In 1926, G.

Hermann made an attempt to describe a constructive way to find the primary de-

composition of a given polynomial ideal over a field which allows constructive factor-

ization. Unfortunately, Hermann's attempts were based on the erroneous assumption

that polynomials can be factored constructively over all ground fields.

Early constructive approaches were based on methods of solving linear equations

in a module over the polynomial ring. However, by 1965, we were equipped with

the powerful method of Grobner bases. Gr6bner bases were introduced by B. Buch-

berger [B]. More importantly, Buchberger developed an algorithm for computing

Gr6bner bases. This algorithm constructs a Gr6bner basis for an ideal I when a set

of generators for I are given (see [C-L-O], Chapter 2.7).

This paper surveys the study of primary decomposition using the methods intro-



duced by P. Gianni, B. Trager and G. Zacharias [G-T-Z]. Their method uses ideals in

"general position" and factorization. In addition, we present a set of algorithms for

computing primary decomposition. In Chapter 1, we lay the foundation for the dis-

cussion of primary decomposition of ideals in a polynomial ring R[x] = R[xl,..., xe]

with coefficients in a noetherian commutative ring R. The main result in Section 1.2

is a reduction algorithm for a polynomial f in R[x]. In Section 1.3, we discuss various

ideal operations, such as the construction of saturations in R and the construction of

the ring of fractions using Gr6bner bases. The final section of Chapter 1 deals with

the development of a test to verify the primality of a ideal in R.[x].

Chapter 2, begins with the examination of properties of zero-dimensional ideals

using integral extensions and the Gr6bner bases of these zero-dimensional ideals. In

addition, we investigate the structure of zero-dimensional primary ideals. This is

done by looking at verifiable conditions on the lexicographical Gr6bner bases of zero-

dimensional primary ideals. In Section 2.3, there is a two-fold aim. The first is the

computation of the irredundant primary decomposition of zero-dimensional ideals in

R[x]. Secondly, we compute primary decomposition of zero-dimensional ideals over a

field of characteristic zero. Section 2.4 deals with the reduction of the general primary

decomposition problem to the zero-dimensional case. In this section, the coefficient

ring is a principal ideal domain.

Chapter 3 presents algorithms to perform some of the computational results intro-

duced in the first two chapters. We present an algorithm which verifies the primality

of ideals which was discussed in Section 1.4. We also present algorithms which com-

pute primary decomposition for the cases discussed in Sections 2.3 and 2.4.



1.2 Preliminaries

Throughout this paper, R denotes a commutative noetherian ring and R[x] = R[x 1,..., ,],

the polynomial ring in n variables over R. For basic facts of commutative algebra, the

reader may consult Atiyah-Macdonald [A-MI. In this section, we present some of the

elementary facts about Gr6bner bases (see [C-L-O]).

Definition 1.1 We say that linear equations are solvable in R if

(i) (ideal membership) given f, fl,..., f, E R, it is possible to

determine whether f is in the ideal (fi,..., f,)R. and if so, find

g1,. .. ,g such that f = Fgifi,

(ii) (syzygies) given fi,..., fn E R, it is possible to find a finite set of generators

for the R-module {(g,...,gn) E RnEgi.fi = 0}.

The first condition in Definition 1.1 is necessary in order to make the reduction

process we will discuss in Proposition 1.8 computable.

In Gr6bner bases computations, the notion of an order is very important. We now

define an arbitrary order on a set.

Definition 1.2 Any relation >- on N n is called an order if

(i) >- is a total ordering on Nn;

(ii) if a >- P and y arbitrary, then a +- >- + y;

(iii) >- is a well-ordering on Nn .

The lexicographic order is an order which is commonly used. We will now define

the lexicographic order.



Definition 1.3 Let a = (ai,...,an) and 3 = (31,. ... , 3n). We define the lexico-

graphic order on N n by xa > x3 if atc >- for the first index i with ai $ /3i. We

denote this order by >,ex.

When comparing polynomials in R[x], it is sometimes convenient to compare

the leading term, the leading coefficient, or the degree. Here we define these useful

notations.

Definition 1.4 Let f be a non-zero polynomial in R[x] = R[xl, ... , x ] such that

f = crx + .fl

with c E R, and c f 0, and a >- a' for every nonzero term c'a' of f'. Then

(i) lt(f) = czx is the leading term of f;

(ii) Ic(f) = c is the leading coefficient of f;

(iii) deg(f) = a is the degree of f.

Definition 1.5 For a subset G of R[x], define the leading-term ideal of G, denoted

by LT(G), as the ideal generated by {lt(g)9g E G}.

With the above notation, it is now possible to define the important notions of a

Gr6bner basis and a minimal Gr6bner basis. These definitions will be used throughout

the paper.

Definition 1.6 A finite subset G = {g.,..., g,} of an ideal I in R[x] is a Gro'bner

basis for I if LT(G) = LT(I).

A minimal Grobner basis for I is a Gr6bner basis G for I such that

(i) Ic(g)= 1 for all g E G, and

(ii) lt(g) ( LT(G - {g}), for all g E G.



The following lemma shows that any given Gr6bner basis can be made minimal

by removing any g with lt(g) E LT(G - {g}) from G.

Lemma 1.7 Let G be a Gr6bner basis for an ideal I in R[x]. Let g E G be such that

It(g) E LT(G - {g}). Then G- {g} is a Gr6bner basis for I.

Proof. If lt(g) E LT(G- {g}), then LT(G- {g}) = LT(G). Since LT(G) = LT(I),

it follows, G- {g} is a Gr6bner basis of I. .

The following proposition is called the Reduction Algorithm because it gives a

reduction of any given f in R[x]. Of course, the proposition is not given in the

usually step-by-step fashion of algorithms, but it constructs a "reduction" of f in a

style similar to that done in algorithms.

Proposition 1.8 (Reduction Algorithm) Given f and G = {gi,.... ,g} in R[x],

we can construct f' such that f = f' mnod(gl,..., g,)R[x] and It(f') 0 LT(G).

Proof. The ideal membership condition on R insures that we can determine whether

lt(f) E LT(G), and if so, find terms ti such that lt(f) = C tilt(gi). If not, it suffices

to let f' = f. Otherwise, let f, = f- E tilt(gi). Then the leading term of E tilt(gi)

cancels the leading term of f. Hence, deg(fl) < deg(f). So, by induction on the well-

ordering <, we can find f' such that lt(f') ý LT(G) with f' - fi mod(gl,...,g,).

But f - fl, so f - f' as required. 0

Definition 1.9 Let f and G = {gl,...,g,} be in R[x]. If It(f) ý LT(G), then f is

called reduced modulo G. Otherwise, f is called reducible modulo G.



Corollary 1.10 For any f and G, there exists a reduced f' with f = f' modulo the

ideal generated by G.

Using the reduction algorithm, we can now prove one of the fundamental proper-

ties of Gr6bner bases.

Proposition 1.11 Let G be a Gr6bner basis for an ideal I in R[x]. Then f E I if

and only if application of the reduction algorithm to f returns 0.

Proof. Let f be a non-zero element of R[x], and let f' be as in Proposition 1.8. Since

G C I, we have f = f' mod I. Thus, if f' = 0, then f E I. Conversely, if f E I, then

f' E I and It(f') E LT(I) = LT(G). But by assumption, f' is reduced modulo G, so

we have f' = 0. .

Corollary 1.12 It is possible to determine ideal membership in I given a Gr6bner

basis G for I.

Proof. The statement follows directly from Proposition 1.11.

The following proposition reveals one of the special properties of Gr6bner bases.

This property is a consequence of the Hilbert Basis Theorem (see [C-L-O], Chapter

2.5, Theorem 4).

Proposition 1.13 Every non-zero ideal I of R[x] has a Gr6bner basis.

Proof. Since R is noetherian, the Hilbert Basis Theorem implies that the polynomial

ring R[x] is also noetherian. So the leading-term ideal LT(I) has a finite generating

set which can be assumed to be of the form {lt(g1 ),...,lt(g,)} with g,.-..,g, E I. If

we set G = {gi,...,•n}, then we have LT(G) = LT(I). Hence, G is a Gr6bner basis

for I. .



Corollary 1.14 If G is a Grobner basis for I, then G generates I.

Proof. If G = {gl,...,gn} is a Gr6bner basis for I, then LT(I) is the ideal gener-

ated by the elements lt(gi),..., lt(g,). Clearly, the ideal generated by the elements

g1,...,gn is contained in I, since each gi E I. Conversely, let f E I be any polyno-

mial. Using the division algorithm (see [A-D], Algorithm 4.1.1), we can divide f by

gl,...,g.. Then we get a remainder, r, which is reduced modulo G. That is, r is

divisible by none of lt(g1),..., lt(g,). We claim that r = 0. Indeed, if r 5 0, then

It(r) E LT(I), and hence lt(r) must be divisible by some lt(gi). This contradicts the

fact that r is reduced modulo G, and, consequently, r must be zero. Thus, f is an

element of the ideal generated by gl,..., g, which shows the reverse inclusion. This

completes the proof. 0

Corollary 1.15 If J C I are ideals in R[x] and LT(I) = LT(J), then I = J.

Proof. The ideal J forms a non-finite Gr6bner basis for I, so by Corollary 1.10, we

may conclude that J generates I. But since J is an ideal, it only generates itself, so

J=I. 1

1.3 Ideal Operations

We now discuss the use of Gr6bner bases to perform basic ideal operations in R[x].

We show we can construct saturations and the ring of fractions using Gr6bner bases

without much difficulty.

Proposition 1.16 Let I be an ideal in R[y, x] = R[yl,. .. , yn, -,X...,xm]. Given any

two orders ~1 and >2 on monornials in x and y respectively, define an order > by



x0yp >- xza'y' if xZ >1 xa', or if x' = xO' and y3J -2 yO'. If G C R[y, x] is a Grobner

basis for I with respect to > then

(i) G is a Grobbner basis for I with respect to the order >1 on (R[y])[x], the

polynomial ring in x 1,... , x with coefficients in R[y].

(ii) G n R[y] is a Gro'bner basis for I n R[y] with respect to the order >2.

Proof. (i) For any f E R[y, x], we have Ilt>.(It>.,(f)) = It>.(f) by the definition of >-.

So

LT> (LT >.(G)) = LT >(G) = LT>(I) = LT>(LT>,(I)).

Thus, since G C I and G is a Gr6bner basis for I, we have LT.,(G) = LT>I(I).

(ii) Since, no term involving any xi can be >-larger than a term involving only yi.

Hence, It>.(g) E R[y] if and only if g E R[y]. Thus,

LT (G n R[y]) = LT>(G)n R[y] = LT>(I)n R[y] = LT>.(I n R[y]).

Therefore, G n R[y] is a Gr6bner basis for I n R[y] with respect to >-. But >- coincides

with >2 on R[y]. 0

The preceding proposition has significant practical importance for Gr6bner basis

computations. Part (i) shows that we can combine the coefficient variable y and the

ground ring variables x, using an appropriate order, and compute Gr6bner bases over

R. This allows for the simplification of our computations when the ground ring R is

a field or a principal ideal domain (PID).

As a consequence of this proposition, in the remainder of this paper, we will

perform our computations using the simpler field or PID variant of the Gr6bner

basis algorithm (see [A-D]) whenever we require calculation of Gr6bner bases with



coefficients in a polynomial ring constructed from a ground ring. This is, of course,

provided the ground ring is a field or a PID.

Part (ii) of the proposition shows that we can compute the contraction of an ideal

to a coordinate subring. To do so, we simply compute the Gr6bner basis for the ideal

with respect to an order >- based on whatever order >-2 we want for the contraction.

Futhermore, the Gr6bner basis involving only the subring variables is a Gr6bner basis

for the contraction.

The following proposition fully characterizes these facts.

Proposition 1.17 Fix an order > on the leading term of elements in R[x]. Let I in

R[x] be an ideal and let 7 : R[x] -- + (R/I n R.)[x] be the quotient map. Then for

G C I we have

(i) If G is a Grnbner basis for I then G n R generates I n R and 7r(G) is a

Grobner basis for r(I).

(ii) G is a minimal Grobner basis for I if and only if G n R is a minimal basis for

I n R, the image 7r(G- G n R) is a minimal Gr-'bner basis for r(I), and r(lt(g)) 5

O for all g E (G- G n R).

Proof. For any f E I, the image 7r(lt(f)) is either 0 or It(7r(f)), so we have r(LT(I)) C

LT(r(I)). Conversely, given f E I, we can write f = fo + fi where 7r(fo) = 0 and

r(lc(fi)) 5 0. Furthermore, fo E I and so fi E I and

lt(ir(f)) = lt(r(f1 )) = 7(lt(.f)) E 7r(LT(I)).

Hence, we have r(LT(I)) = LT(wr(I)). The result follows from the definitions and

Proposition 1.16(ii).



Finally, we observe that Gr6bner bases are well behaved under the formation of

the ring of fractions of R[x] and we will examine the importance of the construction

of the saturation S-'I n R[x] where S is a multiplicatively closed subset of R.

Proposition 1.18 Fix an order >- on the leading term of the elements in R[x]. Let

S be a multiplicatively closed subset of R. If G is a Gr6bner basis for an ideal I in

R[x], then it is a Gro'bner basis for" S-'I C (S-'R)[x].

Proof. We observe that

LT(S-'I) = S-'LT(I) = S-1 LT(G).

-t__L "_ L1- 1-_ ..-_ ,_ L . . L _ _1 .. . Y i . L_ L- T\ C-- r__
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].

The construction of the saturation S-'I n R.[x] can be determined from the be-

havior of the leading-term ideal. This is explored in the following lemma.

Lemma 1.19 Let T C S be multiplicatively closed subsets of R, and let I be an ideal

in R[x]. If

S - 'LT(I) n R[x] = T-'LT(I) n R[x]

then

S-i ln R[x] = T-'In R[x].

Proof. We have

LT(S-'In T-'R[x]). C LT(S-I) n T-'R[x]

= S-'LT(I) n T-'R[x]

= T-(S-1LT(I) n R[x]) sinceT C S



= T-'(T-'LT(I) n R[x]) by assumption

= T - LT( I )

= LT(T-'I).

Since T- 1 I C S-1 I n T-'R[x], we have LT(S-'I n T-'R[x]) = LT(T-'I). Thus, by

Corollary 1.15, S-'I n T-TR[x] = T-'I. Now taking intersections with R[x] gives

S-1 I n R[x] = T-'I n R[x] as required. ,

Remark 1.20 Taking T = {1} shows I is saturated with respect to S if LT(I) is

saturated with respect to S.

We now make a further reduction of the problem of computing the saturation S-'I

n R[x] of an arbitrary ideal I in R[x] to an analogous problem for ideals generated

by terms.

Proposition 1.21 Let S be a multiplicatively closed subset of R., and I an ideal in

R[x] . If for some s E S,

S -'LT(I) n R[x] = (LT(I)R,[x]) n R[x]

then

S-'I n R [x] = IR,[x] n R[x]

Proof. Apply the lemma with T = {sj}.



In the case where S = R- P, for a prime ideal P in R, the localization Rp is

of particular interest. There are no general algorithms for computing saturations of

an ideal of R with respect to arbitrary prime ideals P; however, the problem can be

solved in the case where P is a principal ideal. We now present a proposition, which

will be central to a dimension reduction process, which will be developed later.

Proposition 1.22 Let R be an integral domain, and (p) a principal prime ideal in

R. For any given ideal I C R[x], it is possible to find s E R- (p) such that

IR(p [x] n R[x] = IR,[x] nR [x].

In particular, the generators of IR.(p)[x] N R[x] can be computed.

Proof. Since R is a domain, we have n(p k) = 0. Thus, for any non-zero element r

of R, there exists a k such that r E (pk), and r ý (pk+l). Hence r = spk for some s ý

(p). Applying the ideal membership algorithm (See [A-D]) , we can compute k and

s. Let G = {gi,..., gm} be a Gr6bner basis for I. Write lt(gi) = sipkxX' , where s

(p). Then LT(I) = (sipk'X-' ) and LT(I)R(p)[x] n R.[x] = (pkr'a). Thus in order to

apply Proposition 1.21, we need to find an s such that every si is invertible in R,[x].

The choice s = Hsi satisfies this condition. .

Corollary 1.23 Let R be an integral domain, K the quotient field of R. Then for any

given ideal I in R[x] it is possible to compute IK[x] n R[x].

Proof. Apply the proposition with p = 0.



1.4 Primality Test

In this section we will develop a test to verify whether an ideal I is prime. We first

recall some basic facts about prime ideals.

Lemma 1.24 An ideal I in R[x] is prime if and only if I n R is prime and the image

of I in (R/I n R)[x] is prime.

Proof. See Zariski and Samuel [Z-S], Chapter III, Theorem 11.

Lemma 1.25 Let R be an integral domain, K the quotient field of R. If I is an ideal

of R[x] such that I n R. = (0) then I is primne if and only if IK[x] is prime and I =

IK[x] n R[x].

Proof. See Zariski and Samuel [Z-S], Chapter IV, Theorem 16.

Assuming we have a primality test for ideals in R and we can test the irreducibility

of univariate polynomials over quotient fields of residue rings of R[x], then we obtain

the following proposition.

Proposition 1.26 It is possible to decide the primality of ideals in R[x].

Proof. Proceeding by induction on the number of variables we may assume that

we have an ideal I in R[xl]. By Proposition 1.16(ii), we can compute Ic = I n R. If

Ic is not prime then neither is I. Otherwise by Lemma 1.24, we need only test the

primality of the image of I in R/Ic[x 1]. Replacing R by R/I c, we may assume R is

an integral domain and I n R = (0). Let K be the quotient field of R. Then IK[xl]

is a principal ideal. Thus, we can test its primality by checking the irreducibility of

its generator. By Corollary 1.23, we can compute IK[xx] n R[xi]. Hence, we can test

the primality of I by Lemma 1.25. ,



Chapter 2

Main Results

2.1 Introduction

In this chapter we examine the structure of zero-dimensional ideals using the proper-

ties of Gr6bner bases. First, we show that it is possible to determine whether an ideal

is zero-dimensional by inspection of its Gr6bner basis. We then give a complete char-

acterization of zero-dimensional primary ideals in terms of verifiable conditions on

their lexicographical Gr6bner bases. Secondly, we compute the irredundant primary

decomposition of zero-dimensional ideals in R[x]. Finally, we show how to reduce

the general primary decomposition problem to the zero-dimensional case when the

coefficient ring is a principal ideal domain.

So to reiterate the set-up, we assume we are given a noetherian commutative ring

R and let R[x] = R[zx,... , x]. We then have from the Hilbert Basis Theorem, that

R[x] is also a noetherian ring. We assume that we have an order on the leading terms

of the elements of R[x].



2.2 Zero-dimensional Ideals

In this section we examine properties of zero-dimensional ideals using integral exten-

sions and Gr6bner bases of zero-dimensional ideals. In doing so, we will completely

characterize zero-dimensional primary ideals using their lexicographical Gr6bner bases.

Lemma 2.1 Let I in R[x] be an ideal such that I n R is zero-dimensional. Then I is

zero-dimensional if and only if R[x]/I is integral over R.

Proof. Suppose R[x]/I is integral over R.. Then it is also integral over the subring

R/(I n R) of R[x]/I. Thus, R/(I n R) and R[x]/I have the same dimension.

Conversely, suppose I is zero-dimensional. Let I = fl Qk be a primary decomposi-

tion of I, and let Mk :=V/ . By assumption, Mk is maximal. Since Mk n R contains I

n R, it is zero-dimensional and hence maximal. Therefore, by the Nullstellensatz, the

field R[x]/Mk is a finite algebraic extension of the subfield R/(Mk n R). In particular,

Mk contains a monic polynomial fi,k(xi), for each i. Then (fi,k(xi))" E Qk for some

n, and so IIk(fi,k(Xi)) n E I establishes integral dependence for xz mod I. .

Remark 2.2 The requirement that I n R be zero-dimensional in Lemma 2.1 is nec-

essary. For instance, consider R = Z(2), the localization of Z at the prime ideal

generated by 2. Then the ideal I = (2x - 1)R in R[x] is maximal but contains no

monic polynomials. Hence, x mod I is not integral over R, and indeed, I n R =

(0) is not zero-dimensional. The condition I n R zero-dimensional for every zero-

dimensional ideal I of R[x] is satisfied for polynomial rings with coefficients in a field.

Futhermore, it follows from the lemma that, if I and I n R are zero-dimensional, then

so is I n R[xi,..., zn] for any i.



We now give an effective criterion for detecting integral extensions.

Proposition 2.3 The ring R[x]/I is integral over R if and only if (x 1 ,...,x,n) C

CLT(i).

Proof. Let

r : R.[x] -- + R[x]/I

be the natural surjection. Suppose 7r(xi) E R[x]/I is integral over R. Then I contains

a monic polynomial f(xi) E R[xi],for each i. So It(f(xi)) E LT(I). but on the other

hand, the leading term of f(xi) is a power of xi. Hence, (.x,....,xn) C LT(I).

We are now going to show that R[x]/I is finitely generated as an R-module, and

thus it is integral over R.. Suppose x"' E LT(I), and consider the finitely generated

R-module

K:= C Rx" '...47
ai<mi

We claim that the residue-class map

S: K -- + R[x]/I,

is surjective. Indeed, take f E R[x] and consider r(f) E R.[x]/I. We may assume f 4

I, since 0 is in the image of K. Now, by Corollary 1.10, there exists an f' such that

f' - f mod I and lt(f') ý LT(I). In particular, lt(f') ý (x• ,...., x" ' ), so It(f') E K.

Furthermore, since f-f' E I and lt(f') ý LT(I), we have It(f- f') # lt(f'). It follows

that deg(f') <_ deg(f) and so deg(f' - lt(f')) < deg(f). By induction on the degree

of f, we may assume that (f' - lt(f')) is in the image of K. Say r(f' - lt(f')) = h for

some h E K. Then

r(lt(f') + h) = 7r(lt(f')) + r(h) = r(lt(f')) + 7r(f' - It(f')) = 7r(f') = r(f).

19
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If G is a Gr6bner basis for I, let

Gi := {g E G Ilt(g) = cx' for somec E R, andm > 0}.

Let Li C R be the ideal generated by the leading coefficients of elements of Gi. Clearly,

LT(Gi) = LT(G)n R.[x], so xi E ýLT(I) =/LT(G) if and only if xi E LT(Gi). The

latter happens if and only if Li = (1). Furthermore, it follows from the first part of

the proof that if x i ,VLT(I), then 7r(xi) cannot be integral over R. Hence, we have

the following Corollary.

Corollary 2.4 It is possible to determine whether R.[x]/I is integral over R, and if

not, to find i such that the residue class of xi is integral over R.

Application of Lemma 2.1, we get the following Corollary.

Corollary 2.5 If InR is zero-dimensional. then it is possible to determine uhether I

is zero-dimensional, and if not, to find an i such that In R[xi] is not zero-dimensional.

We can simplify the criterion above when I n R is primary. The following propo-

sition addresses this fact.

Proposition 2.6 Let I in R[x] be an ideal such that InR is zero-dimensional primary.

Let G be a Grobner basis for I. Then I is zero-dimensional if and only if for each i

there exists gi E G such that It(gi) = cizx' where ci E R is a unit mrodulo I n R.

Proof. Let Gi and Li be as described in Proposition 2.3. Note, Gi contains G n R,

and so Li contains I n R. Now, since V/I7 is maximal, Li = (1) if and only if Li t

vIM R. The latter occurs if and only if there is some gi E Gi such that Ic(gi) J/I( R.

But this is equivalent to the requirement that (lc(gi), I n R) = (1). .



Remark 2.7 If G is a minimal Gr6bner basis, then all the elements of Gi other

than gi have degree in xi strictly smaller than mi. Hence, to decide whether I is

zero-dimensional using a minimal Gr6bner basis, we need only check that Gi con-

tains exactly one element of maximal degree, and that the leading coefficient of this

element together with G n R generate the unit ideal. It is not necessary to check

the leading coefficients of any other elements of Gi. Conversely, if I is known to be

zero-dimensional, then gi can be uniquely identified as the highest degree element of

Gi .

We next investigate the structure of zero-dimensional primary ideals. We say a

polynomial has some property modulo an ideal .1 in R. if its image as a polynomial

in R/J has that property. However, before preceding, we will give a few univariate

results. These results are key part of the argument used in the characterization of

zero-dimensional primary ideals.

Lemma 2.8 Let I in R[xl] be an ideal such that I n R is zero-dimensional. Suppose

xm E LT(I) and xs- 1 ý LT(I). Then every f E I with deg(f) < mn is a zero-divisor

modulo In R.

Proof. Let L in R be the ideal generated by the leading coefficients of the elements

of I of degree less than m. Let LR[xl] be the extension of L in R[xi]. We claim

that, if f E I has degree less than 7m, then f = 0 mod LR[x 1]. Indeed, let f =

clX• - 1 + ... + cm. Then either cl is 0 or it is the leading coefficient of f, so c1 E L.

By hypothesis, there exists g E I with It(g) = xm. Let f' = xrjf - c1g. Then f' G I

and f' = c'xz-1 + ... + cm with c' = ci+l mod L. It follows by induction that ci E

L for all i, proving the claim. Now, if L = (1). then I contains a monic polynomial



of degree less than m. This is contrary to the assumption. Thus, L is a proper ideal.

Since I n R C L and I n R is zero-dimensional, L is contained in some associated prime

of I n R. Hence, there exists a 0 In R such that aL C I n R. Then af = 0 mod I n R

whenever deg(f) < m. R

Lemma 2.9 Let I in R[xl] be a zero-dimensional ideal such that I n R is zero-

dimensional primary. Let G be a minimal Gr'bner basis for I, and let g1 E G be

as in Proposition 2.6. Then

V1 = (gi, In R).

Proof. Let lt(gi) = clx"'. By assumption, ci is a unit modulo I n R., so x"' E

LT(gi,I n R) which is contained in LT(I). Now, LT(I) cannot contain any smaller

powers of x1. Otherwise, gl would be reducible modulo G, and this contradicts the

minimality of G. Let f E I of degree less than mi. Then by Lemma 2.8, every such

f is a zero-divisor modulo I n R. But since I n R is primary, the set of zero-divisors

modulo I n R is exactly vflTnR. Thus, if f E I, and deg(f) < min, then f E 0 mod

/Ti nR. Now, by Proposition 1.8, there exists f' = f mod (gl, I n R) such that f' is

reduced modulo (gl,I n R). Since xz" E LT(gl,I n R), we know f' has degree less

than mi, so f' = 0 modVI nR. Thus,

f E (gi, In R) + (v/I n)R[xlR] = (g1,vTIn R.).

In other words, we have

I C (gi , VI R) C 0v.

Taking radicals proves the lemma.



With these univariate results, we now can completely characterize zero-dimensional

primary ideals in terms of verifiable conditions on their lexicographical Gr6bner bases.

Proposition 2.10 Let I in R[x] be a zero-dimensional ideal such that In R is zero-

dimensional primary. Let G be a minimal Gr6bner basis for I with respect to the lex-

icographical order, and let gi,...,g, E G be as in Proposition 2.6. Then I is primary

if and only if gi is a power of an irreducible polynomial modulo In R[xi+, ... ,x,],

for all i. If the latter is the case, then for every h E G n R[xi,..., x] - {gi}, we have

h = 0 mod/ I n R[xi+1,.... x].

Proof. Let R' := R[x 2 , ... , ,], and I' := I n R'. In view of Proposition 1.16, we may

proceed by induction to conclude that the proposition holds for I'. and g2,... ,gn E

G n R'. Thus, we need only show I is primary if and only if both I' is primary and gl

is a power of an irreducible polynomial modulo 0/I. In this case, h - 0 mod v/F for

h G - {g}.

Clearly, we may conclude that I' is primary since I is primary. Let lt(gy) = cixz".

If h is an element of G other than gi, then it must have degree less than m.l in xl.

Otherwise, h would be (gi, I)-reducible. Thus by Lemma 2.8 and the assumption

that I' is primary, we have h = 0 mod v/, proving the second part of the proposition.

Since I is zero-dimensional, it is primary if and only if its radical is prime. By Lemma

2.9,

\/I- /(g,,')= (g,, v).

Thus, I is primary if and only if (g , v/F) is primary, or equivalently, if and only if the

ideal generated by gi in (R'/1VF)[xi] is primary. N



Proposition 2.11 Let I in R.[x] be a zero-dimensional ideal such that I n R is zero-

dimensional prime. Let G be a minimal Grobner basis for I with respect to the lexico-

graphical order, and let gl,... ,gn E G as in Proposition 2.6. Then I is prime if and

only if gi is irreducible modulo I n R[xi+, .. . . . n], for all i. If this is the case, then

G = {g91, .,gn} U (G n R).

Proof. Suppose I is prime. By Proposition 2.10, we have gi - h,' for some hi

irreducible modulo I n R[xi+l,..., xn]. Since I is prime, we must have hi e I. If

ki > 1, then gi would be reducible by hi, an element of smaller degree, contradicting

the minimality of G. Thus, k- = 1, and so gi is irreducible mod I n R[xi+i,...,].

Conversely, suppose I n R[xi+1 , ... x,] is prime and gi is irreducible modulo I n

R[i+,,... ,x,]. Then (g,, In R[xi+1,.... x]) C R[xi,...,x,] is prime. Furthermore,

if h is an element of G n R[xi,.... X,] other than gi, then by the previous proposition,

h - 0 mod InR[xi+i,..., x,,]. In particular, h is reducible modulo GnR[xi+ ,... I ,],

so from minimality of G, it follows that h E G n R[xi+l, . . . , Vn]. Thus,

G n R[xz,... ,x,] = {gi} U (G n Rxi+,,... , x,]),

and consequently,

I n R[xi,...,xZ = (gi, In Rj[xi+,...,z ])

is prime. The proposition now follows by induction.

2.3 Zero-dimensional Primary Decomposition

With the theory we have developed, we are now in the position to compute primary

decomposition of zero-dimensional ideals. The aim of this section is two-fold. First,



we will compute irredundant primary decomposition of zero-dimensional ideals in

R[x]. Then we will compute primary decomposition of zero-dimensional ideals over

a field of characteristic zero. In order to do the latter, we will introduce the notion

of an ideal in "general position". Throughout this section, we will assume that for

any given maximal ideal M in R, it is possible to factor univariate polynomials over

finitely generated extensions of R/M.

Our first main result of this section is the computation of irredundant primary

decomposition of zero-dimensional ideals in R[x]. In summary, we will compute the

primary decomposition of In R[x,]. We will then extend this decomposition to a, not

necessarily primary, decomposition of all of I, and then proceeding by induction, we

will construct a complete primary decomposition of each component. The following

proposition describes the induction step.

Proposition 2.12 Let I in R.[x] be a zero-dimensional ideal such that I n R is M-

primary, where M is a maximal ideal in R. Then it is possible to construct zero-

dimensional ideals II, ....Im in R[x] and distinct maximal ideals MX,..., Mm in R[x,]

such that I = Ni Ii and such that Ii n R[xn] is Mi-primary.

Proof. Let Ic := I n R[xn]. By Lemma 2.9, we can find g E Ic such that vI =

v(g, M). Let g(xn) IIpi(xn)s mod M be a complete factorization of g modulo M.

That is, the images of pi(x,) in (R/M)[xz ] are pairwise comaxima.l irreducible non-

units. Since IIpiS ' E (g, M) C vI, we have (fIpiS)S E Ic for some s. Now, since pi

and pj are comaximal modulo M, and I contains a. power of IM, then pi and pj are

comaximal modulo I. Thus,

)(pq", I) = (Ipi", I1) = I.
i.



Let Ii := (pS", I), and Mi := (pi, M)R[x,]. Then Mi is clearly maximal, and since

Ii n R[x,] contains a power of Mi, it is either Mi-primary or the unit ideal. We have

fHi#3jpjSSIi in I, so if I; = (1), then

fIi.j pj E OF = (g, NI).

This contradicts the assumption that pi is not a unit modulo M. Thus, I; is M2-

primary. 0

By recursively applying the proposition to Mi and Ii n R[xi] over the ground

ring R[x,], we can compute the complete primary decomposition of I along with the

associated primes.

We now proceed with the second part of the two-fold aim of this section. Here,

we assume that IK is a field of characteristic zero, and that all the Gr6bner bases G

are normalized so that lc(g) = 1 for all g E G.

If I is an ideal in K[x] = K[xi,..., x,], set Ii := In K[xi,..., x,]. If I is a zero-

dimensional prime ideal, then by Proposition 2.11, every minimal Gr6bner basis for I

has the form {gi(xl,... ,xn),92(x2, ... ,n), . . , gn(xn)}, with gi a monic polynomial

in xzi and irreducible modulo Ii+,. We can in fact obtain the following stronger result.

Proposition 2.13 Let I be a zero-dimensional prime ideal in IK[x], and

G = {gl(xl,...X,),... X g,(xn,)}, a minimal Grobner basis for I with respect to the

lexicographical order. Then "almost all" linear transformations of coordinates, gi -

Xi - pi(Xi+l,...,Xn) for i < n.

Proof. By the proof of the primitive element theorem (Zariski and Samuel [Z-S]



Chapter 2.9), for almost all al,..., a, E K,

K[x]/I wý ccK(( aitx).

If we choose new coordinates zl,..., zn such that za = E aixi, then

K([zl, ... , zn]/IN Ie (zn).

Now, since

and hence,

a Gr6bner

modulo G.

lt(gi) = zi

zi E K(z,) for every i, we have that zi = fi(z,) holds in K[zi,... x,1]/I,

I contains polynomials of the form zi - fi(zn), for all i < n. If G is

basis relative to the coordinates z1,... .zn, then :i - .fi(z.) is reducible

Now, since the only element of G which could reduce zi is gi, we have

as required. .

We now introduce the notion of an ideal in general position.

Definition 2.14 If I is a zero-dimensional prime ideal in K[x] such that its lexico-

graphical minimal Gr6bner basis satisfies Proposition 2.13, we say that I is in general

position. Furthermore, if I is an arbitrary zero-dimensional ideal, we say I is in general

position if all of its associated primes are in general position and their contractions

to K[x,] are pairwise comaximal.

Corollary 2.15 If I is a zero-dimensional primary ideal in general position, then the

gi in Proposition 2.10 are powers of linear equations moduloIG,'+, for i < n.

As an example, consider the ideal

I = (x1 + 1, X2) C Q[x 1 .X21.

Now, x 2 is irreducible over Q and x2 + 1 is irreducible over Q[X2]/(x2); so by Proposi-

tion 2.11, we have that I is a, zero-dimensional prime ideal. It is not in general position
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because x2 + 1 is not linear in xl. If we make the substitution aX2 = ax1 + ,x2, and

consider the ideal Ia = (.r + 1, axl + x 2 ), we find that G, = {(ax, + . 2 , z + a2)}

is a Gr6bner basis for Ia whenever a : 0. In that case, G, is as required in Defini-

tion 2.14. So we see that any nonzero value of a is sufficient to bring I into general

position.

Remark 2.16 From the proof of Proposition 2.13, it follows that in order to put

a zero-dimensional prime ideal into general position, it is sufficient to replace x, by

Xn + E ci;x for random ci E 1K. Furthermore, it is always possible to put any zero-

dimensional ideal in general position. The intent is to separate all the zeros in the

algebraic closure by the last coordinate. To do so, we simply choose ci such that all

values x, + E cixi are distinct as (xl,..., ,xn) ranges over the set of zeros of the ideal

in the algebraic closure of K. The set of bad choices form a proper algebraic subset

of K" - 1, and almost all choices of ci are good.

Proposition 2.17 Let I in K[x] be a zero-dimensional ideal in general position, G a

lexicographical Grobner basis for I, and let gl,...,g E G be as in Proposition 2.6. If

g, = IIp•' is the irreducible decomposition of 9g. then I = n;(p,' , I) is the primary

decomposition of I.

Proof. (p" , I) is a zero-dimensional ideal. By definition of general position, (p' , I)

is contained in exactly one prime ideal. Hence, it must be a primary ideal. 0

If we are given a zero-dimensional ideal I, not necessarily in general position, then

the above construction will yield a decomposition that is, not necessarily into primary

components. If the minimal Gr6bner basis for (pf , I) is not in the form predicted in



Corollary 2.4, then I is not in general position. We can then proceed by choosing a

different set of coordinates. We remark, however, that a random substitution almost

always works.

2.4 Primary Decomposition in Principal Ideal Do-
mains

In this section we show how to reduce the general primary decomposition problem to

the zero-dimensional case when the coefficient ring is a PID.

Lemma 2.18 Let S be a multiplicatively closed subset of R, and s E S. If S-In R C

(I : s), then

I = (I: s)n (I, s).

Proof. The forward inclusion is clear. To prove the reverse inclusion,

(I : s) n (I, s), so that f = i + as, with i E I. Then i + as E (I

is + as 2 E I. Thus, a E S-'I n R, and so a E (I : s). This implies as E

f E I as required.

suppose f E

: s) implies

I, so we have

M

Combining the lemma with the construction of Proposition 1.22, we obtain the

following fundamental decomposition mechanism.

Proposition 2.19 Let R be an integral domain, and (p) a principal prime ideal in

R. For any given ideal I of R[x], it is possible to find r E R - (p) such that

I = (I, r) n Ic,

where IcC = IR(p)[x] n R.[x].



Proof. By Proposition 1.22, we can find s E R - (p) such that Icc = IR,[x] n R[x].

Thus, we can compute IcF. Since R is noetherian, there exists an mn such that smIJc C I.

Given a Gr6bner basis G for Icc we can compute m by testing whether .sG C I for

successive values of m. By the lemma, r = s5 is as required. .

Remark 2.20 The preceding lemma and proposition are used to reduce the dimen-

sion of I. We choose s so that the dimension of (I, s) is strictly less than the dimension

of I, and (I : s) = Icc is the contraction of the extension of I to the polynomial ring

of lower dimension.

The following proposition gives a primary decomposition of an ideal I if I n R is

primary.

Proposition 2.21 Let R be a PID, I an ideal in R[x], and (p) a maximal ideal in R.

If I n R is (p)-primary, then it is possible to compute a primary decompositionl for I.

Proof. If I is zero-dimensional, then we can compute its decomposition using the

propositions in Section 2.3. Otherwise, by Proposition 2.6, we can find an i such that

InR[xi] is not zero-dimensional. Let R' := R[x,] and x' := xi, .. . . , x , 4xi + , ..., I ,

so that R'[x'] := R[x], and InR' is not zero-dimensional. Applying Proposition 2.19,

we can find r' E R' - (p)R' such that

I = (I, r')n Icc = IRp)[x' ] n R'[x'].

Thus, to decompose I it is sufficient to separately decompose (I, r') and Icc

Since (I, r') n R' contains both the (p)-primary ideal I n R and the element r (

(p)R', either (I, 7') n R' is zero-dimensional or it is the unit ideal. In the former case,

we can compute the primary decomposition of (I, r') by induction on the number



of Zk such that the contraction of the ideal to R.[xk] is not zero-dimensional. In the

latter case, I = IcC, and so we only need to compute the decomposition of Ic .

In order to decompose IcC, we only need to decompose Ic = IR'(,)[x'], and then

contract the decomposition back to R'[x'] using Proposition 1.22. Note, that R'(p)

is again a PID, and (p)R'(p) is a maximal ideal. We claim that Ic n R'(p) is (p)R'(p)-

primary. Indeed, since In R is (p)-primary, then I, and hence IR.'(p), contain a power of

p. This is sufficient to show that IR'[x'] n R' C (p)R'. Let P be a nonzero-dimensional

associated prime of I n R'. Then (p)R' C P. But (p)R' is one dimensional, so

P = (p)R', which proves the claim. Thus. Ic C R.'(p)[x'] satisfies the hypothesis of the

proposition, and so we may decompose it by induction on the number of variables. a

Corollary 2.22 If K is a field, then it is possible to compute the primary decompo-

sition of any ideal in K[x].

Proof. Take p = 0 in the proposition.

Here is the central result which computes primary decomposition of any given

ideal in the case where the coefficient ring is a PID.

Proposition 2.23 Let R be a PID, and I an ideal in R[x]. Then it is possible to

compute a primary decomposition for I.

Proof. If I n R is not zero-dimensional, that is, I n R = 0 and R. is not a field, then

apply Proposition 2.19 to (0) C R to find r : 0 such that

I = (I, r)n (IR(0o)[x] n R[x)).

Since R(o) is a field, IR(o)[x] can be decomposed using Corollary 2.5, and the results

contracted to R[x] using Proposition 2.19. We are then left with (I : r), which

contracts to a zero-dimensional ideal in R..



Thus, we may assume In R is zero-dimensional, say In R = (Ilpm '), where (pi)R

is maximal. Then (p,' , I)n R is (pi)-primary. Hence, (p"' , I) can be decomposed

using Proposition 2.21. Since I = ni(pm ', I), we get a decomposition for I. •

Remark 2.24 The decomposition obtained above is not irredundant.



Chapter 3

Algorithms

In this chapter we present algorithms for computing various aspects of primary de-

composition of polynomial ideals. In each case we outline the basic steps, and we

disregard questions of efficiency.

Algorithm PT : Primality Test.

Input: A ring R, variables x = xx,..., x, and an ideal I C R[x].

Assumptions: None.

Output: If I is prime, return TRUE. Otherwise, return FALSE.

1. If n = 0, and if I C R is prime, then return TRUE. Otherwise, return FALSE.

2. Compute J := I n R[2,... , ,].

3. If PT(R; x2,..., z,; J) = FALSE, then return FALSE.

4. Let R' := R[x 2,..., xn]/J, I' := IR'[x1 ], and K' the quotient field of R'.

5. Compute I'K'[xi] = (f).=

6. If f is not irreducible over K', then return FALSE.



7. Compute Ic = I'K'[xl] n R'[xi].

8. If ICC C I', then return TRUE. Otherwise, return FALSE.

Algorithm ZPD : Zero-dimensional Primary Decomposition.

Input: A ring R, variables x = xl..... rn, an ideal I C R, and an ideal M C R.

Assumptions: M is maximal, I is zero-dimensional, and In R is M-primary.

Output: {(QM, M1),....(Q,, Mm)}, where Q, and Mi are ideals in R[x] such that

Me is maximal, and for M1i Mj, we have Qi is Mi-primary. Then I = ni Qi.

1. If n = 0, then return {(I, M)}.

2. Compute a minimal Grobner basis G for I n R[xz].

3. Select the g E G of largest degree.

4. Compute the factorization of g modulo M,

g = IIpf' in R/M[xo], wherepi E R[x,].

5. Find s such that (IIp')' E In R[x,].

6. Let Ii := (p'"', I), and Mi := (pi, M)R[xj].

7. Return U2 ZPD(R[x,]; x 1,... , x- 1 I; ; Mi).

Comments. The primary decomposition resulting after Step 7 is irredundant. This

algorithm can also compute the associated primes.

Algorithm ZPDF : Zero-dimensional Primary Decomposition over a Field.

Input: A field K, variables x = xj,...,.x,, and an ideal I C K[x].
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Assumptions: K is a field of characteristic zero, and I is zero-dimensional.

Output: {Q1,..., Qm } such that Qi C K[x] is a primary ideal, I = niQi, and

1. Select at random cl,...,c,_1 E K and replace x,, by x, + Ecizi.

2. Compute In K[x,] = (g).

3. Compute the complete factorization of g, so that g = Ilp,'.

4. If (p' , I) is not a primary ideal in general position, then go to Step 1.

5. Replace x, by x, - E cixi.

6. Return {(p" , I)}.

Comments. The computation in Step 2 follows from the results in Proposition 1.16.

In Step 4, it would be sufficient to test (p"', I) for being primary using Proposition

2.10, but the simpler test of Corollary 2.4 will be satisfied in almost all cases.

Algoirithm PPD-O : Primary Decomposition over a PID, Primary Con-

traction Case.

Input: A ring R, variables x = xl,..., x, an ideal I C R[x], and p E R.

Assumptions: R is a PID.

Output: {Qi,..., Qm } such that Qj C R[x] is primary, and I = n; Qi.

1. If I is zero-dimensional, then return its decomposition using Alogorithm ZPD

or Algorithm ZPDF.

2. Find i such that I n R[xi] is not zero-dimensional.



3. Let R' := R[x;], x' := Xx,..., x._, , •• ,,..., •,, X and I = IR'()[x']

4. Find r' E R - (p)R' such that

I = (I, r') n (Ic n R'[x]).

5. Let {QI,...,Q,} := PPD - O(R'(,); x'; IC; p).

6. Let Qý := Q. n R'[x'].

7. If (I, r') = (1), then return {Q;,...,Q}.

8. Let {Q' 1,..., Q} := PPD - O(R; x; (I, r'); p).

9. Return f{Q,..., Qc, Q',..., Q'•.

Comments. At the point where Algorithm PPD-O is ready to call Alogorithm ZPD

or Algorithm ZPDF, we have reduced the problem to a zero-dimensional ideal whose

contraction to R, the underlying PID, is (p)-primary.

Algorthm PPD: Primary Decomposition over a PID.

Input: A ring R, variables x = xl,..., x,, and an ideal I C R[x].

Assumptions: R is a PID.

Output: {Q1,..., Qm } such that Qi C R[x] is primary, and I = li Qi.

1. Find r Z 0 such that

I = (I, r) n (IR(o)[x] n R[x]).

2. Let {Q1,... k} := PPD - 0(R(o); x; IR(o)[x]; 0).

3. Let Qý := Qi in R[x].



4. Compute (I, r) nR = (r').

5. If r' is a unit, then return {Q',..., Qc}.

6. Factor r' = HpT', with pi irreducible.

7. For each i, let {Q,.. .,Q,} Q "= PPD - O(R; x; (I, p"'); Pi).

8. Return {Q1,. .. ,Q} A {Q,...,Qi,}.

Comments. The correctness of Step 1 follows from Proposition 2.19.
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