SYSTEM DYNAMICS ANALYSIS OF FINANCIAL FACTORS IN NUCLEAR POWER PLANT OPERATIONS

by
Michael Gerald Turek
Bachelor of Science in Mechanical Engineering
Massachusetts Institute of Technology, 1988
Submitted to the Department of Nuclear Engineering
in.Partial Fulfillment of the Requirements for the
Degree of
MASTER OF SCIENCE in Nuclear Engineering at the
Massachusetts Institute of Technology

May 1995
© Michael Gerald Turek 1995
All rights Reserved
The author hereby grants to MIT permission to reproduce and to distribute publicly copies of this thesis document in whole or in part.
Signature of Author

SYSTEM DYNAMICS ANALYSIS OF FINANCIAL FACTORS IN NUCLEAR POWER

 PLANT OPERATIONSby

Michael Gerald Turek
Submitted to the Department of Nuclear Engineering
on May 12, 1995 in partial fulfillment of the
requirements for the Degree of Master of Science in
Nuclear Engineering

Abstract

Nuclear Power Plants require continuous investment in many areas to maintain high levels of safety and performance. The supply of economic resources through revenues, bond markets, and share holders has considerable impact on almost every measure of performance and safety. How a utility budgets these resources among many competing objectives has just as much control over performance, safety and the future availability of resources. This thesis describes a process for constructing models of the financial influences on nuclear plant performance and safety using the System Dynamics method. This financial model incorporates effects on the utility's performance from budget allocations, Public Utility Commission rulings, Stock and Bond Markets, and competition. Combined with the Plant, Social, Political and Information sectors, (see Simon 1995, Eubanks 1994) this thesis demonstrates that a utility's neglect of such issues as perceived safety, media attention, and perceived plant performance can have long term negative effects upon the utility's ability to raise capital, successfully plead rate cases and compete in a deregulated market.

Thesis Supervisor: Dr. Kent Hansen
Title: Professor of Nuclear Engineering

ACKNOWLEDGMENTS

First of all, I must thank Professor Kent Hansen for developing such a fascinating research project. I have always been interested in the political and social variables which shape nuclear plant operations in the U.S. His workshops supporting the International Program for Enhanced Nuclear Power Plant Safety exposed me to some of the leading policy makers in the nuclear industry and the most current ideas in nuclear management. I am deeply indebted to all of the sponsors of the program but a few helped me in particular: Dr. Fred Mogolesko, Prof. John Carroll, Ms. Jennifer Kenney, and Mr. Dave Morey. All of their feedback and comments are appreciated.

Of course, Kent Hansen's and Dr. Malcolm Weiss' idea to start a consulting company around our model was the best motivator I could have this last year. The dream was exciting while it lasted and I deeply appreciate their ideas and discussions on how to start up a new company.

Mr. Keith Eubanks helped me focus on the most important steps early on in the model. He provided me direction and also some heated discussions on world affairs.

As far as actual model construction goes, Mr. Loren Simon provided the needed push to make this model a reality. Asking penetrating, skeptical questions, arguing over relations, and giving me that kick to make the model as clear and consistent as possible forced me to review all of my assumptions about the model. Luckily Loren provided more answers than questions. Thanks.

I would also like to thank Karen for her cheerful smile-usually, and her kind advice on everything from Macintosh's to plants-always, and Sangman for his advice on system dynamics and fellow job hunting lessons.

For their sage advice and motivational coaching, I owe particular gratitude to Professors Neil Todreas and Michael Golay.

Of course, I would not be completing my master's degree in nuclear engineering (or any engineering) if Grace had not inspired me to make every day count. Thank you for supporting my goals and even showing me the way sometimes. I won't let up now.

Finally, thank you Mom.

TABLE OF CONTENTS

1. INTRODUCTION 10
1.1 BACKGROUND 10
1.2 Utility Financial Issues. 13
1.2.1 Regulatory Costs 13
1.2.2 Capital Costs 13
1.2.3 Equity Costs 15
1.2.4 Control by Public Utility Commissions 16
1.3 METHOD OF SOLUTION 17
2. SYSTEM DYNAMICS 20
2.1 BACKGROUND 20
2.2 MODEL Structure 23
2.3 Model Validation. 27
3. NUCLEAR PLANT MODEL SECTOR 29
3.1 DESCRIPTION. 30
3.1.1 Equipment flows and Capacity Calculation. 30
3.1.2 Defect Flows and Defect Sources 31
3.1.3 Learning Curves. 32
3.1.4 Flows of Unscheduled Work Orders 32
3.1.5 Flow of Scheduled Work Orders 32
3.1.6 Maintenance Staff, Hiring Allocation and Overtime 33
3.1.7 Mechanics' time allocation. 33
3.1.8 Planners 34
3.1.9 Mandatory and Discretionary Inspections 34
3.1.10 Materials Specifications 34
3.1.11 Engineer Allocation 34
3.1.12 Management Allocation 34
3.1.13 Safety 34
3.2 Connections to Finance Model 35
3.3 Financial Limitations 35
4. SOCIAL/POLITICAL SECTORS 37
4.1 SoCIAL SECTOR 37
4.1.1 Overall 37
4.1.2 Local and National Public Concern 37
4.1.3 Media 38
4.1.4 Interest Groups 38
4.2 Political Sector 38
4.2.1 Nuclear Regulatory Commission. 38
4.2.2 Congress 38
4.2.3 SALP 39
4.3 Connections to Finance Model 39
4.4 Financial Limitations 39
5. INFORMATION SECTOR 40
5.1 DESCRIPTION. 40
5.1.1 Overall 40
5.1.2 Sources of Information 40
5.1.3 Utility Information Response 40
5.1.4 Interactions with NRC 40
5.1.5 Information Personnel Allocation 41
5.2 Connections to Finance Model 41
6. FINANCIAL MODEL 42
6.1 DEVELOPMENT 42
6.1.1 Defining the problem 42
6.1.2 Behavior over time graphs 43
6.1.3 Model structure 47
6.1.4 Causal Relationships 48
6.2 DESCRIPTIONS 51
6.2.1 Internal Finance 51
6.2.2 Public Utility Commission. 57
6.2.3 Budgeting and Allocation 61
6.2.4 Equity 61
6.2.5 Bond Rating Institutions. 66
6.2.6 Economic and Random Effects 67
6.2.7 Perceived Financial Safety. 68
6.2.8 Capital Investment and Debt. 69
7. FINANCIAL MODEL SIMULATIONS 71
7.1 Steady State and Accident-Baseline. 71
7.2 The Value of a Preventative Maintenance Program 75
7.2.1 Without Accident 76
7.2.2 With Accident. 78
7.3 Investing in Capital Equipment 82
8. POLICY IMPLICATIONS 88
8.1 Utility 88
8.2 REGULATORS 89
8.2.1 Public Utility Commission 89
8.2.2 Nuclear Regulatory Commission 90
8.3 Bond and Stock Rating Institutions. 90
8.4 Best Course of Action under Competition 90
9. SUMMARY AND CONCLUSIONS 92
10. REFERENCES 94

1. Introduction

Since 1957, Nuclear Power has produced electricity safely and efficiently in the United States. It has benefited millions of people with a cheap source of power during times of heightened concern over energy resource supplies and environmental pollution. Despite complex technical and managerial hurdles, nuclear power plants have continued to improve both their operational capacities and safety records.

The future safe operation of nuclear power plants (NPPs) depends heavily on utility owners' and investors' continued financial support of nuclear plants and investment in new plants as better technologies are discovered. However, investments are limited by budgets which must also pay for the enormous costs of financing the construction of nuclear power plants. These financing costs are then severely affected by public opinion, nuclear plant perceived safety, regulatory controls, and other utility financial indicators. Utility owners must consider these outside influences when budgeting nuclear plant spending to maintain their excellent safety record and continued improvement in nuclear plant operations.

1.1 Background

A recent poll by the Nuclear Energy Institute indicated that over 57\% of Americans favor the use of nuclear energy as one of the ways to provide electricity for the U.S. The Nuclear Regulatory Commission is in the process of licensing three new reactor designs. Despite the current glut of electric power, many large fossil plant will have to be decommissioned in the next ten years. Why have no new nuclear plants been ordered?(Bisconti, 1994)

The answer lies primarily in the financial uncertainty associated with nuclear power. The owner of a utility must take into account two factors when making any investment: the future return on the investment and the riskiness of the investment. As nuclear plant costs increase, the return in investment decreases relative to other investments, such as fossil plants. Furthermore, as the risk of losing the initial investment due to changing political moods or
another accident rises, the required return will have to increase even more to account for the elevated probability of losing the invested money.

Since the cost of building a nuclear plant is so high compared to the cost of operation, the utility owner must make a greater investment up front. This greater investment means more capital is at risk before the plant is even operated and more of the cost per kW - hr produced goes to repaying debt. Thus, a change in the riskiness of generating sufficient returns on investment affects the operation of a nuclear utility much more than financial changes at another business or even a non-nuclear utility.

For a nuclear plant to generate the minimum necessary return for a given change in financial riskiness, operations and maintenance (O\&M) costs must be reduced by a greater percentage than at a fossil plant. Deregulation will affect nuclear utilities more than fossils since they must reduce O\&M costs much more to see the same percentage reduction in total cost to the customer. Nuclear utilities may no longer be able to guarantee a return to their investors if electric utilities are deregulated.

Prior to the 1980s, even as construction and operations costs rose, Public Utility Commissions (PUCs) guaranteed the utility investor a return on their investment through rate proceedings and a pre-determined "fair rate of return." In return for this guaranteed return and a monopoly on local power distribution, utilities pledged service to all local residents. Thus, as long as the PUC decided that utility investments were "prudent," meaning they could defend new plants as being required by projected demand, the utility was reimbursed for its expenses. Even as regulatory burdens, public delays, and lawsuits caused the cost of plants to skyrocket, the electricity prices were adjusted so that the utility investors received satisfactory compensation.(Hahne,1983)

After the oil embargo and the rapid inflation of the 1970s, consumers refused to accept the rapid escalation in utility bills. Consumer activist groups gained widespread popularity as friends of the people verses the Goliath utilities. Investors no longer considered utility stocks as safe as Treasury Bills.

The environment has changed even more in the United States recently. Because of the high likelihood of competition, utilities will no longer be able to guarantee the sale of nuclear electricity. The lowest cost producer will underbid the other plants and sell it's electricity to consumers. Nuclear plant owners already realize that nuclear power costs must be slashed to
compete with fossil prices primarily because debt costs are so high. The question is how to cut costs and still maintain safe plants. (California Public Utilities Commission February, 1993)

Cutting costs has other unintended side effects. Of course, the effect on the possible safety of the plant is constantly cited as a reason not to deregulate nuclear plants. However, this contention is countered with the fact that the safest plants in the U.S. are also cheaper to operate. (Sponsor Meeting, April 1994)

This relation most likely does not work the other way around. A plant manager cannot just cut costs across the board and hope to achieve a safer plant. Side effects associated with cutting costs must be predicted and the fat must be trimmed carefully. One way to cut costs is to reduce preventative maintenance. The long-term side effects can possibly lead to increased corrective maintenance, reduced profits and diminished safety. Another way to reduce costs is to reduce manpower, training, information or goodwill spending. All of these reductions can cause long-term increases in costs. A third way to reduce costs is to settle for less than perfect grades on the SALP (Systematic Assessment of Licensee Performance) or INPO (Institute for Nuclear Power Operations) inspections. However, the utility must manage the negative public opinion and increased regulatory burden which can come from these lower scores-again possibly leading to higher costs.

All of these methods can result in increased risks associated with investing in nuclear utilities, or utility owner's investing in nuclear plants. Increased risks lead to increased financing costs. When financing costs increase, the utility has less money to spend on capital equipment, maintenance, and safety programs. Not only does decreased safety of nuclear reactors affect the financial outlook of nuclear investment, it can reduce the ability to make safety improvement investments to restore public and investor confidence.

Understanding the long term impacts of short-term cost cutting requires the manager to evaluate the connections between many variables both inside and outside the utility. Since these relations are very complex and often non-linear, carefully constructed models of these relations can aid the utility manager in determining the most important policy levers. He can then quantitatively evaluate various decisions.

1.2 Utility Financial Issues

Utilities deal with many financial issues which affect the safety and performance of their nuclear plants. Not only are financial resources limited and need to be budgeted by the utility managers, but outside agencies control the availability of funds needed by the utilities to operate their nuclear plants safely. These agencies include the state Public Utility Commission, Bond Raters, and Stock Market. Additionally, outside agencies impose costs on the utilities on top of normal operating costs which can reduce the amount of funds available. The costs include regulatory costs, lawsuit costs, and delay costs. The utility manager must take into account the effects operations decisions have on these outside agencies.

1.2.1 Regulatory Costs

Regulatory Costs have risen considerably since the economic peak of nuclear power construction in the early 1970s. Many nuclear managers attribute most of the increase in O\&M (Operations and Maintenance) costs since the 1970s to the constant need to fulfill NRC (Nuclear Regulatory Commission) requirements. An examination of the breakdown of costs reveals that many nuclear plants' costs have risen many fold even in cases where the regulatory burden has leveled out. Thus, nuclear managers need to investigate other reasons for high costs of building and operating.(Boston Edison 1994, Hansen et. al 1989)

We can not underestimate the burden regulations have had on the nuclear industry. The accounting of many regulation costs do not include rework costs, or personnel costs associated with work that would not have occurred if the regulation had not been imposed. An example is a design change late in the construction of a nuclear power plant. The additional costs imposed because of rework and schedule changes can be seven times the initial cost of the required design change.(Bespolka, et al., 1994)

Additionally, utilities have been continually imposing requirements on themselves beyond the regulations of the NRC. Just like a driver stopping his car ten feet short of a stop sign, just to be sure, these actions have imposed additional costs on utilities.(David Morey, 1994)

1.2.2 Capital Costs

Building a nuclear plant has historically cost, in 1994 dollars, between 500 million for the early plants to a high of over 10 billion for the TVA and Vogtle 2 plants. The huge debt
servicing requirements to build a nuclear plant require the utility to charge rate payers from 3-4 times as much for loan payments than for Operations and Maintenance.

It behooves the utility to control these costs by whatever means are necessary. For example, during the low interest rate period of 1994, Boston Edison refinanced their entire bond and loan structure to take advantage of the lower financing rates (Boston Edison, 1995). Although this restructuring cost millions of dollars, the savings to Boston Edison involved tens or even hundreds of millions of dollars over the lives of these loans.

Refinancing loans is well-known practice. However, the effect of public outcry, perceived safety by regulatory and financial institutions, and investors on bond ratings and bond prices can also lead to costs in the tens of millions of dollars over a period of time. These costs, instead of appearing on the balance sheet as outflows of income, are reflected in the share price of the utility, interest rates it must pay and bond prices it can charge. Again, since these costs are about 75% of the costs involved in running a utility, they can be more important than the cost of labor, parts or additional regulatory requirements.

One of the major reasons for the escalating costs of nuclear power plants during construction was the cost of interest during the delays. Each day a billion dollars sits waiting to be paid for, over $\$ 280,000$ must be paid out in interest costs with a 10% interest rate. With a one year delay (many utilities' projects were delayed for many years such as Seabrook and Shoreham plants) compounded interest alone amounts to over $\$ 105$ million. Since no principle is paid on this debt, because of the delay in construction, the debt continues to accumulate. In addition, utility interest rates continue to climb for the financing of new debt as well as debt taken out to pay for the interest charges which the banks usually require the utility to pay periodically.

Of course many other factors were involved in the explosive growth of nuclear plant construction cost such as rework, labor prices, inflation, inventory problems, lawsuits and several other production factors. Even without these factors, with just a delay alone of a few years, a utility can end up doubling or tripling the debt servicing costs. (Bespolka et. al., 1994)

After construction was complete, the resulting price of selling electricity increased to pay for this massive debt accumulated over greater than ten years. Since this cost controls the price the utility must charge so heavily, the factors which change these costs over time must be analyzed to see the their multiplicative effects.

For example, if society perceives nuclear plants as unsafe, so will investors. If these investors believe that their investment in nuclear utilities is more risky, the return on their investment the utility must pay will be higher, and the bond rating institution's rating will be lower-which translates into higher interest rates. Even though the interest rate allegedly only affects new debt, Boston Edison's consolidation of debt demonstrated the amount of money saved if the utility can lower its interest rate.

1.2.3 Equity Costs

Two additional costs, although less obvious than debt costs, is the cost of raising new capital and maintaining share price. When the utility's share price drops, the utility must sell more shares to raise additional capital, thus dropping the share price even more. To counter the drop in share price, the utility must raise dividends or raise the cash through debt instead. The inability to raise equity translates into dividend costs, or loss of value to the utility reflected in the stock price.(Boston Edison, 1994)

Unfortunately, since the price of a utility's stock does not represent a direct payout by the utility the day it occurs, this effect is often just referred to as "paper losses." However, these costs are real; the utility must account for them when they occur. These losses are directly reflected in the current stock price. The potential costs to the utility of having a lower stock price may be even larger than the change in stock price because of additional interest charges or smoothing of dividend forecasting which investors calculate.

Utilities pay out dividends regularly to maintain a high share price in a zero or very low growth environment. Investors perform a Net Present Value calculation of projected dividend payments over their time horizon to determine the current value of holding this stock. The stock price is then modified by estimated growth and relative risk of the stock compared to zero risk investment rate or return. As public outcry, perceived risk of a reactor, regulatory burdens or other factors which affect investment risk increase, the utility must increase dividend payments or face a lower stock price.(Brealey and Myers, 1988)

Since dividends are governed by the amount of profit the utility makes, the problems which affect investment risk occur utilities' profits are also dropping. So, the utility can easily enter into an "equity slide." This slide is similar to the debt spiral.

1.2.4 Control by Public Utility Commissions

In return for being a guaranteed provider, utilities are granted a local monopoly on production and distribution of electricity and a guaranteed "fair rate of return" to its investors. Thus, as the return to investors drops, the utility can raise the price of electricity automatically so that they can maintain the rate of return provided by the PUC. This process is automatic in between rate proceedings but is based on the PUC's perceived prudence of the utility. The return on investment they allow the utility can be changed. In fact, the same factors which affect the riskiness of investing in a utility also affect the perceived prudence of the utility.(Hahne and Aliff, 1983)

The reason for utilities' continued survival even in the midst of debt crises is due to the PUC's guaranteed minimum return on equity. If a utility's bond rating drops sufficiently, the utility cries to the PUC and the PUC generally raises the allowed return on equity so that the utility can raise the price of electricity further.

The feedback from the public when the utility raises the price of electricity causes the PUC to reduce the allowed return on equity so this escalation must stop somewhere. In reality, a dynamic compromise is reached where the utility pleads, the PUC reacts, the public complains, the PUC reacts and so on until an equitable rate is reached. It is not a harmonious process.

One of the key problems after the inflationary period of the 1970's was the utilities' rapidly escalating prices The public was not willing to accept additional increases in electric bills. Public activism resulted in Public Utility Commissions' reducing the "fair rate of return" to utilities.

The dynamics of the PUC, public interest groups, and utility owners are very complex. They involve many "soft" relations-political relations related to public perceptions, the political affiliations of the PUC members, attitudes of the utility owners towards negotiation with hostile opponents, and the power of public activists who often distrust the utilities and PUCs. The result of this complex system is much confusion and most often a misunderstanding of how the process affects the ultimate rate-payer.

An excellent example is the one that occurred in many states during the 1980's, especially in states with more activist PUCs. Citizen activists decried the huge profits the utilities were making in dollar figures and the huge costs associated with building new power
plants. The activists cited surprising amounts of waste in spending by fat utilities, and multimillion dollar expenses to contracted firms since the utilities were reimbursed automatically for expenses related to construction.

Although the examples of waste and overspending were well known, the PUC was powerless by law to control how the utility spent its money. Thus, a simple cut on Return or Rate Base (which has the same effect as cutting Return on Equity) was enacted by the PUC. The result, instead of the cuts in waste the activist groups and rate payers desired, was an increase in borrowing by the utilities. The final result was a requirement to raise the Return on Equity a few years later to pay the increased financing costs. While it is true that that some utilities cut costs significantly in other areas, financing costs often increased, thus hurting the rate payer. (CA PUC, 1994)

1.3 Method of Solution

The problems the utility manager faces are primarily relational. Most cause and effect structures outside the utility plant are undocumented and often completely ignored by utility managers. However, long term profitability or even survival depends on attention to these problems.

The death of the nuclear industry, if it occurs, will not be due to technical problems. It will be due to political, social and regulatory problems. It is these problems which the nuclear manager is least equipped to face. System Dynamics provides the interrelation tool to measure the impact and provide 'what if' scenarios for decisions he must make in light of the current social/political problems nuclear power faces.(Hansen et. al., 1995)

A System Dynamics model of the nuclear industry's external factors and a nuclear plant has been developed to examine the interrelationships among these factors. The model has five different sectors as shown in Figure 1.3-1. The model uses over 1200 variables to analyze the complex relations involved in plant maintenance, financial planning, government, society and information sharing among utilities.

Each of these sectors was built individually and then connected to the other sectors. They can be run and tested individually. Once connected to the rest of the model, nonlinear
feedbacks and delayed responses quickly make the model difficult to analyze by intuition. The experimental method running different scenarios then provides an excellent tool to learn how this system operates.

Figure 1.3-1 Overview of System Dynamics model of nuclear industry environment. It includes Utility Plant, Financial, Social, Governmental, and Information Sectors.

Additionally, System Dynamics provides dynamic modeling. Most human thinking is static. When reviewing the descriptions, it behooves one to think of the effects occurring over time. Time delays and delayed feedbacks are present throughout the model. One obvious example is spending on information. Often, this spending is viewed as wasted money. Over the first few months, the only results of spending are negative as scarce resources are diverted. However, over a number of years, accumulated learning improves plant performance,
especially in the case where an accident occurs at another utility. (Forrester 1961, Simon 1995))

The model has been run to analyze many strategic decisions which nuclear plant managers face. Several counter-intuitive results have been found, and reasons for poorly understood processes have been examined. For example, in the case of a nuclear accident at another utility, the model suggests that a utility might want to cut back on preventative maintenance shortly after the accident to free up short-term resources to deal with the onslaught of investigations and public scrutiny. This finding and other counter-intuitive results show the power of System Dynamics to aid in management forecasting.

In the case of PUC proceedings, System Dynamics consistently models the long-term effects of the PUC, activist, and utility dynamics. Most other components of the utility financial picture: the balance sheet, stock pricing model, debt costs, and internal costs have been previously modeled using other methods. The intergroup relationships of the fight for return on equity are best represented with a system dynamics strategy. Since many of the mental models of the rate case procedure are 20 years old or more, most financial experts concentrate on presenting the correct utility cost requirements and cost of capital requirements to the commission and ignore all together the long term dynamics of the social and regulatory stakeholders.

2. System Dynamics

"Industrial [System] dynamics is the study of the information-feedback characteristics of industrial activity to how organizational structure, amplification (in policies), and time delays (in decision and actions) interact to influence the success of the enterprise."

Jay Forrester (1961, p. 13)

2.1 Background

Jay Forrester, an electrical engineer, was an expert in control system theory and feedback. He and others decided to use control theory to analyze industrial systems in the late 1950's. Since then system dynamics has been used to analyze industrial, economic, social and environmental systems of all kinds. System dynamics has been put to use wherever there existed complex feedback. (Eubanks 1995, Forrester 1961)

The system dynamics approach is based on the following framework taken from Jay Forester's book:

- Decisions in management and economics take place in a framework that belongs to the general class known a information-feedback systems.
- Our intuitive judgment is unreliable about how these systems will change with time, even when we have good knowledge of the individual parts of the system.
- Model experimentation...can show the ways in which the known separate system parts can interact.
- Enough information is available for this experimental mode-building approach without great expense and delay in further data gathering
- The "mechanistic" view of decision making implied by such model experiments is true enough so that the main structure of controlling policies can be represented.
- Our industrial systems are constructed internally in such a way that they create for themselves many of the troubles that are often attributed to outside and independent causes.
- Policy and structure changes are feasible that will produce substantial improvement in industrial and economic behavior...(Forrester, p. 14, 1961)

Within this framework system dynamics develops a simulation method which managers and policy makers can use to conduct experiments with different strategic decisions. Analytic solutions of complex, non-linear, human systems are not possible. Through model building and experimentation, certain optimization schemes can be derived in a fraction of the time it takes to experiment in the real world. For example, the nuclear utility model can run a ten year
simulation comparing three different strategic decisions in less than 30 minutes on a Macintosh Quadra 800 Computer. (Eubanks 1995, Hansen et. al 1994))

Many uses for system dynamics modeling have been found during its 30 year history. Some famous examples include the Industrial Dynamics Model, the world economics model, and more recently the "Boom and Bust" model. Additionally, many consulting firms and companies use system dynamics as a primary management tool. Organizations using system dynamics include: Pugh Roberts, Exxon; Motorola, the Department of Energy and Ford.(Senge 1994, Sterman 1991)

One powerful use for System Dynamics is to overcome prejudices and force consistency when trying to deal with a problem in a human organization. In the Boom and Bust model developed during the system dynamics class, acute shortages of the product appear as it becomes popular. Marketing personnel are often ill-prepared to enact one counter intuitive solution to short supply: raising the price of the product. Not only do price increases reduce demand but they supply sorely needed capital for the company to expand production. A prejudice against hiking prices much above marginal cost prevents most business owners from raising prices. Then, he finds himself with chronically short production output while competitors are rapidly entering the field.(Sterman, 1991)

With respect to a nuclear utility plant, owners need a method to maximize long-term revenues in light of social fears, regulatory burdens, changing PUCs, production pressures to reduce scheduled maintenance, and competition. Without including all of the time delays and feedbacks involved, a utility manager will not be effectively using all of the resources available and operating the correct policy levers to optimize decisions. Like the inventory problem described by Jay Forrester, the manager can become short-sighted and over react to current problems if he does not account for time delays. In the case of the inventory model, large cyclic inventory over-shoots occur because of production delays. If one adds to this problem a manager's overreacting to current events, the time delayed effects can be even larger. (Forrester, 1961 pp. 21-29)

Essentially, utility managers need a tool to provide "what-if" scenarios to better manage their spending in light of the long-term feedbacks which are peculiar to nuclear energy. Most of the relations between stakeholders and effects on nuclear plants are highly non-linear and the connections are very complex. Thinking about three or four relations at once is next to
impossible; for a thousand variable simplified model of the a nuclear plant with the current social/political environment, thorough mental analysis is impossible.

The building of System Dynamics models is very similar to building computer models of physical systems. Just as one models a car as mass/spring/damper system, human systems can be approximately modeled. Anything that accumulates over time such as paperwork, public opinion, regulations etc., can be modeled as stocks or energy storage devices such as the height above the ground of a car or the mass of water in a bathtub.

When feedback occurs to effect a change in a stock, this effect is modeled in System Dynamics as an auxiliary. In physical systems auxiliaries are usually energy translational devices such as springs. The spring imparts a force on a car which results in an acceleration. Acceleration flows into velocity and velocity flows into car height. An example of these auxiliaries in the utility model would be the effect of electricity price on customer satisfaction.

The damping effects, or delays in increases of stocks are modeled as flow restrictions just as energy dissipation devices are modeled in physical systems. These dampers delay the accumulation of stocks; they are analogous to a shock absorber reducing motion of a car or the nozzle on a shower. The damper of a car delays the effect the road surface has on the car height by counteracting the acceleration force of the spring. Similarly, in the model, the time to convene PUC hearings delays the impact of needed revenue by the utility on an allowed return on equity.

Figure 2.1-1 The simplified model of the car as a mass/spring/dashpot system.

2.2 Model Structure

The development of a model for a social/political system is similar to the development of the model for a physical system. However, since social/political systems are often vastly more complex with many difficult to define variables, the effort at modeling must be more carefully executed than physical models. However, the benefits of modeling social/political systems is that, just as one can tune the shock absorber and spring of a car, one can also tune social/political systems.

Understandably, since many of the variables involved in social/political systems are poorly defined or inaccurately measured, the tuning will be much more approximate than the tuning of a car. However, the modeling process can provide more insight into the processes of the human system and the dynamics of the interactions than can be gained through other investigatory processes.

Returning to the case of the car to demonstrate how System Dynamics models physical systems, the method for developing a model will be detailed. The steps one normally follows are(Goodman and Karash 1995, Richardson and Pugh 1981)

1. Define the problem
2. Draw graphs of behavior over time (current and desired)
3. Focus the issue to help determine the most important path to solution
4. Based on the Focusing statement develop the structure of the problem
5. Develop and present causal loop diagrams to the stakeholders
6. Develop Quantitative Relations
7. Connect the relations in the entire model
8. Present graphs over time of model dynamics to stakeholders
9. Validate model

Define the problem. In the case of the car, this involves determining that we would like to have a smooth ride over a bumpy road surface. We do not want to feel every bump but we also do not want to gyrate forever after hitting a pothole.

The graph of a step input in road height followed by various car responses is shown in Figure 2.2-1. The preferred response is the small overshoot and return to normal known as critical damping. In order to model the system one needs to focus the development further.

Figure 2.2-1 Behavior over time graphs for the car. The top represents overdamping, the middle underdamping and the bottom critical damping.

The critical issue for this simple system is determining which variable can be adjusted to achieve the critical ride. Assuming the mass of the vehicle is constant, only the characteristics of the spring and shock absorber can be changed. Thus, it is these variables which we will explicitly model.

The relations between the variables can now be demonstrated in a causal loop diagram with the concerned variable, Car Height at the top of the loop. See Figure 2.2-2. Car height is compared to Road Height. The difference from initial values determines the spring force. At the same time Car Velocity is compared to Road Velocity. This difference translates into a counter-force by the shock absorber which mitigates the spring force on acceleration. Acceleration translates to car velocity and then to car height.

The negative sign in the middle of the loop shows that this system is self regulating or a negative feed back system. It gradually decays to steady state. The time it takes to reach steady state is obviously dependent on the damper and spring constants.

The next step is to model the system and quantitatively determine relations between the variables. In this case, the issue is fairly easy because this system has been modeled before.

The spring force is based on the difference in heights; damper force is based on the difference in velocities; and the acceleration is based on the sum of the forces divided by the car's mass. In human based systems the modeling of these variables is much more difficult.

Figure 2.2-1. System Dynamics causal loop description of a physical system. In this case, a car with a spring and shock absorber. The desired effect is shown in the inset graphs.

Translating the causal loop diagram into a Stella® model involves taking these quantitative relations and attaching them. Since the relations between the stocks such as velocity and height are already known, they can easily be modeled. The entire model is shown in Figure 2.2-3.

Figure 2.2-2 System Dynamics Model of a Car. It includes the mass of the car, spring and shock absorber.

Figure 2.2-3 A graph of relative road height and relative car height over time. This car needs new shock absorbers, which would damp the vibrations more. These same effects are also evident in human systems.

By inspection, the car in Figure 2.2-4 is underdamped. In the case of the simplified car example, the differential equations can easily be solved to reveal the necessary damping and spring constants to achieve the desired ride. However, when dealing with non-linear human systems such as a nuclear utility and the politics which surround it, the many ordered differential equations are impossible to solve analytically. The methodical approach System Dynamics uses in this case provides insight into the system that analytical equation solving cannot.

Model validation also takes place by inspection for the car. In the case of management systems several other methods of validation must be employed. The example of the car demonstrates the compatibility of System Dynamics with physical systems.

2.3 Model Validation

The methods for model validation in System Dynamics can be very different from physical systems. However, the essential elements of the scientific method are still used. In
the model of the car, the experimental laboratory is a ride on a road to test whether the model has predicted the performance of the car.

For system dynamics models, validation is much more difficult because of the complex, non-linear, and unpredictable nature of human systems. A system dynamics model can predict simplified performance only within the confines of the model parameters. The car model does not attempt to predict how the car will react to an icy road; for the same reason the inventory model does not attempt to predict inventories if the product is made illegal, or a new product comes to market.

Several methods are currently used to validate system dynamics models. The methods that are particular to the nuclear utility model include: Structure verification test, parameterverification test, boundary-adequacy test, and dimensional consistency test. Additionally, a test which includes all of the above tests is "transferring confidence to persons not directly involved in model construction." (Forrester and Senge p. 209, 1980)

The structure verification test, made easier with STELLA®, is performed two ways. The first is comparing the model relations through causal loops and STELLA® diagrams to literature. The second is presenting the relations to policy stakeholders and experienced system dynamics modelers. The structure test is probably the most important test since all other tests follow from it.

The dimensional consistency test is part of turning the structure into a quantitative model. It is performed by the model builders while developing equations to relate the variables contained within the model.

The parameter-verification test compares the model results with historical data. This test, the experimental validation of the model, is the test which most closely matches tests for physical systems. However, this test must be conducted understanding the limitations of the model.

Presenting the model to experienced managers and policy makers during each step of model verification is crucial. Interviews with these policy makers also satisfies the boundaryadequacy test to ensure during each step of model building the size of the model is adequate to answer the intended policy questions.(Forrester and Senge, 1980)

3. Nuclear Plant Model Sector

The nuclear plant model develops all of the processes inside the nuclear plant that control the performance and safety of the nuclear plant. Nuclear power plants can be broken into subsectors such as personnel allocation, budgeting, and maintenance. Individually these subsectors control the flows of workers, money or materials and broken parts. When connected, these subsectors then show the dynamic operation of a nuclear power plant with respect to capacity, safety, and revenue generation. (Carrol et. al. 1993, Sterman et. al, 1992)

The following subsectors of a nuclear power plant are represented in the nuclear plant sector.

- 1. On-line capacity calculations

2. Equipment Flows
3. Defect Flows
4. Defect Sources
5. Learning \& Training
6. Scheduled Work Flows
7. Unscheduled Work Flows
8. Safety and Radiation Risk
9. Planning
10. Mechanics Time Allocation
11. Maintenance Staff Hiring
12. Engineer Hiring \& Allocation
13. Manager Hiring \& Allocation
14. Mandatory and Discretionary Inspections
15. Materials Specifications \& Stores Inventory

Since this model is much simpler than an actual nuclear power plant, several factors have been aggregated in each sector. For example, engineers have been divided only into maintenance, planning, design and information categories. The maintenance engineer allocation system does not need to be further disaggregated to achieve the desired level of accuracy since the primary goal of the model is to estimate overall capacity. The flows of broken equipment through the maintenance processes are similar across functions. So, they can be aggregated into average values.

3.1 Description

The nuclear plant subsector was originally a model built by DuPont to determine the reasons for low capacity factors at chemical plants. DuPont used the plant model to determine the value of preventative maintenance (PM) and to test methods for gradually implementing a successful preventative maintenance program (PMP) with limited resources. We have modified the model extensively to incorporate many of the attributes particular to nuclear plants. The subsectors are described below.(Sterman et. al, 1992)

3.1.1 Equipment flows and Capacity Calculation

The equipment flow subsector controls the total pieces of equipment either fully functional, broken down, or taken down for PM. The equipment flows and capacity calculation subsector is shown in figure 3.1.1-1. The flows among the three states is controlled by the other sub-sectors within the plant such as equipment repair rate, inspection rate, and breakdown rate.

The capacity calculation is a graphical function based on the percentage of equipment broken down or taken down by maintenance personnel. If equipment is taken down, it is expected that some prior planning has occurred so that it does not affect capacity as severely. The chance that broken equipment will cause a forced outage is accomplished with a probability function. As more equipment breaks the probability of one of those pieces causing a forced outage increases. Periodic outages also effect capacity in this subsector.

Equipment
 Flows

Figure 3.1-1A STELLA® representation of equipment flows at the nuclear plant.

Equipment is either Fully Functional, Broken down, or Tagged for PM. Flows between these three states represent equipment breaking, being fixed, being taken down for inspection, breaking during PM inspection, or being sent to the PM system while broken down.

3.1.2 Defect Flows and Defect Sources

The defect flows subsector generates defects, produces breakdowns, and eliminates defects through repair. Defects are generated several ways:

1. Normal Operation
2. Worker Repairs
3. Defective Parts
4. Breakdowns of other equipment

The defects then stay in the equipment until they are identified or cause a breakdown. If they are not identified through inspections, a defect will cause a piece of equipment to breakdown in an average of twelve weeks. Likewise, even after mechanics identify a defect, it
must be repaired through scheduled maintenance. Otherwise, it will eventually cause the equipment to breakdown as well.

Defect generation is reduced as plant operators learn how to reduce stress on components, and wear on components declines due to break-in. As mechanics accumulate repair hours, they make fewer mistakes. As personnel inspect more equipment, their inspection skills improve. The model does not yet include severe end of life characteristics of the bathtub effect since it runs for only ten years.

3.1.3 Learning Curves

Learning curves are also included which reflect the reduction in defect generation over initial plant life. Information and training impact the plant sector most through this sub-sector. As training hours increase, the learning curves improve. As the utility invests more in information the learning curves also improve. Learning curves are also generated for forced outage frequency due to operator errors, event report rate and parts inspections.

3.1.4 Flows of Unscheduled Work Orders

This sub-sector accounts for repairs of all broken equipment. Once equipment breaks. its repair is simplified since it does not need to be inspected or scheduled first. However, since worker productivity is lower when fixing broken equipment, equipment stays down longer. Also, since equipment cannot be taken down at desirable time, such as during a periodic outages and ordering parts consumes more time, each down piece of equipment has a greater impact on plant capacity.

The flows of the sub-sector include work order creation, engineer and manager review, material acquisition, partially functional equipment take down (a percentage of broken equipment), and work in progress. Once, the broken equipment flows out of "Work in Progress," it is considered fully functional. However, new defects could have been introduced during the repair process.

3.1.5 Flow of Scheduled Work Orders

This sub-sector controls PM repairs. Inspections determine necessary repairs. They are then scheduled, reviewed, and performed. Meanwhile, plans are created and materials are acquired for the job. The whole process is more efficient since the work is scheduled in advance. Additionally, workers introduce fewer new defects into the equipment and the taken down equipment has reduced effect on plant capacity.

The goal of the utility is to eventually place all equipment in the PM program. However, one of the balancing acts in the model is allocating workers and engineers between the unscheduled and scheduled maintenance programs. If managers allocate too many people to PM then the broken equipment will not be repaired.

3.1.6 Maintenance Staff, Hiring Allocation and Overtime

This subsector is the heart of personnel allocation. The designs of Manager and Engineer allocations are similar; only the functions of the personnel are different. Based on the budgeted allocation of resources, various fractions of maintenance workers either work on maintenance, perform inspections, train or plan work orders. Other overhead type jobs are assumed to be an equal part of all the above jobs. If there is a shortage of workers, overtime results. As overtime increases, hiring increases. However, there are time delays and feedbacks that affect worker productivity. As overtime increases, worker productivity drops substantially. Alternately, if workers are under-utilized, their productivity will drop to fill the available time. Thus, it is difficult to see the fat without layoffs and the ensuing consequences, good or bad.

3.1.7 Mechanics' time allocation

The division of mechanics' time between scheduled and unscheduled maintenance is assumed to occur automatically. The way the budget allocator controls an increase in preventative maintenance is by increasing inspections. The mechanics react to the incoming workload each week by assigning the required number of mechanics to the work. If there are too few mechanics, broken equipment receives priority. However, they will attempt to do all the required work, based on the backlog, by increasing overtime.

The number of backlogged work-orders controls the capacity of the plant. This backlog represents the pieces of equipment that were not fixed at the end of the week. The pieces that are still broken reduce capacity.

Training effects a reduction in time the mechanics spend on actual maintenance. It is a good example of a delayed benefit.

3.1.8 Planners

The delay in performing a work order often comes down to time spent waiting for a correct plan for the job. If a plan for a job already exists in the library, the job is expedited. Otherwise, the worker must wait for a plan to be written and reviewed.

3.1.9 Mandatory and Discretionary Inspections

In this sub-sector the budget allocator has the greatest direct impact on plant performance. The budget allocator can control the of discretionary inspections by assigning more mechanics. The Nuclear Regulatory Commission (NRC) can also effect more scheduled maintenance through mandatory inspections. As mandatory or discretionary inspections increase, the number of defects found increases and the number of scheduled work orders increases.

3.1.10 Materials Specifications

To work a job a mechanic needs repair parts. The budget allocator must allocate some money to maintaining a proper inventory. They can also invest money in new capital equipment or improve specifications of existing equipment and repair parts in this sub-sector. Improving parts quality specifications reduces the number of defects per part. Buying all new equipment reduces the average age of equipment in the plant, reducing operations defects in that equipment.

3.1.11 Engineer Allocation

The model allocates engineers similarly to Mechanics. They are hired and laid-off. They are allocated to maintenance, planning, design, operations, and information. They also work overtime with lower productivity. The budget allocator can allocate engineers among the different functions.

3.1.12 Management Allocation

Managers are allocated similarly to Engineers. They are also hired and laid-off. They are just more expensive and there are fewer. Their functions are finance, maintenance, operations, information, and other.

3.1.13 Safety

The Safety sector includes calculations of Man-Rem, Forced Outage Frequency and Estimated Core Melt Frequency. The Man-Rem estimate is determined by multiplying the
amount of maintenance done by an average Rem per work order. The Forced Outage frequency is a probabilistic calculation based on the current average forced outage frequency for nuclear plants multiplied by a ratio of broken equipment and operator astuteness. Operator astuteness is determined primarily by training and information.

The Estimated Core Melt Frequency is determined by multiplying the current base core melt frequency $\{1 /(20,000$ Reactor-Years) $\}$ by operator astuteness, broken equipment, and forced outage frequency factors. This calculation is not rigorous, but it provides a consistent simplified effect on overall core safety by the model.

3.2 Connections to Finance Model

There are numerous ways in which the financial operations of a utility impact the nuclear operations. Among these, the most important are through:

1. Personnel Hiring and Allocation
2. Capital Investment
3. Parts and Supplies Purchases
4. Training Costs
5. Inspection and Preventative Maintenance Program Costs
6. ALARA (Person-Rem Reduction Program) Costs

Each of these operations or programs require investment by the utility to perform the needed tasks. The utility decides how much money to spend on these programs by budgeting the available money gained through revenues to each area. Any shortfalls are made up through incurring debt, selling equity or by possible reimbursement through a rate hike. In any case, the utility must decide how and when to spend the available resources to best support each of these areas.

3.3 Financial Limitations

Many financial constraints are placed on a utility. Especially as competition approaches, wise budgeting of money is required to best use the generated revenues to maintain a high capacity and safety rating next month as well as ten years from now. The model prescribes the number of maintenance workers available to do corrective and preventative maintenance based on how much of the budget is left after other required outlays. If not enough revenues are available the model gives the user the option of cutting everything evenly, or choosing which sectors to reduce spending on. One can hurriedly layoff a few managers and save much money in the short run, but cause long work delays, or perhaps cut
back on training and layoff a few maintenance workers, but cause an increased defect generation rate.

The power of the model is in this role playing that the user can perform to see 'what if.' "What if I change the amount of information sharing, cut dividends, and increase inspections." "What if I spend more money on reducing regulations, parts quality and engineer hiring" Each of these scenarios can be played out in about ten minutes.

4. Social/Political Sectors

Most of the social and political model was developed by Keith Eubanks who also connected it to the plant model. The Social and Political sectors represent much of the environment outside the nuclear plant. Understanding these sectors is crucial to optimizing the operation of a nuclear power plant. (Eubanks, 1994)

4.1 Social Sector

4.1.1 Overall

The Social Sector includes the local public, the national public, the media, and interest groups. Each sub-sector provides a positive feedback on the other sectors leading to rapid saturation during the simulated accident. The social model represents the agitation which follows a TMI type accident and the long term attention to operations, forced outages, SALP scores, and government feedback which the social and political stakeholders experience.

The Political Sector concerns the actions of the national government. It includes the NRC, Congress, and SALP Ratings. The public influences the Congress to pass laws and influence the NRC. The NRC responds by conducting investigations and developing new regulations. These new regulations then appease the public and interest groups somewhat who then reduce their influence on Congress.(Eubanks, 1994)

4.1.2 Local and National Public Concern

Local Public Concern represents the public in the community served by the nuclear power plant. Local public concern is capable of being much more variable than national public concern depending on the operation history of the reactor, local goodwill efforts, and local politics. The local public has a direct effect on the Public Utility Commission (PUC), local media, stock prices, and interest groups.

National Public Concern represents the public at large. Although, its concern does not change as rapidly, its effect on the local utility can be greater financially through more inspections, regulations, interest group lawsuits and media activity than other financial factors. Although local concern is heavily influenced by national concern, the effect of an accident at another plant on the local nuclear plant is not as great if the local utility has performed well.

4.1.3 Media

The media monitor interest group activity, government reaction, utility operations and public concern. Based on these measures, the media produce reports and follow-up stories that influence the above groups again. This effect can cause a strong positive feedback.

4.1.4 Interest Groups

Anti-nuclear interest groups are constantly at work monitoring utility operation, government actions and public concern. They need funding, however. As public interest grows, more people contribute to interest groups. These contributions improve their ability to wage lawsuits, demonstrations and lobbying efforts. These groups also have considerable influence on some PUCs.

4.2 Political Sector

4.2.1 Nuclear Regulatory Commission

The NRC controls inspections, regulation and much of the information transmission between utilities. After an accident the NRC steps up investigations considerably, researches and produces regulations. The effect on the utility is increased mandatory inspections and workload in the information sector. This sector provides regulators with an opportunity to gauge effects of new regulations and inspections. Thus, they can determine the best path of action to derive the intended results-increase safety and capacity.

The utility can also influence the NRC by investing in abandoning regulations, conducting its own inspections or improving its SALP scores. The model provides a good method for testing the return on investment in each of these areas.

4.2.2 Congress

Congress is influenced by public concern, media, interest group lobbying, utility lobbying and NRC response. As public concern increases, the number of concerned lawmakers increases. More concerned lawmakers then compel the NRC to conduct more investigations and write more regulations.

The actions of the NRC work to assuage congress, the media, the public and the interest groups. Congressional concern also has a natural decay factor as other issues enter the political field.

4.2.3 SALP

Systematic Assessment of Licensee Performance sub-sector represent the calculation of the utility's SALP score based on Engineering, Maintenance, Operations, and Support. The engineering score is based on engineer workload, and quality design specifications achieved for parts. The maintenance score is determined by mechanics workload and broken equipment. Operations is based on training, forced outage frequency and operator astuteness. Support is based on Manager workload. The model does not calculate all of the factors that enter into SALP scores such as operator drill performance, security, or safety analysis performance. These additional factors are assumed to average out and have the effect of reducing the range of the SALP somewhat.

4.3 Connections to Finance Model

The utility can spend money on the social/political models directly by enhancing local goodwill, lobbying Congress, attempting to reduce regulation, or spending more on SALP preparation. However, since perceived safety of the reactor and reactor operations have such a significant impact on the social/political sectors, every dollar spent on those two factors in the plant and information sectors improves the performance of the plant in the eyes of the public, media, interest groups, congress and the NRC.

4.4 Financial Limitations

Again, the financial limitations to the utility in influencing the public and other social stakeholders are strong especially with coming competition. With fewer dollars to spend, the utility must ensure that it is maximizing the return on each investment. The model demonstrates that some money spent on goodwill is required to maintain a low local public concern,. However , the best way to achieve favorable public attention is through good operations.

5. Information Sector

5.1 Description

5.1.1 Overall

The information sector of the model is primarily concerned with the effect of knowledge sharing activities and associations. Essentially, the information sector helps to reduce plant problems and breakdowns through procedure revisions, training, and plant modifications. The information sector was developed by Loren Simon independently and then connected to the rest of the nuclear utility model (Simon, 1995)

5.1.2 Sources of Information

Within the model, the main source of information is minor events, site alerts and emergencies at other nuclear power plants. These alert the plant to other problems that may not be apparent in ours. With the model the main source of problem processing is INPO, because in our opinion is it the most influential organization for information exchange within the industry today. Problem and research reports can also come from the NRC, WANO, EPRI and vendors.

5.1.3 Utility Information Response

The utility screens, evaluates and performs corrective actions for the newly found problems to reduces its own problem occurrence rate. This reduction helps to improve plant performance significantly.

5.1.4 Interactions with NRC

One other important aspect of the information sector is the interactions with the NRC for new regulations. The utility will screen and perform technical analyses on the regulation, which allows quicker implementation of the required corrective actions in the regulation. In addition to this, the utility can work with NEI to abandon regulations in development at the NRC. This interaction uses a significant amount of engineers to create detailed analyses for NEI and the NRC. This use of engineers can lead to short term losses in plant performance, because other work may not be getting done. However, it can lead to long term gains because regulations are not added to the NRC books.

5.1.5 Information Personnel Allocation

The information sector is implemented by allocating managers and engineers to work within it. As with the majority of the model, allocation of people for information is a key aspect. Information is limited in its ability to improve plant performance, so the correct allocation must be made between information usage and engineer planning and reviewing of maintenance work in order to optimize plant performance. The model can show that correct allocation of the professional staff can improve performance, without having to hire extra engineers or managers.

5.2 Connections to Finance Model

The most important connections from the finance model to the information model is through allocation of safety engineers to work on gathering, sharing, evaluating and training on information from utilities, INPO, WANO, NEI and the NRC. If a utility budgets more money to using information then more will be processes by the utility, more and better training will occur and workers' and operators' learning curves will improve, meaning they will reduce their defect or event production rate more quickly.

6. Financial Model

The financial model develops the relations which lead to limiting utility resources. In order to correctly determine how public opposition, PUC decisions, or increased regulation affect the utility's ability to budget spending for safety, a financial sector of utility operations is required. The public, NRC, interest groups, and plant operations all affect a utility's ability to raise cash to invest in safety and performance goals.

This system dynamics model was created using the same methodology as for the car example given in section 2. A problem statement was developed and focused using behavior graphs. Then causal diagrams were constructed and shown to utility stakeholders to determine if the most important relations were included. A quantitative model using STELLA® software was built and run to reveal some results a utility manager can use to improve long-term Nuclear Power Plant operations.

6.1 Development

The Financial model was developed using the System Dynamics procedures described above. The model took approximately 14 months to construct, connect to the larger utility model and test. The model is currently beginning validation, with one utility sponsor volunteering to provide the necessary data to fit the model to an operating nuclear power plant.

6.1.1 Defining the problem

The problem statement, "How can a utility owner maximize equity while maintaining nuclear plant safety in the face of many social, political and internal problems?" required that the following areas of utility financial operations be modeled: Internal Accounting, Public Utility Commission, Stock Market, Bond Rating Institutions, Safety as perceived by financial analysts, Economy, and Budgeting. To focus this problem, our development of the utility model focused on the how limitations of financial resources are caused by social, political and other outside factors. The financial model was then developed to show how these limitations affect safety and operations, and also as an interface to allow the utility manager to adjust budgets.

6.1.2 Behavior over time graphs

Typical behavior over time graphs are shown in figure 6.1-1. They show expected response by a utility's revenues, stock price, and PUC agreeability after a poor SALP rating. After the rating, the revenues stay constant but the stock price drops. Eventually the PUC agreeability drops and then revenues drop making the stock price decrease again. These behaviors were garnered from interviews with utility financial experts and plant managers.

The problem the utility owner faces in this case is how much should he spend maximizing SALP scores to prevent the stock price from dropping, since spending too much also causes the stock price to drop. In order to determine how much safety, or perceived safety in this case, is economically worth while, all of the relations must be constructed and analyzed.

Figure 6.1-1 Expected behavioral graphs of various utility financial variables to a change in SALP rating.

To test the predictions of figure 6.1-1, one need only look at the revenues and stock price of Boston Edison after the poor reviews by the NRC in the mid 1980s on Pilgrim 1. Obviously, Pilgrim 1 is a severe case. However, it was mitigated by the fact that Boston

Edison had a diverse power generation base. Even so, it's nuclear plant had a severe effect on the company as a whole.

Figure 6.1-2 Boston Edison's stock price from May 1986 to May 1994. The effect of the poor SALP scores at Pilgrim 1 had a strong effect on Boston Edison even if other economic factors are considered.

Looking at figure 6.1-3, one can see the effects of a nuclear accident at another utility on this utility. Although public concern and interest groups have some effect on the stock price of a utility shortly after the event, the real effects are seen many weeks later from increases in regulation and revenue losses due to PUC reductions in prudence and reductions in capacity.

Figure 6.1-3 Expected behavior graphs for a nuclear accident at another utility.
The effects in history from the accident at Three Mile Island can be seen in figure 6.1-4. It is these effects that the model will attempt to capture. In the case of these utilities however, it must be noted that they are not only nuclear. Much of their generating capacity is unaffected by the NRC regulation increases. So, one must compare the more nuclear utilities with the less nuclear utilities to see the effect.

Also important is the effect the economy has on the stock market in general. The utility stock prices must be compared to the Dow Jones Industrial Average (DJIA). For example, if the DJIA increases rapidly and the utility stock does not, then the utility stock is actually dropping in real terms. For this reason the DJIA is shown in comparison. Starting around June 1980, the stock market rises considerably, but the nuclear utilities are staying constant. The model should predict this delayed, real reduction in stock price.

Figure 6.1-4 The stock prices from June 1978 to December 1982 of 4 nuclear utilities, including GPU who owned TMI. The effects from TMI (March 1979) were delayed.(Standard \& Poor's

Compustat 1994, WSJ March 1995)

6.1.3 Model structure

Policy influence paths (Figure 6.1-3) were constructed and presented for structural analysis to utility financial experts. The policy influence paths represent the most important
relations of the model. It will aid in breaking down how the causal loops are turned into a computer model of the financial relations a utility must confront.

Figure 6.1-5 The policy influence paths of the financial model.

Numerical relations for the generic utility were based primarily on Boston Edison's published financial data and standard accounting and financial textbook relations. Once the structural model was built, the predicted results of various financial relations were presented to stakeholders at various utilities to measure overall reaction.(Hahne 1983, Brealey 1988, Boston Edison 1994, 1995)

Although much model validation must still take place, the essential method of System Dynamics, consultation with stakeholders, has been used to achieve a model whose structure has been verified by many different parties. The model at this stage can be used as a template. A utility can insert data, test it and revise it if required.

6.1.4 Causal Relationships

After defining the problem, the next step is to develop causal loop diagrams (Figures 6.1- 4 \& 5). With stockholder's return on equity at the top of the causal loop, the most important relations which affect the return on equity were developed and presented to utility stakeholders for their review.

Figure 6.1-6 The basic loop which affects return on equity. The PUC controls the negative feedback loop limiting the owner's return on equity to a "fair return" in exchange for the utility's guaranteed delivery of electricity.

In the causal loop arrows show the direction of effect and the ' + ' or ' - ' signs indicated whether the effect is positive or negative holding all other variables constant. In this case, Stockholder's return on equity positively affects perceived financial soundness. Under regulation, an increase in perceived financial soundness leads to the utility's lowering the market price of electricity, based on the PUC's "fair rate of return". If the market price is lowered, revenues must drop, which causes net income to decrease. As net income drops, dividends and retained earnings drop. Decreasing retained earnings and dividends causes the stock price to drop which causes the Stockholder's return on equity to drop, thus completing the major loop.

The relationships shown in Figure 6.1-4 are actually more complex, as shown in Figure 6.1-5. As customer satisfaction decreases, rate cases will be determined less in the utility's favor, thus requiring them to lower their market price for electricity. Also, as the
utility invests more money, it must incur more debt, or sell shares. Incurring debt decreases net income, and selling shares reduces the stock price directly.

Figure 6.1-7 Return on equity causal loop including utility spending on safety.
The second causal loop diagram of the utility finances includes spending on safety represented as "Safety Costs." Safety spending can either be self imposed, or required by regulation or required inspections. This causal loop was developed with the assumption that safety spending has a positive impact on safety and perceived safety, both represented as "Safety" on the diagram.

As safety improves, capacity improves overall since less equipment is broken. However, this relation can be negative if the utility takes down too much equipment or extends an outage to improve estimated safety. In the U.S. the safest plants, by many measures, most often have the highest capacities. Safety also improves customer satisfaction, as the local public is less concerned about the utility's operations. Finally, safety has a negative effect on regulations and required inspections. As SALP ratings improve, the NRC requires less safety spending by the utility.

All three of these effects by safety and perceived safety can have the overall effect of increasing net income by reducing costs and raising revenue. Safety spending has its own cost, however. A utility owner must balance the spending with the return on the investment. This problem of optimization requires the quantification of different types or safety spending and the return on investment the utility owner can expect.

Once the causal loop diagrams were agreed upon by the utility stakeholders, a quantitative model was developed which attempted to answer this question. The sub-sectors of the financial model were developed to provide the necessary links to support these causal loop diagrams and determine how much effect the variables presented have on each other.

6.2 Descriptions

The Financial Sector includes all aspects of utility monetary operations. It includes Internal Finance Balance Sheets, the Public Utility Commission, the Stock Market, Bond Rating Institutions, Economic Effects, Perceived Financial Safety of Nuclear Plant, Budgeting and Allocation of resources, Capital Investment, and Debt.

This section presents a discussion of most of the variables in the financial sector of the model. The entire model structure is presented in Appendix A, Utility Model. Quantitative relations and detailed descriptions of each variable are located in Appendix B, Equations. Appendix B also contains an alphabetical glossary organized by sub-sectors which describes each variable in detail.

6.2.1 Internal Finance

Cash flows and the overall balance sheet are determined in this sub-sector. Costs are summed each week and subtracted off of revenues to determine the gross margin. Investment, property taxes and then income taxes are subtracted. The remaining, net income minus dividends are forwarded to retained earnings. An asset, liability, and retained earnings comparison is then made.

This model uses cash based accounting. Each dollar flows in and out each week for simplicity. This format will be important when understanding Net Income representation. Under accrual accounting which is normally used, on a quarterly basis, the utility does not show the huge loss from an outage because costs are matched with the revenues later generated. In the model, outages are presented as a large loss in income.

6.2.1.1 STELLA® Structure

The Balance sheet structure is shown in figure 6.2.1.1-1. The structure follows the Statement of Income, Balarice Sheet, and Statement of Cash Flows standard accounting format. Revenues enter into Liquid Assets. Liquid Assets are then distributed to Costs, Taxes, Dividends, Investment and Net Earnings in that priority. If outflow exceeds revenues, the difference is made up with Cash Provided by Financing Activities and incorporated into debt. Since this format is for a dynamic model, the cash flows are determined on a weekly basis.

Figure 6.2-1 The balance sheet portion of internal finance.

Starting on the left side of the diagram with Revenues, a description of the Balance Sheet portion of the Accounting Sub-sector follows. Complete details of each variable can be found in Appendix B: Model Equations. Only the major variables and flows will be discussed below. The first mention of a variable will be enclosed in double quotes ("").
"Revenues" are generated based on "produced revenues" and "bought power revenues". "Capacity on-line," "Rate per kWh," and "power rating" determine produced revenues. "Bought power," "power rating" and "Rate per kWh" determine bought revenues. The penalty for using bought power comes in the cost of bought power for the utility under "costs."

The weekly revenue stream flows into "Liquid Assets" as cash. Meanwhile, costs flow out of Liquid Assets. "Operations and Maintenance Costs (O\&M)" and "Capital Costs" are combined to determine overall costs. Shortfalls in liquid assets and utility capital investment are made up by "Cash Prov. By Financing Activities". Cash Prov. By Financing Activities is made up of debt incorporation or selling of shares. Most utilities use a $50 \% / 40 \% / 10 \%$ Debt, Common Stock, Preferred Stock ratio of funding. Since this model does not include preferred stock, a $50 \% / 50 \%$ split between equity and debt is used.

Utility capital investments are made through "investment." Investment by the utility can be made by improving the quality of parts and design through "Cptl. Imp. Cash" or by buying all new equipment (such as Steam Generators) through "Bought Eq Cap Inv\$." Investments made by the utility, unlike costs, go into "Book Value Assets" which then depreciate into "Accum Dep XA."

Other flows out of Liquid Assets include "Taxes," "Dividends," and "Retained Earnings" in that priority. Taxes include property taxes and income taxes. Property taxes are a mill rate multiple of the "Book Value of Assets." Income taxes are based on the corporate income tax rate times "Gross Margin." The utility's gross margin is determined by subtracting weekly costs from weekly revenues. Dividends are determined by multiplying "Net Income" by the utility's "Dividend Factor." Net Income is just Gross Margin minus taxes and depreciation. Retained earnings absorb the remaining cash after all other expenses are complete. The rest of the Balance sheet calculates the "Assets," "Liabilities," and "Share Holders Equity" columns which are found on the utility's annual balance sheet

Figure 6.2-2 The cost portion of internal finance.
Utility costs derivation is shown in figure 6.2-2. "O\&M Costs" are determined by adding all of the individual weekly costs together. The individual weekly costs are grouped into "Ops," "Labor Costs," "Week fix ct," and other costs. Operations includes "Fuel Costs,"
"High Level Waste Mgt," and "Ops Overhead." Labor Costs include the cost of maintenance personnel, engineers and managers. Weekly fixed costs are just the additional costs of operating a nuclear plant such as grounds keeping, security, distribution, which are not affected by other areas of the model.

Abstract

Other costs include "NRC Insp Cost," "Bought Pow Cost," "Force Shutdown Cst," "LS cost (Lawsuit Costs)," "Max Bud Lobby (Lobbying Costs)," and "\$ on Ed (Public Education Costs)." NRC Inspection costs include only the direct expense of NRC personnel onsite. Additional Labor costs by utility personnel are covered by labor costs. Bought power costs are the additional cost of buying power from another utility. When the plant is shutdown, the utility must buy all of its power. During a forced shutdown, additional costs on top of normal labor costs are incurred which include investigation costs, rapid repair costs and additional training costs. Lawsuits by interest groups incur large legal costs, as well as greater administrative costs. Lobbying costs include money spent to influence lawmakers and support industry lobbying groups such as NEI. Public Education costs work towards goodwill by lecturing the public, taking school groups on tours, and getting involved in the community.

Also calculated in this section are new parts buying, Net Present Value of Maintenance and Downtime, and "Debt Payments." Investment in new parts is included in capital costs and, divided by the average cost per new part, to determine the number of new parts bought. The Net Present Value calculations aid in determining the dollar costs and overall value of performing preventative maintenance. Debt Payments are calculated by determining a payment schedule based on "Debt" and the utility's average interest rate.

6.2.2 Public Utility Commission

The Public Utility Commission, influenced by customer satisfaction, utility performance, interest groups and political ideas opine their view of the prudence of utility financial decisions. This prudence translates into an allowed return on equity and an allowed rate base. Once the allowed return on equity is determined, it is translated into a cash value and compared with the utility's requested return. Combined with pass through costs such as fuel and NRC regulations, a PUC price is determined after a delay to account for the time between rate case proceedings.

If there is competition, this price represents only a legally allowed price. The price the utility must actually charge to maintain its customers is the competitor's price multiplied by a small augmentation based on proven reliable service.

If the PUC grants an excessive price increase, customer satisfaction drops impacting PUC prudence. If utility financial indicators drop too much, the PUC will approve rate increases to prevent the utility from going bankrupt.

The Public Utility Commission Subsector is shown in figure 6.2-3. The "PUC Prudence" determination is modeled by comparing the current perceptions of the PUC members with a current indicator of how they would feel about the utility given enough time to analyze all of the inputs into "Cur Ind of Prud." Included is a time delay for the perceptions of the PUC to change. Even if a member of the PUC changes creating a harsher or more benevolent climate for the utility, the change in PUC perceived prudence takes time to evolve as new members gain influence in the commission.

The following effects control the behavior of the PUC's decision that the utility's actions are prudent: the ratio of forecasted capacity to actual capacity, "EffCaprel frcst," Customer Satisfaction, "EFFCSPUC," public interest group activity, "EFFPIPUC," Perceived Safety of the nuclear plant, "EffPSPUC," and the political hostility with which the PUC perceives utilities (in the eyes of utility financial analysts), "Evilness." In addition, the PUC uses financial indicators to determine if the financial markets believe the utility's actions are prudent. These include the bond rating, "EffBRPUC," and Stock price, "EFFSPPUC."

The "PUC perc Prud" determines two other variables, "Rate Base," how much of the utility's capital base the owners may use to determine the allowed return on equity, and the "Allowed ROE." If the PUC does not believe the utility's actions on investment are prudent based on a combination of the indicated variables, it will disallow a rate base adjustment and the utility will have to pay for the investment with out increasing charges to rate-payers. If the PUC believes in general that the utility is making more money than a "fare rate of return", it also reduces the allowed return on equity. The allowed return on equity is constantly compared to the utility's cost of capital however, so that economic changes and interest rates do not severely affect the utility.

To determine an actual average rate the utility charges rate payers, several calculations must be made and a delay for the time between rate cases must be incorporated. During a rate case, the utility calculates a requested rate structure, "Utility Req Total," based on future cost estimates. The PUC compares the request with its allowed return on equity for investment and a "Test Yr $\$ / \mathrm{Kw}-\mathrm{hr}$ " cost comparison to determine an allowed charge for non-pass-through costs. Other costs, "Pass Through," are automatically charged to the rate-payer without dispute. These costs include fuel costs and NRC regulation costs. The final "Puc Rate" is the maximum legal cost per kilowatt-hour that the utility may legally charge customers. Of course,
if competition is present the utility must charge a rate consistent with maintaining customers. After adjusting for this competition, the actual "Rate per kWh " is derived.

To determine customer satisfaction, a comparison of the utility's rate for electricity to customers' perceived relative rate for electricity is also calculated in this subsector. As the price of electricity increases above inflation, customer satisfaction drops rapidly. This drop influences the PUC and prevents further price increases. This effect drove the hostility of rate proceedings after the oil shock of the 1970's and the nuclear construction costs of the 1980's.

Figure 6.2-3 The Public Utility Commission Subsector is composed of Prudence Determination, Rate Base Determination, Allowed Rate Calculation and Customer Satisfaction Determination

6.2.3 Budgeting and Allocation

A manager using the model to analyze strategic decisions would use the Budgeting and Allocation subsector most frequently to test spending decisions. Utility operations are controlled through allocation of dollars. The utility manager can change spending on inspections, capital equipment, information, personnel, goodwill or lobbying.

The subsector is shown in figure 6.2-4. The layout is similar to costs. The subsector has only auxiliaries which calculate weekly allocations of resources. Starting with "Test Yr Rev", "Required Costs," which are based on "Budgeted Taxes," "Des Weekly Profit," operations, fixed, debt payment and bought power costs, are subtracted off. The "Discretionary Budget" remains to be sliced into various spending pieces. Based on allotment, the maximum allowed number of maintenance workers, engineers, planners, and managers is determined. Also determined is the amount of the budget spent on discretionary inspections, "Fr Lab bud All Disc insp." This fraction determines how much of the labor budget is spent on preventative maintenance. Additional spending decisions are made in training, lobbying, layoffs, dividends, parts, and overall cutbacks.

Other computations this sector performs include a message in case the utility is losing all of its profits, and an allocation block to allot engineers and managers to various areas. The actual allocation takes place in the Engineer and Manager allocation subsectors.

6.2.4 Equity

The stock market is represented by a Capital Asset Pricing Model. The risk of investing in the utility is compared to Treasury Bills and the Dow Jones index. This results in a cost of capital, which is the required return on equity by an investor. This cost of capital is compared to the present value of estimated future cash flows of dividends to estimate a stock price. Combined with random variations and economic effects, this estimated stock price is converted into daily stock price.

The derivation of share price starts with the "Anal Ut Risk," which is derived from the utility's Debt to Equity Ratio, "EFFDEStRisk," National Public Opposition, "EFFPOStRisk," Perceived Safety, "EFFPSStRisk," PUC agreeability, "EFFPUCStRisk," and Local Public Opposition, "EFFLPOStRisk." Then a cost of capital factor called "Beta AST" is derived. Combined with a factor for "Beta Debt," which is derived from the bond rating, "EFFBRStock," this factor becomes "Beta Eq."

Figure 6.2-4 The budgeting subsector includes budgeting, desired profit calculation, and some personnel allocation.

This Beta represents the relative risk of investing in the utility. This risk is compared to the interest rate of zero risk securities such as T-bills and relatively risky items such as the rest
of the stock market to obtain the stock discount rate. This rate is the required interest rate the stock should pay to compensate investors for overall riskiness.

To determine the current stock price two other factors must be considered, "Dividends" and "Rel Growth." If the utility pays dividends, the estimated future dividend payout annuity is converted to present value. This value increases the current price of the stock. If the utility is growing then the investor accounts for this growth by estimating the future return similar to dividends. When combined in the following equation according to the Capital Asset Pricing Model, these factors estimate the current value of the utility's stock (Brealey and Myers, 1988):

Value of Stock $=\frac{\text { NPV(Dividend_Forecast) }}{\text { (St. Dis Rate\%-Exp Growth\%) }}$

where the numerator is the net present value of the forecasted dividend payments. The denominator includes the annual expected growth in percent and the Stock Discount Rate in percent. This equation provides a good estimate of the current value of holding the utility's stock within a certain range. (Brealey and Myers, 1988 and Hahne and Gregory, 1983)

Obvious problems arise if the expected growth of the stock approaches the discount rate, which is not a problem with most utilities, or if the dividend forecast approaches zero. In that case a different estimate of stock value would have to be used. For utilities, since dividends are paid reliably, at least in the past, this equation provides an excellent estimate of stock prices. The Capital Asset Pricing Model has been used for many years to gauge the value of many stocks. The "Ind of Market Value" is then corrected for time delays for stockholders to analyze financial indicators and multiplied by speculative and economic effects to arrive at an "Actual Share Price"

In parallel to the stock price determination, the "Book Value per Share," is calculated. This is the total assets of the utility divided by the total number of shares. The "Market to Book Ratio" represents the ability of the utility to raise cash by selling more shares. If the market to book ratio is very high the utility can sell more of itself based on investors' belief that their payoff in the future warrants paying a price greater than their share of the assets of the company.

As the utility sells shares, its equity builds based on the market value of the shares when they were sold. This equity is combined with retained earnings to arrive at the total of "Shareholders' Equity." This calculation completes the balance sheet equation of:

Assets $=$ Liabilities + Shareholders' Equity

(Eq. 6.2.3-2)

Figure 6.2-5 The Equity Subsector represents the stock market, capital costs and the utility's ability to raise equity through sales of shares.

6.2.5 Bond Rating Institutions

Bond Raters constantly monitor the financial position of utilities to determine their ability to repay long-term notes. The bond rating is on 1-12 scale from Default to AAA+.

Figure 6.2-6 The Bond Subsector determines the bond rating of the utility.
The indicated bond rating, based on current financial elements, "Ind of Credit PFS," is derived from several factors based on financial indicators which bond rating institutions use to rate companies. The most important of these is the utility's Debt to Equity Ratio, "DE Ratio," which is based on the total liabilities owed compared to the market value of the utility's stock. Additional factors included in the model include
"System Reliability," "PUC Agreeability," and the perceived risk of losing the reactor plant due to a catastrophe, "PerSafBy FinMark."

The Bond rating is delayed by the interval between doing bond rating analysis, unless a financial calamity strikes the utility. The "Credit Agency's Perceived Financial Soundness" is adjusted to fit on a 1-12 scale which represents the utility's bond rating from CCC to AAA. (Duff and Phelps Credit Rating Co., 1994)

6.2.6 Economic and Random Effects

This sub-sector inserts recessions, interest rate hikes, inflation and random effects onto the utility. It is used to incorporate speculation, "Speculation Factor," random stock market actions, "Random Effects," and "Economic Cycles" into the utility's share price. It also calculates the utility's interest on debt from its bond rating. Inflation has been turned off in the model for simplicity but may be reinserted.

Figure 6.2-7 The Economic Effects Subsector adds economic cycles, speculation and randomness to the stock market.

6.2.7 Perceived Financial Safety

This sub-sector represents an investor's perceived risk of losing investment due to a major accident at the nuclear plant. This risk influences the total risk of investing in the utility and affects the bond rating. It is determined by monitoring operations, SALP scores and forced outage frequency. Risks due to the PUC and economy are determined in the stock sector.

Figure 6.2-8 The Safety Financial Subsector calculates a perceived risk for the investor of losing the investment in the plant due to a core melt accident.

6.2.8 Capital Investment and Debt

The utility manages cash shortfalls and capital investments by financing 50\% through long term debt. Since so much debt is incorporated during construction of the plant, approximately 70% of costs go to debt payments in the model. If a utility consistently overspends, it will enter a death spiral of debt.

Figure 6.2-9 The Debt Sector determines long term debt and debt payments.
"Debt" is incorporated when Net Cash Flow is negative, requiring the utility to borrow money or sell equity. Based on the "Debt Factor," the utility will raise 50% of the shortfall by incurring more debt. Also, if the total "DE ratio" becomes too large, the utility will stop incurring more debt, and the model will pause to prevent the manager from going bankrupt.

7. Financial Model Simulations

Several simulations have been performed to test the structural validity of the model and present results to stakeholders. Important information has been gained by running the overall model to ensure consistency of equations, and show some interesting results that are valid even for a generic utility. These results, such as showing the value of preventative maintenance, present the power of System Dynamics as a learning, financial planning, and performance improvement tool.

The runs, which are shown below, test various budgeting decisions with and without a significant accident at another utility and the value of training. Value is reflected both in capacity rating but also in net income. Other variables such as bond rating, stock price, or PUC perceived prudence are also important indicators of future plant performance. However, experience running the model has shown that these variables track capacity and net income. Historical capacity is the largest factor in perceived safety and net income over time is the most important factor in determining the financial health of the utility. Additionally, poor bond ratings or PUC attitudes towards the utility result in a drop in net income, so outside changes are evident through net income anyway.

7.1 Steady State and Accident-Baseline

One of the steps to validating a model is running the model in steady state to determine if it realistically represents the normal flow of events in the organization it is trying to emulate. For the Nuclear Utility Model, we optimized many factors to make the model run a smoothly as possible. All of the sectors are connect for this run and some principle financial indicators are shown for comparison. Steady state is represented as Case 1 in figures 7.1-1 through 7.1-6.

The next step in validating a model is to test the model's reaction to a known historical event. Case 2 in figures 7.1-1 through 7.1-6 represent the scenario where a nuclear accident occurs at another nuclear plant occurs in week 156. The resulting public outcry, congressional concern, increased regulation, financial community risk perception and PUC reduction in perceived prudence all severely effect the performance and estimated safety of the plant.

Figure 7.1-1 Capacity on-line for Steady State (1) and an accident at another utility (2). The dips every 120 weeks represent periodic outages. The sharper dips are forced outages.

Table 7.1-1 Net Income for Steady State (1) and an accident at another utility (2).

Table 7.1-2 Rate per $k W$-hr for Steady State (1) and an accident at another utility (2).

Table 7.1-3 Actual Share Price for Steady State (1) and an accident at another utility (2).

Table 7.1-4 Labor Costs for Steady State (1) and an accident at another utility (2).

Table 7.1-5 Estimated Core Melt Frequency for Steady State (1) and an accident at another utility (2).

The results of this run show that the monetary costs of an accident at another nuclear plant are very large. The Net Present Value of Net Income for the base case is \$ 698 million; the NPV of NI for the accident case is $\$ 566$ million for a difference of $\$ 132$ million. These dollars are very real, albeit only a rough estimate of the cost of enduring the negative publicity, NRC regulation, and litigation involved in operating a nuclear plant after a nuclear accident.

Since this model is based on the historical data after the Three Mile Island Accident (TMI) accident, if the societal reaction to another accident is greater, the effects on the utility are greater. $\$ 132$ million is a large number to think about when considering if nuclear plants in the U.S., indeed the world, are hostages of each other.

Comparing the stock price data in figure 7.1-4 to figure 6.1-3 (excluding the random fluctuations which are not included in figure 6.1-3), one can compare the gradual reduction in stock price, which is similar to figure 6.1-3. Although the model shows somewhat more immediate effect, the slow reduction continuing a year later is consistent with history.

Also shown is labor costs which shows where much of the increased costs come from that severely affect the utility's finances. Labor costs increase significantly after the accident to support increased requirements from the NRC.

The final graph shows the estimated core melt frequency. An interesting result of all these additional labor costs is that reactor safety is not improved. Shortly after the accident it is even reduced (meaning core melt frequency is increased). Because of all the additional workload from post accident reactions, and the reduction in resources the utility has available, training, information usage, and corrective maintenance are reduced.
Reducing these programs leads directly to reduction in safety.

7.2 The Value of a Preventative Maintenance Program

The value of preventative maintenance has long been debated in the nuclear power industry. Detractors have complained of the extensive effort required to take down perfectly good equipment for inspection and the possible added defects when a young worker opens a package for the first time. Although many utilities have followed the U. S.

Navy's example and implemented detailed PM programs, the quantitative benefits of their work often is poorly documented.

The model provides a tool to compare, and possibly optimize the plant's preventative maintenance program. Two cases are examined: steady state operation, and post event operation. The results show that a constant inspection budget of about 10% of the total maintenance budget optimizes net income and capacity. Since capacity represents broken equipment for the most part and broken equipment are the main contributor to safety of the plant, this scenario also closely optimizes safety at the same time.

The second case shows a method the plant might use to free resources after a nuclear accident at another utility. By reducing its PM program somewhat after an accident, the plant can actually improve its performance.

7.2.1 Without Accident

The steady state case shows a useful model function: optimizing a budgeting parameter. Since resources available to the plant manager are necessarily limited, optimal budgeting decisions must be made that maximize plant performance while not sacrificing safety. In this case, the model shows a way the manager can optimize PM planning on a limited budget.

Figure 7.2-1 Capacity On-line for 3 different cases of spending on Preventative Maintenance. Case 1: 0\% allocation of labor budget to PM after week 100, Case 2: 10\% allocation of labor budget to PM after week 100., Case 3: 20% allocation of labor budget to PM after week 100.

Figure 7.2-2 Weekly Net Income for 3 different cases of spending on Preventative Maintenance. Case 1: 0\% allocation of labor budget to PM after week 100, Case 2: 10\%
allocation of labor budget to PM after week 100., Case 3: 20% allocation of labor budget to PM after week 100.

Figure 7.2-3 Net Present Value of Income for 3 different cases of spending on Preventative Maintenance. Case 1: Case 1: 0\% allocation of labor budget to PM after week 100, Case 2: 10% allocation of labor budget to PM after week 100., Case 3: 20% allocation of labor budget to PM after week 100.

Case 1's NPV after 10 years is $\$ 84$ million less than the base case presented in section 7.1. Case 2 is $\$ 86$ million more than case one and $\$ 2$ million more than the base case. Case 3 is $\$ 76$ million more than Case 1 but $\$ 6$ million less than the base case. Thus spending more on Preventative Maintenance has a positive effect at 10% but will hurt the utility if it spends too much as in Case 3.

7.2.2 With Accident

This run of the model examines a Preventative Maintenance scheme to improve the plant's performance in light of an accident occurring at another plant during week 156. Several strategies were analyzed including additional preventative maintenance before the accident, no preventative maintenance before the accident, and a strong preventative maintenance program which is discontinued shortly after the accident. For better clarity,
periodic and forced outages have been removed from this scenario. Net Income is thus adjusted upward by the same amount for every model run.

The resulting "best method" to maximize long term net income is initially counterintuitive. The best strategy tested was to have a strong preventative maintenance program before the accident, but cut back the utility's discretionary preventative maintenance program shortly after the accident to free up valuable resources to handle the NRC imposed workload, and because much additional required NRC inspections are taking place. The utility preventative maintenance program merely duplicates much of the NRC effort and only results in more equipment being taken down.

All four different strategies are compared in Net Present Value format in figure 7.24. The best method is then compared to the baseline strategy of keeping PM constant throughout the run in figures 7.2-5, 6 and 7. The cases represented are described in table 7.2-1:

Responses that Better Post-Event Performance

1 - Base Case (10\% maint. Staff allocated for disc. Insp. for entire run.)
2-5\% Increase in maintenance staff at week 160
3 - Maint. staff allocated for disc. inspection: 5\% (160-389), 10\%(390+)
4-10\% eng. staff added to process information
Table 7.2-1 Description of strategies in response to accident.

Figure 7.2-4 NPV comparison (from left to right) of cases 1-4.
From 7.2-4 it is evident that case 3 is the best strategy for preventative maintenance for an accident occurring at another plant. To examine why case 3 provides better net present value compared to the base case, it is necessary to look at figures $7.2-5$ through 7.2-6. In figure 7.2-5, capacity on-line, the big difference between case 1 and case 3 is about 2 months after the accident. During this time the NRC is conducting intensive investigation, developing regulations and requiring the utility to perform many more mandatory inspections of equipment and to process large amounts of paperwork.

Both of these activities use much manpower. If the utility frees up some workers and reduces its own inspection program shortly after the accident, it can assign more mechanics and engineers to unscheduled maintenance and paperwork processing than it can in the base case. Additionally, since the NRC is requiring more inspections, the plant does not need to do as many to maintain its PM program intact.

Figure 7.2-5 Capacity on-line for case 1(baseline) verses case 3 (run 2).

Figure 7.2-6 Net Income comparison for Case 1 (baseline) versus Case 3 (run 2).

Figure 7.2-7 Rate per kWh for Case 1 (baseline) verses Case 3 (run 2).
Another reason for the improvement in net income is due to a higher allowed fair rate of return which leads to a higher effective Rate per kW-hr allowed by the PUC. This increase occurs because of the improved operations of the plant. Similar in effect to distinct performance based incentives, the PUC traditionally rewards the utility for better operations with more favorable rate cases. In this case, the utility not only makes more money for achieving a higher capacity but also can charge its customers more.(Boston Edison Interview, 1994)

7.3 Investing in Capital Equipment

This model run examines the practice of investing internally instead of paying a portion of dividends to the stockholder. Several variables are presented and compared with the base run to see if the plant can improve its performance, stock price, and net income from this management strategy. As in the last scenario, periodic outages and forced outages have been removed for clarity.

In this case, at week 200, the utility owner decides to reduce stockholder dividends from 75% of profits (net income after taxes) to 35%. Although this reduction can have severe effects on stock price, if the utility carefully invests the income, the long run net
income will be higher and the long run stock price might actually be higher because of growth, better performance and even a more amicable Public Utility Commission.

The results of several different variables are shown in Figures 7.3-1 through 7.3-7. With an increase in investment in new plant parts and capital equipment from $\$ 20,000$ to $\$ 100,000$ per week and smaller increases in maintenance budgeting, several results are evident. First, capacity is only slightly improved. Since the plant is running well already, a comparably large increase in internal investment does not improve weekly operations considerably.

There are larger positive differences in Net Income and Rate per kWh allowed by the PUC. There is also a large (about 10%) decrease in stock price during the reduction in dividend payments, which was expected. However, when normal dividend payments are resumed, the resulting stock price is actually higher that the original stock price by a small margin. The overall result that can be gained from this run is that plant reinvestment, while difficult to do because of the temporary negative impact on stock price it generates, can be beneficial in the long run due to higher net income and, once the dividends are restored, a slightly positive effect on stock price.

Figure 7.3-1 Comparison of reinvestment strategies: Case 1-baseline, Case 2-Dividends cut by 50% and reinvested.

Figure 7.3-2 Share Price for comparison of reinvestment strategies: Case 1-baseline, Case 2- Dividends cut by 50% and reinvested.

Figure 7.3-3 Capacity for comparison of reinvestment strategies: Case 1-baseline, Case 2Dividends cut by 50% and reinvested.

Figure 7.3-4 Net Income after Taxes for comparison of reinvestment strategies: Case 1baseline, Case 2-Dividends cut by 50\% and reinvested.

Figure 7.3-5 Effective Rate per kWh for comparison of reinvestment strategies: Case 1baseline, Case 2-Dividends cut by 50% and reinvested.

Figure 7.3-6 NPV of Reinvestment in plant for Base Case and Reinvesting 50\% of dividends.

Case	End of Run NPV Income
Base Case	859.81
Reinvestment of Dividends	889.10

The results of this run show that the Present Value of Net Income for the reinvestment of dividends is greater than for the base case. It is important to note that the reduction in stock price is reflected in net income over the long run because the reduction in stock price increases the cost of capital to the utility. Since the cost of capital can represent about 75% of the utility's costs, the cost of capital significantly affects these costs, thus driving down net income.

Considering that the reduction in stock price is at least partially reflected in the net income, the manager can review the present value results to compare the reinvestment strategy in this case. Of course, reduction in stock price carries some additional negative connotations. First of all, very few executives are rewarded for lowering the stock price for 4 years. Second, if the bond rating institutions, or PUC are not convinced that the
utility is correctly reinvesting its money, then their downgrading on bond ratings and perceived prudence might severely affect the utility.

For any case when a manager is using the model, he must consider all tools including experience, other financial models and the extensive literature written about nuclear utility policy.

8. Policy Implications

Utility owners and regulators can use the utility model to aid in strategic decision making, as a learning tool, or as a tool to explore the consequences of external events. As demonstrated above, the model provides a long term quantitative comparison between several alternative policies. Experiments require only a ten minute run time per scenario.

However, considering the limitations of the model is as important as considering the utility of the model in planning by utility managers or regulators. A user of the model must study the structure and boundaries of the model prior to testing policy decisions.

The limitations, demonstrated in the results section, include the exactness of the answers the user of the model is seeking. Whenever one models soft variables (Public Concern, Stock Analyst's Perceived Risk, etc.) and their interactions on hard variables (Net Income, Broken Equipment, etc.) some consideration for error must be included. In this model, the most important results are trends. However, since all policies are operating in a consistent environment, the relative values still provide considerable insight into the results of policy decisions.

Another limitation is the boundary of the model. This model is only a imitation of the environment in which nuclear plants operate. It cannot model outside changes, such as the Russian disposition of plutonium or the nuclear waste issue, without adding complexity to the model. If the model does not reflect reality, the model might still be valid. The model, a simplified view of nuclear utility operations, can still be used by policy makers to value strategic decisions and outside influences which are included in the model.

8.1 Utility

Once all of the limitations are accounted for, a utility can incorporate the model into its strategic planning arsenal to incorporate additional factors which are not currently considered in utility planning models. For instance, the plant manager can use the model to optimize preventative maintenance planning in light of regulatory pressures to maximize income while maintaining the same safety level.

The model illustrates critical variables to the nuclear plant manager such as net income, core melt frequency, capacity on-line, and labor costs. These variables are all
shown on every run so the utility manager can easily compare safety costs and long-term net income results.

8.2 Regulators

Regulators need a tool to help them understand the implications to the utility of their decisions over the long run. Once the regulators can agree on the underlying assumptions of the model, both parties in the rate case determination or regulation case can better work to negotiate a settlement knowing the long term implications of their point of view.

8.2.1 Public Utility Commission

The PUC's purpose is to guarantee service to all electric customers while maintaining reasonable electric rates. At the same time it is charged with guaranteeing a "fair rate of return" to the utility owners for providing their pledge of service. Recently, activist groups and changing political policies have made the PUCs assume a more active role in utility decision making.

In their effort to reduce the fat at the utilities and reduce electric bills, PUCs have taken some draconian measures which have caused long-term electric bills to be higher than they otherwise would have been. PUCs have been disallowing rate base adjustments recently creating difficult situations for the utilities as they try to recoup their investments in new plants. If PUCs were able to see the long-term effects of their actions, which can involve the utility incurring more debt and making its capital costs increase, then they might be willing to investigate other methods to reduce the electric bills for the consumer.

Another method used, particularly in Massachusetts, has been performance based incentives. These incentives allow the utility to charge the rate-payer more if their safety and performance measures exceed certain levels. There are two problems with this policy which can be evaluated using the model. The first is that rewarding the utility for higher capacity factors effectively doubles its incentive for obtaining higher capacity factors. Doubling the incentive might make the utility forego long-term planning to maximize shortterm capacity. The second is that effectively the rate-payer is punished if the utility enhances its performance since the PUC is rewarding the utility with higher rates. Perhaps the PUC could use the model to test several alternative policies to see which ones maximize long-term safety while sufficiently compensating the utility and not hurting the rate-payer.

8.2.2 Nuclear Regulatory Commission

The NRC's purpose is to ensure the safe operation of Nuclear Power Plants for the public. The NRC is constantly investigating ways to improve the safety of nuclear power plants without bankrupting the utilities. Many improvements have been made since TMI in the NRC's method of regulating nuclear plants. However, much of the NRC's actions at nuclear plants divert valuable recourses from plant operations and can indeed hurt the plant performance and even safety.

Since the NRC is interested in enhancing plant performance, a tool such as this model can be used to improve regulatory strategies to optimize plant performance and safety. If a plant is running well in terms of risk assessment, capacity factors, and personnel training, then the NRC could evaluate potential methods for correctly rewarding the utility. If it relaxes monitoring too much, the utility might slip in areas which are not being monitored under the relaxed standard. However, reducing monitoring to the minimal amount possible is a worthwhile goal since the model demonstrates that exaggerated requirements can lead directly to reduced safety at the plant.

8.3 Bond and Stock Rating Institutions

Stock and Bond analysts appear to be overly concerned in the next dividend or debt payment and less interested in safety than other parties. However, since a core melt will prevent most investors from retrieving their investment, many analysts watch the utility's SALP scores and INPO reports to see if a particular reactor is at heightened risk. They then adjust their ratings accordingly.

To understand utility actions with regard to long-term investments, preventative maintenance programs, and PUC decisions, bond and stock analysts can use this model as a tool to decide on the prudence of utility management decisions. The long-term analysis aspects of the model are especially appealing for the bond analyst who must establish risk of default over the entire lifetime of the bond.

8.4 Best Course of Action under Competition

This model can also be used as a tool to see the effects of various budget cutting methods a utility owner might use to make nuclear plants competitive with Independent Power Producers (IPPs). By using the model to investigate various strategies, one quickly realizes that safety and economic performance go hand in hand. After running the model to
achieve the best performance, the question as to why the best running plants have also been the cheapest to operate and also among the safest becomes much easier to answer.

9. Summary and Conclusions

This thesis demonstrated, through the use of system dynamics, a tool that can be used to study how the limitation of resources because of social, political, informational, plant, or financial dynamics affect the long-term performance and safety of nuclear power plants. The thesis also shows how resources are limited by social/political processes. Understanding these processes is crucial for utility managers and policy makers. In addition to advancing learning organizations, lean management, technical solutions, and other methods which have worked so far to improve performance of nuclear plants, plant managers and regulators must evaluate other outside factors which affect the operation of nuclear power plants.(Hansen et. al., 1989)

This thesis demonstrated the monetary effects of a nuclear accident, various preventative maintenance strategies, and internal reinvestment of dividends on the economic and safety performance of a nuclear utility. In this case, system dynamics provided a useful tool to uncover strategies for dealing with outside and internal factors in light of many different competing stakeholders.

Even if the nuclear industry were to survive another Three Mile Island type of accident, the costs to utilities and the public would be large. Putting a dollar value on the post accident costs can help the utility manager and regulators make the best spending decisions. Over a ten year period, the cost of a nuclear accident to an independent nuclear plant would be around $\$ 130$ million according to our model. Since a plant manager can estimate the probability of having a nuclear accident at the other plants in the country, he can decide how much spending is worthwhile. In the case of other plants, through INPO and information sharing, the utility owner can just multiply the probability of another nuclear accident by $\$ 130$ million to get a rough estimate of how much should be spent on other plants' safety.

The model quantitatively analyzed the value of varying preventative maintenance programs. It showed that spending 10% of the labor budget on preventative maintenance can be worth about $\$ 86$ million more than eliminating preventative maintenance not required by the NRC. On the other hand, it showed that spending 20% of the labor budget on preventative maintenance can be detrimental. The present value of net income for this case is $\$ 10$ million less than spending only 10% of the labor budget.

In dealing with an accident at another nuclear plant, the utility can actively reduce its own total cost by developing strategies in advance to deal with the onslaught of investigations, regulations, financial perturbations, and public interest group lawsuits. One method presented was to reduce preventative maintenance shortly after the accident. This approach was chosen for two reasons: it would free up some necessary personnel to respond to NRC inquiries, especially engineers and since the utility is required to perform so many mandatory inspections after the accident, preventative maintenance is redundant.

Reducing preventative maintenance resulted in a higher capacity factor shortly after the accident which led directly to increased net income. Additionally, since the capacity is higher compared to the base case, the PUC is more likely to approve rate increases allowing the utility to recoup even more cost. A third factor is the social feedback because the utility's performance factors are higher. Public interest groups, the media and the local public end up protesting the utility less creating a better environment for rate cases. The improvement in rate cases, improved performance at the plant, and reduced local public outcry improved the utility's perceived financial risk. This reduction in risk then led to reduced capital cost through better bond ratings and even a higher stock price.

Finally, this model demonstrated a slight improvement in long-term economic performance of the utility if it invests in capital improvement and maintenance while foregoing some dividend payments.

Further work will be required including refinement of personnel allocation and improvement of the safety sector to include more detailed Probabilistic Risk Analysis if a better representation of safety is required. The model must then be fit to an operating utility and tested to perform the experimental validation of the model. Once the model has been tested on an operating utility, it can be used by utility managers as powerful strategic planning tool.

10. References

1993 Annual Reports, Boston Edison Company, Boston MA, 1994

1994 Annual Report, Boston Edison Company, Boston MA, 1995

Bespolka C., Dalton W., Golay M., Hansen K., Weil H., "Competition and the Success of Complex Projects," International System Dynamics Conference, 1994.

Bisconti A. S., "Perspectives on Public Opinion," Nuclear Energy Institute, Washington D.C., May 1994

Brealey, Richard A., and Myers, Stewart C, "Principles of Corporate Finance," McGraw Hill, 3rd Edition, N.Y. N.Y. 1988

Carroll J. S. and Sterman J. and Marcus A. A., "Playing the Maintenance Game, Nonrational Elements of Organizational Decision Making", Ithaca, NY: Cornell University ILR Press, 1993

Division of Strategic Panning, "California's Electric Services Industry: Perspectives on the Past, Strategies for the Future," California Public Utilities Commission, San Francisco CA, February, 1993

Duff \& Phelps Credit Rating Co., Approach to Utility Credit Analysis, Chicago IL, 1994
Eubanks C. K., "Public and Regulatory Dynamics Within the Nuclear Power Industry," MS Thesis, M.I.T., Cambridge MA, 1994

Forrester J. W. and Senge P. M., "Tests for Building Confidence in System Dynamics Models," TIMS Studies in the Management Sciences. Vol 14, 1980

Forrester J. W., "Industrial Dynamics," Productivity Press, Norwalk CT, 1961

Forrester, J. W., "Lessons for system dynamics modeling," System Dynamics Review 3. no. 2, Summer 1987.

Goodman M. and Kanrash R., Six Steps to Thinking Sytemically, The Systems Thinker, Vol. 6 No. 2 March 1995.

Hahne R. L., Gregory E Aliff, "Accounting for Public Utilities," Matthew Bender \& Co., 1983

Hansen K. Turek M. G. Eubanks C. K., System Dynamics Modeling of Social/Political Factors in Nuclear Power Plant Operations, American Nuclear Society Conference on Computational Methods, May, 1995

Hansen K., Winje D., Beckjord E., Gyftopoulos E. P., Golay M., Lester R., "Making Nuclear Power Work: Lessons from Around the World," Technology Review, March 1989.

High Performance Systems Inc., "STELLA® II Technical Documentation," Hanover NH, 1994

Lyneis J., "Preparing for Competition Managing the Transition From A Regulated Monopoly," Pugh Roberts Associates Management Simulation Group. PA Consulting, Cambridge MA

Office of Nuclear Reactor Regulation, "Historical Data Summary of the Systematic Assessment of Licensee Performance," Nureg-1214, Washington D.C., March 1994

Office of Nuclear Reactor Regulation, "U. S. Nuclear Regulatory Commission Directive Transmittal of Management Directive 8.6, "Systematic Assessment of Licensee Performance (SALP), Washington D.C., July 14, 1993

Richardson, G. P. and Pugh, A. L., "Introduction to System Dynamics Modelingwith DYNAMO," Productivity Press, Norwalk CT, 1981

Standard \& Poor's Compustat, Historical Bond Rating and Stock Prices of Major Utilities, written on request, Englewood CO., August 1995

Sterman, J. D., Bananghan E., \& Greman E., "Learning to Stitch in Time: Building a Proactive Maintenance Culture at E.I. Du Pont de Nemours and Co.," Cambridge, MA: MIT Sloan School of Management, unpub. ms., 1992

Sterman, J. D., Paich, M., Simons K., Beinhocker E., "A Dynamic Learning Laboratory: Managing Product Life Cycles, Cambridge MA: MIT Sloan School of Management, 1991

US DOE, " 1991 Handbook EIA Financial Statistics Major Investor Owned Electric
Utilities," Washington D.C., 1993

US DOE, "EIA Analysis of Nuclear Power Plant Operation Costs," A 1991 Update, Washington D.C., May 1991

Wall Street Journal, Cover Story, "History of Dow Jones Industrial Average," February 24 1995

CORRESPONDENCE AND INTERVIEWS

Alberts L. S., Group Vice President, Duff \& Phelps Credit Rating Co., May 1994
Carroll, J. S., Prof. of Management, M.I.T., August 1994
Collins B. P. and Barazoni B., Senior Financial Analyst, Financial Planning and Revenue Requirements, Boston Edison, August 1994

Desjardins D., Director, Investor Relations, Boston Edison, September 1994
Kenney J. and Robinson J.,Financial Planners, New England Electric Company, March, April 1994

Lester R., Prof of Nuclear Engineering, M.I.T., February 1994
Lyneis J. M., Senior Vice President, Pugh Roberts Associates, January 1995
Mogolesko F., Project Manager, Boston Edison, June, July and August, 1994
Morey, D., Vice President Farley Group, Southern Nuclear, December 1994
Pernu, J, Plant Manager, Inatran Voima OY Loviisa Power Plant, December 1994

Senge, P., Manager, Center for Organizational Learning, MIT Sloan School, May 1994 \& December 1994.

Utility Sponsor Meeting, An International Program for Enhanced Nuclear Power Plant Safety Workshop, April 1994

Utility Sponsor Meeting, An International Program for Enhanced Nuclear Power Plant Safety Workshop, June 1994

Utility Sponsor Meeting, An International Program for Enhanced Nuclear Power Plant Safety Workshop, March 1995

Learning from work

Parts learning-Defect Reduction

Base tres man deat co detwy
0

$$
i \in 1
$$

INPO ENGINEER USAGE

43.

INIT MV_ ger_Share_stavio - init_stock_pp+25 INFOWS:
of OT_Marken_Vave - ((Ind_Ot_Merkot_Value-MV_oer_Share_stabla)/Delay_in_Ad_MV)/100

INIT Sharea a init_mumber_of_share
DOCUMENT: Number of share met
Units: shares
INFOWS:
\% Share_lesw_Rate - Decired_number_of_sherse_m_sainmo_sall_Sheree

INIT Totm_Equiey = Acemo-Och
DOCUMENT: Tod Equy
Unita: (mine s's)

NHONS:

units: $\{5$ 여

DOCUMENT: Anayate Unty Pat
 Chee

O Ben_O = 2eteramand

Docinant: equy lon
(unitucea)

\bigcirc

O Con_ of Cap - St_On Rater
Documari: Candicent
unite: \%

ELSE(0)

O Equir_Pacter o 4

Docyiviot: texty nions
Uaita: Immo sevment

O Epacrane ammence

Marker_m_Soak_haw - Act_shan_Pricelloek_Vatio_ger_shere.
Red_Crewth $=$ MAX(MMWSt_Ois_Ram-Bx_Crown,.5).01)

O Stock_mut_ss - 1
O St_Dis_Rate - SMTH1(T_BiH_Rate+(Bota_Eq*(Stock_mkt_SS-T_Bill_Rate)), 3)
O Time_sell_Shere - 1

Unite: Weme
O T_BiH_Rate - . 0536
DOCUMENT: 1 yee Trumere Ban
(\%/100)

Q Beta_AST - GRAPH(Anal_Ut_Risk)
$(0.00,0.208),(0.2,0.212),(0.4,0.22),(0.6,0.226),(0.4,0.242),(1,0.264),(1.20,0.284),(1.40,0.322),(1.60,0.364)$, (1.80, 0.422). (2.00, 0.598)
 will be 1. Winy
?

Q OUA = GRAPMFTMA A
(0.00, 1000), (1.00, 982), (2.00, 920), (3.00. 900), (4.00, 900), (5.00, 920), (6.00, 910), (7.00, 900), (8.00, 900). (9.00), 890). (10.0, 900). (11.0, 980), (12.0, 1000), (13.0, 940), (14.0, 970), (13.0, 975), (18.0, s40), (17.0, 970). (18.0, 950). (19.0, 980), (20.0, 240), (21.0, 910). (22.0, 879), (29.0, 930), (24.0. 975), (25.0, 1000), (23.0, 800), (27.0, 860). (28.0. 830). (29.0, 820). (30.0, 120). (31.0, 910), (32.0, 900), (33.0, 925), (34.0, 960), (38.0, 979). (36.0, 1000). (37.0, 970).
 880). (40.0, 900), (48.0, 810), (50.0, 880), (51.0, 500). (52.0, 880)...

DOCUMENT: This is SAP meal to compere agence viry.

(0.00. 0.202), (0.5, 1.00), (1.00, 1.00), (1.50, 1.00), (2.00, 1.00), (2.50, 1.01). (3.00, 1.01), (3.50, 1.024, (4.00, 1.02). (4.50. 1.05). (5.00, 1.13)

 1.85). (5.00, 1.80)

(24.8, 0.1). (29.2, 0.1), (27.6, 0.1), (2i.0, 0.1), (30.3. 0.1), (31.7, 0.1), (33.1, 0.1), (34.8, 0.1), (36.0, 0.1), (37.2, 0.1). (38.6. $0.1)$ (40.0. 0.1)
DOCUMENT: Enpet of secet Proe on Muc

Finamee: Accoumina

INTT Accum_Dep_XA $=0$

Unim: Minene of 5

NMONE:

```
        * Oep_XA=Denmeners
            00cummN: DN_m
            Univ: (mane sumern
```


INROMS:

DOCUMENT: Invedtrem
Unit: (mine S'enmeek)
The miviens of deters inweciment ins plart and equipmene

OUTROME:

- Dep_ $\times A_{1}=$ Deprucinten

DOCUMEMT: Dapmeletion
Units: Imine sermedid
Straignt whe reduction in worth of property plant and equipment.

Ch_REI) *
INIT Liquid_Asena = 5
DOCUMENT: Liquid Anmate
(mins sel

INFLOWB:
of Reverues - Eovitr_Revarprod_Reve
Docirnivi. Aoveres
(min swaed

Docunami: Cam Provead by finanerig Acitme
Unite: (mine Sermeen

OUmont

\Rightarrow Cone $=$ onmcenencon_Com
Documpr. C.m
Unim: (Mine Senment
Tom sponitiog by the cume.

DOCIM Tr: mumpum
Unit: Imine stemede

cocunnir: The

Docurnor ontan
Unire: (mine strung

Unime the stomer

Mrant

Uaine (mitis semonit

armone
$\Rightarrow \mathrm{NP}_{-} \mathrm{Sp}_{-}$Ret $=$New_Par_Cap_Int/4

Unite: (min Srembedid

INIT NPV_Come 0

INPOWS:
 -annual_matorials_cost) ${ }^{\text {D }}$ Discount_Factor/52

INIT NPV_Ocmitive $=0$

INFLOWS:
\% Cha_NPY_Downmine - (Downmo_CP)"Dicount_Fateres

INIT NPY_INeime $=0$
DOCUMENT: Nat Pruent Vive meome
Unit: (min stal
 operationa

NRLOWE:

Unte: (min Stemedd

INT Romoci_ Eminte a 1
Documart: Ratios Rentur
Unime: (min sy)

NLows:

Univa: (min Symaelis

(numbene of Derion)

 Docunnit: Courminumers
Unita: (min Fermere

 cocumiont: Danthemers
Unite: (minu Stamity

O Bough_Pow_rat - 07
DOCUMENT: Banti Pown feo
unt: (s's/iwni)
Thie is the coen of buying concricity wholenelo. It is higher than the wote cest of producing it

O Capacity_utilzation = Mmp Phant_Demand,100-Downtime\%)
DOCUMENT: CPpeciay UClintion
unts: \%
This the madimum setuld cepecity reacred by the plapt

0
Capita_Costs = CpI_Imp_Cemreougn_Eq_Cep_Ins
O Cap_Cosis - Oebt_paymente
DOCUMENT: Capin Coes
Unis: (mins Sismeed

O Cap_inv_Mun - 1
O Coat_Mech_Labor -
((maint_stafl_avail_mech_work+toti_inap_manpower)"(standart_hours+(ave_overtime))"hrty_cost_laboreMech_EX_F act)"Overhoad_"
Hect
DOCUMENT: Con Medrerical Lexy
(million dollarenwedy)
O ContMonimen_Leber -

OOCUMENT: Coed Nenmechericel Lhe
[million sollarenwedy
O cont ser_Ls - 1

Unive: Mumente of Domery

(peremityem)

-annual_matertala_coat(100 -Expect_Owntmex)

O Crem_map 0.02
DOCumar: Coct per thenteran

The is the cees pur meat of havity an Nine inveroter.

oocumprt: One Pammite
Unim: (min Sramend

Unime: nene

ooctiont: In meer Yerty sines
Unive finn seypert

DOCUMENT: Eppeciad Deminime percert
O Fin_Error - Aceon-(LUacumeatSharehoiders'_Equity)
O Forces_Sturtiom_Cat - Erprereourl
DCCuravi: Pared Sru bum Can
(Million \$1
Cost of each shint demen.
O Frac_ch_RE - (Ch_RE/Ramined_Eaminge)" 52
O Fuel_Costs - (capaciby_utlization 100) "(Power_Rating* 100)"(Unit_S_Fucl+ML_Weate_MOT)
DOCUMENT: FIn Cone
Units: (min Sreweedy
The coot of that beesed on ceppeciey.
O Groes_Mygin - Revenum-Ccate
DOCUMENT: Grose Merin
Units: (min Sramed
This io puat Rovenues minus Com.
O HL_Wata_MOT - SHES
DOCUMENT: Whid Marequment Cen
(min semawe-mi)

O hrly_ceat_laber - (30.501/1000000
DOCUNTMT: Hovity Cona Manter
(mithien dollersyer)

Dociliner: Lnem Cen
Unita: (min Sermeed
O Learmese - Onk
O LS_cept - (Sun_fimin_Rataticou"Cen_sen_ls
DOCun int: Lemer Cent
Unite: (min serwed.

O MAM_MPV = NOV_DomimenNTM_Cems
O Mam_Per_Cent - dam_dermana

Unite: (min Sromend

Docunnri. Nmentring
Unita: \{min Smuantit -

Unite: (mine stumery

Docin ur: giveninemates
Unitr: Imin Srineat

O оммсов:
 Loby
OOCUMENT: Opermere and Marnmanco Corte
Unitu: (minis samocid
Toter spenting on day bioy genarevion of power.
O Ops - (Ops_overnedrempeity_utlization 100) +Fuel_Costs
DOCUMENT: Operteres
Unis: (min sishoeld
This is the recer cole of operating the x bemed en capecity.
O Ope_overread - 5
DOCIMENT: Operition Ovarimad
Unis: (min stemeedy

O Ovactred_OMer - 1.3

DOCUNENT: Prouced Rownum
Units: (mine sta)

O Snermotideri_Equly - Rominco_Earningertom_Equily
O Unit_S_Fuel - ($\left(.005^{\circ} 1000\right) / 1$ EO)
DOCIVIENT: Unim Pateo for Pual
(min ssMMW-hy)

O Weme- mis
O mook_fix_et - Anmum_Preed_Comerss
Docunait: many mion cen
Unite: (min semoed

(1) Pras_maz_iles = Grumuluan_Aemat
(0.00, 0.114). (10.0, 1.00)

DOCUMENT: Procten of Manimum Alocilion
unilece
 invecuram ios metio.
(2) Plom_Doment - GRaprminat

(495, 100), (E20. 10)
Docin in: 0mment

Unim: (nenaf

NHOWE

Unver ymata

Unite: (norny

O Time_m_Change_Bn - $26^{\circ}\left(\left(I n d_{1}\right.\right.$ of_Credin_PFS_Credit_Agencys_Peresived_Fin_Soundnees) /Creck_Agencys_Perceived_Fin_Soundreme)

(wecke)
 thes to mentra.

 11.6)
 Unit: None
(EEFBRSTeck - GRAPH Bend_Remag
(0.00, 1.09). (1.20, 1.07), (2.40, 1.04), (3.60, 1.02), (4.00, 1.00), (6.00, 0.981), (7.20, 0.960), (0.40, 0.953), (9.60, 0.952), (10.8, 0.961). (12.0, 0.961)

(uniteme)
This is the crices on Bace Dove the the bend relles generame.
(2) EmarPuc o araprwlend fann

$1.00)$, (10.1, 1.00), (12.0, 1.01)

Unim: nene

(8) Ind_ot_Crew_pps -

 97.0). (4.00, 100)

Unit: neno

Finamee: DCH

INTT Dute = sees
Dociment: Ded
Untre: (Mine of Sti)

Nrowe:

 occinmart: Dandinempant
Unim: (Mine of groned

CuIncont
 cocinnur: ondintay Unime min groun The is to crise cives ef erte numame

O Done_factes -. 0
 ELSE(C)

O Marken_Etacts - Economy_Cyclee'(Random_Eftecta^9.3)'Specuiation_Factorn(U_IM_RPTME)
DOCUMENT: Markan Ence
unitlees mukiptier
Total of all the other ctrece.
O Randem_Emede - Ags(MORMAL1..03))
DOCUMENT: Ranten Elvats
unisless multipioer
This is the random pruers which cocur in the stock maker dally.
O Specuiztion_Fretor - 1

O Mme_inersase_in_Value - ((Inflaven_Rate"TIME+U_INt_RPTIME)/2) +1
DOCUMENT: Thmo increen in vale
\%hyoar

O U_INt_At - . $04+((10-$ Eand_Ratng $) / 200)$

unite: \%
Thie is the rate the viny mun pey inveters on average for ite bende.

Finame:: Meld Parametore oheeen by Maregement

Documbit: Butye Trio
Unite: (min Sremeent

 Docinumr: Burox Mandine
Unim: nome
thio in the bell allomed derotionty budere
O But_Dw - Den_Weaty_Promefres_Dw

Unim: Imin semeend
This is the entriened weatry ouncy for sheretretions.

Docimint.

O cb_smath - 0
DOCunait: Cutent sumat
unitees

unitleme

Unime: \%

Docin vi: Demed womel Prede
Unive [into gromedty

Docunnti. Dimementy budrat
Unim: (min Samead

O DI_ct_fom_bee $=0$

O Frac_Bud_Eng - 175
DOCUMENT: Fraction of Budect tor Engineers
unittess
Thas is the deaired pertion of the diecretionary buoget for engroearing.
O Frac_Bud_Lot = . 01
DOCUMENT: Fraction Budened for Lobbing
unitiess
This is the portion of the cerrallonery budget allocated for lobbying
O Frac_Bud_Mech - 528
DOCUMENT: Frac of Budget for Machenice
unitess
Fraction of Eudget alocated for Mechenicel Inbor.
O Frac_Bud_MOT - 1
O Frac_Bue_Part = 1
DOCUMENT: Fraction Budqued for perne.
unitless

O Frac_Bud_Tma - . 1
O Frac_Div - . 75
DOCUMENT: Fraction tor Dividente
unitleses

O Frae_Pat_bud_mant_gerte - 6
DOCUMENT: Fraction of Pare budgex tor manminge pere
unittese

DOCLMENT: mepection luden
Unita: (min srameed

(min sermeed

DOCUMENT: Mimum Reron Endien
Unite: (min Stemeal)

DOCinm
Unite: (min Sermedd

Unita: (min Stemeen --

Unim: (min syl)

oocúnor. Malmur endrems
unver fandmeent

O Max_Mech_Staff : Max_Mech_Budgou(Overhend_oftecr standerd_hours'hrly_coat_Iabor Mach_EX_Fact)
DOCUMENT: Masimum Mernericel Stu
units: (workers)
This is the maxemen number.
O Max_MOT - Max_bud_MOT/MMAT_Annual_Sel/52)
O MGT_Anmun_sel $=1000001$ ES
DOCUNENT: Manege AnNiM Sedmy
Units: \{Minn Ssi
O Proft_Measage - 1-(Dee_Prom_Margin+Frac_Bud_Eng+Frac_Bud_Lob+Frac_Bud_Mech+Frac_Bud_MBT+Frac_Bud_Parts)
O Required_costs - (-INIT(Debt_paymenta)+INIT(Ops)+INIT(week_fix_et)+iNIT(Budgend_Taxes))+iNIT(Bought_Pow_Coat) DOCUMENT: Requind come
Units: (min s'sweek)
Theer are costs which the utuy has liwe centred over in the mocel.
O Trig_Budget - Diseradonary_budgex Frac_Bud_Mach"Frac_Bud_Trne"(1-STEP (Layoff_Praction"3,200)) DOCUMENT: Trioning budent
units: ($\$$ sembend

Documiant: Whenty lextor
Unite: (min Tsumedid

Finamee: Publle Uailiny Cemmicalen

INT ANO_U_Reme o Ose
DOCURTMT: Averep Uner Rome
unite: sis

NRLONE:

INHT Cunforananter $=1$

unticen

NMONE:
Pue_gere_Pruxy - Pus_gers_Prulie - (Chanoo_Peve_Pru)"
INT Puegren_Pral e. 4

(urime of Prutereat

NHOM:

MUT Puanite a . Cit
Docinmint Mrem
unite: s'

NPLONE:

- Cn_Puc_Rate - (Al_Ram-Pue_Rato)/Pue_Delay DOCUMENT: Chance in PUC atomed Ros.
Unite: I \$swoed

```
Rate_Base(4 - Ratm_Beaet - de + (ConaCep_Inv - PUC_Ch_p8 - Decomm) 'dt
```

INIT Rap_Beso - Bock_Imeotimelinple
DOCUMENT: Res Bene
(multions of Dollars)

Doller Anount of Capred which the PUC decides to incude in devermining Rate of Roum
INFOWS:
\Rightarrow Conccep_inv - irvesment
DOCUMENT: Conmection and Caplal loweement
Units: Imin s'sureed
this at the bed invectraten in the utwy
Oumpone

DOCUNGTT: PUC cherge in Pate
Unies: (min S'emeedd

\Rightarrow Docemin - Dup X
DOCUNENT: Decemmidering
Unite: (min s'enveda)
This is how deprecterion of plap fowe ove of the riae bees.
O Allownamos = (Con_d_Cap-1) EfPPuenOR"(1-Evinees)

(\%)

O MnRen -
 wer_Pathg"1 (3016)
DOCUMETT: Allived Pmo
($8 / \mathrm{kwh}$)

DOCum NT: Compenars rits

O Comp_gman $=0$

unva: prude

Docuninil: Ound neme
Unite: (min Syment

Uutar amenment

Docinnri: Cumina sempiocitan
untreat

O Dolay_AC_PP = Max(ICurtnd_PruceEfiPs PUC)PPuc_gere_Prud.32
DOCUNEMT: Dentin Adpuing perceived prudence

O Delay_Rate - (Cust_Por_RelRaternd_Rato)"4
DOCUMENT: OMy R
(woeks)
 the bul. For incrumes it gea shertw since the newspapers will invariaty cover them.

O Est_Yr_cosqpertion - Current_Yr_Costa/Current_Yr_MW_Salee
DOCUMENT: Extmand Yoch ceit Por Kim
Units: | s'skwnul
This is the predicted frave refe requirtumpis io make up for coes beaed on the last years performance.
O Est_Yr_Rov - SMTH1 (Revenues"52'1 Es.52) 1000000
DOCUMENT: Extmanad Yoarty Rovenime
Unis: (min sisweedy)
 markup ite requer.

O Evilness - Evil_Amount(0+STEP(EVI_PPue_Fun,100))
DOCUMENT: Evinem
Units: nade
 cen change beest on PUC poived chenjes.

O Evil_Amount - .Oss
OOCUNENT: Evil Amunt

O Evil Pue_fin = 0
DOCUMENT: Evi Pue Punction

O For_Cap =. 0

DOCUMENT: Melep
unitices

O OMM.On
(1) Pas_mrevith - OAm

Docunant: Pas truadreche
Unite: (min Stemeedy

O Pown_Remay $=1000$
DOCUTBint. Paner Ruma
(kwh)

O Pue_Acprentuly = Pue_Ranaring_hen_Tome
DOCUNTIT: PLCATM,
Unim: nemo
 recatio fitue reo hime.

DCCUM:NT: Ret per inmertion
unite: (EANMA

power maneat
O Reoncinty of

univer mine

O Ret_Rem - Rate_ger_kWVAvo_U_Rat
DOCUMENT: AdMive RTM
unittess

System_Rellamany -. 986

O Test_Yr_SYiwh - Ten_Y_RewTTet_Yr_Saces
DOCUMENT: TER yers cerie per klowen her
units: S's/kw-hr
This is the average ceet of electicity during en average yedr picked by the puc.
O Test_Yr_Rew = INIT(Revomucs)'58¹E
DOCUMETT: Ten Yeer Ravenuo
Unite: (min S'amedi)

DOCUMETT: TEA Yer Seto
Unim: (min 5al

DOCUM:NT: Uny Roquented Tould
Unita: (min Stamedy

(0.00, 0.871), (0.15, 0.87\%), (0.3, 0.25), (0.45, 0.830), (0.6, 1.00), (0.78, 1.01), (0.2, 1.01), (1.05, 1.02), (1.20, 1.02), (1.35, 1.02). (1.50. 1.03)

unitlece

(0.00, 1.07 , ($0.5,1.04$), (1.00, 1.06), (1.50, 0.750), (2.00, 0.535), (2.59, 0.420), (3.00, 0.349), (3.00, 0.292), (4.00. 0.100). (4.50, 0.030). (5.00, 0.00)

(2) Efrcuspuc anmornsan
(0.00, 0.214), (0.1, 0.5ce), (0.2, 0.64), (0.2, 0.731), (0.4, 0.749), (0.6, 0.749, (0.8, 0.767), (0.7. 0.700), (0.8, 0.23), (0.9. 0.919 , (1.00, 1.00), (1.10, 1.10)
(Q) EnTucne - ararripus pene_Pry

unitee

 1.33). (1, 1.33) e.

unite: K/prite

 1.00)

(unituent

Finances sedeiy Fin semeceterPerSaleyfinMerky - PerSatbyfinMerkit - du + (CnPorSan) - dt
iNIT PorsatayfinMark - Curnoperset

DOCUMENT: Perceived Satery By Finencial Marker

Unre: none

INPOWS:
\% ChPorsat - (CurfndPorsat-PersetoyfinMark)/Dolay_in_ad_Set_pere

EHPSPUC - IF(ENI_PUC_FIn) THENERFPSPUC_EEELSE(EFPPSPUC_C)
DOCUMENT: Enmat of Peremved sabey an PUC
If the plant is sato the PUC will bevive that the maneguntert is pructent
O Uuity_Ave_SALP - SMTH3(SALP ,206,3)'Event_Encet
DOCLMENT: U"My Avereqe SALP
unitless

 99.0), (2.20. 100)

$(-100,13.5)$. (-00.0, 15.0), (-00.0, 15.0). (-40.0, 18.0), (-20.0, 21.0), (0.00, 35.0), (20.0, 52.0), (40.0, 72.0), (60.0, (04). (80.0, 117). (100, 120)

0 EFFPOPS - CNuPNEFIFATCOM
 0.954). (1, 0.951)

1.00). (90.0, 1.01). (100, 1.04)

DOCUMENT: Etret of Ope en Poremed Sumy
uniteen

$(-20.0,-30.0)$, (-16.0, -21.0), (-12.0, -15.1), (-2.00, -4.60), (-4.00, -2.52., (0.00, 0.00), (4.00, 1.00), (8.00, 2.73), (12.0),
3.42), (18.0, 4.30), (20.0, 5.06)

100.0, 0.25). (109, 1.0

(unisceal

 improving the crime

(90.0, 0.8). (18.a, 0.59), (100, 1.10)

funitceat

 improving the unter.

(0.00, 1.55), (10.0, 1.55), (20.0, 1.51), (30.0, 1.39), (40.0, 1.29), (50.0, 1.21), (60.0, 1.12), (70.0, 1.05), (80.0, 1.01), (50.0.

096). (100. 0.96)
DOCUMENT: Envet of Prouved Servy on Srock Fink
This si the cliote tre rink of cere meth has on stect price.

(1.00, 120), (1.30, 1.17), (1.60, 1.19), (1.90, 1.11), (2.20, 1.06), (2.50, 0.58), (2.80, 0.903), (3.10, 0.858), (3.40. 0.832),
(3.70, 0.812), (4.00, 0.8)

OOCUMENT: Enver of Sarry Roming on Poromived Sarry
This is the combination of Selp scoves to infiesice Pareetved Setoy.
(Event_Effect - GRAPH(Event_Switen*(STEP(1.1 S0)-SMTH3(STEP(.96,16e), 62)))
$(0.00,0.999),(0.1,0.979),(0.2,0.953),(0.3,0.910),(0.4,0.851),(0.5,0.896),(0.6,0.834),(0.7,0.800),(0.8,0.794),(0.9$. 0.775). (1, 0.75)

DOcumprt: Evan Elvat

Governmem: NHE

inflowe:

outinows

(peqeeryear)
 being unterteren

NHONE:

 (Invectersionemeed
anlione
 DOCUM NT: Invemprens Comintiot (Invectigomenermand
 encerinarreplation at

fonces requmone er niture

Nrones

alinow

- Amontmantine


```
    NRC_Reports_In_Progress(t) = NRC_Repert_In_Progreas(t - dt) + (NRC_Reports_Initmand - ReportsComplomd) - dt
    INIT NRC_Reports_In_Progress = Imt_NRC_ReplP
    DOCUMENT: NRC Repors in Progrtes
    [Reports]
    INFLOWS:
    %}\mathrm{ NRC_Report_Inmmed - Avo_No_Report_Per_Rea_Proj^Investgations_Compioced
        DOCUMENT: NIC Repere nimiod
        [reports/week]
OUTflows:
    F% Aeports_Compleced - NRC_Reports_In_Progrese/Ave_Tmm_w_Pubvan_Repert
        DOCUMENT: Repert Complere
        [Reportanweek]
```



```
    INIT Regulatene_on_Boovs - init_NAC_RecOE
    DOCLMMENT: Repumimes on Blove
    (Horemat peges requmamal
    INROWE:
```



```
        DOCUMENT: Enectra Ropution
        lpegee rapuedenemsad
OU|mONE
```



```
        DOCUMENT: Ducerding Rapmetore
        [papee/muekl
        Changed frem /580 to theo
```



```
    (Inspections/wecky
```



```
    DOCUNENT: Average un of Unmocenend Rogmary Emecu
    (weekla)
O Avo_No_Report_Pre_Ree_Pral - 1
```



```
    [reporty/wveatugaten\
```



```
    (weakel
```



```
    (weenm)
```



```
    Occunrirt: Ceo hropelen Pros
    finspecievarwecdy
```



```
    (3 per year)
```


O IndicatednappettenRad - Besoinaphamenspecial_Requirement_for_Inquiry
DOCUMENT: Indenet ingeetion Row
(inspectionarweedal
 DOCUMENT: finderes NAC invertantere in Propree [investigatene:
O Insp_Ratio = Plamenapesing Pemelnephan
() NRC_Evinces - 0.0

DOCUMENT: 15 is nice Cuncel 1
Run with and without renovel of rege within the info secter
O Reg_Rate - Requivion_on_Bockevswtha(requititens_on_Becks,20)
(Resperse_Tme $=304$
DOCUMENT. Ruperse Tre
(waeke]
(3 montise " 4 meakementin)

O Sochatinnc = Efinuncetrimine

 DOCUMENT: Specta Raquremunt for haidy
[Inspectiona/meend

O Ume_re_enect_requimen - 1832

(weokel)
O Time_n_Inepect - 4
DOCUTMT: Time inmpect
[weeks]

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.003), (0.4, 0.0377), (0.5, 0.077), (0.0, 0.16), (0.7, 0.307), (0.8, 0.40), (0.9, $0.492)$ ($1,0.6$)

[Inspectenermeedy

(0.00, 0.297), (0.1, 0.907), (0.2, 1.04), (0.2, 1.04, (0.4, 1.04, (0.8, 1.19, (0.4, 1.19), (0.7, 1.29), (0.8, 1.20), (0.9, 1.29). (1. 1.30)

[uniticee mundiver

 1.30)

 2.98)

(uritices mumprial

 0.492). (1. 2.3

Docun in: elmet Rume en Nins
(Inspecivanarinely

(0) EFFGAPO - GRAPH(RCe_RCwoinep_Rato)
(0.7. 1.03), (0.76. 1.00), ($0.82,1.00$), (0.88. 1.00), (0.94, 1.00), (1.00, 1.00), (1.06, 0.980), (1.12. 0.982). (1.18. 0.379).
(124. 0.973). (1.30, 0.955)

DOCUMENT: Eltect of Government Action on Pibite Concem
[unitiens)
Governonemt action or inaction may heigition or lageen pubic facs.

(0.00, 0.990). (0.5, 0.504 , (1.00, 0.281), (1.50, 0.940), (2.00, 0.509), (2.50, 0.840), (3.00, 0.752), (3.50, 0.692). (4.00, 084). (4.50, 0.618), (5.00, 0.602)
 taken from the mantanance stell.

(1.00, 1.02), (2.00, 1.10), (3.00, 1.15), (4.00, 1.25), (5.00, 1.40), (0.00, 1.82), (7.00, 2.30), (6.00, 2.85), (9.00, 3.90), (10.0. 5.971
(O) EFFNACminap = GRAPM1'Requtationa_on_BockanNT(Requtatens_on_Bockal)
$(1.00,1.00), \quad(4.00,6.00)$

(1.00, 1.00), (1.50, 1.15), (2.00, 1.32). (2.50, 1.70), (3.00, 2.00), (3.50, 2.35), (4.00, 2.70), (4.50, 3.23), (5.00, 4.00), (5.50. 4.83), (6.00, 3.90)

(1.00, 1.00. (1.10, 1.05), (1.20, 1.12), (1.30, 1.20), (1.40, 1.30), (1.50, 1.49), (1.00, 1.51), (1.70, 1.57), (1.80. 1.61). (1.90, 1.66). (2.00, 1.70)

This is a mumaver io increese inepectera beoed en rupera.

(0.00, 0.5), (10.0, 0.130), (20.0, 0.00), (30.0, 0.0270), (40.0, 0.0120), (50.0, 0.009, ($0.0,0.003,(70.0,0.00),(20.0,0.00)$,
(90.0, 0.00). (100, 0.00)

DOCUMENT: Elact of hitimant on NRE
(Inspecticnarmend

$(0.00,1.24),(10.0,1.17)$, (20.0, 1.10), (30.0, 1.04), (40.0, 1.03), (20.0, 1.09, (00.0, 1.00), (70.0. 1.00), (20.0, 1.00). (90.0.
0.987 . (100. 0.703)

[unitice multiplierf

 (2.00, 1.99$)$

Government: Cengreee

INTT Concenned_Live e $.1^{\circ}$ Immivine

[Congrees pecipas

nnowe

ltemmeneramervel

ounlan

(lawmetrerameety

INIT EFFFPRCOUR - 0
DOCUMENT: Ented Pareat Ound

INPOWS:
fo PGaff_Rate - (Pian_Foree_Out.5)
OUTHON:
of Fade_PB_ef = EPPForcourfate_Tm
0
Avelmbenmenty - 20

(lawmakers)
Upper and lawer bounde for the mumber of concemed immatars (o io saci.

[lawnakers]

(weekel

[unitices]

(0.00, 0.8e2), (0.1, 1.09), (0.2, 1.03), (0.8, 1.00), (0.4, 1.00), (0.8, 1.01), (0.0, 1.04), (0.7, 1.07), (0.8, 1.10), (0.8, 1.13), (1. 1.15)

[unictees mulloper)

 1.25)

(uniticese mumanterl

 1.22). (250, 1.2)

1.23). (250, 1.30)

(undeese mimpras)
Mantinnos

 1.20), (2004 8.2)

 0.83. (0.09, 0.803). (10.0, 0.80)

Gevermmant Matme DetSALPIV = SALPI - dY * (CHSALP) * ${ }^{\text {d }}$
NIT SALP = 2.5
DOCUMENT: Setray Acecemment and Liecenaing Procesiure.
this is the rating 1-4, i bewng beed of the operaione of the muctere plane.
INFOWS:

- CHSALP - (SALPBounde-SALPY/Tme_D_CNSEP

O CurindSALP - (Engincerng+MeintenancerPlem_Operations+Suppert)/4
O SALPBounde $=$ MIN (MAX $($ CurndeaLP,1),4)
O Time_w_CnSelp = 52${ }^{\circ}$ CurindSALP/SALP
(3) EFF_rep_analysis_ratio_SALP - GRAPH (repert_analysia_ratol
(0.00, 2.49), (0.1, 2.44), (0.2. 2.25). (0.3, 2.02), (0.4. 1.51), (0.5. 1.23), (0.6, 1.14), (0.7, 1.08), (0.8. 1), (0.9, 0.929), (1. $0.807)$
O EFF_SALP inte - GRAPHSALY
$(1.00,0.00),(1.50,0.00),(2.00,0.00),(2.50,0.00),(3.00,0.05),(3.50,0.1),(4.00,0.1)$

ong_workloadTINIT(2w_qua_spece)/ev_qual_specs)
$(0.2 .1 .00),(0.58,2.00),(0.54,2.00),(1.34,2.00),(1.72,2.00),(2.10,3.00),(2.44,3.00),(2.68,4.00),(3.24,4.00)$. (3.62. 400). ($4.00,4.00$)
(Mantenance - GRAPH(1-fres_eqip_bdown)"Rurnina_Ave_Caw10en)
$(0.00,4.00),(0.1,4.00),(0.2,3.00),(0.3,3.00),(0.4,3.00),(0.5,2.00),(0.8,2.00),(0.7,2.00),(0.8,2.00),(0.9,1.00)$, (1. 1.00)
(PantOperationa -
 (0.00, 4.00), (10.0, 4.00), (20.0, 4.09). (30.0, 3.00), (40.0, 3.00), (50.0, 3.00), ($00.0,2.00$), (70.0 .2 .00$)$, ($00.0,2.00$), (50.0 , $1.00)$ (100. 1.00)

mgr_workead"(EFF_rep_andysis_rate_SALP)*MAperwt/INIT(Mḧperwk))
$(0.00,1.00),(0.2, \overline{2} .00,(0.4,2.00),(0.6,3.00),(0.8,3.00),(1,3.00),(1.20,3.00),(1.00,4.00),(1.00,4.00),(1.00,4.00)$,
(2.00, 4.00)

Information Dotect Remution Curve

NHONE:

* info_CA_getormed - prea_CA_veritamatran_CA_veliterat

INTT DEE_RED = . 58
Nrowe:
frectional_info_CA_cemptetion - inte_CA_pertermedicumainto_into_CA_Pertomet1 _frae_into - . 0

1.00), (1.00, 1.0

Infermenion Lever meneter
\square inforina_WTM $=$ Then
NHONE:

```
            F% dra_mo_em_wT
```


int inmenvo oo
NHONS

inforentruander -

_rog'info_rep_ger_eng_ger_wack. 21
O info_ma_em_res - 23

info_mg_unavai_raino - IF (TME<5) OR Pw_Outagel 1 THEN i ELSE (info_mgr_WTB/mg_info_rev_comp+1)

O into_mgr_work_das -
SMTH1(managers_applled_per_j06"(CA_Waitng_for_Assignment+Evals_Wathe_for_Validathon+Proc_CA_Waitng_for_Va+Train_CA_W (ing_for_Val+ Req_Reviow__Waiting_for_Assign'mgr_per_reg'info_rop_per_mgr_per_week), 2)
\bigcirc managers_appined_on_jote - . 20
mgr_per_reg e 10
Information: Industry Prowem Roperting and Other Agenelce
EPRI_Rescerch_in_Progreew 0 - EPRI_Recerch_in_Progreseat - dt) + (EPRI_res_initation - EPRI_res_complotion) - ot
INIT EPRI_Researon_in_Progree o 0 INFLOWS:
*) EPRI_res_initiation - base_EPRI_res_projecterefFidproeEPRI

OUTRONS:

INPOWS:
For NRC_IN_initiation - frac_probe_need_INTident_probe_sent_m_NRC
OUTHON:
Hiy NAC_IN_comp - NAC_IN_In_Progreceltimeto_comp_IN
 INIT VEN_Reecerth_in_Proprene - 0

DOCUMENT: Vender Planerent in Proiseo [recearch progranded

Nrown:

 (rseecreh progrtintiment

outrone
 DCCIMĒT: Venter hamen Computen freseuren progremment

INIT WANO_ARME_In_Procke o 0
NRLONE:

allime

0

0

(reseren procernixitit.

 induraty to mieme

O frac_probs_sent_to_INPO = 10
DOCUMENT. Friction of Probtern Sens do INPO
Fraction of wed probierne identied that are sent io INPO for analysis.
O frac_probs_sen_w_NRC = 1.0
DOCUMENT: Fracton of Protitime Sent to NRC
Fraction of total idenuliod probionse sawt to NAC for malysie.
Ofrac_probs_sent_to_vendors - 1
DOCUMENT: Ffacsion of Probiems Sent of Vendors
Fraction of total identiffed probiems then aro sent to venders to indeme receerch.
O ident_probe_sent_to_INPO = Irac_grobs_sent_w_INPO"identiod_problems DOCUMENT: Identice Probleme Semt to INPO
[probiems|
 Reports (SEA), and Signitcent Operaing Expervence Papore (SOEff).

O ident_grobe_sen_ti_NRC = frec_probe_sen_w_NACidentind_probleme DOCUMENT: Identied Probiente Sent io MAC
[probiems)
Numer of probiems serk to NAF to be raviewed for infermetion Nowiceltons (W).
O ident_probe_sent_w_vendors - Irec_probe_sem_to_vencora"idenemed_groblema DOCUMENT: Ideriniad Probivite seot to Veridere [problems)

O tme_m_comp_EPAI_res - 12
O tmom_compIN - 4
O Hmp_m_comp_VEN - 24
DOCUMENT: Inme compine Venter fanemoth (weeke)

O ume_m_comp_WANO_rep - 4
Information: Action Precens
 INTT CA_Weme_for_Aedenminit - 36

(CA)

Nrowe:

(CN)
 metriemones, reininal.

OUnlomit

(CM)

CA marnimetit the cerrect groupa.

O CA_abencon - IF (info_mg__unavad_fatiosesegg_man_unavi_lim) OA (info_eng_unavai_ratosesengn_eng_unavai_lim) THEN CA_Wailne_for_Assignmentfree_CA_abandon ELSE 0 DOCUMENT: Corriecte Actons Abdonted
[CA]
 work (from the encineer unavaireity incraasing).

```
Mod_CA_in_Progresel(t - Mod_CA_in_Progremett - dt + (now_mod_CA - mod_CA_plammed) * dt
```

INIT Mod_CA_in_Progrese - 80
DOCUMENT: Moctilicetion Corrective Actione in Progreat
(mod CA]
Plaming of moditicmion coirroctve action in progres.
INFLOWS:
of new_mod_CA = CA_minnmantre_CA_mod
DOCUMENT: Naw Mocricuian Correctiva Actions
(med CA)
Now correctev cettore to be pertormed trough plen mocincations.
armbons:
- mod_CA_planmed - Mod_CA_In_Progrearad_tme_m_dien_med_CA
DOCUMENT: Mocitcation Contactive Actore Phenned
(mos CN
Compriation of pramiry of modimertion CAS.

INT Proe_CA_Wamini_for_Va - 28
DOCUnevr: Procetere Chunge Waming tor Vetimen
[proc CAl

NROWE:

(pres CAwned

almone

 tpres cavied

 Docy fore eaviaty

INTT Mne_CA_n_Precive - 200

[proce CA]

Nelows:

```
    * proc_CA = CA_assignmentrme_CA_proc+proc_CA_incorrecteEFF_mainOT_into
    DOCUMENT: Procectre Correctve Actort
    [proc CAwmedy
```

 changen

OUTROWS
to proc_CA_compteted - Proc_CA__in_Progreas/edLtime_to_comp_proc_CA
DOCUMENT: Procmider Chenpe corrietve Actors Complited
[proc Cawmedy
Procedure change CAs implementied by the enginewr. (incorpormed then inte procedures and making employens aware of anem).

```
Train_CA_in_Progreme(t) = Train_CA_in_Progreaeti - dit + (tain_CA - tran_CA__completed) * dt
INIT Train_CA_in_Progreet - 200
DOCUMMENT: Training Change Correctve Actons in Progstes
(rain CAl
Traing charese bende worked on by ongineera.
INFLOWS
```



```
        DOCUMENT: Trining Chmap Cormetve Actorn
        (rrain CAwweaty
```



```
OMTHONE
    % rain_CA_complened - Train_CA_in_Progremed__timo_m_cemp_tran_CA
        DOCUMNXT: Truming Chneqp Correcivo Actione Compinad
        [tam, CAwrem
```


d
INIT Tran_CA_Wamna_for_Val = 15

[rein CA]

NAOME:

form cavneme

OUTHOM

[rain carmint

train exment

(weake)

O adLump_to_comp_proc_CA - time_to_comp_prov_CA'info_eng_unavail_ratio DOCUMENT: Açuted Time or Complate Procedve Chmige Corrective Actions (week)

O adj_time_to_comp_trin_CA - tme_t_comp_train_CAPinfo_eng_unavail_ratio DOCUMENT: Actried Tive to Comptein Training Correetve Action (weok

Time to complete training cerrictive actona, adineted for onigneer avaitabily.
O adi_time_to_pian_mod_CA = Ume_to_pian_med_CAVInto_ene_unavil_rallo COCUMENT: Aclued Time to Pinn Moriomeion CA (weeks)

O ad__ume_to_val_pres_CA - Ume_to_val_gres_CA'Into_mge_unavall_rato
 (week)

O ach_time_to_va_tran_CA - tme_to_vilutran_CACinto_mg_unavali_rato
 (wead

O asaign_ma_ureval_Im -3

O aseig_man_unevi_ninn - 2

O mesca_menten $=.2$

[CA amontenemen]

0 tres_CA_met - 2
DOCUM NT: Preaten Conncime Actens Mommernore [mod caven]

O mascn_res a
 [pros CNEA

O fra_CA_tem - 2

[tion carent

O tres_um_nea_menca $=.2$

O trac_ot_oves_neod_CA - 75
DOCUMENT: Fraction of Evalumiona That Naed Correceve Actions
[CNevaluations]
Fraction of validated wamplema thet require corrective actions within the utility.
Otrac_proc_CA_corret - . $90^{\circ} 0 f f_{\text {_OT_fallgue_eng }}$
DOCUMENT: Freaten of Procedire Corretive Actons Correct
(correct CNprec CAl
Fraction of procedure change CAs the are ecrrect
O trac_train_CA_correct - $90^{\circ}{ }^{\circ} n_{\text {_O }}$ OT_fatique_ong
DOCUMENT: Fraction Training Chang Correctvo Actere Comet
[correca CAvrain CA]
Fration of corrective aetione for training ina are being pertermed cerrecty.
Otime_to_asien_CA - 1
DOCUMENT: Tine io Amaje Correctvo Actore
(weekel

O time_to_comp_prev_CA $=10$

iweeld
Time is akee to implennent procetere changes wroin the rumb.
O tme_ta_comp_rain_CA - 23

(week

O Une_mptan_med_CA - 12
DOCUMET: Tine io Pman Moribemten Cermetve Actent
(weeke)
Time it tave io plen medicatons fer correctve actona.
O ume_to_va_pres_ca - 1

[weekel

O tme_monaran_CA = 2

(weekel)

Information: Ammyars llote Edo

(repertal

Mrome
 Docinnerl: Mam Rupate
[repertayment

repert_anaysen_reopened) - dt
INIT Tom_Reper_Anayser_Abendoned $=0$
DOCumant: Toul Papert Andyas Aburdened [raporta]

INF.OWS:

 DOCUNENT: Repers Amivias Abentioned (reports/week)
 corrective artione are adened.

OUTlown:

 DOCUITBT: RepertAnavere Recperied [reperta/week!

 OOCL-Mart: Ampert Anclites Rerto [rope aneysedrepe averimet to umy)

Informaticn: Ivalulecion Preeces

evels_gerformed_incerreety) - ot
INT Evels_Wavinarer_Valiteren - 46
 (evelumiencel

NHON:

 foverumesiatment

OUIITON

 DCcumint: monnimio Primmed Comet [0verament

 [evala!

 INTT Evalurione In_fregree - 276
Docunmext: einerimes in mernes
(evala)

NRONS:
F) new_item_ovatuntion - (app_reps+concerns_from_app_SOER)+significant_problemp+evali_pertormed_incorrectly DOCUNTET: Now thon Everumore [ovalemmeen]
 appientin Sosen

OUTRONE

DOCUMENT: Mins Ermintad
[evals/ween!
Compiation of corructivenction evalulon of itmme.
 DOCUMENT: Evamen Amplenter (evals)

DOCumbint. Arymea Tries Eving
[wente]

[weots)

fcorreat evilention evitil

O rae_evil_mendenct - 10
 [ove mentenecroveril

O tmocenell -
Docinivit Time Euthe
(weetul)

O dmone_ve_mbe - 1

(weekel

Infermations incruery bueme

Docymant: Crimpine ante
[aierte]
Totel number of aire elors tint heme coounet.

```
    INPOWS:
    CP stm_aver = site_atert
        DOCUMENT: SH ANT
        [alertanweak]
        Site atet cocurmese.
Cumulatve_Emergencinett - Cumulatve_Emergencieeft - dt + (sim_emergenciwa) * dt
INIT Cumulatve_Ernergenciat - 0
DOCUMENT: CImmamer Emergmacios
[emergenciee]
Total number of site amergencive the heve ocourred.
INFOWS:
of site_emergencine - site_mergencias DOCUMENT: Sm Enmernaies [omergencieenweek]
SHe entergency occurances.
```



```
INT Cumulative_Evente 0
DOCUMENT: CImurive Evane
[ovents]
Toter number of ownite (all iypea) the cocured.
NRLOM:
- nem_overt_oceurences a wan_ocaumee
DOCUMENT. Nem Prunt Cocintices
[eventenverd
Everts coceving ap mack
```



``` INIT Cuminive_Probime_Reperted - 0
DOCUMENT: Cumulive Prodeme Reperted
[probleme]
Totel nunber of proberine repertel.
```


NMONE:


``` [procememerment
```



```
INT Cummine_lmintite os
```



```
[minee everval
```



```
NRONE
- unumat_overt o unumal_overx
Cocininit. Unumil Rem
funueur evereameent
Unimial cuent cocerimetes.
```

O base_grob_sa $=10^{\circ} \mathrm{dt}$
DOCUMENT: Beeo Probelivity for Sito Alert
This is the bae probabaity for site alerts to cecur. Based on information from the NAC it is 1 alert every 10 ovente.(1/10-10\%)
O base_prot_se $=25^{\circ} \mathrm{c}$
DOCUMENT: Beno Problentiy of Sin Ennergency

O ovants per_year - 140
DOCUMENT: Event per Yeer
lovents
This is the macioum mumber of everte that se allomed io oceve eath yeer.identified_probinome -
unusual_ovent'probe_diac_per_unueum_event+site_alert prob_diee_per_alert+ili__emergeneiee'prob_dise_per_emergeney+problems from_major_ovent
DOCUMENT: Kdentied Procions
[problema]

O probe_dec_per_unumul_ovent =:
DOCUMENT: Proteme Opeovered par Unuard Event
[problomerunusual ovenal

O pros_des_ger_enveriency $=100$
DOCUMMNT: Protione Dreciverad per Imerimey
[problame/energenoy)

O prob_dise_ger_atert - 10

[problama/alert]

O randene - sab
Docinnur. Ruminge

 (wemen)
 Hoee the have cceumet in the pept.

O EFFidprobeppi - GRAPM idemi_proc_(amo)
(1.00, 1.04), (1.10, 1.10), (1.20, 1.10), (1.30, 1.10), (1.40, 1.12), (1.50, 1.10), (1.60, 1.23), (1.70, 1.62), (1.80, 2.37), (1.90, 3.32). (2.00, 5.00)

DOCUMENT: Eliot of Remuled Portione on EPPI

(EFFidprobWANO = GRAPMY ident_prot_ralol
(1.00, 1.00), (1.10, 1.01), (1.20, 1.02), (1.30, 1.02), (1.40, 1.02), (1.50, 1.03), (1.60, 1.05), (1.70, 1.09), (1.80, 1.16). (1.90, 1.30). (2.00. 1.40)

DOCUMENT: Eflect of identied Problems on WANO

(1.00. 0.00), (1.40, 0.00), (1.80, 0.00), (2.20, 0.002), (2.00, 0.017), (3.00, 0.034), (3.40, 0.040), (3.80, 0.072), (4.20, 0.105), (4.60, 0.148), (5.00, 0.190)

 probieme trough raguletions.

0 oven_oceuranee - OnAPM(randfor_min_ovental
$(0.00,1.00),(0.08,1.00),(0.1,1.00),(0.15,1.00),(0.2,1.00),(0.25,1.00),(0.3,1.00),(0.35,2.00),(0.4,2.00),(0.46$,
2.00), (0.5, 2.00), (0.53, 3.00), (0.6, 3.00), (0.64, 4.00), (0.7. 4.00), (0.75, 4.00), (0.2. 5.00), (0.65, 5.00), (0.9, 5.00), (0.95,
6.00). ($1.00,6.00$)

DOCumTIT: Evint Oee umee
fovenal

Evert_Prociseina - Event_Pod
DOCL-NT: EVET mocenens surmoon

100-140 evertalyeer

$.25 \%$ chence of bend a

NRONS:

 foventarmeend
 the cuene pe your vina

OUImOME

funverial enaminer.

 Doctinut: smont [acorermeed
sme tex enomencen.

 fencormaderneend

Sir emergeney cearancer.
 INIT Evern_Poci $=0$

DOCUMENT: Evere Pod
[oventel
 ovene in a yoer of the crent per yeer lovel.

INFLOWS:
\%o ovent_poed_recer - went_pool_reces DOCUMENT: New Everis To Ocev [oventa/reek]

OUflowe

of sitn_errergancier - ∞
of sim_ciert - sa

O overt_cceurence - overi_cearances
DOCUNENT. Event Ocerrese
[oven)

O rand_1 = RANDOM (0,100, ran_ement 100)
O rand_2 - RANDCM ($0,100, \mathrm{ran}=200 \mathrm{~d}+200$)
renc_3 - RANOOM (0,100, rend_suath300)

O rend_s = RNMDOM (0,100, rand_sendesce)
O rand_s - RanDCM (0.100 , rent_sendrece)
O sa - (tex_1+bet_2+ient_3+int_4+ient_s+met_O) DOCUMTNT: Sim Alo
[alertal

O sa_prot_live - 100 -vena_pratan

Documain: sme fingundis
(empergencine)

0
0
0
0
0
0
0
0
0

INPO_rec_ficld_inveat_completed) - dt
INIT INPO_Filid_Inveín_in_Progree - 3

DOCUMENT: INPO Fild inventimene in Progrese [investigationa]

Number of fied inveatquient on probvemarecommendatione in progrees.
INFLOWS:
of fiold_inveat plannedi) = fild_invent_planned(o) - CONVEASION MULTIPLEA CONVERSION MULTTPLER - 0.5

DOCUNENT: Fudd inverucations Phenued
[investigations]
 be enfrenced by furtion invecigenien.

OUTHONS

 (investiqutionerwedid

Number of invectgeteres complated per meate

INPO_gre__snelyan_ecinip) al
INT INFO_Pret_Anayaio_in_Progreee - 15
DOCUMEAT: WFO Prodem Anatyis in Progreen [analysta]

Mrove:

farelyatermaed
 actesameconnmeoteriena.

OUflowe

 [enclycia]

INPO srete_seremen ©

[probiemal

Nrons

[pocresmernedel

armone
\% INPO_probs_sercence - Probs_Waiting_for_Screen_by_INPOIad_INPO_time_m_screen_event DOCLMENT: NPO Prodeme Scremed [problemanweek]

Problen sereming by in INPO is complexed. Problam is devermined to be signilicent or non-migniticereFece_Warting_for_Furtrer_Invertigatenty - Recs_Weiting_for_Further_Imeatgationt - dit - (new_rece_to_inform quick_SOER_remponeer - fird_inveet_plenned) "o
INIT Rece_Waitha_for_Furtie_InverNgetion - 5
OOCUMENT: Recommendetione Wedtng for Furtar inveetigetiona
[rocs)

NFLOWS:

frece requirearmeed
Newt res to appers in SOBA raper.

OUTIONE

F) qick_soch_reqpenes -

[SOEA

(inveatigationa)

INTT SER_WHMELIN_Procien - 20
DOCUMENT: SER Wruna in Progerea
[SEN
Number of sere bilig wimim.

NaONE:

 oocinmit: sin ming
[BETM

aumome

Docinnul: sting

 (menerl)

O adj_INPO_time_to_pian_fied__invest - INPO_Ume_to_pian_fi${ }^{\circ}$ INPO_eng_unavail_rate DOCUMENT: Acheied WPO Time io Plen Fiod Inveripations [weeks]

O adi iNPO_time_to_groduce_quick_SOER - INPO_tme_to_produce_quick_SOER'INPO_eng_unevail_rato
DCC: MENT: Acturd NPO trio op protuce quat SOER
[weoks]
T:nes 's INPO to quictly produce a SOER report adusied for avelabiny of enginems.
O adj_INPO_tme_to_screen_event - INPO_tme_to_sereen_eventiNPO_eng_unavail_rato DOCUNENT: Acpried NPO io Screm Evert
[weoks]
Bese INPO screening the adiusted for the enginew avainaikity.
O adi_tme_m_produce_sER - ume_w_produce_sEA"INPO_eng_uneval_rato
DOCUNENT: Adynad Trme © Protice SEA
[weeks]

O ong_neeced_per_fidid_lavext $=3$
DOCUMENT: Engineers Neected per Fied hrocioction
lengincers)

O fract_prob_rea_sEM - 2
DOCUMENT: Fracten of Prociome Aacide SEN

O trac_rece_rearqick_soth - . 00
O tracine_probe - ω
DOCUMENT: Frection Sterimoment Probiome
(signilicent probleme/proevense scrienel)

O trac_sio_prote_rea_reoce a. 50

[rees requiredrionimicent probel

(INPO_manmededcl) THEN (4) Els

[engineera]

O INMO_m_rineter -

(engincers)

[engineerrectent
 prodem.

O INPO_eng_unevai_ratio - $1+0^{\circ}\left(I F\left(\left(I N P O_{-}\right.\right.\right.$eng_nemiadANPO_eng_avalabio)> 25) THEN INPO_eng_nectechNPO_ang_avaiable ELSE 25) DOCUMENT: INPO Enginer Unevalarinty Reve longuneers neededrengneers avalebid)

Rato of engineers necied to encineere avaideto in INPO. As this increseses, the time detays in perforining actions increages.
O INPO_significam_ previemit - INPO_probs_sersened"trac_sig_probe DOCUMENT: INPO Sqpilice: Proterm

Probleme that ex demermined to be sigiticent to the indiaty by INPO. Theee will heat seN, SER and SOER reperts.
O INPO_time_to_analyze_probe - 2
DOCUMENT: INPO tme io andyze protem
(weoks)

O INPO_tme_m_cemp_n -
DOCUMENT: NNO Time to Compies Fidd lrweigiten
[weeks]
 avaletio engineers ere on sime Leede to wrina of Sceine

O info_tme_m_gien_ - 2
DOCUMENT: WFO Time b Plen Pide liveruction
[weeker

O NNO_Hme_prodven_qua_sotn - 1

(weeke)

O INPO_tine_s_geran_event $=1$

(weokel)

O maximpo_ma_avalieio - 20
DOCUMENT: Mutmum MNO Endmem Andirio
[ongineery

 Docinnint: sunnane

Docunnt: scennurt

O tme_ra_pretrestan - 2

(weekr)

[^0]NEI_Abenden_Effort_in_Prograselt - NEt_Abenden_Effort_in_Progrevelt - dt) * (NEI_eftert_L_aband_reg -
requiatione_smentoned_oftert_comp) " dt
INIT NEI_Abenden_Efter_in_Proprees - 0

DOCUMENT: NEI Abmion Efrer in Prograe
 [regs)

The is the wert the NA, it gutiry in to get a regumuen abondened by the NAC.
INFOWS:
of NEI_effor_m_abend_reg a reqe_dee_deand
 [rogs/week
 hite the beck

OUTHON:
 Docunani: Requaten Amortented ener Comptenen
[regarweoky
 book

 NRONE:

 [regel

armone

 [rage|

 DOCUNMT: Regretion Revime Conginest (regerwedid

[rege]

Nugome

Doct
fres)

arminnem

OF now_req_oval_completed - Req_Eve_In_Progreaved_trme_to_comp_req_ove DOCUMENT: Nww Requmion Evelument Compmand
(regs)
Completion of requation evarintion hede to corrective actions within the utility.
 INIT Reg_Review,_Wainn_fer_Aetion - 0

DOCUMENT: Regutedion Revians Waing for Acoignment
(regs)
Regulation reviews waiting to be amigned (uevily by the VP or menegers) to thetrical groupe for review.

INROWS:
\Rightarrow now_rege_to_revinw - frae_of_rege_m_reviewinitatne_regulation DOCuMENT: Now Requation of Revimu [reg/weok]

OUllove

 DOCUMEXT: Ragumion Routime nemory [rage)

(weekel

 developminte at tio NTBe.

(ween)

O CA_ger_m - 202
0 trae_of_rech_rentan o. 0

reeg or roviminach
 roview racimions emed fry ex int es to hema

O mas_mentannume $=1.00$

(roce anminnminem

fra_rex_lem_mand -0

freguletione ineempaniverequictionel

O regulations_abendened_from_NEI_chert - trac_regs_abanconed"ragulationa_abandoned_eflort_comp
DOCUMENT: Regine ne Abmedored
[rege amandenadruadd
This is the mumber of requintens thas aro being abendoned by the NRC.
O time_to_asetg_rea_revivie a 1
DOCUNENT: Time © Andig Rapurten Rovive
(weoks)
Time it tuke for a menaguNP to acign a requinton reviem.
O time_to_comp rag oval - 6
DOCUMENT: Time io Complo Acpution Eve
(weel)

O ume_m_comp_rea_rev - 12

(weoke)

O tme_m_inthenco_NRC - 12
DOCUMET: Time th mixence NAC
[weekd

(EPPrequer - ORAPHitraset_rep_orovion)
(0.00, 3.50), (0.1, 3.35), (0.2, 3.10), (0.3, 2.75), (0.4, 2.31), (0.6, 1.25), (0.4, 1.35, (0.7, 1.31), (0.8, 1.18), (0.3, 1.06), (1. 1.00)

 regurtose ance they wo put in the beoke ef to Mric.
 $(0.00,1.00),(0.1,0.679),(0.2,0.723),(0.3,0.400),(0.4,0.24),(0.5,0.1),(0.4,0.02 .2),(0.7,0.019),(0.5,0.000),(0.9$, $0.00)$ ($1,0.000$)

Uniteens

Infermeticas: Ph Ecreantios

prote_nce_sereme_ty_NW: "

[probiemal

Minows:

 (procicomariner.

OUncont

Of probs_not_screenod_by_NWE - Probs_Wating_for_Screening'(1.frac_probs_scroen_by_NWE)
DOCUMENT: Probimina Not Scruened by NWE
[problems/week]
Probleme not screened by the NWE, Occurs because of a lack of ume or availabilly.
Prob_Screening_in_Progress(t) - Prob_Screening_in_Progress(t - dt) + (new_prob_screen - problem_screening_completion) • dt INIT Prob_Screaning_in_Progrees - 30

DOCUMENT: Problem Screaring in Progreas
[problem]
Screening of probiems or potential problems in progrese.

INFLOWS:

to now_orob_screen - probs_not_screened_by_NWE+prob_srcreened_by_NWE-quick_CA_to__prob_needed DOCUMENT: Now Procteme Screened [problems]

Problems scremed by the NWE and not screened by the NWE will be screened by other groupe (umully the technical programs division) for determination of whether the problem is significart.

OUTROW:

\% problem_screening_completion = Prob_Screening_in_Progreaded_time_to_screen_problem DOCUMENT: Probem Screening Completion [problems/week]

Compietion of problem sereening by the behnical programe groupe. Determined wheterer probtim is significert io the utitity or nol.

O adj_time_to_screm_probiem - time_to_serem_probleme"info_eng_unavail_rato DOCUMENT: Adpand Time io Serven Probierre (week)

Time to screen problems, aduened by the enigneer avallavity.
OFFincprobsAWE - (new_incoming_problemaiSMTH1 (new_incoming_problews,4,20) ${ }^{\text {^ }} 1$ DOCUMENT: Eftect of hooming Probivine on NWE

This eflect changee the frection of probteme screened by the NWE beese on te rate of incmenting probieme to the number of incoming problems smootred over tine.

Ofrac_of_proce_req_ova - . 75
DOCUMENT: Frection of Probieme Reqire Evatumtore
[ovaluatione requiredprotiens sereeneal
Fracton of screaned probivom the will require furtiver samyin.
O trac_probe_screen_by_NWE - .25EPFPincprobaNWE
DOCUMENT: Frtelion of Protions Seruented by NWE
(probleme screensed by NWEprobitmil
 in the pate (smectid)

O trac_prob_ned_quit_en - . 23
 [correctve actilene neatraprobianal

O probleme_ser_derect - 1/50
Docuntir: Protione per Deleat (procinematiatecel)

O quick_CA_to_proe_needed - prob_mareened_by_NWE'frac_prob_need_quick_CA
DOCUMENT: Ouick Correcive Actione of Probeme Nomeded
(corrective sectiona/meed
 manager who chemmentien corrective seltore io the groupe.

O signifteant_problems - problem_servening_cempleton"frac_of_probs_req_oval
DOCUMENT: Significent Probione
(evaluations required/ween)
Probierne determined significent to the utwey, and need further analyais, and possible corrective actions.
O time_for_NWE_to_sereen - dt
DOCUMENT: Time for NWE to Screen Prebteme
[week]
 correcty when it io sut that low.

Otime_to_screen_probleme - 2
DOCLMENT: Tine of Screen Protions
(weekd

Information: Publle Reperting
 INTT Reperta_sALP_scere - 0

DOCUMENT: Repernalsul Seue

NROWE:

DOCUNENT: Raper Scer

O defects_per prees_reveneo - 1000

[dofecte/pr]
 potbriter problem trent

[printed reperte]

[pr/weck]

O SALP_repertan_em_yem - 4 DOCUMAT: SAP Ropertio ece Yes

Number of timen that SALP seerse ae rapertad to the pubite and yoer.

0 EFFSALPIOCPLD_OPD = GRAPHReported_SALP_Score)
$(1.00,1.00),(1.33,100),(1.67,1.00),(2.00,1.00),(2.33,1.00),(2.67,1.00),(3.00,1.00),(3.33,1.00),(3.67 .100) .(4.00)$ 1.00)

DOCUMENT: Eftect of SALP Local Pubitic Opposition
Eltect of SALP scove on loen public appocition.
Q EFFSALPRAE_pNb_opp - GRAPH(SMTH1(Reported_SALP_Score.52.2))
$(1.00,1.00),(1.33,1.00),(1.67,1.00),(2.00,1.00),(2.33,1.00),(2.67,1.00),(3.00,1.00),(3.33,1.00),(3.67,1.00),(4.00$,
11.0)

DOCUMENT: Eliset of SALP Netionall Pubilc Opposition
Ethect of SALP score on national public opposition. Netional SALP average will be taken as a snooth over the yerer of the SALP scorce.
O trac_of_press_releases_print_as_0p_repa - GRAPN(press_rolcese_ratio)
$(0.00,0.0375),(0.2,0.0375),(0.4,0.085),(0.6,0.09),(0.8,0.15),(1,0.21),(1.20,0.296),(1.40,0.365),(1.60,0.485)$, (1.80, 0.69). (2.00, 0.998)

DOCUMENT: Fraction of Prowe Reverese Printed at Operating Reports
[printed reps/pr/week]
Fraction of prese releasee that gex printidet in the papers. If more defecte are ocouring recently, than in the peat, more printings will ocour.

Plant:
Dofent Fiowe

difts_fixed_seht_WO) - dt
INIT Denectilld - $619.51^{\prime \prime} \mathrm{S}$

DOCUMENT: Dabece kenmiot

[defecte]

NPLONS:

 dete_forgoumi) ELSE 900

 DOCIMENT: New Datece Provertive Marthene ce Sydem (defecterweek)

OUTliows

[Dofictanmeed

INiT Darioun_h a expo
Documant: Derece Underimed
[defrecty]

INFLOMS:

```
Of now_dfct_unid = (new_defect__Ops+new_dcts_bdwn)"(1-frac_equip_tag_pm)+
(new_dicts_from_wmanship+now_dicts_parts)
DOCUMENT: NMOM Dences UnidenviOe
(defecte]
```

 resuring upen bredetevin of other equipment are assumed to occur onty in equipment not in the PM progrem: i.e. the pm program is decigned to diminem breardowne dve to weer end bere.

OUTROWS:

- dfers_discurd___lost - IF TME > 52 THEN (dtets_1D_frm_inspdicte_forgottim) ELSE 900
DOCUMENT: The poeitive fow is debect identited by inspectone. The negatve flow are detects that are forgotien abous becauee of inadequato record keeping and information syatime.
- ditat_fixed_becaume_oquip_bdiwn - online_brkdwne"dicts_per_dict_equip_pf DOCUMENT: Dovect Fhed Becyne Equipneir Eradedomn [dofecterweeky

O dicts_forgotien = schd_WO_aw_Eq_Forgownioquip_per_woifre_equip_gm_dter dite_per_dier_equip_gm
DOCLMBTT: Datcte Pagonan
[defecta/weed
 90 from baing identived to boind undentived.

O dfets_per_dfer_equip_pif - Detect_Un_lelditi_equip_of
 [dofoces/equipment]

O dicte_per_dict_equip_pm. - Devect_ldi(dict_equip_gm_aya+10)
 [delscearderiective equipment

O dicte_per_equip_gif - Dotret_Un_luteqin_Porcatved_Fuly_Funct DOCUMENT: Drocte per Pree of Extrment Preetval Pix Panceine [defectepiciee of equipmerif

Caculame tre munter of derecte per preee of equimen PFF.

O dret_equip_pif - Equp_Pareived_Fuly_Funerfres_equip_m_det
 [delectre aqupment

 [pieces ef equppmat

Docirniv. Preeton Devece uniderimed

O frac_ditet_bdwn - 1/12
DOCUMENT: Traction Dancas Broekdown
(equp breekcowns/defectwrek]
Fraction of defects thas cauee breakdowne per woek. (All defects will cause breatcomne in 12 weaks if this raction is $1 / 12$)
O mainto_equip_sm - equip_per_wo'schd_WO_completed
DOCUMENT: Maineined Equpment under Provernatve Mainteriance
[equipmentweek]
Equipment that has been mairneined trough the provertative maintenence system thereby ellminating the defect or postponing breakdown (extending lift).

O online_brkdwns = Dofectis_Un_idrrec_dte_bown
DOCUMENT: Ontre Brackiomis
lequipment breakdownerweek|
Breakdown of equipment that is on-tine.
O share_now_defects_bown = new_dicte_bdwnition_new_defecte
DOCUMENT: Shace of riew derbese from bremelowne
O share_new_defecen_ope - new_derecte_operotel_new_derecte
DOCUMENT: Shere of new detecte frem aperations

DOCUMENT: Shere of new dencit from storis and pate probiome

DOCUMENT: Shere of new devecte from peor wotkinnelit
 DOCUMEVT: Tacied Preventivo Malonenence Equqpient Erodulowis (equipmentweek!

DOCUMENT: Total Detecte
[dellectel

$(0.00,0.01),(0.02,0.11),(0.04,0.186),(0.09,0.276),(0.04,0.4),(0.1,0.52),(0.12,0.03),(0.14,0.74),(0.16,0.23),(0.18$, 0.925). (0.2, 1.00)

$(0.00,0.00),(0.2,0.134),(0.4,0.248),(0.4,0.39),(0.8,0.2),(1.00,0.590),(1.20,0.7),(1.40,0.8),(1.60,0.886),(1.80$, 0.965). (2.00, 1.00)

 0.980 . (2.00, 1.00)

Plants Mam Medat Parameters

8ook_Inveatmeri4 = Book_Inventrientit - ditINIT Book_Invecturint = Book_Inveatment_input
DOCUMENT: Bock invietinemi input
[million dellars)
Working_Caplt a Working_Capli - dy
INIT Working_Ceq - -Book_Invertment $+100^{\circ}($ ATOI + Dapreciation)/Init_CROI
DOCUMENT: Working Capind
[million dollars]
Investment in Working Capity
O Annual_Fxac_Conte $=40$
DOCUMENT: Annus Flud Con
[million Dollaraycer)

O ATOL = ATOI_nem
DOCLMENT: After Tax Opereing inceme
[million dollarsyam)
Afor Tax Operiling income axpluding mimenesce cost

O an_pertanerwo - 5
DOCUMENT: Avercee Parte per Wots Order
[partiswork order]

O wn_timebow_dec_mep e 20
DOCUMENT: Averget the bemean drerevorey inapectom
[weekel
O witme_ror_desinep - Shayip_ger_mo

(heurs/equipmient inapection)

O vorme_mendinapeet - 10 equip_ger_we
DOCUMENT: Avwece Tine Merdmery Inapmetion
(hourerequipment inmpectend

[plana/piannerfueate: :-

O beco gingunando $=32$

[plane/picnnemprexa

O Book_investment_Input - 2000
DOCUMENT: Book invesument inpur
[millions dollars]
Initial invectment in plane Used to be 237.
O Decom_Conts - 200
O Depreciation = .025 (Bock_Investment/52+Decom_Costs)/52
DOCUMENT: Deprecietion
(Million \$'s/week)
Straigh line depreciation of asedts incuding decomm coses. Depreciated over 40 years.
O Des_DE_ratio - 1
O Discoum_Rate = 4
DOCUNENT: Dhcounk Rem
[percent]
Cost of Money
O dollars_per_part - (4.2/(52*374*av_parts_per_wo))
DOCUMENT: Dollers per Pert
[million dollars/part!

 ordering lagge pers - motors, valves. gew boves, pumpe, we. -, more parts per wodt orter implies a smaver average coet per part (currently = \$43.19 per part or . 000043 smivpert

O equip_per_mo - 4
DOCUMENT: Equpment per Work Orter
\{oquipmentWO)
The average number of pleces of equipment covered by a work orem.
O Event_Swhin =1
DOCLMENT: Event Smath
10 or 1 logle veriebid
1 initatee major oven at other mucier facimy in meat isa.
0 tums event of.
O Frac_Maint_staff_Planners - Initil_Pina_Staflilintid_Mechenica_stap
DOCUMENT: Frtetion Manenuree Sinf phente
[frection: plennememaimanance stan

0 Initia_Leval_Werk_mana - 100
DOCUMENT: Intrel Levil Work Plene
(work orders)

O Initla_Mocharicestirn a 94

[peopley]
Initel mumber of peciple an marimaneree semb.

DOCUM
(Inspaeneand

0 Initial_Ping_Staff $=25^{\circ} 3$
DOCUMENT: Inver Planing Stull
[people]
Input dara beacd on plert
O Initad_Spec_Input - 25000 DOCUMENT: Number of specimention for perts in Steres.

O Initial_Stores_Inv_Input - $80000^{\circ}{ }^{\circ}$ DOCUMENT: Initial number of beal perts in stores inventery. Input from pient.

O Init_Cmpgns =. 84
DOCUMENT: Inved Antnucter Compaione (campeignal

O init CROI - 12 DOCUMENT: Invial Cem Retum On hroetmert [percentyeer]

O init_Encimpine - . 55 DOCUMENT: Invid Erroctve Ant-Number Compedione [campeignel]

O Init_En_Mocia_Rpte $=2$ DOCUNETT: Intial Eiveive Modis Rapers [articles)

O Int_Eq_Edwn -. 15° Total_Equipment_in_Plent
 [equipmenal

Inituat Vate

 (cquipment

Inition value.
 DCCUN [equipmena

Invitel varese.
0 init_Everoter -0
O init_Folva_Rpt - . 23
 [articies]

O Inv_(G_sume - 2
 [aulta)

O iniminçnem e.s
0 ininne_nages - 38
O int_micjnmere - 10
O int_rumberef_mince a .ase
Ininom_lete .2
 [articleatmeent

O Lemmatures - 535

O Pause_Switch $=0$
Population_Size - 250Es
T) Total_Equipment_in_Plant - $13400{ }^{\circ} 5$

OOCUMENT: TOt Equipmert in Plen
[equipment]
Exogenous input to be corrivated to size of plant (megawatis).
(13400 initial input)Total_Investment = Working_Cap+Book_Investment
Plant: Training and Learning Curvee
\square Cum_Forced_outages(t) Cum_Forced_outagee(t - dt + (Takeoown_rate_4) * dt
INIT Cum_forced_outages - 1
DOCUMENT: Cumulatve Corrective Actione Taken
[corrective actions]
This is the cumulative value of coorective actione aken. Each ovent than flow trough the agency systim procucese a corrective action.

INFLOWS

of Takedown_ram_4 - Plent_Force_Out DOCUMENT: Complend Priverniévo Maintenarce Rave (Work orderaweeky

Cum_OPs $(t)=C u m _O P_{3}(t \cdot d t)+\left(O p e _r a t\right) \cdot d t$ INIT Cum_OP3 $=75^{-1} 52$

DOCUMENT: Cumblive Corrective Actore Taken [corrective actions]

This is the curmilatve value of coorective actions tiken. Each overt tha fowe trough the eqency syaten produces a corrective action.

INFLOWS:
\Rightarrow Ope_rate a capacity_Online
 (Work orders/meeth
 INIT Cum_OP__2 - 7552

DOCUMENT: Cumudive Cormetive Actione Tamen [corrective metione]

This is the curnumive value of cocrective extens trien.
 a corrective meton.

NFLOWS:

 (Work ortarancely
 INIT Cun_gert_reat $=100{ }^{\text {th }}$

DOCUMENT: Cumetive Correctev Actions Tamen [corrective acterne]

This is the curmumine vates of cocrective actora takm.
Exch ovent that fow trough tie equncy syation produces a corrective setton.

INFOWS:

```
    *) Part_use_Rate - IF(TMMEsprogram_strr)THEN(parts_consumed)ELSE(0)
    DOCUMENT: Complead Preventave Maintenence Rito
    (Work ordersNmeak;
Cum_work_since_prog_stert(t = Cum_work_since_prog_starkt - dt) + (Takedown_rate) * dt
INIT Cum_work_since_preg_stert = 50`52
```

DOCUMENT: Cumunive Correctve Actione Taken
[corrective actions]
This is the cumulatve vatue of coerective actions taken.
Each ovent that fiow trough the agency syatem produces
a corrective action.
INFLOWS:
Fo Takedown_rate - IF(TMMESprogran_start) THEN(schd_WO_compleved)ELSE(O)
DOCUMENT: Complased Proverneive Mammeresce Rato
(Work orders/weedy

DOCLIENT: Evere Cocurneo Reto
[eventween]
 then decreases from the learning ourve of corrective actore.

a

- Ocf_Oce_m_menenthe_dere -

Def_Ran_Opel4 - Det_Rem_Opers - dit + (-det_Ren_ope_ded "d
INIT DN_Rem_Ope a Ben_dra_cpe_gen_m
DOCUMENT: Even Ocumen Anto
[ovenemeek]
 then decresea from the reming cirve of corrective satome.

Oumpornt

[oventruectrwaed

DOCUMENT: Ouminive Comecive Actera Timen [corrective aetiont]

 a conterver acmar.

NHONE

$\Rightarrow \mathrm{Ca}$ rala $=\mathrm{CA}$ _cempmet

[carmaed
$E v_{-} R t_{-} O p_{-} E r_{-} E x p(t)=E v_{-} R t_{-} O p_{-} E r_{-} E x p(t \cdot d t)+\left(\cdot E v e n t_{-} R t_{-} O p s_{-} E x p_{-} d e c\right) \cdot d t$
NIT $\overline{E v}$ Rt_Op $p_{-} E r_{-} E x p=-019$
DOCUMENT: Event Occurance Rate due to operator experience
(eventweek)
Rate at which events occur due to operator experience or inexperience since it drope with operator experience.

OUTROWS:

\Rightarrow Event_Rt_ops_Exp_dec $=1 F(T I M E>52)$ THEN (Ev_Rt_Op_Ef_Exp*modified_learning_curve_trac_Ops"fractional_Ops) ELSE (0) DOCLMENT: Event Occurance Rato Decreaing
[eventweekweek]
This is the rate that ovent occurance rate decreases becaue of corrective actuons maken.
Ev_Rt_Op_Misinf(t) - Ev_Rt_Op_Misinf(t - dt) + (- ovent_occurance_rate_decreasing) - dt INIT Ev_Rt_Op_Misint - 019

DOCUMENT: Event Rate due to Operator Misintormation
\{ovents/week\}
This is the number of overts per woek cauned by operator misintormation.

autrows:

of ovent_occurance_rate_decreasing = IF(TIME 52) THEN(Ev_Rt_Op_Misinf modified_learning_curve_fac_2"fractiona__analysis) ELSE(0)
DOCUMENT: Evert Ocourance Rem Decreaing
[oventwoek]
This is the rate the event cocurences decreene because of corrective actore taven.
FO_Occurance_Rate_Oplt - FO_Occurence_Rate_Oplt - dt + (\cdot FO_ram_decruming) * dt
INIT FO_Ocourance_Rame_Op e .25/52
DOCUMENT: Fo Ocourance Rep from Opermier
(FOMeek]
Recuced by leeming arva.

OUTRONS:

 DOCUMENT: Event Occur nop Rato Decrinion [oventweekrweeky

INIT Frac_garta_det = Beao_frac_ma__dot_at_detvry
OUTROWE
 DOCUMENT: Evert Ocourmee Pats Decruming

O Banefrac_mat_der_d_deny -. 23

O CA_Compreter - proe_CA_valimedtran_CA_valdand

(camedrd
This it the number of correctve setorn complated in the indinety.

O fractonal_analysis - CA_raterEvents_wrth_CA_Taken_Cumulative
DOCUMENT: Fractonal Analysis
[1/week]
This is the fracten corrective action rate, comperid to the cumulative amount of accions man alreedy.
O fractional_Ope = Ope_ratercum_OP3
DOCUMENT: Fractoral Anmyits
[1/week]
This is the fraction corrective action rain, compered to the cumulative amourk of actions taven aremety.
O fractional_Ops_2 = Ops_rate_zCum_Ops_2
DOCUMENT: Fractional Andyis
[1/week]
This is the fraction corrective setten rate, compered to the cumulative amount of action then abeedy.
O tractiond_Outage = Takedown_ran_NCum_Forend_outaces
DOCUMENT: Fractional Analyis
(1/weok)
This in the frection corrective action rate, compered to the curnitative amount of actose tanen arsedy.
O. Factional_part_use - Part_use_RatiCum_part_uead

DOCUNENT: Frmetional Anayde
[1/week]
This is the frection corroctive action rate, compered of the armurive ancunt of actone then aboedy.
O fractional_work_comp a Takedown_raba/Cum_work_since_prog_start
DOCUMENT: Fractonal Andyit
[1/week]

O LC_frec_Ope = (.05/3) ${ }^{\circ}$ Training_Hours
DOCUMENT: Leming Curve Preme

O LC_fre_Ope_z - (.01)"Tranim_Hown
DOCUMEAT: Lenting Curve Fration

O leaming_curve_FO - (.1/3 ${ }^{\circ}$ Trandon_Howe
DOCUMENT: Lembars Curv Pration

O learning_curve_face - (.09p) Tralinin_Hours
DOCUNETT: Lemime Cung Precten

DOCUMET: Lemine Gem freme

0 Mach_E_Fent $=1.05$
Docinaif: Momante Equatmee Com Ferter
(unitbeat)

O modified_learning_curve_FO - -LOGN(1-learning_curve_FO)/LOGN(2)
DOCUMENT: Mocified Leerning Curve Fraction
Modiftes the learning curve fraction for use in the leaning curve eqautions.
O modifled_learning_curve_trac - LOGN(1-learning_curve_fraework)/LOGN(2)
DOCUMENT: Modifed Leming Curve Fraction
Modifies the learning arve frection for use in the learning curve eqeutions.
O modified_learning_curve_frac_2 - -LOGN(1-learning_curve_frac)/LOGN(2) DOCUMENT: Modified Leerrning Curve fraction

Modifies the learning curve fraction for use in the leeming curve eqastions.
O modified_learning_eurve_trac_s - LOGN(1-learning_curve_frac_5)/LOGN(2)
DOCUMENT: Modified Learning Cunv Fraction
Modifies the learning curve fracton for use in the leering curve equaters.
O modified_learning_curve_frec_ops - -LOCN(1-LC_frec_Opa)/LOCN(2)
DOCUMENT: Modited Leming Cuve fracton
Modifise the learning curve fracten for uee in the treaning curve equederse.
O modified_loarning_curve_frec_ops_2 - LOCN(1-LC_frac_Opm_2)/LOCN(2)
DOCUMENT: Mowited Leeming Cuve fraction
Modtriee the learning aurve fraction for use in the learning curve equatens.
O program_stert = 0
DOCUMENT: Program strotina dio
(0) EFFLREX = GRAPH (MEA_EX_FECA
(0.00, 0.904), (10.0, 0.904), (20.0, 0.907), (30.0, 0.917), (40.0, 0.942), (50.0, 0.901), (60.0, 1.02), (70.0, 1.03), (80.0, 1.04),
(90.0, 1.04), (100, 1.04)

Plant: Capeany Caboliation

DOCUMENT: Boudre Pomm
Units: 19)

O capaciy_bdown - fre_equp_biown
DOCUMENT: Capecity Eroturdem:
[Fraction production ceppecty trolvendemol]

DOCUMENT: Ceperity Doman
(percemp production empenty domin

DOCu
[percent protreten elpaciay up ent runimed
O) cust_demand o 09

O equip_m_shat_WP = Schd_wipocqup per_mo

(equipmanial

O trac_equip_bdown - Equip_BrokendownTotel_Equipment_in_Plant
DOCUMENT: Fraction Equpmern Brokendown
(raction: equipment brokendowitoter equipment)
Fraction of equipment thet is troven down
O trac_equip_tan_pm - Equa_Tagoed_for_PMTOtal_Equipment_in_Plant DOCUMENT: Fracton Equpment Tagoed Prowenteove Mammance [fraction: equipment with schd woroted plant equipment]

Fraction of plent equipment in the preventive or predicive maintenance systam.
O frac_equip_tolown = (equip_w_schd_WIP/Tota_Equipment_in_Plant)+EFFForOOut DOCUMENT: Fraction Equiprien TakenOown
Ifraction: equipment towriced equipment
Fraction of equipment that hes been rennoved from sarvice due to schedumed maintenence.
O production pressure - IF(Per_Outage-0)THEN(PIent_Ommand/capacity_OnNine". $89+10$))ELSE(0)
DOCUMENT: Procuction Promeero
[unittess]
O total_equip_perevd_avall_for_ope - Equip_Perceived_Fully_Funct+Equip_Tagoed_for_PM-
equip_w_send_WIP
DOCUMENT: Toel Equipnent Perceived Availede for Operatione
[oquipment
 broken).

0 capecty_tiown = GRAPH(frec_eqip_town)
$(0.00,0.00),(0.1,0.04),(0.2,0.096),(0.3,0.17),(0.4,0.24),(0.5,0.4),(0.6,0.506),(0.7,0.726),(0.8,0.246),(0.9,0.945)$.
(1.00, 1.00)

DOCUMENT: Capadiy Tamendimn
firaction producton capectey Tamadowind

 tradedownim

Plom: Dofeet seureen

O Beee_dite_ope_per_wt - . $115^{\circ}(1-$ Frac_Nom_Eq $)$
DOCUM
[defece/equipmentweek

O Bece_dicitmuentiop - . 36

[defecta/equipment
 $8 / 4 / 94$

 (delocetereationarl)
 and proentern

O deneotucurno - DEF_nED
Oocunnur: Demat Reverion
(undrees mumartel)

O now_defect_ops = IF(TIME>52)THEN(total_equip_percvd_avai_for_ops"detect_reduction*Def_Aato_Opa"(1-Frac_Now_Eq))ELSE (4800) DOCUMENT: New Ownes Opmtions
[dofectarmeet]
New dofects resulting from simply operaling pient equipment.
O now_dicts_bdwn = IF TME 52 THEN tote_bowna'new_dfet_per_bown ELSE 2200
DOCUMENT: Now Oemces Eratedomi
[dofects/week]
New defecs caused by the bredkdown of other or seme prece of plent equiprnent.
O now_dicte_from_wmenship - IF TME >25
 -Mt_wo_rt_dan ELSE (1500)
DOCUMENT: Now Deteces from Wortonanetip
[defects/week]
New defects introduced from poor wortonenahip.
O now_dtct_per_bdwn - base_dict_per_bdwn defect_redvetion
DOCUMENT: NTW Devece per Branderimin
jdefectoraetcdown of equipment

3
smin_effotio - SMTH1 (EMFOLOO, 8,1)
tote_bdwns - online_byctwrerTageed_PM_equip_brktion
DOCUMENT: Pow Enerdome
[equipment breakdownewreek

DOCUMENT: Tow Manninod Equpmert
[equipmentweedy
All equipment morked on at a reail of a schacited or unecheitued work orders.

Plent: Engincertion staft

INIT avo_E_overime - encostanderd_houraturge_tras_ent_overivis
DOCUNENT: Averepe Overtivo
[hours/week/persen]

inflows:

 [houra/weck/percentraeles

 NHONS:

 [pecplamerid

autmome

 \& prometere - 0
 INIT Rocde_Engineming_stef = 5

DOCUMENT: Mantanare Smif [people]

Toted Malntenance persernal, incheling planners.
INFLOWS:
of Eng_hiring - ong_attition+(New_Eng_Hiring_from_OT*Now_hiring_Swith_Eng/Eng_hiring_delay)+promotions DOCUMENT: Miomenerice Hining
[peoplenweek]
hirlng of new mechenice
fif Ume $=10$ then over ave 0
OUTPLON:
\Rightarrow Estan_up_tospeed - Rockio_Engineevin_stathimo_to_trin_enge DOCUNENT: Mintraene Stil Lom
[peoptanweek]

O Add_layoff_Comp - PULSE(Layon_Swnen"man_Eatart Layoff_Fracten,200,1000/

O cost_of_Eng_OT - (ave_E_overtme Con_per_OT_Hr)/iEs
DOCUMENT: Cose of Endremers overime
(Dollera/weok)
Cow of eath enginear wo work overnme
O Cont_per_OT_H = 50
 DCCUNENT: Maineneneo byeim
[\%]

O Engineers_info - frec_Ena_intoreme_Eman

O engatation -.001"Pro_Enginewina_star
DCCIMENT: AMImen
[Iracten: peoplemuend

Unis meate
O mininaru_ame -
 s_menot

O maplen_rev_comp -
 n_E_OT
O ing_plen_wordeed - Eng_glen_wre/Encineer_Miaset 1)

Eng_pian_WTB = Plens_wart_eng_rov/plans_rev_ger_eng_per_woek
eng_sat_Into_rev_avall = Engineers_info*info_rep_per_eng_per_week
O 0 on_schd_wo_rev_comp -
 aint_wid_OT" 0 ff_grod_pren_on_E_OT
O eng stenderd heurs - 40
DOCUMENT: Stinderd Hown
[hours/weotuperson]
The standard number of hours worked per waek per mainionence staff (mechanic, vectricien, pipefuer. mectiniat, ece.)
() eng_tot_work_hours = ave_E_overtme+eng_standerd_hours

DOCUMENT: TOE Work Hours
[hours/week/person]
(eng_into_workjoad Engincers_info+eng_plan_worksoad ${ }^{*}$ Engineer_Plans+Engincer_Maintreng_maint_workloed)(trotal_Estaft+1)
eng_wo_rev_avail - Engineer_MaintMaim_rev_per_eng_per_weekE_OT_Frac - eng_tot_work_hourdeni_standerd_hours
) trac_Eng_into - 3
frac_Eng_Maim $=.5+.714^{\circ}(.3$-free_Ene_infol
\because frac_Eng_olane $=.2+.286^{*}(.3$-rrec_Eng_into)
O trac_E_overtime -
targot_frac_eng_overtime ${ }^{\circ}$ off_pred_pret_on_E_OTP $($ off_infe_wld_OT'Engineers_infeneff_maint_wid_OT"Engineer_Maintseff_plan_wk
OT"Engineer_Plans)/total_Estatil
DOCUMENT: Actual traction owirtime
(fraction: hourshours)
Overtime for meintenance stef in twime of percent of stenderd work week.
 DOCUMENT: Human Eincte en Work Orem Conplation
[unitices multipiter]

O indicated_E_overtine a me_standerd_hours"free_E_overtum
DOCUMEATT: Indered Overtire
[hours]

into_rep_per_ong_per_medr $=10$
layofftrae $=0$
Maint_rev_ger_Ona_ow_week -a
0

DOCUMBNT: New Hitas Sman
[0 or I logie vernatic)

O racerres_mi_evertat a . 18 :
DOCUMEiNT: Tequ frectan Overme
[hourk/hours)
O Ume_tochare_me_ OT - 2
DOCUM
[weeke]

O Ume_m_ranane - 12
O ume_m_trin_ente - 23

EFF_Estan_oxp - GRAPH (ong_oxp_revo)
(0.6. 0.75), (0.66. 0.773), (0.7, 0.804), (0.75, 0.853), (0.8, 0.897), (0.85, 0.953), (0.9, 1.00), (0.95, 1.05), (1.00, 1.10)
$(0.00,-0.00),(0.333,0.14),(0.667,0.42),(1.00,0.84),(1.33,1.16),(1.67,1.42),(2.00,1.70),(2.33,2.04),(2.67,2.34)$, (3.00, 2.60), (3.33, 3.20), (3.67, 3.62), (4.00, 4.00)
(7) off_maint_wte_ot - GRAPH(Ene_maint_wortdeed)
($0.00,0.00$), ($0.333,0.18$), ($0.667,0.4$), (1.00, 0.72), (1.33, 1.02), (1.67, 1.34), (2.00, 1.70), (2.33. 2.18), (2.67, 2.44), (3.00, 2.76), (3.33, 3.12), (3.67, 3.60), (4.00. 4.00)

O 0 ff_motivation_en._WO_comp - GRAPH(SALP)
(1.00, 1.15). (1.25, 1.09), (1.50, 1.07), (1.75, 1.05), (2.00, 1.04), (2.25, 1.03), (2.50, 1.02). (2.75, 1.02), (3.00, 1.02), (3.25, 1.01), (3.50, 1.01), (3.75. 1.00), (4.00, 1.00)

DOCUMENT: Errect Motvation Work Order Completion
[unitiess multiplier)
This is the motivation factor on productivity baeed on good leadersmip. 1.0 is none 1.15 if the
0 offor_faiquo_eng = GRAPH(wo_E_overimo)
 0.804). (20.0, 0.802)

OOCUMENT: Ellect Overime Filioue Work Order Completion
(unittess multiplicer)
The effect of overtive on productivey.
(2) Affalen_wit_OT - GRAPH(One_sien_wotkeen)
$(0.00,0.00),(0.333,0.14),(0.667,0.36),(1.00,0.60),(1.39,0.80),(1.67,1.14),(2.00,1.36),(2.33,1.74),(2.67,2.14)$, (3.00, 2.44). (3.33, 2.80), (3.87, 3.12), (4.00, 4.00)

O effarod_pre_on_E_OT - GRAPMV (Per_Outap-1) THEN (1.8) ELET producton_premurc)
$(1.00,1.02),(1.04,1.18),(1.08,1.31),(1.13,1.43)$, (1.17, 1.52), (1.21, 1.62), (1.25, 1.70), (1.20, 1.77), (1.33, 1.23). (1.38, 1.89). (1.42, 1.93). (1.46, 1.97), (1.50, 2.00)

DOCUMENT: Efbet Prodveten Preacis on Overtine
(unitices muluplion
 equipmert beck or-lino.

$(0.00,0.751),(0.123,0.767),(0.25,0.5),(0.375,0.202),(0.5,0.8003,(0.623,0.939),(0.78,0.20),(0.678,0.977),(1.00$, 1.00)

DOCUMENT: Elrect of Waticed en Wert Order Completion
[unitlees multiplied
 availatio tima.

$(0.00,1.40),(0.111,0.517),(0.223,0.307),(0.353,0.21),(0.444,0.12),(0.538,0.0923),(0.607,0.0375),(0.778,0.03)$. (0.809, 0.00), (1.00, 0.0076)

(1.00, 0.09), (1.35, 0.00), (1.67, 0.13), (2.00, 0.29), (2.23, 0.49, (2.07, 0.09), (3.00, 1.31), (3.33, 1.72), (3.67, 1.00), (4.00. 1.97)

Plam: Equiparent Fioure

[Equipmeny

MFONS:

Doctrin: Eqnamer Eratan is Orlla
(cqumpmentweal

- Tagged_PM_equip_bdwn = Tagged_PM_equip_brkdwn

DOCUNEETT: Tagged PM Equipment Brandown
[equipmentwoek]
Equipinent in the predetive and preventve system that breaks down while it is waithg to be inspected or repaired.

```
Equip_Porceived_Fully_Funct(t) - Equip_Porceived_Fully_Funct(t - dt) + (- Equip_broke_to_on_line - Equip_PM_to_on_line) " dt
INIT Equip_Perceived_Fully_Funce - Init_Eq_PFF
DOCUMENT: Equipmert Pwrevived Fully Functional
[equipment]
```

The value 13.400 is the number of pleces on equipmert in Sabine ADN. Equipment that is perceived to be tully functional

OUTROWS:

to Equip_broke_to_on_line - oniline_brkdwns_unschd_WO_completed"equip_ger_wo DOCUMENT: Equipment Eroken to On-Line [equipmentwoek]

In the pocitive drecten, the fow it equipnent that breakedown. In the negeive drecton, the fiow is equipment that in repaired.

- Equip_PM_to_on_line - equip_req_dwn_for_insp-
schd_WO_complevid equip_per_wo-schd_WO_aw_Eq_Forgomen*
equip_er_wo
DOCUNEETT: Equipment Proventive Mairnerence to On-Une
[equipmentweek]
 information that equipment is delocive.

INIT Equip_Tagied_for_PM = Int_Eq_TA_PM
 [oquipmeme]
 Always set the invial condilion to be gremer than 0.$\}$

NFLONE:

- Equip_PM_to_on_lino - equlp_ree itwon_for_Inep-

equip_per_wo

[Cquipmentrweedy
 informaion the equprimer it dericetre.

Ourmone

(equipmentionetry

(work ordernameert
 in logice CHECity

```
Schd_WIP(t) = Schd_WIP(t - di) + (schd_takecowns - schd_WO_complowed)" dt
INIT Scha_WP - 7.03*5
DOCUMENT: Sehuched Work Orders in Progreme
(work orders)
Scheculed work orders that ere currenty being worked on. In this steds. the equipment is offthe.
(doee equipment heve to be clllmop Y(a)
INFLOWS:
    *) schd_takedowns - SMTH1 (schd_WO_availlotown,5)/4me_to_ttwn
        DOCUMENT: Thit fowe takedowns into Sch WIP to equal the amount of work goting done ple is inventory adjuament for goving WIP to
        one hal the lurget wedes work.
O|IFONE:
    O}\mathrm{ schd_WO_complend = normm_schd_wo_compathumen_Eftr_on_WO_Comp
        DOCUMENT: Schetyed Wok Orders Complam,
        {work orceranweak!
```



```
        productevity in doing schedund work
```



```
INIT Schd_Work_Pine_Availedere = 100
DOCUMENT: Schacemed Nork PMone Availatlo
(Work Ordere!
```



```
(.14)
NHONE:
```



``` DOCUMENT: Sctredtrat Work Pirning Conqient (work ortersmend
```



```
OUTROW:
```



``` scha_work_glan_forgomen DOcinment: Schectiad Wern Piese Expented (work erctersiweend
```



```
INIT Sand_Wouk_Reqntria_Man a .OTS
```



```
[work ordere]
```



``` wronet
```


Nranes


```
[wect erchrimeded
```



```
OUILOWE
```

```
    f) Schd_work_mats_acqrd - (Schd_Work_Reqiring_Mavmat_acq_delay)
    +WO_odwn_pm_equip_req_mat
    DOCUMENT: Schecured Work Maveried Acquired
    [work ordersweek]
```

 The rate of reduction of schectued planned work orders that require materials. The outhow is determined by the number of work orders
 that receve the necesesty materals and work orders that become cosolete because the equipment breeks down before the schecuted work
 can be completed.
 Schd_WO_awating_Eq(t) = Schd_WO_awaiting_Eq(t • dt) + (wo_mgt_to_eq - schd_WO_aw_eq_not_done - new_schd_WO_avail) * at
INIT Schd_WO_awating_Eq $=62.74^{*} 5^{-}$
DOCUMENT: Schecuuad Work Orders Awriting Equipmant
[work orders)
Work orders waiting for equipment to become available before work may proceed.
INFLOWS:
th wo_mgt_to_eq = mgr_schd_wo_rev_comp
वultows:
of schd_WO_aw_eq_not_done = schd_WO_aw_Eq_Forgotion+(WO_for_bown_pm_equip)
-(1 -frac_schd_WO_WTBO_avall)-EFF_schd_work
DOCUMENT: Schedived Work Orders Amping Equipment Not Done
[work ordersweek]
The work orders not inithed because either the work is forgoten or the equipmem breatudown, requiring unectreducd work which
supercedee sched wo.
*\% now_schd_WO_avail - (Schd_WO_awaitno_Eq/schd_wait_ume_by_prod)-(Schd_WO_w_Eq_Availseht_recycte_ume)
DOCUMENT: Nim Schedied Work Orders Avaingte
[work ordersweek]
Flow of work orders beck and forth bemeen Schd wo Awaing Equipment end Schd WO with Eq Avainble beeed on the production neede.
Schd_WO_Unpind_Mat_reakl = Schd_WO_Unpind_Med_reqt - d9 + (new_schd_wo_unphod_mat_req - schd_wo_unplnd_mat_aca) " dt
INIT Scha_WO_Unpind_Mn_rea - $3.00{ }^{\circ} \mathrm{s}$
DOCUMENT: Schectied Work Orders Unplerned Merertal Requisments
[work orders]
Schedured work orders that have unferamen material requirementa.
INPLOWS:
of new_schd_wo_unpind_max_req = schd_tarectowne
(1 - frac_schd_WO_eq_avall_w_plan) ${ }^{\text {Firc_schd_wo_unpln_mat_req }}$

[work orderameedy
(Flow of work ordes whincit plane the requre adiutonel modela)
OUTPONE:

(work orderywedt

DOCUMEATT: Schected Work Orders with Equpment Avarade
[wort ordere]
 ancons:

```
O' now_schd_WO_avall = (Schd_WO_awaitng_Eq/schd_weit_ume_by_prod)-(Schd_WO_W_Eq_Avall/schd_recycle_time)
    DOCUMENT: New Schectied Work Orders Avaleble
```

 [work ordersweek]
 Flow of work orders beck and forth beeween Schd WO Awriting Equipment and Schd WO with Eq Availabie besed on the production needs.

armews:

to schd_takedowne - SMTH1 (schd_WO_avail_tdown.5)/time_to_tdwn
DOCUMENT: Thic howe nkedowns into Sch WIP to equal the amount of work getung done ples an invemory adpermert tor geting WIP to one hat the turget wede work.

F schd_WO_w_oq_av_not_done = EFF_schd_work•SMTH1 ((WO_for_bown_pm_equip)*frac_schd_WO_WTBD_avall, 10) DOCUMENT: Screcuied Work Orders will Equipmert Avalede Not Dön [work ordersweek]

This is the fiow of work orders which breakdown whive in the Sch Work with Eq. Avall. Stock
Sch_wo_wait_eng_Rev(t) = Sch_wo_wait_eng_Rev(t - dt) + (new_schd_wo_await_equip - wo_mg_to_mgt - scho_eng_wo_forget) • dt INIT Sch_wo_wit_eng_Rev $=62.74^{\circ} 3$ INFLOWS:
 DOCUMENT: Now Schecived Work Orders Ameing Equipmere [work ordersweek]

The fow of now schecuted work orders that are wiung for equipmont to beoome avinabe.
OUTRONE:
of wo_ene_w_mit $=$ ene_schd_wo_rw_comp

Sch_wo_wait_Mgt_Rovit - Sch_wo_wat_Mgr_Revit - dt + (wo_menm_mge - wo_mpt_m_eq - schd_wo_mgi_forgeq - dt
INIT Sch_mo_wain_Mor_Rev = 100
INFLOWE:
-\% wo_eng_m_mot = ang_sctra_wo_rev_comp
OUTROME
of wo_mot_m_eq - mgr_setrd_wo_rev_comp

O EFF_schd_work = Sch_Tom_workenvomete_Id
O frac_schd_pin_wo_req_mat = 1 -(Service_Lovel_utilizwion)
DOCUMENT: Frection Schedited PMernad Wök Orders Requiling Maiertes.
[fraction: work orderswork orders]

O trac_schd_wip_w_olan - schd_pin_wiph(Sch__WIP+.1)
DOCUMENT: Fraction Schucted Work in Prognees with Pan
[fraction: work orderefwork orders)
Fraction of schereted work ortere the is ourtenty belng worted on and hes been phaned.
O trac_schd_wo_eq_aval_w gita $=$ soht_gin_wo_equp_avaiksend_wo_w_Eq_Avali+10)

[fraction: work onterinneris entrial

[fraction: werk ordemenorte ordera)

DOCUMENT: Friction Scheited Watk Ortme Arvineto
[fraction: work orderewerk orders)
Fraction of schecuted work orters wiving to be done where the equipment is avalibet.
O trac_WO_awat_equip_w_glan = schd_gin_WO_twat_equip(Schd_WO_awating_Eq+10)

O irc_schd_wo_unpin_mat_req - $1 \cdot$ (Service_Level*utilization)
DOCUMENT: Fraction Scheduted Work Orders Unplanned Material Requirement
[fraction: I
(This is the fraction of unplenned scheduted work orders which will require material which is not immediatery avialabie (need to be ordered).)
0 mat_acq_dety = 5
OOCUMENT: Material Acquisition Delay
[weoks]
Time it takes to get extra manerial.
O schd_pin_wip = MIN(Schd_Work_Plns_Available,Schd_WIP*targ_frac_plan)
DOCUMENT: Schecuied Planned Work in Progrene
[work orders)
Scheoluled Work Orders currenty being worked that atwo hes been plenned.
O schd_pin_WO_await_equip - Schd_Work_Pins_Available_sehd_pin_wip-schd_pln_WO_equip_avail
DOCUMENT: Schedried Planned Work Orcers Awaiting Equipment
[work orders]
Scheduled work that heve been pianned and are awaing equipment (to be tiven out of sevice or put into service) for work to proceed.
O schd_pln_WO_equip_avail - MIN(Schd_WO_w_Eq_Avairtarg_frac_plan, Scht_Work_Plns_Availabie_schd_pin_wip)
DOCUMENT: Schedived Pienned Work Orders Equpinent Aveinato
[work orders]
Scheculed Work Orders with equipment avaikele and heving been pianned.
O schd_work_plens_used e schd_WO_completed"fres_schd_wip_w_glen
DOCUMENT: Schedind Work Pinis Uned
[work ordershweek]
The weo of plers in complotion schertund mork.
O schd_work_gine_bdw_drop - WO_for_bdwn_pm_equipefrec_schd_WO_TBO_w_ein
DOCUMENT: Schutured Work Piens Exenetowi Drop
[work ordersmeetl
 work supercedes the privicunty pinaned woik.

DOCUMENT: Sctverind Wetk Pien Fargenen
[work orders/week!

 DOCUMENT: Sch inded Woit Ortwe Avelmate Tanatomi
[work ordera)

[morts erearenuent

O sch_mo_manery - 22
DOCUn :NT: Scherted Wetr Order Mminery
[weedel]

schd_wo_per_mod_CA $=4$

O schd_WO_RTBOABO = Schd_WIP+schd_WO_avel_rdown DOCUMENT: Schethed Work Orders Renty To Be Done and Being Done.
[work orders)
All work tha cither in progrees or avaltabte to be worked.
S Sch_Total_worked - Sch_wo_wait_eng_Rev+Sch_wo_wais_Mgt_ReV+totw_schd_WO_in_sys
targ_frac_pian $=.5$
DOCUMENT: Taget Fracten Planned
[planned work orderswork ordera)
The target fraction of work that is to be planned.
O time_w_tivn =. 5
DOCUMENT: Targe Whedes Work in Prognees
(weeks)
The turget number of weaks worth of work orters that majomence wert to be working on. Exponous variable
O total_schd_WO_in_sys = Schd_WIP+wote_schd_WO_Waillag_TBO
OOCUMENT: Tom Schediced Work Orderes in System
[work orders)
The toed number of mork orders that ero in some wiy scheicted.
 DOCUMENT: Toem schetried Wotk Orters Waitu TO Se Done
[work ordera]

O WO_bdwn_pm_equip_req_mat: (Schd_Work_Reqing_Membent_scha_Wo_Wavina_TEDjowo_for_betm_gm_equip
 [work orderatweek!

(0.5, 0.903), (0.96, 0.920), (1.40, 0.231), (1.05, 0.8e3), (2.30, 1.00), (2.78, 1.05), (3.20, 1.00), (3.05, 1.05), (4.10, 1.09), (4.56, 1.10), (6.00, 1.10)

 (4.56, 1.10), (5.00, 1.10)

(0.00 , 4.00), (0.167, 3.54), (0.339, 3.09), (0.5, 2.54), (0.097, 2.04), (0.239, 1.06), (1.09, 1.20), (1.17, 1.02), (1.33, 0.23), (1.50, 0.76), (1.67, 0.67), (1.25, 0.50). (2.00, 0.5)

DOCUMEVT: Schether Reged Tive
[weakel]

$(0.00,0.20,(0.2,0.31)$, (0.4 0.0, (0.4, 0.50), (0.2, 1.32), (1.00, 2.00), (1.20, 2.70), (1.40, 3.70), (1.60, 4.40), (1.80, 4.80). (2.00, 5.00)

(weekel

Piam: Incpecirine

[weeksi]
Changed hem 30% tion +10 C

Oesired_discretionary_inspects - (Equip_Porceived_Fully_Functfrac_equip_inspectable
'av_tume_btw_dsc_insp)'EFFNRCrepmi'EFFNRCRODIMI
OOCUMENT: Desired Discretionery inspections
[equipment inspectionswank]
O desired_Staff_for_dec_insp - (desired_discretionary_inspects"av_time_for_dsc_insp)
/standard_hours
DOCUMENT: Desired mechenice for discretionay inspections
[staff persons]
O dfcts_10_frm_insp = dfet_equip_ID_insp"dfets_per_dfet_equip_pff DOCUMENT: Defocts idenuined from Inspection: [dofecterweok]

Total defects identhed by inspections both diecrectonary and mandetory.
O dfct_equip_dinspwouthewn = dec_insp_wout_trwn"trac_equip_dfet_dec_insp DOCUMENT: Dofective Equipment in Diecrwionery Inspecton withou Takedown [equipmentweek]

drec inepectes no tam deluetve
 DOCUMENT: Defetive Equipmen ldentied as Oetactve duing Diecrevoney Inmpectiona [equipmentweck]

O dict_equip_10_dict_dinapmortition - dfet_equip_dineppoutidwe
(1-prob_mise_dfet_dse_Insp)

[equipmenthreek]
 the equipment

 [cquipmentweek]
dese inapect raq momi demertos

 [oquipmentrivedy]

(1-prob_mias_dict_mand_Inep)
 [cquiperentruead

[Cquipmentrmend

Mand inemene ray them derocive

[equipmentwead

O dfct_oquip_minspwouttown = mand_insp_wout_tdwnefrac_equip_dtet_mand_insp
DOCUMENT: Defective Equpmerk Mandaiory Inspectors writhout Takedown [equipmentwrek]

The number of mandatery inspectione, not requing a bikedown, that are done on defective equipment
O dsc_insp_wout_tum - Stall_dec_insp_wouttd"standard_hours/av_time_for_dsc_insp
DOCUMENT: Dtecretioney inepections Wholit Takedown
[equipment inspectionameery
The number of discretioney inspections performed that don't require a takedown for the inspection. Calculated by taking manpower avalable times average manhours per week divided by menhours neceseary

O dsc_insp_w_tdwn = (Staff_dsc_insp_wtdwn'stendard_hours)/av_time_for_dsc_insp
DOCUMENT: Discretonary inspections win Takedown
[equipmentweek]
Discretionary inspectione that require a bladown tor the inspection
 DOCUMENT: Equipment ldenwind Defectw during Discretionery Inepecions without Tacedomes [equipmentweek]
 misidentifled equip).

O equip_1D_dfet_minspwouthiwn - dfet_equip_10_dfet_minspwouthtwn+non_dfet_equip_10_diet_minspwouttiwn
DOCUMENT: Equpment ldentived Defecte during Mendatery Inepection whout Takedown [equipment/week]
 equiprnent ithe whe incorrecty idenitiad aselene).
 DOCUMENT: Equipiment Requing Troedeun tor inepecten [equipmentweet]

O trac_dse_inep_req_utw - . 15
DOCUNENT: Frecten Disereleney Inepectone Requining Teredewn
(fraction: dtecrationery Inep whemisheret Inepl
Fracton of diecratonery inepectors the require a tradown to do the inepection
0 trac_equp_inspecterte - 6
DOCUMENT: Frection Equprenti ingepectin
[frecton: inepection eqiproquly

0 frec_oqup_rea_mentinupert a

DOCUMENT: Fracten Equpmen Reqitit Morivery Inpucten.

[equipment ingopectenalwered
Pleces of plent equoment requing mendatory inmpectont.

O mand_insp_Staff - (mand_inspav_time_mand_inspect)/
standard_hours
DOCUMENT: Mandatery inspection Stefl
(peopie)
Mechanica allocated to mandatory inapectore
O mand_insp_wout_town - mand_insp-mand_insp_w_town
DOCUMENT: Manderory Equipmem Inspections without Takedown
[equipment inspections/weeki]
Equipment inspections that are mandatery but where the inspection does not require a takedown.
O mand_insp_w_tdwn $=$ mand_insp"frac_mand_insp_req_ttwn
DOCUMENT: Mandatory Inapection with Takedown
[equipmentweek]
Mandatory inspections that require a takedown for the inspection
O non_dfet_equip_10_dict_dinspwouthtwn - dsc_insp_wout_utwn"(1-trac_equip_dict_dsc_insp)*
prob_lalso pos
DOCUMENT: Non-Defectve Equipment kderwing Dakectve durting Owcrevenery inepectone without Takedowne [equipmentweek]

dace inapect nist no derect to inapeat
O non_dfer_equip_10_dtet_minspwoutiotivn = mand_inap_wout_wtin"
(1 -lrac_equip_dfet_mand_insp)"preb_false_pos
DOCUMENT: Non-Defective Equipment leonthed Dofectve during Mendarry Inapectione whour Teradewne [oquipmentweck]

mandiary inepeet mid no derect to inspect
O prob_tatespee - . 08
DOCLMENT: Probelinty of incing a tane poeitive when doine en inapection.
O prob_mise_dict_dec_Inap =. 15
DOCUMENT: Probminioy of miming a devect in a crecrutenery inepection.
O prob_mise_dict_mend_Inep - . 03
DOCUMENT: Probering Mas Deteot during Mordeary inepection
[fraction]

O Socian_m_plan_swith - 1
DOCUMENT: Socter to Plune Sriveth
[0 or I logic sminent

 [pecpla)

[people]

mech dex inapect at 4

Q trac_equip_dfet_dsc_insp $=$ GRAPH(frec_equip_ptf_dtet)
$(0.00,0.00),(0.1,0.15),(0.2,0.3),(0.3,0.435),(0.4,0.55),(0.5,0.65),(0.6,0.745),(0.7,0.83),(0.8,0.91),(0.9,0.985)$, $(100,1.00)$
OOCUMENT: Thim catibrates the expected fracton of finding a defect when you inspect a piece of equipment for discreationary inspectione.
frac dise inapects defuetwo
(frac_equip_dfet_mand_inep = GRAPH(frec_equip_pff_dtet)
$(0.00,0.00),(0.1,0.15),(0.2,0.3),(0.3,0.435),(0.4,0.55),(0.5,0.65),(0.6,0.745),(0.7,0.63),(0.8,0.91),(0.9,0.985)$.
(1.00, 1.00)

DOCUMENT: Fraction Mandrory Inapectons Defective
[fraction: equipment defectivevequipment inspected]
The fraction of equipnent receiving a mandarory inapection that is in fact detective.

Plant: Managoment Staff

\square ave_Mot_OT(t) - ave_Mgt_OT(t - dit + (che_in_ave_met_OT) * dt
INIT ave_Mgt_OT = mgr_standard_hourstarget_frec_eni_overtme
DOCUMENT: Average Overtin
[hours/weet/person]
 reducis productivy. The procest of recovering firm excemive ovatime is theo gradul.

INFIONS:

DOCLIEart: Chenpe in Averep Overime
(hoursweck/persen/weekd

INIT Pro_Mansgemem_Stift - $(1 / 11)^{\circ}$ (totan_Estifitinitia_Mochence_stan)
NROWS:

DOCUMENT: Midriminnes Sine Lem
[pecplanweety

OUTHONE

INT Rockio_Mencerinentsint $=0$
Documant: Mmimineas sin
(pecple)

Mrave:

 (peoplamearis:-
netras at nume maination

aurcone
 Docimini: Mitmanee sin loes [pecapa/need

O attrition_MGT - ∞ - Pro_Management_Staft
OOCUMENT: Attition
[fraction: people/week]
staft lost per week due to retroment, death, quiting, atc.
O. Bud_layoff_mgR - $1 F$ (totm_Mgt_staftsMax_MGT)THEN(total_Mgt_staff-Max_MGTELSE(0)
O des_trac_Mer_OT -
target_frac_Mgt_OTPoff_prod_pres_on_Mgt_OT/eff_prod_pres_on_Mgt_OTP ((eff_mgr_int_wid_OT'Managera_info+off_mgr_mnt_wid_O
Managers_maint)/mgt_stalt_no_fin)
DOCUMENT: Actual fraction OVETtime
[fraction: hours/hours]
Overtme for maintenance stiflin in merme of percemt of standerd work weak.
() Hrac_Mgt_fin $=20$
trac_Mgtinfo = trac_Eng_into/2
trac_mgt_layofl = 0
frac_Mgt_maint = 1-frac_Mgt_into-. 2
 DOCUMENT: Mumen Efrecte on Work Order Complation
(unittess multiplier)
Product of motvation, tatioue and mordiend arbete on worter pertormance.
O indicated_mgt_OT = mer_standard_hours'den_mac_Mgt_OT
DOCUMENT: Indemad Overtine
(hours)

O into_rep_per_mgr_per_meak - 9
O maint_rov_per_mor_ger_waw a 20
O Managere_fin - frac_Mci_finivet_Mri_steff
O Managers_into = trac_Mri_Into atein_Met_still

O mg__info_rev_avall - Managers_Intointo_rep_per_mer_ger_weik
O mg_info_rev_comp -
 3_on_Mri_OT
Q mgr_info_wertiond a mer_info_WrTM(Manaqurs_inter 1)
O mgr_info_WTB - SMTH1(inte_mer_WTEMate_rep_per_mer_ger_week,1)
O mgr_main_rev_avall = Maragers_mantimaint_rw_per_mgi_per_wedr
\bigcirc mgr_maint_wordoed - mop_mant_WTEManagere_meint

O mar_ot_raile - dee_fres_Mik_OTherge_fre_Moi_OT
mge_sehd_wo_rew_eemp a

0 mer_standerd_heirs - 0
DOCLMENT: Stannalmur
(houraweet/periea)

O mgr_m__mota_hours = ave_Mct_OT+mer_senctard_hour DOCUMiNT: Tate Wer Heme
[hours/meetypersen!

O MG Tayoff = Mgr_Layofts_from_Workload+frac_mgr_layofftotal_Mgt_staff DOCUMENT: Maintenance leyont
[\%]

This is a poticy veriable thet is en exogenous function of tme.
O MGT_hiring_delay - 4
DOCUMENT: Time to hive new mechenics
Units weaks
\bigcirc
mgt_Or_frac = mgr_tot_work_hours/mgr_standard_hours
O mgt_ravo_sched_to_unsched_wo = MAX ((Sch_wo_wait_Mgt_Rev/(Sch_wo_wait_Mgt_Rov+Unschd_wo_wait_mgr+1)). 2)
. mg _staff_no_fin $=$ tota_Mgt_staff-Managers_fin
O mgr_time_to_up_to_speed - 26

DOCUMENT: New Hiting Sunch
10 or 1 logic variabial
1 allows new mainanence stell to bo hred when averace overime becence axceselva.
0 dieallowe ary new hiring beceuee of increened wortoche.
O targe_frac_Mrt_OT = . 125
DOCUMENT:: Tagre Fraction Overtime
[hours/hours]
O Ume_to_change_me_OT - 2
DOCUMENT: Tine io Chance Averce Overtme
(weoke]

O time_m_layof_mgre $=8$

(0 off_mgr_inf_wid_OT = CAAPHMer_into_workoed)
$(0.00,0.00),(0.333,0.10),(0.657,0.43) .(1.00,0.72),(1.33,0.90),(1.67,1.34),(2.00,1.60),(2.33,2.00),(2.87,2.40)$, (3.00, 2.70). (3.33, 3.14), (3.67, 3.40). (4.00, 4.00)

O eff_mgr_mm_wid_OT - GRAPHmer_man_wortiond)
(0.00, 0.00), (0.333, 0.12), (0.667, 0.36), (1.00, 0.00), (1.33, 0.90), (1.67, 1.24), (2.00, 1.62), (2.33, 1.92), (2.67, 2.16), (3.00, 2.53). (3.33, 2.53), (3.67, 3.34), (4.00. 4.00)

 (0.97, 1.14). (1.00, 1.20)
(-) efl_motvaion_mer_wo_comp - GRAPMrsaly
(1.00, 1.15), (1.25, 1.00). (1.50, 1.07), (1.78. 1.06), (2.00, 1.09), (2.23, 1.09), (2.50, 1.02), (2.75, 1.02), (3.00, 1.02), (3.25,
1.01), (3.50, 1.01), (3.73, 1.00), (4.00, 1.00)

DOCLMAETT: Eltea Motvmen Weit Orem Completion
(unitices mutipiler)

0.755), (20.0, 0.74

[unitioes muntritel
The arrect of everime on prosucivily.

(1.00, 1.02. (1.04, 1.19). (1.04, 1.31), (1.13, 1.49), (1.17, 1.324, (1.21, 1.624, (1.25, 1.70), (1.23, 1.77). (1.33, 1.83), (1.38, 1.05% (1.48 1.89). (1.44, 1.87). (1.50, 2.00)
 (unitioes murnopion
 equipment beak on-lina.

$(0.00,0.752),(0.125,0.766),(0.25,0.814),(0.375,0.852),(0.5,0.883),(0.625,0.916),(0.75,0.944),(0.875,0.975),(1.00$, 100)

DOCUMENT: Effect of Wortiond on Work Order Completion
[unitless multiplier]
As work siow down, the staifs desire to complee work orders decreases. It reprecents peoplee dexire to make the availdble work it the avalabie trine.
(Mgr_Layofts_from_Workloed - GRAPH(mgr_ot_ratio)
$(0.00,0.403),(0.0714,0.242),(0.143,0.115),(0.214,0.0775),(0.286,0.06),(0.357,0.0375),(0.429,0.02),(0.5,0.00)$
0 Now_Mgt_Hiring_trom_OT = GRAPH(dee_frec_Mgt_OT/target_frac_Mgt_OT)
(100, 0.00), (1.33, 0.217), (1.67, 0.405), (2.00, 0.585), (2.33, 0.787 , ($2.67,0.990$), (3.00, 1.16), (3.33. 1.31), (3.67, 1.43),
(4.00. 1.49)

Plant: Matertale

Dicti_Inventory(t) - Dfetv_Inventory(t - dit + (dict_acepled - new_dictis_parts) " dt
INIT Dfetv_Inventory - storen_inventory"frac_parts_dfet_at_delvry"(1-frac_rtrnd_given_dfet)
DOCUMENT: Detacive inventery
[defective parts]
Defective perts that are in the perts inventery.
INFLOWS:

- dfct_aceplit - Parts_zecpidefre_dfor_perts_acepid

DOCUM BIT: Detrice Acceped
(dafective partinweal
Now devective pare that are socidority scouped
OUTROME
 DOCLMENT: Naw Datect Stere Idenective pertinvend

INIT Now_Equpment - Totil_Equppnent_In_PIatt. 2
inflome:

OUlmown

INIT Ouariy_ot_Spece - Speopinitil_quary_spec
NFIONE:

(quali) specermedit.

NFONS:
 00cinvil: Nim spees crent

DOCUMmir: Pate movitery moeared in devers
INROME:
\% dollar_deliveries - Parts_accplu"dollars_per_part DOCUMENT: Pires calveriee maceured in dollers

OUTROWS:

of maint_materiale_coet a parts_consumed'av_doliars_per_part
DOCUMENT: Perte coneumpicon meaured in dollersstores_inventory(y = steres_inventeryf(- dt) + (Parts_acepto - parts_consumed) * dt
INIT stores_inventory - Inital_Storet_inv_input
DOCUMENT: Storm inventery
[parts]
The number of teed partis in the storeroom.
INFLOWS:
\% Parts_aceptd - delvertes"(1-frac_dfet_perts_ritnd)
DOCUMENT: Pete Accuped
[parts/week]

OUTLRONS:
\Rightarrow perts_coneumed - well_WO_compleneren_perta_ger_wo DOCLMENT: Pale Cormuned
(partswoek]
Parte ceed in compleing work ordere
O S_per_New_Eq - . 1
DOCUMENT: Downe per new Cepmal Equipment
(Millions of DollerwEquipmena

 completry itx a maction.

O Ace_Tine $=23$
DOCINENT: APD Tive
(weaks)

DOCUMENT: Averspe Inprevennen Oriny Specilicitan
[?]

O Ave_Oual_spen_surich - 1

[0 or 1 logive vartation

0 hold qualiy at mine nomm

 DOCUMBN: AVNup quiry disper
(Buy Trme $=2$ DOCUMET: By Titu (woeks)

Time to inetel naw exproment

0 Cost_New_Cap_Part $=2.5$
DOCUMENT: Cost of Now Capity Expeneed Pers
[Millions of Dotlars/Part
This is the coest of purctasing a new capitel equipment and adding the reauting new spec for that epipment to the total. Now captay equipment will heve lese weer and teer and have lees of a chance of braating down.

O Cost_Per_Part_Des - . 025
DOCUMENT: COA Per Pert Demin Upgrade
(Millions of Dollars/part
Cost of improwing a specification of pert. It repreeente the cost of inveating in improving gaekees to MCPs. Since the utity buys millions of gaskets and only one or two MCPs this mumber averagen out. It alee reprecentes the cost of inveethy in a program to improve competitivenees benween suppliers and westing and researching botmer products.

O deliveries - MIN(parts_conaumed/(1-frac_dfet_parts_rtrnd).Bud_Maint_parta/dollars_per_part) DOCUMENT: Raw meterié deliveries

O frac_dict_parts_aceptd = frac_parts_dict_at_delvry*(1-frac_rtrnd_given_dfet)
O frac_dict_parts_rtrnd - frac_rtind_given_dfetefrac_parts_dfet_at_detvry
DOCUMENT: Fraction Dedreteve Part Relumed
lifaction: I
The fraction of incoming perte that meterned.
O frac_parte_det_at_delvry. Free_perts_det
DOCUMENT: Fraction perts Dereetive at Delvery (delective perte/delvivered pertis)

Fracton of parta delivered that see delective.
O inita_qually_spec - 60
DOCUMENT: Cumby of the invion spec for a new pert

DOCIMENT: new dimeried pers
(parta)

O Now_Part_Den_In = $1.5{ }^{\circ} 5$
DOCUMENT: New Per Omien hoveriment
(miltiona of dellers)

O pet_Inventery_dicty - 100 Ofete_Imentery/ateres_inventery
DOCUMBNT: Peroent invertery Defreine
[\%]
Pet of perte that so derective
O rejecte a delverioporna_dol_getis_funt

O replecement_hruerment - 44
 (million dellara)

O spece_uperatred - ravener. 2

O stores_Inv_per_ERV - 100° stores_doliarsyreplacement_investment
DOCUMENT: Stores inventory per Estrinated Replecement Investment
11
stores inventery per cotinated replecument inveatment
O storce_ratio - stores_im_ger_ERV/marget_inventory_23_\%ERV
0
target_inventery_s_xEAV - 1.00
DOCUMENT: Targe_ invertiny as Poroent of Estmated Replecomment Investrnent
[]
This is the turget for stores inveatment a percent of callined replacement invedinent that croetee the proper service level in stores.
(3) trac_rund_given_dict = GRAPH(av_qual_speca)
$(0.00,0.00),(10.0,0.0175),(20.0,0.04),(30.0,0.065),(40.0,0.105),(50.0,0.17),(60.0,0.225),(70.0,0.27),(80.0,0.3)$. (90.0, 0.315). ($100,0.32$)

DOCUMENT: Fracton Peerned Oiven a Detect
Ifraction: parts with defect rournedpertis with deveed
The fraction of materiats that ere rousried given that moy hove a defoce
(0) Service_Lovel - GRAPM storce_rallo)
($0.00, \overline{0} 0.00$), ($0.111,0.06$), (0.222 .0 .196), ($0.339,0.6$), ($0.444,0.606$), ($0.588,0.20$), ($0.668,0.91$), ($0.777,0.935$), (0.888 ,
0.985). ($0.909,0.995$), (1.11, 0.99), (1.22, 0.99), (1.33, 0.90), (1.44, 0.98), (1.58, 0.98), (1.67, 0.90), (1.78, 0.99), (1.89,
0.99). (2.00, 0.99), (2.11, 0.99), (2.22, 0.99)

DOCLMENT: Steve Revo
[fraction]
Probatiny of normaly stocked pert ourrenity belne in inventery.
$?$

(0.00, 0.010), (10.0, 0.049), (20.0, 0.04), (30.0, 0.10), (40.0, 0.302), (50.0, 0.092), (00.0, 0.070), (70.0, 1.24), (00.0. 1.30), (90.0, 1.47). (100, 1.52)

Plam: Mceheales

INTT Evo_overtion - 5

DOCUMENT: Amerce OVMreve

[hours/wedt/persen]

Nrowe:

[pecoplat

NHOME.

```
    *) mant_hiring = attrition+(New_Staft_Miring*New_huring_Swtch/maint_hiring_delay)+Contractor_Pulse
    DOCUMENT: Mmimmence Hl/ry
    [peoplerweek]
    huring of new mecharice
    (if tme - 10 then octe alee 0
OUTROWS:
    *) mstaff_lose =
        attrition+PULSE(maintenlayoffs*Maintenance_Staff,200,1000)+SMTH1(Outage_Finish*Cont_Hiring*.5.2.0)+(Budgat_layloffs_me
        chs/bud_layoff_time)
```



```
        [peoplenweek]
```

 O attrition - \(05^{\circ}\) Maintmance_stif
 DOCUMENT: Atwriton
 [fraction: peoplerweck]

() bud_layeft_time - 6
O Contractor_Putse - SMTH1(Cont_MingeOutige_stert.1.0)
O Cont_Hitha - 150
DOCLIMENT: Number of condecters inved
O dsc_Insp_Stalf - MIN(maint_stiff_evall_main_workemax_frac_avi_matef__elloc_dec_imep,deaired_stafl_for_dec_inap)
DOCUMENT: Omerrionary inapection sten
[people]

DOCUMENT: Acted fration overtme
[fraction: houramoural

(unitices murtipied)

[hours]

O Leyof_Frection - O

unitere

0 Leyofl_sumat -o

[\%]

0 maint_hiring_delay $=8$
DOCUMENT: TIn to hire new macharict
Units meete
O maint_staff_gell_maint_work - Maintenance_Staff-PInrs_Maint
O maint_stal__avail_mech_wort = maint_stall_avail_maint_work-toty_insp_manpower

(people)

O max_frac_avl_mstaff_alloc_dec_insp - Fr_Lab_bud_All_Dise_insp
 (fraction: allocated peoplowervil peopity

Every weak a certain number of dibcrevonary inapectone come des. These inepectone require mecherices, for example 10. This variabie
 would be alocensed to decretionay inspectens.

O Now_hirim_Swhth - IF(Mainmance_St-isMax_Mach_Stin) THEN (0) ELSE (1)
DOCUMENT: New Hithig Smich
[0 or I logic varimetial
1 allowe new mainmance sta to be hred when averape overime become axeamive.

O Pinrs_Maint - Maintenance_StarfFrac_Maintstiff_Piennere
DOCUMENT: PMonsurs Manternence
Units: (workera)
This is the number of mainterarce wotvers allociuad so pleming

O seanderd_hours a 40 (Houry)
DOCumbir: Suntrs Heur
[hourenweet/persen)

O targe_tree_overtme - . 10
DOCUMEXT: Tare Frueten Overtime
[hours/houra]
O arcetran_men - 2

(weekel

O trie_m_chane_me_OT-1

(weekel)

(pecpion)

Docinnivi: Tom Voiky Houre
[hewranacitpersen)

Docinint: Trime heure
(HourenWeranhecty

workload - weoks_work_TBD_target_wke_work
DOCUMENT: wontoed
[raction: wookenwark]
(1) Eiffoto - GRAPH (ave_overtmel
(0.00, 1.00), (2.00, 1.00), (4.00, 1.00), (6.00, 1.05), (8.00, 1.10), (10.0, 1.15), (12.0, 1.20), (14.0, 1.25), (16.0, 1.30). (18.0. 1.35), (20.0, 1.50)
Q) EFF_manot_into - GRAPH(Eve_overtma)
(0.00, 0.998), (2.00, 0.994), (4.00, 0.983), (6.00, 0.963), (8.00, 0.944), (10.0, 0.914), (12.0, 0.868), (14.0. 0.829), (16.0. 0.799). (18.0, 0.77 , (20.0, 0.751)
(O) Alf_motvaicon_wo_comp = ORAPH(TMME)
(0.00. 1.00). (1.00, 1.00), (2.00, 1.00), (3.00, 1.00), (4.00, 1.00), (5.00, 1.00), (6.00, 1.00), (7.00, 1.00), (8.00, 1.00), (9.00. 1.00). (10.0, 1.00). (11.0, 1.00), (12.0, 1.00)

DOCUMENT: Encoce Motvertion Work Order Complevion
[unituess multiplier)
This is the motivition factor on productivity bemed on good meederamp. 1.0 is none 1.15 if and
O Ef_OT_tatigue_OA = GRAPH (we_overtime)
(0.00, 0.996), (2.00, 0.97), (4.00, 0.96), (8.00, 0.925), (8.00, 0.89), (10.0, 0.825), (12.0, 0.795), (14.0, 0.785), (16.0, 0.755), (18.0, 0.74), (20.0. 0.72)
(0) offor_falgie_wo_comp = GRAPH (ave_overtime)
(0.00, 1.00), (1.08, 0.98), (2.11, 0.956), (3.18, 0.940), (4.21, 0.93), (5.26, 0.915), (6.32, 0.906), (7.37, 0.885), (8.42, 0.845),
(9.47. 0.82). (10.5, 0.79), (11.6, 0.785), (12.6, 0.775), (13.7, 0.79), (14.7, 0.75:5), (16.8, 0.736), (16.6, 0.72). (17.9. 0.705),
(18.9, 0.890), (20.0, 0.63)

(unitlees multapler)
The efrect of overime on protuctivity.
(8) off prod_pree_on_OT - GRAPHPFrodecton_preceurs)
(1.00, 0.00), (1.04, 0.409), (1.00, 0.732 , (1.13, 0.940$)$, (1.17, 1.19), (1.21, 1.29), (1.25, 1.42), (1.29, 1.50), (1.33, 1.69), (1.38, 1.77), (1.42, 1.86), (1.46, 1.94), (1.50, 2.00)

DOCUMENT: Elbat Production Premure on OVritme
(funithese multiplier)
 ecuipmant beck orthen.
(0) m_moen_OT - ORNPH (wortcoen)
 3.30), (4.00, 4.00)

DOCUMENT: Elrat Wormend Overting
[unittese multpitier]

(8) off_whes_w__comp - arnpurwertotan
$(0.00,0.00),(0.125,0.025),(0.25,0.09),(0.378,0.17)$, (0.5, 0.32), (0.023, 0.499), (0.78, 0.309), (0.875, 0.83), (1.00, 1.00)

(unithese multpliof
 evinarele than

 (9.00, 1.40), (10.0, 2.04)

O base_frac_unschd_WO_hrs_maint_hrs - 25
DOCUMENT: Bew Fraction Unechectied Work Order Hours Mainmenance Hours
(fraction: wrench hoursmaintenance hours)
For unschectied work arders, the percent of mechenic trme that goes to wrench hours if none of the work is plenned
O frac_manweeks_werk_TBD_send - manweeks_schd_wortV(total_manweeks_work_TBD+.1)
DOCUMENT: Fracten Wat To Be Done Schertied
[fraction: welkerwedel]
The fracton of the maintenance stiff thet is allocated to scheduted work
O frac_schd_WO_hrs_maint_hrs - MAX(base_trac_schd_WO_hrs_maint_hrs'off_schd_planning_on_maint_hrs. 02) DOCUMENT: Fraction Schecuied Work Order Hours Maintenence Hours
[fraction: hourshours)
Per Cent of mechenice going to wrench tmo for schedreat work
O frac_unsch_WO_hrs_maint_hrs - MAX(beec_frac_unschd_WO_hre_maint_hre* unsch_ofet_plan_pet_hr_wtime..02)
DOCUMENT: The per ceme of unectedered work hours the go to wrench houre
O Ind_Manweak__schd_wotk - Schd_WO_m_workWO_Mrs_per_schd_WORotin_werk_hra DOCLMENT: Inclowtid Mammedis Sctradied Wotk [person wakel

O Ind_manweets_unechd_work = Unsehd_WO_W_workWO_hrs_per_unsebt_WOMoel_work_hrs DOCLMENT: Mrlianed Namenels Unechetiod wolk [persen meekil

O Main_me_ser_sata_wo - 1.8
DOCUMErT: Marnanepie Hours pee Schentred Wert Order [persen houramork order)

The mumber of wrench hours requrod per sehoivied work order

[persen houramert orted)

DOCUMEVT: Mimmele Scherted Werk
[persen meakel
The number of macke merth af eatrietred moik

[persen wamed
Marnuecte of unadrentresing

[work orderymedty

frac_seha_wo_hri_melotilire

(hoursweet

O schd_mech = maint_staff_avail_mech_workefrac_manweek__work_TBD_schd
DOCUMENT: Scherted Mechenics
[peopie]
The number of mechanics allocated to pertorm scheduied work.
O Schd_WO_to_work = MAX((schd_WO_RTBDABD-Schd_WO_Unpind_Mat_req),10)
DOCUMENT: Scheculed Werk Orders to Work
[work orders]
Work orders in progrees or ready to work heving no equipment or materid delmys.
O total_marweaks_work_TBD = manweeke_sehd_work+manwecks_unsch_work
DOCUMENT: Totel Marmeaks Work To Be Done
[man weeks)
Tosal manwedes of work both scheciued and unechedied
O unschd_mech - maint_stalf_avail_mech_worke (1-frec_manweck_work_TBO_schd) DOCUMENT: Unechetimed Nechantis [people]

Machanice allocened to unechecited work
O Unschd_WO_w_work - MAX(Unschd_WIP-Uschd_WO_unpln_Mex_rea, 10) DOCUMENT: Unechedeto Work Ortans of Work (work orders)

O unsch_maint_ume - unsehd_mech"(standart_hours+indicated_overtime-Training_Houra)" trac_unsch_WO_hrs_malnt_hre DOCUMENT: Unemetiot Mimanane Tive (hours/week)

Wrench tino to unechectind work
O unsch_wo_norm_complaved - unsch_main__tmenmant_hre_per_unsehd_wo DOCUMENT: Unechedied Wott Orters Normaty Complened
(work orderatweeky
 per work order.
 DOCUMENT: Wrens Wetk TO Oo Done [weekel

 DOCUMET: Scheired Wotr Order Houm [houranWert opder]
 personnerts tha

 (hourarworts enter)
 planning peremates thas
 (0.00, 1.007, (0.24, 1.30), (0.5, 1.70), (0.75, 2.14), (1.00, 2.52)

O unsch_ofct_glen_get_H_whime - GRAPMires_unech_mip_w_ghea)
$(0.00,1.00),(0.25,1.17),(0.5,1.34),(0.75 .1 .51),(1.00,1.63)$

Piemt: Perlodio Outege

INIT Per_Outape - 0
DOCUMENT: Percetc Ornge
A tunction which saye 1 -periodic outige 0 -filily aperational.
INFLOWS:
of Outage_Stert = PULSE(1,Outhee_Per.Outage_Por+Outace_length)
OUTFOWS:
of Outage_Finith = PULSE(1,(Outage_lengith+Outape_Per),(Outage_Per+Outage_length))
O Outagelengin = 5
DCCLMENT: Onge Lengh
(weok)
Right now this set by the user. Neede to be a function of troken equipment at the beginning of tre outares.
O Outace_Per - 10000
DOCUMENT: Relualing armee patoritivy
(weoka)
This is the tino between orrages.
O Periotic_Ounge_Functon = 1
DOCUMENT: Pekring Ocemp Function
[unitesa)
-1 if using refuring outerges. 0 if not
(EFFBEOL = GRAPMMrec_equp_bdewni)
($0.00,0.9$), ($0.1,1.11$), ($0.2,1.25$), ($0.3,1.35),(0.4,1.46),(0.5,1.60),(0.6,1.70),(0.7,1.76),(0.6,1.80),(0.9,1.80),(1$. 1.80)

Plam: planners

INIT Mbray_glene - 100
OOCUMENT: Libloy Plate
[plans]
 now work plaria, thes enving time.

NRIONE:

CUTHON:

DOCUMENT: Obelomeo Prise
[planemeedel
The chectesence of prern

NFLONE:

Docinmir ainmannain
folempurat

Oumpont

maximun plere - 2epoces
DOCUMENT: Mentmum Prate
[planal
 acoumes the tere io a finio number of timpe the could be done in to pleir

```
O obsolesonce_time - \(10^{\circ} 52\)
```

DOCLMENT: Obecmemice TIm (woeks)

The average time betore a plan becomes obelices
O planners_week_work = SMTH1(tota_wo_req_plans.4.10)/
((base_pinprd_w_pin"frec_w_plans+base_pinprd_wout_pin*
(1-trac_w_plans))*pinra_avall_pin)
DOCUMENT: Backiog Plenners Work
[weoks]
The number of weaks of work the planners have to do
O pianner_prod - (base_pinprd_w_pin"frac_w_plans+base_pinprd_wout_pin"(1-frac_w_plans))"oft_wload_pinprod DOCUMENT: Planner Productivity
[plans/pianner/week]
Planner productivity in trume of plane per weed
O plan_ratio - (library_plans+Plans_wait_eng_rev)/maximum_plane
DOCUMENT: Ptan Rato
[fraction: plansyplens]
A reference rallo to calculate the odde of having previous expertence with the work presenty being plemed.
O pinrs_avail_pin - MAX(Pinrs_Maint-plnrs_to_mat_acq,0)
DOCUMENT: Plenners Avaindo Plen
[peopled
Planners availade to creede plene
O plinrs_per_WO_req_Mat - 2.5/40
DOCUMENT: Planners per Wotk Order Requiring Mmertela [plannera]

O pinrs_m_mat_acq - total_WO_rec_unplnd_marphars_ger_WO_ree_Mat
DOCUMENT: Plenners to Menerid Acquisition
[peopiof

O plns_availatie - plas__completed-Pien_created+Plens_reviewed
() pins_compioted - pinrs_avail_pinoplanner_prod
DOCUMENT: Plune Complete:
(work ordersweaky

[work orders]

(1) free_w_ptane - GRAPMplan_rmet
$(0.00,0.00),(0.1,0.16),(0.2,0.340),(0.3,0.47),(0.4,0.537),(0.5,0.69),(0.6,0.710),(0.7,0.7 \%),(0.8,0.83),(0.9,0.885)$, (1.00, 0.94)

DOCUMENT: Prodton win Pura
(frection: melt opdes minl himetoded plenemork orderad
The fracuce of werte oudere for which there is an axdeting pian in the merary

Plant: Safory and ALARA Subreater

 INIT SUm_Forced_Oumpee • . 08
inflows:

```
        *) DT_Forced_OLt - EFFForcoun
```

 Total_ManRem(t) - Tote_Manfemp - dt + (Chenge_in_MenRem) * dt
 INIT Totel_Manfien \(=9\)
 INFLOWS:

Total Run Timel $=$ Tom_Run_Tmere - de + (DT_Cap) ${ }^{\text {a }}$ dt
INIT Tota_Run_Time - 1
INFOWS:
* $O T_{-} C a p$ - eapediny_Orinne

INIT Yr_MenRem e . 01
Nflows:
of $\mathrm{Yr}_{\text {_ }} \mathrm{Ch}$ in_ManRem $=$ Change_in_Menfem
OUTRONS:
$\Rightarrow Y_{-}$Reset - PULSE(Yr_ManRem, 52,52)

DOCUMENT: COre Man Frequency Extmand
(melts/week)" 1E6

only Core Mak in US.
O EFFFORICMFIGe - (Ev_Rt_Op_Er_Exp+Ev_Rt_Op_Mining/4M00

(Core Mater Por Weed

EFF_Manfam_FO - OT_Forced_ourwhperfo
EFF_ManRem_lap = (dec_inap_wout_tinn+dec_inep_w_twnomend_inep)'MRper_Inep
EFF_Menfiem_Ope - capeciey_Onime"Miperx
EFF_Manifen_SM = MR_perWOrecha_WO_cemplated
EFF_Mentien_UM - MMper Uworunecha_WO_compleate

0
O) FO_DEEM a IFTMM \boldsymbol{O} 27 THEN 1 ELSE 0

MRper\% = . 1
Mпррено - . 1
MRPEUUWO = . 001
MRperwt - Tom_Mannaw(TTME +1)
MRper_Inep $=.0001$
MR_gerwo = . 0003

Runnina_Avo_Cet - Tora_Run_Tmer.OCo Tman)

(2) EFFEECM - CMOMME Lentry hemat.

(90.0, 4.75). (10. Exil)

$(0.00,0.00)$, (0.ce, acep (0.05, 0.129, (0.075, 0.120), (0.1, 0.25), (0.123, 0.39), (0.18, 0.35, (0.175, 0.39), (0.2, 0.4),

(0.48, 7.ec), (0.47, 24en, (0.8, s.ee)

(\%/weekf

(0.00 , 0.9), (0.5, 0.540), (1.00, 1.01), (1.50, 1.00), (2.00, 1.11), (2.50, 1.19), (3.00, 1.24), (3.60, 1.20), (4.00, 1.33), (4.50.
1.36), (5.00. 1.40)
Q EFFTOCM - ORAPH1
(0.00, 0.90). (0.5, 1.00), (1.00, 1.00), (1.50, 1.00), (2.00, 1.14). (2.50, 1.20), (3.00, 1.40), (3.50, 1.07), (4.00, 1.92), (4.50,
2.18), (5.00, 2.97)
(0) Morat - GRAPH(TIME)
$(0.00,100),(52.0,100),(104,1.00),(156,1,00),(208,1.00),(260,1.00),(312,1.00),(364,1.00) .(416,1.00) .(468)$ 1.00). (520, 1.00)

Plant: Unseheduled Work Orders
UnSchd_pin_WO_req_Mayty $=$ UnSchd_pin_WO_req_Matt - dt) + (new_unschd_pin_WO_req_mat \cdot unschd_pin_WO_mat_acqd) ${ }^{*}$ dt INIT UnSchd_gin_WO_req_Mat = 2.7

DOCUMENT: Unechedued Planned Work Orders Requiring Materiale [work orders)

The number of unschedured, plenned work orders that are waikng for additonal materiate for work to begin.
iNFOWS:
of now_unschd_gin_WO_req_mat - unsch_work_pins_complated"frac_unschplen_req_mat DOCUMENT: Now Unechedured Planned Work Orters Requiring Mamenids [work ordersweek]

The flow of new unscheduma, plenned work orders thet require additional materiale.
OUTROWE:
of unschd_pln_WO_mat_sogd - UnSchd_gin_WO_req_Maymat_roq_delay DOCUMENT: Uneckeduced Plerned Work Orders Mmatinis Acqurnd (work orderenweek)

Unsend_WIP(Y) = Unsehd_WIPt - dY + (unech_work_bequn - unseho_WO_complaed) " at
INIT Unsehd_WIP = 353.03"5
DOCUMENT: Unmernedited Woik in Progree
(work orders)
Unechectued Work Ordere Currenty bing worked on.
INFLONS:
\% unsch_work_begun = (unectre_wo_wer_eq-Unschd_pin_wo_rea_Maty unschi_becido
 [work ordershweed]

OUTRON:

\rightarrow unecha_WO_Compleind - unach_wo_nom_complemerhuman_Efn_On_WO_COmp DOCLIEMT: Unech ithed Work Orders Complee. (work orderstwealy

The cemplation of unechected work ortives
 INIT Unithi_Work_Pis_Awell - 10

(work orderal

\{2.8\}
Nenows:

(work orcteratioend
The compretion of preve for unectection work orders
armont

Unsch_Work_pin_used - unschd_WO_completed"frac_unach_wip_w_plan DOCUM̈ENT: Unechedived Work Plens Uned
[work ordereweek]
Plenned unactreited werk orders that are conauned in the procese of completing unscheduted work
 INIT Unscho_WO_weliteng - 350.13.5

DOCUMENT: Unecheicied work orters wivithg for Engineer Review. [work orders)

INAOWS:
of now_unschd_work = (online_brkctwns+Tageed_PM_equip_brhewn)/equip_per_wo DOCUMENT: Naw Unechedibed Work [work orderanweek]

The fow of new unachedered work orders
OUTRON:
of u_wo_ren_eng - IF TMESO THEN Ane_uneed_worev_cemp ELEE 1230

INIT unncht_wo_wat_eq - 1500
NFLOWS:

outrove:
of unseh_work_begun = (unecha_wo_wat_eq-Unecha_sin_WO_ree_meq
unachas bection_time
DOCIMENT: Unernetred watr Bogn
[work orderameed

 INIT Unsend_mo_man_mex - 1500
 (work orders per wead
nelows:
 aumone

 INIT Usctra_WO_unpm_Mitue $=70.508$

(work ordere]

materials

NRLONE:

 (work orternmelty
antrow
of uschd_wo_unpien_mat_ace - Uschd_WO_Unpin_Mat_req/mat_acq_delay DOCUMENT: Unecheduied Wok Orders Unpianned Materials Acquation [work ordersmeck]
unscheculed, unplenned work orders for which the additonal materiel arrive
$i)$ eng_and_man_forget_lme $=12$
() frac_ping_1s_for_schd_work o schd_wo_rea_pins/tote_wo_req_piens

DOCUMENT: Fraceon PMenning if for Schuctuled Work
[fraction: plans/plans!
The fraction of planning work the planner pertorms on scheduled work orders.
| originally: free rea plane sch|
O frac_unsehd_WO_phune_w_pien a unsehd_ph_WO_ptune/(unschd_wo_weit_eg+iO)
DOCUMENT: Fracton Unacheduled Work Ordere Pertily Functond with Puan
[fraction: work ordera/work orders]
The fraction of unschedied work order on pertery furctond equponent the hive a pian
O frac_unschpien_req_met - 1-(Scrvice_Lovdrumilzadion)

[fraction: work orderament orders)

O frac_unseh_wip_w_gian o unsend_pin_wip/(Unsehd_WiP+10)
DOCUMENT: Fraction Unechevied Watk in Progrees witi Pien
[fraction: work orderswents ordere]
The frection of ungehulind wotk ocders tiat hew a plas
O Fres_WO_geha - shd_WO_eompinenenet_WO_cenpleted DOCUMENT: Frecten Wotr Ortere Setnetres
(frection: work ortenenveit ordery)
Frection of all woik orters ocingiened the se scherind mar
0 fre_unsch_wo_unpin_mat_raa - 1 -(Bervied_Leveluturation)
 [fraction: wort orterenweit oremel

(worts ordera)
 DOCUNENT: Tcet Unefletral Weit
[work ordeel]

[worls exderanuentay

[wots onteci:

O unsend_beckleg_tme $=1$
DOCUMENT: Unechedied Beader Time
[weoks]
This is the trio bameen noticing a piece of equipmem begins to tril and the the the it is availeble to work on. Unite are wods.
O unschd_pin_wip = MIN(Unechd_WIP'targ_frac_plan.Unsehd_Work_PIns_Avail)
DOCUMENT: Unachectied Manned Work in Progreme
(work orders)
Unschedulad work orders currenty being worked on that have a plan
O unschd_pin_WO_pfunc - Unschd_Work_Plns_Avai-unechd_ghn_wip DOCUMENT: Unschedured Planned Work Ordere pertily Functional [work orders)

Unscheduied work ordeve that are partilly functond that have a plen
O unschd_wo_rea_pins -
MAX (trotal_unsehd_work-Unschd_WO_walt_eng-Unechd_wo_wait_mgr)*targ_free_plen-Unsehd_Work_Pins_Avail, I) DOCUMENT: Unecteduted Work Orders Requiling Prene
[work orders)

O Unsch_wo_pert_func_eq - totel_unectu_work-Unectid_WIP
0 utilization - 7 DOCUMENT: Untmation
[fraction:]
The fraction of maternis that come from plert steree.
Exogmeves veriatelo

Q EFPuwertich - GRAPM(U_wo_rev_enghant (u_wo_rev_enal)
(0.5, 0.901). (0.56, 0.240), (1.40, 0.900), (1.65, 1.01). (2.30, 1.03), (2.75, 1.06), (3.20, 1.00), (3.66, 1.07). (4.10, 1.08),
(4.55. 1.09). (8.00, 1.10)

(0.5, 0.201). (0.93, 0.97), (1.40, 1.02), (1.25, 1.00), (2.30, 1.07), (2.75, 1.00), (3.20, 1.00), (3.68, 1.10), (4.10, 1.10), (4.55,
1.10). (5.00, 1.10)

Ropert sepeen Preaces
 INIT Repe_Wavia_fer_Sercerine - 70

DOCUMENT: Reperse Wring fer Sercenina
[reports)
 the seme tric.

```
NFONT:
        O moemma_mate a
```



```
            |
            DOCUMmant: mammanmere
            fraporte/menel:
```



```
    aumeme
```



```
            Covinmont. Ropute serumed
            (repertanvecki]
```


SOERs_Waiting_for_Screening(t) = SOERs_Waithg_for_Screening(t - dt) + (Incoming_SOERe - SOER_screened) • at INIT SOERs_Waitha_for_Screening = 5

DOCUMENT: SOERE Waing for Screming
(SOEA)
SOER wating to be screened by en engineer. Screening determined whether the SOER is applicabie or non-applicabie.
INFLOWS:
f) Incoming SOERs = SOER_reports

DOCLNENT: InOTHID SOERA
[SOERTWenk]
SOERs coming into to the utivy (unality through SEE-N) for andyyis.
OUTROWS:
of SOER_screened - SOERs_Wailng_for_Sereening/tim_to_screen_SOER DOCUMENT: SOER Scctand
[SOERWMed
SOER screening comptation.
O adj_tme_to_screen_repe - ume_to_screen_repeinto_eng_unavail_retio DOCUMENT: Adpurd Tine io serem Rapore (week)

Mime to screen report achead for avalubumy of angincers.
O app_reps - reports_seremedrfac_rape_dend_app
DOCUMENT: Applcate Report
[reporta/week]
Number of screened reperte that are determined applicatio.
O app_repe_prev_nal - reporte_sercenedfrac_repe_frov_andyzed DOCUMENT: Appllcelto Reporty Previounit Anclyzed [reports/week]

Number of screened reporte that had been provioumy armyed.
O app_SOER = sotn_sumperm_sotn_dud_ap
DOCUMENT: Aqpllute SOEA
[SOERHmed
SOERA demormined applonte to ar urivy.
O conceme_fom_rp_sOth - app_sOkPconcem_per_sOER
DOCUNENT. Concern Prom Appleato SOEN
fconcernermeed
Naw concmine hom sotere to be andyad them.
O concemeser_sosin - t DOCUMETT: Cencemen tal
concemasolen.
Averace number of uld aphemin the ceme from sogna

[applicate reportencreaned reporte]

Docur ir: Praman of Pmpert Provound Aniyzed
[provtounty anmyad reportascreaned reperte]
Number of screened reperte the have probteme that had proviounty bean screened by the undy.
0 rac_rep_mandoned =. 4

O rac_SOER_dund_app - 80
DOCUMENT: Fraction of SOER Dotermined Applicable
Fraction of scremed SOERs that are applicebin to the utilly.
O non_app_reps - report_sereened*(1-frac_reps_prov_analyzod-frac_reps_dtmd_app)
DOCUMENT: Non Appllcelo Reportit
\{reports/weok!
Number of screened reports that are debermined non-applicable.
O non_app_SOER = SOER_screened" $(1$-frac_SOER_dund_app)
DOCUMENT: NOT-Applicento SOER [SOERTweek!

SOERA doternined to be non-applicatie to out utimy.
Otime_to_sersen_repe - 3
DOCUMENT: Tine o Screen Paporte
(week]
Time for engimeers to screen report for applicabivey.
O ume_to_screen_SOER $=1$ DOCUMENT: Tine io Samen SOER [weeks]

Soold: Manta Coverage

INIT EnectramediaRaport = Ini_En_Meda_Rpis
DOCUMENT: Ellocive Medth Rapore
[articios)
NFIOWE:
 DOCUMENT: Follow-up Acpering Openimeten [articicenweck]
 DOCUMEMT: Operatore Repert Oncemineten (articlea/week]

 [anticioanveed]

aUmione

* Encorpricety
 [articicannuelie

INTT Eventripere e inti_Eventiop
DOCIN NT: Evin Propery
(artietee)

N-LOW:
© EventRplandine - Plant_brakionna_P2+(Plant_Force_Outze0)"0
DOCUMENT: Evint Raporimis Pat
[articieanweck]
OUTRON:
- Eventhptoracimination - EventheportereviptipreadTime

DOCUMENT: Event Raporting Dkavinintion
(articles/weck)
 INIT Follownpleperte - . 5

DOCUMENT: Follow-wp Repert
[articies)
Media articles wrimen to provide additional information on an eartior articie (original articho).
INPOWS:
-F FollowReportinghave - Social_Multiplier"(EventRptDiseimination+OperationalRptOteanination) DOCUMENT: Follomup Ropertion fat [articica/week]

OUTPON:
 DOCUNENT: FOMOW-1p Reperting Desominetion [articlea/week]
 INIT OperatingReperte = Int_Ope_Rpt

DOCUMENT: Openima Paperte
[articies]

NHLOWE:
 DOCUMANT: Oppritis Amperting Rato [articlea/weak]
outrown

 [artielcenmeck]

O Averagonppitimellion 4
DOCUMENT: Averree Ropert Eivectur Une
[weekel
O Evinpapmentive - 2
DOCUNMTT: Everim Repert Spment Timo
(weacel)

O Pwapripementime eis

(weekel)

O Opliprymertime $=5$

(wencl)

[breakelownermedy

O Social Mumpler - EFFCLMPEPFPOMPEFFLPOM
DOCUMEENT: Socim MUUHPIV
[unitiess multiplier)
Combined impeet of social concerne on the media's eftorts for followip reports.
O todwns_P2 - 0+(STEP(10000/13400,156)-STEP(10000/13400.166))"Event_Switch
(EFFMML - GRAPH (ElmetvemadiAReporta)
(0.00, 0.823), (1.00, 0.997), (2.00, 1.00), (3.00, 1.00), (4.00, 1.01), (5.00, 1.02), (6.00, 1.06), (7.00, 1.11), (8.00, 1.22), (9.00, 1.28), (10.0, 1.30)

DOCUMENT: Eliect of Nedia on Lammatimes
[unitless]
O EFFMNRC - GRAPH(EflectivinedaReporty)
($0.00,0.88$), (1.00, 0.949), (2.00, 1.00), (3.00, 1.00), (4.00, 1.00), (5.00, 1.01). (6.00, 1.02), (7.00, 1.04), (8.00, 1.06), (9.00, 1.11), (10.0, 1.20)

DOCUMENT: Eliect of Medin on NFPC Concom
(unitless)

(0.00, 0.892). (1.03, 1.03), (2.07, 1.03), (3.10, 1.03), (4.14, 1.06), (5.17, 1.07), (6.21, 1.09), (7.24, 1.10), (8.28, 1.13),
(9.31, 1.14). (10.3, 1.16), (11.4, 1.17), (12.4. 1.20), (13.4, 1.20). (14.5, 1.22), (15.5, 1.22), (16.6, 1.24). (17.6. 1.25), (18.6, 1.26), (19.7, 1.27). (20.7, 1.27). (21.7, 1.23), (22.8, 1.26), (23.8, 1.23). (24.8, 1.29). (28.9, 1.29). (26.8, 1.29). (27.9, 1.29), (29.0, 1.28), (30.0, 1.30)

OOCUMENT: Efrect of Mecte en Putile Concem
[unitless]
 upon the putucts concern over nucier power.

Q Operaing_Condwone - GRAPM capeiny_Onilne+(1000Pe_OUtapa))
(0.00, 2.77), (10.0, 2.73), (20.0, 2.52), (30.0, 1.62), (40.0, 0.775), (50.0, 0.475), (60.0, 0.275), (70.0, 0.175), (60.0, 0.1). (90.0, 0.00), (100, 0.00) DOCUMENT: Operting Name [articiearmeck]

$(0.00,0.00)$, ($0.1,0.1$), ($0.2,0.2$), ($0.3,0.65$), ($0.4,1.26$), ($0.8,4.00$), (0.6, 6.65), (0.7, 7.66), (0.6, 8.80), (0.9, 9.65), (1. 9.90)

DOCUMENT: PIent Brametomis
[breakedowna/weedd

Seelel: Imorect Orompe

[camperioned
NRLOW:
 [canpelananery
alimons
 Docurn Tr: matemantion fino foermencrianceray
 Docunn NT: Fillus fito [cemperfienuedif


``` INIT ElbectraniNCempeigis - Init_EnCmpine
DOCUMENT: Enectve AnA-Ancler Cempeigh
campaiged.
INFLONS:
```



``` DOCUMETT: Inplamememon Reco [campeigna/waded
```


aUmions:

```
of Efrectrading - ElfectreAnuncompagne/AveCenpefrectio
DOCUMENT: Ellocive Faing
[camplignerweeky
```



``` INTT I_G_Lamerio = Inin_IG_sum
DOCUMENT: Interet Croup Lmerims
[suits)
inflowe:
```



``` DOCUMBNT: Sul fing Rem [suita/weeky
OUILOWE
```



``` DOcunmir: Dinmat Rem [suiterweek!
```



``` [suiterweeky
```



``` DOCUMENT: Thal Ruection fite [sulta/weed
O Avecempaignomeropmentime - 12 DOCUM NT: Avevepe Cenpictin Develepmant Two (weakel
O Avacemplituento \(=4\)
```



``` [weelec)
O Avolinamorntio - 23
```



``` [wealre]
O Avedmaneants e 25
```



``` (weekel
O Avotivoration o crere:
```



``` [menturs]
```


(0.00, 0.82), (1.00, 0.997), (2.00, 1.00), (3.00, 1.00), (4.00. 1.01), (5.00, 1.03), (6.00, 1.09). (7.00, 1.17), (8.00, 125), (9.00, 1.29). (10.0, 1.30)

DOCUMENT: Eriset of Pubite intercet on Lawmakers
[unitiess)

$(0.00,0.00),(1.00,0.00),(2.00,0.00),(3.00,0.00),(4.00,0.00),(5.00,0.01),(6.00,0.035),(7.00,0.1),(8.00,0.203)$, (9.00. 0.409). (10.0, 0.72)

(0.00. 0.877), (2.00, 1.00), (4.00, 1.00), (6.00, 1.01), (8.00, 1.01), (10.0, 1.03), (12.0, 1.04), (14.0. 1.08), (16.0, 1.08),
(18.0, 1.11). (20.0, 1.14)

DOCUMENT: Enect of Pubtic intereti on NAC Concem (unitiess)

(0.00, 0.981), (0.3, 0.981), (0.6, 0.983), (0.9, 0.902), (1.20, 1.00), (1.50, 1.01), (1.80, 1.03), (2.10. 1.04). (2.40. 1.06), (2.70, 1.06), (3.00, 1.07)

DOCLMENT: Elreat of Pubile internet on Public Concem
(unittess)

0.792), (9.00, 0.740), (10.0, 0.7)

(unitteses)

$(0.00,0.00),(0.1,0.026),(0.2,0.06),(0.3,0.2),(0.4,0.5),(0.5,1.12),(0.6,2.42),(0.7,3.20),(0.4,4.47),(0.9,4.80)$, (1),
4.97)

DOCLMEAT: Elina Bramionna
[actionarweek]
(3) En_Broaction_P2 - GRAPMI_bewne_P4
(0.00, 0.00), (0.1, 0.020), (0.2, 0.19), (0.3, 0.2206), (0.4, 1.60), (0.5, 2.50), (0.8, 3.39), (0.7, 3.50), (0.8, 4.47), (0.9, 4.80).
(1. 4.97)

DOCunevr: Elaca Brandionis
[ectionenweek]

$(0.00,4.92),(10.0,3.32),(20.0,2.20),(30.0,1.20),(40.0,0.720),(50.0,0.47 \%),(00.0,0.26),(70.0,0.15),(50.0,0.1)$. (90.0, 0.075), (100, 0.026)

DOCUNENT: Elret Openitens
[ectiona/weed

Secial: Publle Cencert

INTT Loe_fritis_Opention -18
NHONS:

oulmown

INIT Na_Prite_Oppention -20
DOCUMEAT: Prate Conemo
(Concein Varict

Rance 0 te tee.

NRIONE

[concemnwerk]

OUTPOWE:
के FadingConcem = Nat_Pubic_Opposition/(AvsPubDemenaization)
DOCUMENT: Feting Concim
(concern uniturweek)

INIT Usility_coodwin - 1
INFLOWS:
of GW_change - (Ind_Goodwill-Utiliy_Goodwill)/CW_Change_time
O s_on_Ed - 02
DOCUMENT: Dollms on Eduction
Units: (min \$sweek)
Money spent on public edvcation which tranelatime inte goodwill.
O AvePubDesensitemtion - 520
DOCUMENT: Average Pubic Omemeithing Time
(weeks)

O Bounded_IPOs = MAX(MIN(Incleated_Pubine_Oppoetton,80),20)
O Bound_LPO = Max(MiM(Ind_Lee_Opp,9\%),5)
O GW_Change_time - 52% Ind_Goodwiwurwy_Goodivily

O ind_cootwiw a Encumanow Encocedowrempocw
O Ind_Loe_Opp = Lee_Publie_Oppearion'NM_E_en_Loe_Op
O Lec_Oeveraithation - 520
 DOCUMENT: Nat Envat on Puelie Concen [unitleses]
 acting on putile concem.

DOCUTENT: Putive Oppedion Adyetrent Time
[weoke]
 small chanie in oppotiten.

O TIme_m_ch_Lec_Opp - AlLes_Prim_Opperventra_Lee_Opp
(8) Enciniow a arumanisat
 1.09), (1, 1.10)

(0.00, 0.207), (0.714, 0.510), (1.43, 1.30), (2.14, 2.04), (2.04, 2.37, (3.67, 2.61), (4.20, 2.03), (5.00, 2.73), (5.71, 2.78), (6.43, 2.02), (7.14, 207), (7.23, 284, (4.57, 2.50), (9.23, 2.50), (10.09, 2.54)

 (90.0, 0.840), (100, acie)

 (90.0 . 1.17). (104 1.27

 0.900) ($90.0,1.01$), ($100,1.00$)

(0.00, 1.10), (10.0, 1.01), (20.0, 0.209, (30.0, 0.800), (40.0, 0.50.9, (50.0, 0.800), (00.0, 0.800), (70.0, 0.91). (80.0,
0.975). (sat 0.847). (100, 0.601)

 (90.0, 1.00), (109, 1.19)

Q EHOpsLPO = GRAPH((capacity_Online+(Per_Outage's0))/(EFFForcOut+1))
(0.00, 1.69). (10.0, 1.49), (20.0, 1.32), (30.0. 1.30), (40.0, 1.09), (50.0, 1.05), (60.0, 1.03), (70.0, 1.01), (80.0, 0.98). (90.0 . $0.95)$. (100, 0.902)
0 EFFPOCused = GRAPH(Loc_Public_Opposition)
($0.00,1.12$), (10.0, 1.06), (20.0, 1.00), (30.0; 0.938), (40.0, 0.886), (50.0, 0.864), ($80.0,0.854$), (70.0, 0.846), (80.0, 0.842), (90.0, 0.826). (100, 0.802)

DOCUMENT: Elloct of Loed Pribite Opposition on Customer Saturaction
Q EFFPOLM = GRAPMNE_Putic_Opposition)
(0.00, 0.7), (5.00, 0.9), (10.0, 1.00), (15.0, 1.03). (20.0, 1.04), (25.0, 1.06), (30.0, 1.12), (35.0, 1.21), (40.0, 1.25), (45.0,
i 28). (50.0, 1.30)
DOCUMENT: Enrec of Public Concem on Lawnakers
[unitless multiplier)

O EFFPOLPO = GRAPH(Nat_Pubit_Oppocidion)
($0.00,0.9$), (10.0, 0.904), (20.0, 0.916), (30.0, 0.933), (40.0, 0.949), (50.0, 0.96), (60.0. 0.982), (70.0. 0.995), (80.0, 1.03), (90.0, 1.00), (100, 1.10)
\bigcirc EFFPOM - GRAPHMNEPMElte_Oppoetion)
(0.00, 0.8). (5.00, 1.00), (10.0, 1.01), (15.0, 1.03), (20.0, 1.07), (25.0, 1.12), (30.0, 1.18), (35.0, 1.23), (40.0, 1.27), (45.0, 1.29), (50.0, 1.30)

DOCUMENT: Eflect of Puelic Concem on Made
[unittess multiplier]

(0.00, 1.21), (1.00, 1.00), (2.00, 0.907), (3.00, 0.902), (4.00, 0.997). (5.00, 0.931), ($6.00,0.980$), (7.00, 0.940), (8.00, 0.94),
(9.00, 0.931), (10.0, 0.925)

DOCUMENT: Elloct of Nailonal Putic Oppoition on Preaved Satay
(unittees)

(Q) EnPOM - GRAPHMER_Prive_Oppowicn)
(0.00, 1.00), (5.00, 1.04), (10.0, 1.09), (15.0, 1.12), (20.0, 1.15), (25.0, 1.19), (30.0, 1.23), (36.0, 1.27). (40.0, 1.30), (45.0,
1.30). (50.0, 1.30)

($0.00,0.981$), (10.0, 0.90), (20.0, 0.860), (30.0, 1.00), (40.0, 1.01), (80.0, 1.08), (00.0, 1.03), (70.0, 1.03), (80.0, 1.05). (90.0, 1.03), (100, 1.07)

DOCUMENT: Elaet of Pulle Conctin on Suet Pith
(unitleas)

($0.00,1.02$), ($0.1,1.01$), (0.2, 1.01), (0.3, 1.01), (0.4, 1.01), (0.5, 1.00), (0.8, 1.00), (0.7, 0.801), (0.8, 0.982), (0.9, 0.970), ($1,0.976$)

[unitteed
 actone an pulite cancem.

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Some pages in the original document contain pictures, graphics, or text that is illegible.

[^0]: Infermatiens Insereationt whit MNe

