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Abstract

In solid state nuclear magnetic resonance spectroscopy, the magic angle
spinning technique is often used to remove anisotropic interactions and
generate high resolution spectra. However, these interactions contain
valuable information about molecular structure and dynamics. In particular,
the dipole-dipole coupling strength between two spin-1/2 nuclei is a direct
reflection of their interatomic distance.

Two ways of recoupling dipolar interactions into spinning experiments
are explored here. In the first, longitudinal dipolar exchange experiments
employing spin echoes are examined in homonuclear spin systems. The
accurate measurement of internuclear distances is demonstrated for spin
pairs. Two-dimensional exchange spectroscopy using n pulses is applied to
the retinal conformations in dark-adapted bacteriorhodopsin and the
relationship between the retinal chromophore and the neighboring aspartic
acid residues. The distance of the retinal-14 position in light-adapted
bacteriorhodopsin to the aspartic acid-212 sidechain is also established
within less than 5.5 A using spin diffusion experiments.

A second dipolar recoupling experiment involves the frequency-selective
reintroduction of heteronuclear interactions among spin-1/2 nuclei. This
approach is designed to examine weak dipolar interactions in a multiple spin
environment, where it is desirable to isolate the influences of individual
couplings.

Simulations including losses of spin coherence within an exponential
model are introduced for both the homonuclear and heteronuclear techniques.
A theoretical framework for understanding compensation for pulse
imperfections in multiple pulse echo sequences is presented, and the effect of
insufficient proton decoupling on dilute spins is also discussed.

Finally, a simple phase modulation scheme is introduced for
heteronuclear spin decoupling in rotating solids, yielding improved
linewidths over those obtained with continuous-wave decoupling under
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typical condit;ions. The influence of magic angle spinning on continuous wave
and composite pulse decoupling is also investigated.

Thesis Supervisor: Dr. Robert G. Griffin

Title: Professor of Chemistry and Director of the
Francis Bitter National Magnet Laboratory
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Introduction

The magnetic dipole-dipole coupling between two nuclear spins, which

reflects their interatomic separation, can be measured using solid state

nuclear magnetic resonance (NMR) techniques. In this thesis, two ways of

reintroducing dipolar interactions into magic angle spinning (MAS)

experiments on polycrystalline samples are explored. In the first study,

longitudinal exchange experiments employing rotor-synchronized spin echo

sequences are examined as a means of observing dipolar evolution in two spin

and multiple spin systems. Average Hamiltonian Theory (AHT) within a

double toggling frame approach is applied to the analysis of homonuclear

dipolar recoupling with n pulse sequences. The two-dimensional version is

demonstrated by experiments which reveal the retinal chromophore

conformations in dark-adapted bacteriorhodopsin (bR) and provide

qualitative confirmation of the relationships between the aspartic acid-212

and -85 residues and the chromophore. The proximity of the aspartic acid-

212 residue (i. e. < 5 A) to the retinal-14 position in light-adapted

bacteriorhodopsin is also confirmed with spin diffusion experiments and is in

agreement with the Henderson model for the structure of bR.

It is also shown that the n pulse exchange approach is suitable for the

measurement of internuclear distances up to at least 4.6 A for 13C-13C spin

pairs under favorable conditions. Analysis of the data is performed using a

simulation algorithm which includes the combined influences of magic angle

spinning and periodic radio-frequency (RF) pulse excitations, while an

exponential model for the decay of all spin coherences is included in the spin

dynamics simulations. The latter capability is necessary because of the

signal losses arising from various incoherent effects, the most important of
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which is the decay of spin coherences from insufficient proton decoupling

power during the application of multiple pulse sequences to dilute spins.

The second dipolar recoupling experiment is a frequency-selective

approach to restoring heteronuclear interactions among spin-1/2 nuclei. This

technique is complementary to rotational echo double resonance (REDOR)

experiments, where all heteronuclear interactions are recoupled into the

MAS experiment simultaneously. The development of this sequence is

motivated by the goal of examining weak dipolar interactions in a multiple

spin environment, where it is desirable to isolate and measure individual

couplings. Experimental demonstrations of the frequency-selective

recoupling effect are presented in a four spin system, demonstrating the

potential for selective measurements of heteronuclear dipole-dipole couplings

in MAS experiments. A similar approach to selective dephasing in static

polycrystalline solids is also demonstrated. In addition to the basic sequence

consisting of two rotor cycles, an alternative approach which is tolerant to

pulse imperfections is introduced for application to weak interactions. Lastly,

the role of coherence decay during heteronuclear dephasing experiments is

explored.

A third topic is the problem of pulse imperfections in multiple pulse

experiments. Some controversy has surrounded the question of whether n

pulse sequences based on XY-4 phase cycling are superior to expansions of

MLEV-4, but no theoretical comparison has been made in the most general

case where long windows are applied between the pulses. Here, a general

method of analysis is presented for the single spin case, and it demonstrates

that in most cases there is little difference in the degree of tolerance to pulse

errors. Experimental data and a simple model of the interference between

RF fields applied to 13C and 1H spins demonstrates that the signal losses



-13-

from insufficient proton decoupling during spin echo sequences are

minimized with a mismatch ratio of approximately three between the RF

fields, while at the same time the highest possible decoupling power level is

applied. This condition underscores the importance of employing strong

decoupling fields in double and triple resonance recoupling experiments,

particular with the use of n pulses.

Finally, an improved method of proton decoupling is introduced for

application to cross polarization magic angle spinning (CPMAS) experiments.

Particularly in the regime of high and low spinning speeds, it is often

observed that inefficient proton decoupling makes a significant contribution

to the linewidths of protonated 13C spins at typical proton RF fields of

approximately 60-100 kHz. This line-broadening results mainly from

resonance offset effects in the regime of large decoupling fields (i. e. greater

than 40 kHz). In order to compensate for small shifts of the proton

transmitter from resonance, while at the same time efficiently decoupling

very strong heteronuclear interactions, a phase-switched variation of simple

multiple-frequency decoupling is introduced and applied to several organic

compounds in spinning experiments. In these examples, the method yields

large improvements in the linewidths relative to continuous-wave (CW)

decoupling, even in the presence of large homonuclear interactions among the

protons. The experimental observations are explained qualitatively with the

aid of an analytical approach based on a double-rotating frame

transformation and through consideration of numerical simulations. In

addition, some basic distinctions between the influence of proton-proton

interactions on the performance of CW decoupling in static and spinning

solids are explored in order to explain the observed dependence of the 13C

linewidths on resonance offsets. Finally, rotational interference effects in
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composite pulse decoupling on spinning samples are considered via

experimental and simulated lineshapes.
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Chapter 1.

Introduction to Magic Angle Spinning NMR Spectroscopy
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I. Line-Narrowing Techniques in Solid State NMR

The NMR spectrum of a solid material, as reconstructed from the free

induction decay (FID) following a I/2 pulse or from the response to

continuous-wave (CW) excitation [1], is generally broad and largely

uninformative because of several influences. First, in the case of spin-1/2

nuclei, when the spins under observation are coupled to each other by strong

homonuclear dipole-dipole (DD) interactions, a broad homogeneous lineshape

results [2]. Second, in many cases, the spins experience strong heteronuclear

couplings to a second nuclear species, which contribute additional line-

broadening or splittings into the NMR spectrum. In the case of powdered

solids, where all possible molecular orientations with respect to the magnetic

field are represented in the sample, another contribution to the lineshape is

the inhomogeneous broadening from anisotropic interactions. Examples of

orientation-dependent spin interactions in high magnetic field are the

chemical shift anisotropy (CSA) of each spin, the dipole-dipole coupling

between pairs of spins, and in the more general case of nuclei possessing spin

angular momentum greater than I=1/2, the quadrupolar interaction with the

electric field gradient tensor at the nucleus [3].

The greatest challenge in solid state NMR spectroscopy has been the

effort to reduce or eliminate some of these contributions to the NMR

spectrum, so that an informative subset of the spin interactions, which

contain useful information about molecular structure and dynamics, can be

observed selectively. For example, in the case of 1H spectroscopy, the

linewidth arising from homonuclear interactions (typically 2 30 kHz) is

generally much greater than the range of isotropic chemical shifts, and the

first interaction therefore dominates the spectrum. In order to recover the
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more valuable information contained in the chemical shifts and other weaker

spin interactions, the magic angle spinning (MAS) technique was originally

introduced in order to attenuate the influence of homonuclear interactions

[4, 5]. By time-averaging the homonuclear couplings to zero over a period of

rotation, the NMR spectrum is narrowed considerably, provided that the

spinning speed is much more rapid than the spectral linewidth [6]. However,

fast mechanical rotation at rates exceeding 15 kHz is quite difficult to achieve

even today. An alternative approach involves the application of radio-

frequency (RF) pulses. Periodic multiple pulse sequences such as WAHUHA

were introduced by Waugh and co-workers for the purpose of eliminating the

apparent influence of strong homonuclear couplings on the spin evolution at

multiples of the period of excitation [7]. At the same time, however, the time-

evolution of the magnetization under the Zeeman-like terms in the spin

Hamiltonian is permitted to continue in these experiments, allowing for their

selective observation.

Average Hamiltonian Theory (AHT) [3, 8] provides a theoretical basis for

these multiple pulse line-narrowing experiments and, more generally, a

flexible means of understanding the time evolution of spin systems under

complicated periodic excitations. Specifically, the AHT approach provides a

convenient framework for the design and analysis of pulse sequences which

generate a desired "coherent averaging" effect of various spin interactions,

which is complementary to the incoherent averaging of spin interactions by

molecular motion. The only restrictions are that the time-dependence of the

system must be periodic and that, in order to truncate the Magnus expansion

after one or two orders, the Hamiltonian in the chosen interaction frame

must be a small perturbation over the time-averaging cycle. The AHT

approach is therefore useful for the analysis of spin systems experiencing
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both RF excitations and sample spinning, as long as the combined time-

dependence remains periodic. In fact, AHT plays a key role in understanding

the performance of magic angle spinning in various spin systems [6, 9, 10]

and is frequently useful in understanding dipolar evolution experiments in

rotating samples with rotor-synchronized multiple pulse sequences [11].

In addition to homonuclear decoupling, another important role of RF

fields in the line-narrowing and simplification of NMR spectra is the

decoupling of one heteronuclear spin from another [12, 13]. The application

of a large continuous-wave (CW) RF field to one spin eliminates the apparent

coupling of that spin in the NMR spectrum of the other nucleus. Because of

the great importance of this technique in both solid and solution state NMR

spectroscopy, much effort has been applied to understanding spin decoupling

and developing methods which compensate for imperfections in its

performance. In most cases, the major practical difficulty is the deterioration

of line-narrowing efficiency which results from shifts of the RF transmitter

from resonance with the spin being decoupled. Many phase- and even

frequency-switched modifications of CW decoupling have been introduced in

order compensate for the resonance offset effect [14].

Another challenge of particular significance in solid state experiments is

the poor sensitivity of nuclear magnetic resonance techniques. For many rare

spins with low gyromagnetic ratios, T1 relaxation is extremely slow in rigid

solids (>> min in many cases). In most organic compounds, longitudinal

relaxation is much faster within the proton reservior than among more dilute

spins with lower gyromagnetic ratios, and in addition the 1H system

possesses relatively high spin polarization at equilibrium. Therefore, the

technique of cross polarization (CP) [15], in which the magnetizations of the

protons and the observed rare spins are equilibrated in the rotating frame, is
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usually employed in observing dilute spins in organic solids. Under the

influence of matching RF fields applied to both nuclear systems, each spin

experiences the same effective Larmor frequency in the rotating frame, and

the large barrier to polarization transfer which exists between heteronuclei in

the laboratory frame is therefore eliminated, allowing polarization exchange

to occur.

To summarize, in many compounds, the methods of homonuclear and

heteronuclear decoupling, combined with the MAS technique, have made it

possible to obtain spectra of resolved isotropic chemical shifts in the solid

state [15-17]. Although MAS is not very efficient for the elimination of

homonuclear couplings at practical spinning speeds, it has proved extremely

valuable for the attenuation of the chemical shift anisotropy (CSA) in

orientationally disordered systems, since spectral line-broadening from this

interaction breaks up into sharp sidebands in the slow spinning regime [6, 9,

18]. For this reason, the combined use of proton decoupling, cross

polarization, and MAS, which is now known as the CPMAS experiment [16],

has become the standard method for observing the high resolution spectra of

"dilute" spins, such as 13C, 15N, and 31p, in polycrystalline samples. In

addition, the use of two dimensional techniques is sometimes helpful in

achieving even greater enhancements in spectral resolution [19].

II. Measurements of Dipole-Dipole Couplings

The measurement of homo- and heteronuclear dipolar couplings by

nuclear magnetic resonance (NMR) techniques is an important tool for the

determination of molecular structure in solids [11, 20]. In a static

polycrystalline solid, the dipolar coupling between two magnetically dilute



-20-

spins results in the characteristic "Pake pattern" [21], first observed in the 1H

spectrum of gypsum, CaSO, 2H 20, which arises from the interaction

between the two protons in the water molecules of hydration. The splitting

between the singularities provides a straightforward measurement of the

dipolar coupling constant and therefore the internuclear distance between the

two spins. Unfortunately, in the more general case, the structural

information revealed by internuclear distances cannot be obtained directly

from the static 1H spectrum because of the multiplicity of couplings. In

situations involving other nuclei, such 13C, 15N, and 31p, large chemical shift

anisotropies, as well as other line-broadening mechanisms, obscure the

lineshape perturbations from the through-space dipolar couplings.

As a consequence of these problems, various methods have been

developed that separate the dipolar couplings of interest from the other

interactions in static samples, most notably the chemical shift terms present

in the spin Hamiltonian. These techniques include separated local field

(SLF) spectroscopy [22-25], spin echo double resonance (SEDOR) [26-31],

nutation NMR [32], and the use of Carr Purcell echo sequences to measure

homonuclear dipole-dipole couplings [33, 34]. The two-dimensional SLF

experiment, performed on both single crystals [22] and powders [23],

correlates the anisotropic chemical shift interactions of dilute spins with their

dipolar couplings to neighboring abundant spins. In SEDOR, the intensity of

a spin echo is attenuated by heteronuclear dipole-dipole couplings that are

prevented from refocusing by the application of suitable I pulse sequences.

By comparison with the amplitude of a complete spin echo, these couplings

can be measured to determine internuclear distances. In rotating solids, a

similar strategy is employed in rotational echo double resonance (REDOR)

experiments [35, 36], where the formation of rotational echoes is hindered by
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rotor-synchronized n pulse sequences. The remaining two experiments

separate dipolar couplings from chemical shifts in static homonuclear spin

systems. In nutation NMR, this separation is achieved by the application of

continuous RF fields, which eliminate chemical shifts and heteronuclear

interactions, but retain scaled homonuclear couplings. Carr Purcell echo

sequences, on the other hand, retain the full strength of the homonuclear

interaction in the limit of short n pulses.

These approaches are useful for the determination of molecular

structure in static solids, including powders. However, in order to obtain

high resolution NMR spectra of solids, the application of magic angle

spinning is essential [4-6, 16, 17, 37]. MAS efficiently attenuates weak

heteronuclear and homonuclear dipole-dipole couplings, as well as all

chemical shift anisotropies, resulting in well-resolved spectra of the isotropic

chemical shifts. In order to observe selected dipolar couplings in rotating

solids, it is therefore necessary to reintroduce them into the experiment by

some method that reverses their elimination by sample spinning. At the

same time, as in the case of non-rotating solids, it is frequently desirable to

separate recoupled interactions from other contributions to the spin

Hamiltonian. Often, this criterion leads to the simultaneous elimination of

chemical shifts from the experiment, in the sense of coherent averaging,

through the use of spin echo sequences.

Several approaches have now been developed that achieve a suitable

recoupling of the dipolar interaction for both heteronuclear and homonuclear

spins in rotating solids. In the absence of RF pulses, the heteronuclear spin

system is completely refocused after each rotor cycle and is therefore

"inhomogeneous" in the sense introduced by Maricq and Waugh (MW) [6].

The fact that all terms in the heteronuclear MAS spin Hamiltonian commute
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with one another at different times, a property that also holds under n pulse

sequences, has led to several elegant spin echo techniques designed to

measure internuclear distances [35, 38-41]. In contrast, under most

circumstances, the flip-flop term of the homonuclear dipolar coupling results

in the non-commutation of the spin Hamiltonian with itself at different times,

rendering it an "homogeneous" interaction in the MW terminology. In the

special case of a homonuclear spin pair, the chemical shift terms and the flip-

flop part of the dipole-dipole interaction are non-commuting and lead to

homogeneous behavior [6]. More generally, in the case of several spins, there

are many dipolar couplings, and in most cases these interactions fail to

commute because of the flip-flop terms. Accordingly, the rotational

refocusing of observed signals is spoiled to varying degrees, and it is often

necessary to spin much faster than the magnitude of the interactions in order

to suppress them efficiently. In the case of homonuclear spins, the

development of dipolar recoupling experiments requires consideration of the

additional complexity introduced by the homogeneous nature of the spin

Hamiltonian.

Recoupling methods that are applicable to homonuclear spin systems

include experiments in which recoupling is driven solely by the mechanical

rotation, as in longitudinal exchange at rotational resonance (R2) [42-45], and

methods where multiple pulse sequences are applied in order to reintroduce

the dipolar coupling. These approaches can be further divided into "direct"

recoupling sequences [46-49], in which a pulse sequence similar to a solid

echo [30] or magic echo [50] scheme is used to interfere with dipolar

cancellation by MAS, and spin echo sequences employing n pulses [51-53],

where the recoupling effect depends on the modulation of the dipolar coupling

by chemical shift differences between the spins in the toggling frame.
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Recoupling by rotational resonance also relies on the influence of the

chemical shift difference. In a suitable interaction frame [54, 55], the

destructive interference between MAS and the evolution of the dipolar flip-

flop term between the spins leads to a non-vanishing dipole-dipole

interaction.

In addition to REDOR experiments, other techniques which have been

introduced for heteronuclear spins include rotary resonance recoupling (R3)

[56-58] and dipolar chemical shift correlation spectroscopy (DIPSHIFT) [38,

40, 59]. In the first method, a single-phase RF field is applied to one of the

two heteronuclear spin systems. With a sufficiently strong RF field, the

irradiation causes decoupling [60, 61], but for weak fields recoupling occurs in

MAS experiments when the amplitude of the RF field is matched to a

multiple of the spinning speed, i. e. vRF = mvR. At rotary resonance, the RF

field spoils the inhomogeneous character of the spin system, the property that

its NMR spectrum is comprised of sharp sideband intensities [6], and powder

patterns reflecting the interaction strength are regenerated [56]. This

approach is significant for the case of weak coupling because the interaction

is not reflected clearly in the sideband intensities when the spinning rate

exceeds the heteronuclear coupling strength. In DIPSHIFT experiments, on

the other hand, large heteronuclear interactions are examined, usually

between protons and dilute spins. In these experiments, the first dimension

of a two-dimensional (2D) experiment reveals the heteronuclear coupling via

the removal of the proton decoupling field, which is instead replaced by a

sequence which attenuates the homonuclear 1H-1H interactions [62-64]. In

the absence of the homonuclear couplings, the NMR spectrum is again

inhomogeneous, and the dipolar coupling strength between directly bonded
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1H nuclei and dilute spin-1/2 nuclei is observed in the large sideband

intensities which remain in the slow spinning regime.

Figure (1-1) illustrates the powder lineshape, or "Pake pattern," which

results from the heteronuclear coupling of an isolated spin pair. In the

absence of large chemical shifts and couplings to more distant nuclei, the

analogous homonuclear spectrum has an identical shape, except that it is

broader by x 3/2 because of the additional flip-flop term in the homonuclear

dipole-dipole coupling. Under magic angle spinning, the heteronuclear

lineshape breaks up into sharp sidebands. In the slow spinning speed

regime, their envelope of intensities reflects the shape of the static spectrum.

However, in the fast spinning limit, only the centerband remains. The direct

measurement of weak dipole-dipole couplings (< 2 kHz) from the NMR

spectrum therefore requires extremely slow spinning speeds which are often

impractical, necessitating the use of recoupling pulse sequences. In addition,

the spectra in Figure (1-1) are scaled to similar proportions for convenience,

but the actual peak heights are greatly enhanced under MAS, most notably

at higher spinning speeds, because the total integrated spectral intensity is

conserved as the spinning frequency is increased.
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Figure (1-1). Numerical Simulations of heteronuclear dipolar spectra

associated with an isolated spin pair at 0 kHz, 2 kHz, and 10 kHz spinning

frequencies, respectively, from top to bottom. The coupling constant is 23.3

kHz, corresponding to a typical 1H-13C separation of 1.09 A. All chemical

shift interactions are omitted for simplicity. The static spectrum exhibits the

symmetric Pake pattern corresponding to an isotropic distribution of

internuclear vector orientations in the magnetic field. Under MAS

conditions, the pattern of sideband intensities reflects the static powder

pattern at slow spinning speeds. At greater spinning speeds, however, the

influence of the interaction is increasingly attenuated, and the centerband

predominates.
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III. Nuclear Spin Interactions

For a system of coupled homonuclear spins with angular momenta I=1/2,

which is rotating with respect to the magnetic field, the relevant spin

Hamiltonian can be divided as follows [3, 65]:

H(t) = HD(t)+ Hcs(t)+ H + HRF(t) , (1-1)

where HD(t) represents the dipole-dipole couplings among the spins, Hs (t)

the contribution from the chemical shift terms, Hj the indirect spin-spin

interactions, or J-couplings, and HRF (t) the RF fields applied to the spin

system. Under sample spinning, the geometric factors describing the

anisotropic parts of the various spin interactions become time-dependent.

Explicit expressions for the terms of the spin Hamiltonian are given by the

following equations, which are applicable to a set of spins residing in a large

static magnetic field, following the usual rotating frame transformation [301

with respect to all of the spins involved and the neglect of orthogonal time-

dependent terms:

HD(t) = dj (t)[3IjIj - iij ; (1-2a)
i<j

Hcs(t) = i(t)I, ; (1-2b)

Hj = i, · (+ ij .(1-2c)
i<j

HRF(t) = y vRF(t)[cos X(t) IX, + sin Z(t) I]. (1-2d)
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In the case of the J-coupling, the time-dependent anisotropic terms are

assumed to be small and are therefore neglected. The part of the dipolar

Hamiltonian in Eq. (1-2a) involving angular momentum operators is

[3IzJ z -i I ] for homonuclear spins, but for two sets of heteronuclear spins

{i} and {j}, the expression is further truncated to the form:

HD(t) = • (t) 2Izi • , (1-3)
i<j

because of the large difference between the Larmor frequencies of spins with

different gyromagnetic ratios y. The two cases are distinguished by the "flip-

flop" operator - Y2 [I,I j + II+j ], which appears only in the homonuclear

case. In this thesis, the expression 2I1iSi is used to refer to the

heteronuclear coupling between two nuclei i and j in order to differentiate it

from the homonuclear Hamiltonian.

The dipolar coefficients d, (t) are equal to the nuclear dipole-dipole

interaction strength dj, between the nuclei i andj, multiplied by a geometric

factor. Planck's constant h is omitted from the definition of the spin

Hamiltonian, and in terms of cycles per unit time, the dipolar coupling

constant has the form:

d =( ) rJ, (1-4)

where Frj is the vector connecting the two interacting nuclei, and the factors

y, and yj are the gyromagnetic ratios of the spins. The constant go is the

permeability of free space. Knowledge of the coupling constant defined by Eq.

(1-4) implies knowledge of the internuclear distance ru,. In a sample rotating
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with angular frequency cR, the time-dependence of the dipolar interaction

coefficient can be expressed as follows [6, 10]:

d 12 (t) = d12{G0 +G• os(wRt + ij)+G 2 cos(2o)Rt+ 20i)}, (1-5)

where:

Go _(3 cos2 m-1) (3 cos 2  .-1)
0 2 2

3
G = 3sin 2 Om sin 2 6 ; (1-6)

4

3G2= -sin 2 msin2 .
4

The angle Om defines the relationship between the external magnetic

field and the rotor axis, while (0i, 0 ) are the polar angles of Fj in a rotating

reference frame defined by the rotor at time t = 0. Figure (1-2) provides an

illustration of the relationships among the laboratory frame, the rotor frame,

and the internuclear vector. At the magic angle, Om = arccos(1/V•) = 54.70,

the contribution Go vanishes, and the MAS dipolar Hamiltonian contains no

terms which are time-independent. The two remaining components in Eq. (1-

5) are oscillatory and average to zero over each rotor period. Often, it is also

helpful to define the Fourier series of the geometric prefactor, which contains

only 1 and +2 Fourier components under magic angle spinning:

+2
d1 2(t) = d[n](Oi)exp{in(Rt +  iJ )}, (1-7)

n=-2,n+O

where the Fourier coefficients dij [n](G ) have the form:
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1
ij [n](Oij) = d12G (1-8)

In a similar way, the chemical shift (CS) coefficient i (t) appearing in

Eq. (1-2b) is a function of the three principal values (as, P22, a 33 ) of the

chemical shift tensor in the principal axis system (PAS) of spin i, including

the shift in frequency from resonance. With the RF transmitter frequency

defined at zero, the isotropic frequency offset, the chemical shift anisotropy

(CSA) factor, and the asymmetry parameter are defined as follows:

3' [0I = d = ý102
2R 27 3

A  -(42 3 --a i (1-9)27

with the convention Ioas - I > jal 2 - ýŽi al1 - •I, where o' is the isotropic

chemical shift of spin i, which is generally expressed in parts per million

(ppm). Here the Larmor frequency has the definition mo = yiHo in units of

radians per unit time, where Ho is the static magnetic field strength. In

close analogy to the dipolar amplitude, the CS coefficient in a spinning solid

has the general form [6, 10]:

8,(t)= i [0]+CSA{g + g COS(WRt + + Yi + l)+g 2cos(2Wmt+2y, + yf2)}, (1-10)
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where (ai, Pf, yii) are the Euler angles of the CSA tensor of spin i in the

reference frame defined by the rotor. The geometric factors are defined by

the expressions:

(3cos2 1) (3cos2f-1) 1 sin2  cos2a ;2 o2 2

g = - sin29 in g, (rim cos 2a i + 3)2 COS 2 i +  72s in (1-11)
2 U

g2 sin m sin 2 - cos 2a (1+ cos 2  + 2  COS2 2 a i

and:

V = arsin 2 a;( arctan ( cos 2 a + 3) cos flp

(1-12)

{ - i• cos i sin 2 ai
S= arctan (3/2) sin 2 pi - (r7,/2) cos 2 a (1+ cos 2 Pi)

The time-independent contribution go again vanishes at the magic

angle. The Euler angle ai appears only the phase angles Vx and 12. Under

MAS, the Fourier expansion of the chemical shift coefficient is likewise

expanded as follows:

+2

3,(t)= , 3[n](a,,fl,)exp{in(mRt +  )} , (1-13)
n=-2

with the definitions of the isotropic shift from resonance S3 [01 - which does

not depend on the orientational Euler angles - and the relation:
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A (1-14)6i [±nl = 2 5Ag1 nexp1±in J. (1-14)

In contrast to the dipolar coupling, all of whose components are oscillatory at

the magic angle, the CS interaction tensor has, in general, a non-zero Fourier

component at n = 0, namely, the shift from resonance, in addition to the

elements n = + 1, 2. From the perspective that the interactions are second-

rank tensors acting on the spin operators, this distinction arises from the fact

that the trace of the matrix which characterizes the dipolar coupling is zero,

whereas the trace of the CS interaction is, in general, non-vanishing [3, 65].

With the neglect of the anisotropic part of the J-coupling Hamiltonian,

its coefficients are independent of orientation, and Hj remains time-

independent during MAS experiments. In addition, the J-coupling of Eq. (1-

2c) is further truncated to the expression:

Hj = J;j I.Izj , (1-15)

for heteronuclear spins, and also for homonuclear spins when the condition

Si (t)- 3j (t) >> JJU holds at all times. In most cases, the J-coupling is

neglected in the analysis of the experiments discussed here because in solids

it is dominated by the much larger dipole-dipole interaction, and it

consequently plays a subordinate role in the nuclear spin dynamics.

The RF irradiation term H,F (t) of the Hamiltonian is in most cases a

strong function of time. Together, the amplitude vRF(t) and the phase "(t)

in Eq. (1-2d) characterize an arbitrary RF excitation applied to the set of I

spins after the rotating frame transformation. If there is a second set of spins
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S possessing a different Larmor frequency, then a second RF field is also

included within the framework of its own rotating frame transformation.
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Figure (1-2). Relationship of the rotor principal axis system (PAS) to the

laboratory reference frame. The axis of rotation ZR is oriented at the magic

angle .m with respect to the direction of the static magnetic field. The

internuclear vector FU rotates about the longitudinal axis of the rotor, and its

time average therefore lies along the magic angle where the dipolar coupling

is zero. The X axes of the reference systems are parallel and point outward.

While only two angles (0i, ij) are needed to express the orientation between

the rotor and dipolar principal axis systems, three Euler angles (ti, li, y~)

must be specified for the CSA interaction.
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IV. Average Hamiltonian Theory

In many experiments combining MAS and RF excitations, the time-

dependence of the RF field is periodic and synchronous with the rotation of

the sample [10]. Two theoretical approaches which are applicable to a spin

Hamiltonian whose overall time-dependence is periodic are Average

Hamiltonian Theory and Floquet Theory [66-69]. Although Floquet Theory

has recently become an effective tool for understanding MAS recoupling

experiments [11], the AHT approach is adequate for describing most of the

experiments presented in subsequent chapters, where weak interactions are

subjected to periodic excitation and observation. An exception is the case of

heteronuclear decoupling, where the pulse sequence is generally applied

asynchronously with MAS, and the relevant dipole-dipole couplings are

mostly large relative to the spinning frequency.

The spin density matrix p(t) enables the description of nuclear spin

evolution during NMR experiments. The operator representing the statistical

state of the spin system satisfies the Liouville equation [70]:

p(t) = -i[H(t),p(t)], (1-16)

which has the formal solution:

p(t) = U(t,O)p(O)U-1(t,O) , (1-17)

where the time evolution operator is given by:

U(t,0)= Texp -ij dt'-H(t') . (1-18)
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The Dyson time ordering operator T necessitates a stepwise propagation to

evaluate the time evolution operator, which makes both approximate and

numerical calculations difficult to perform.

For the case of synchronous sampling, an exact time-independent

effective Hamiltonian can be defined which provides a complete description of

the stroboscopic behavior of p(t). With a periodic time-dependence modulo

2c, the time evolution operator satisfies the condition:

U(nc,0) = T exp{-iJo dt H(t)}

=[T exp{-ic r dtH(t) (1-19)

= [U(r,0)]" .

If the spin system is monitored only at times t = nzc, then the evolution

operator U( rc, 0) suffices to determine the evolution of the density operator

p(t). The exact effective Hamiltonian Hef can then be defined as the time-

independent Hermitian operator satisfying the relationship [71-73]:

U(c, 0) = exp -iHeffc} . (1-20)

If the net evolution of Hef over zc yields a small rotation angle in the

multi-dimensional space of spin states, then it is valid to apply a perturbation

approach in terms of powers of the Hamiltonian, and the effective

Hamiltonian can be approximated via the Magnus expansion [8, 74-76]:

-e + H + H'fff eff eff eff + ' (-1(1-21)
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where:

j(O) = 1 Jc dt H(t);

HQ' = iidt fo dt' [ H(t), H(t2 Tc o (
1 - irc to (1-22)

He}' 6Tc fodtdt' dt [tH (t"),[H(t-'),H(t) ]

+ [H(t), [H(tH(t'),H(t")]] .

Because the effective Hamiltonian is Hermitian through any order, the

corresponding time evolution operator is always unitary. Therefore, this

approach is preferable to ordinary time-dependent perturation theory [70] in

describing the evolution of the coherent spin system. The zeroth order term

He) is simply the average over the time period Tc, and it constitutes the

basic AHT approximation. If the influence of the Hamiltonian is a small

perturbation when integrated over the cycle time, then this average provides

a reasonable estimate of the effective Hamiltonian. Furthermore, in the

special case where the full Hamiltonian H(t) commutes with itself at

different times, the first term He0 provides the exact result, since all terms

of higher order involve commutators which vanish. Sometimes, symmetry

considerations simplify the evaluation of higher order terms. For example,

the odd order terms of the Magnus expansion vanish for Hamiltonians that

are symmetry in time [3].

The analysis of spin dynamics by AHT leads to a better understanding of

the time evolution of nuclear spins primarily by providing approximate

effective Hamiltonians that are straightforward to calculate analytically.
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When RF excitation is applied, the system is usually transformed into the

"toggling frame," where the operators of the internal spin Hamiltonian

experience time-dependent modulations under the influence of the RF fields

[3]. The motion of angular momentum operators in this interaction frame

closely resembles the action of RF fields on the spin operators in the density

matrix itself, but should be carefully distinguished from the true physical

motion of spin coherences. The transformation into the toggling frame is

defined by the time evolution operator for the RF fields:

URF(t,O) = Texp -ifdt'HR,(t') , (1-23)

and the internal spin Hamiltonian, Hi t (t) = H(t) - HRF(t), in the toggling

frame is defined by the expression:

Hin (t) = U (t,O)Hnt (t) URF(t, 0). (1-24)

In terms of the toggling frame Hamiltonian, the overall time evolution

operator can be expressed in the form [8, 61]:

U(t,0)= U,(t,0) [Texp -i dt'1-,(t')}]. (1-25)

The toggling frame transformation is most useful when the sequence of

RF excitations is cyclic as well as periodic over a period rc. When the cyclic

condition URF ( rc, 0) = ± 1 is fulfilled, the evolution of the spins over the cycle

is completely determined by the portion of the time evolution operator

involving Ant (t):
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expI-iHefc = exp-i dt ,,(t) . (1-26)

In MAS experiments, if the RF pulse sequence is synchronous with the time-

dependence of the sample rotation, then rc = NTR for some integer N, where

R, is the rotor period, and the MAS Hamiltonian remains periodic after

transformation into the toggling frame. Accordingly, the toggling frame

Hamiltonian in,(t) summarizes the combined modulations of the sample

rotation and RF pulses on the internal spin operators.

With the application of the AHT approximation to a spin system which is

sampled stroboscopically, the complicated spin dynamics determined by H(t)

are simplified to understanding the behavior of the system under the

influence of Hf. Since the spinning frequency and the waveform of the RF

excitation are under experimental control, the form of TH) can in many

instances be tailored to a desired form.

V. Spin Dynamics Simulations

When applicable, the AHT approach provides a basic understanding of

the outcome of applying a pulse sequence, but for more thorough

investigations it is often valuable to perform exact calculations. In some

cases, there is no portion of the Hamiltonian which satisfies the condition

that it is a small perturbation over the relevant cycle time. In others, the

time-dependence is not periodic. Furthermore, even when the AHT is

essentially correct, a thorough understanding of more subtle features of the

spin dynamics, such as the effects of finite pulses, benefits from performing

numerical simulations.
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The essential features of a spin dynamics calculation are the

construction of the Hamiltonian, the exponentiation of the Hamiltonian to

obtain the time evolution operator, and finally the propagation of the density

matrix from a given initial condition p(O) [55, 61]. Projections of the operator

corresponding to the variable of interest onto the density matrix are then

taken as a function of time to obtain the trajectory of the observable.

Recently, several spin dynamics simulation programs based on this approach

have become available, including packages for both IBM-compatible

computers [77] and C++ programming environments [78]. However, all of the

calculations presented here were carried out with programs written by the

author and optimized for MAS applications using the general approach

outlined below.

The time evolution operator is divided into short time steps AT during

which it is a reasonable approximation to regard the Hamiltonian as time-

independent:

U( r,O)= Texp -if'dtH(t)}

= Texpi-i f dt H(t)x Texp{-i •- dtH(t)}x...xTexp-if" dtH(t)l (1-27)

= exp{-iH(r,_1)AT} x exp{-iH(n_-2)Ar} x...xexp{-iH(T0 )A} .

With the definitions Tk = kAT and Tn = T, the period (0, T) is broken up into n

intervals, where n is sufficiently large to obtain convergence of the results

with respect to the time step AT.

There are 2N quantum states in the Hamiltonian matrix of a system

consisting of N spin-1/2 nuclei. During the short time intervals AT, each

time-independent 2N by 2N Hamiltonian matrix H must be exponentiated.
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A straightforward and robust approach to the exponentiation of a matrix

employs its eigenvalues and eigenvectors. For a Hermitian matrix H, the

eigenvalues Aj are always real, and the matrix of eigenvectors V is unitary.

With the definition {D}I = 8,,A j of the diagonal matrix of eigenvalues D, the

Hamiltonian can be expressed in the form H = VD V-1 , and the

corresponding matrix form of the time evolution operator U is the following:

U = exp{-iHAr}

= exp{-iVD V-1AT (1-28)

= Vexp{-iDArV -1 .

Within the diagonal representation the matrix exponentiation is

straightforward, since it requires only the exponentiation of each diagonal

element. Using the unitarity of the eigenvector matrix, which implies that

V =l
1 = V>,, the elements of U have the form:

{U} = {exp{-iHAr}}j

2N

= _ Vi, exp{-iAkAA}V~j (1-29)
k=1

2N

= X VikVk exp{-iAkz }.
k=1

After the time evolution operator has been determined numerically as a

function of time, the calculation of the expectation value of an observable of

interest, corresponding to a Hermitian spin operator A, involves taking its

projection - defined in the sense of the trace [65] - onto the density matrix:
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(A(t)) = Tr(A U(t,O)p(O) U-l(t,O)} . (1-30)

In general, the density matrix of the nuclear spin system is taken to be in its

high temperature limit at thermal equilibrium [79], and only the portion

which contributes to observable signals is retained. Since relative changes in

spin coherences are usually the quantities of the greatest interest, constant

factors multiplying p(O) are generally adjusted such that (A(0)) = 1. For

example, in the acquisition of the free induction decay, the evolution of the

transverse magnetization, whose expectation value is proportional to

A = (I x , 1), is monitored with quadrature detection, and the density matrix

of initially prepared magnetization is to taken to be p(O) = 2Ix, where Ix is

the total x angular momentum of the spins under observation.

In practice, there are several means of saving computation time which

are frequently applicable. First, when the Hamiltonian is periodic, the time

evolution operator is required only over one period, and the corresponding

evolution of the density matrix can be calculated by applying the same

operator repeatedly. In subsequent chapters, this approach is useful in

calculating the evolution of nuclear spins under rotor-synchronized

recoupling sequences with stroboscopic sampling. However, in the case of

decoupling sequences applied with MAS, where the combined time-

dependence of the Hamiltonian is generally not periodic, the operator U(t, 0)

must be calculated for the entire length of the FID.

A second opportunity to save computer time arises when the spin

Hamiltonian is block-diagonal. In many experiments, periods of free

evolution occur between the application of RF pulses. In these cases, the

diagonalization of the Hamiltonian matrix is simplified during part of the

spin trajectory. For the two spin system, the internal spin Hamiltonian
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consists of a 4 by 4 matrix with at most a 2 by 2 block in the homonuclear

case, where the flip-flop term appears off the diagonal in the Zeeman basis

set [55]. In the heteronuclear case, the internal spin Hamiltonian is always

self-commuting and completely diagonal. Since a 2 by 2 matrix can be

diagonalized analytically using the Cayley-Klein parameters [70], numerical

diagonalization is never required for evaluation of the free evolution of a two

spin system. The use of ideal 8-function pulses, where the RF excitation is

assumed to be infinitely brief and intense, is another simplifying factor in

calculations. The evolution under these pulses can be treated as a sudden

rotation during which the simultaneous time evolution under the internal

spin Hamiltonian is negligible.

Sometimes, it is necessary to include the effects of coherence relaxation

in numerical simulations. With an exponential model of the decay rates,

these calculations necessitate the construction of a supermatrix acting on the

set of spin coherences. This matrix, whose dimensionality spans the square

of the number of coherences participating in the trajectory, includes the

simultaneous evolution under both the spin Hamiltonian and the relaxation

effects. The time-dependent density matrix can be expanded in a convenient

orthonormal basis set as follows:

p(t) = am (t)Am. (1-31)
m

where orthogonality is defined in the sense: Tr{AmAn } = Smn [65]. The

generalizated Liouville equation including exponential relaxation toward

equilibrium has the form:
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dp(t) = -i[H(t),p(t)]- Ip(t)-pq } . (1-32)

With suitable phase cycling, however, it is usually unnecessary to include peq

in the analysis of recoupling experiments. Under these conditions, Eq. (1-32)

can be written more conveniently in terms of the operator expansion:

m (t) = I {-i Tr{Am[H(t),A" n - I- an (t). (1-33)
n

With the definition of the matrix elements Lmn (t) = Tr{Am [H(t), A" ]}, the

Liouville equation can be formally integrated:

am(r)= [Texpif dt(-iL(t)- F)}] an(0). (1-34)

With a similar division of the interval (0, T) into short times steps AT, the

integration of the Liouville operator requires the exponentiations of M by M

matrices, where M is the number of coherences participating in the

trajectory. For instance, in the most general case, a total of 15 coherences are

necessary to span the density matrix for two spins.

However, the coherent part of the problem, namely, the exponentiation

of the series of matrices {-iL(rk)AT}, requires only the construction of

U( Tk, Tk-1), which is of much lower dimensionality, e. g. 4 by 4 complex for

two spins. In addition, the relaxation process is time-independent and often

diagonal in a particular basis set of spin coherences [30]. Consequently, in

numerical evaluations, it is useful to divide the evolution operator into its

coherent and incoherent components as follows:
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Texpf dt(-iL(t)- F) = exp{-iL(T. 1)M}xexp{-FAT}x
(1-35)

exp{-iL(,_-2)AT} xexp{-FAr}x...xexp{-iL(To)A} x exp{-FATr},

which converges in the limit At -+ 0. Because the Hamiltonian is time-

dependent, it is already necessary to concatenate the operators obtained with

short time steps AT, and consequently no further computational sacrifice is

introduced by applying this approach to relaxation. In fact, the time step

required for convergence is generally unchanged with the addition of

relaxation effects in practical MAS applications. On the other hand, if the

internal Hamiltonian were time-independent as in solution experiments, it

would be more computationally efficient to diagonalize the entire M by M

matrix just once in order to describe the spin trajectory.

The choice of basis operators {Am} can be adjusted to obtain maximum

computational efficiency for a given problem. It is generally most natural

and convenient to calculate exp{-i L( Tk)Ar} and exp{-T Ar} in different

basis sets: the former in the spin eigenstates ofz angular momentum and the

latter in terms of product operators [80]. Following the construction of the

evolution operators for each time step, they must be transformed into the

same basis set. For a time-independent relaxation operator, this operation

can be performed once for the relaxation process.

To calculate the macroscopic signal from a polycrystalline solid, the spin

trajectories of an isotropic ensemble of crystallite orientations must be

calculated in order to compute the integral:

((A(t))ow1 er = 2 J' fwjdadpfsinfdy(A(t;a,f,y)) (1-36)
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where (A(t; a, f, y)) is the signal obtained from a crystallite with Euler

angles (a,J#, y) relating the orientation of its molecular axis system to the

rotor reference frame. The necessity of calculating the spin trajectory for a

large number of crystallite orientations (2 1000 or much greater) is the

greatest motivation for optimizing computational efficiency in MAS

applications.
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Chapter 2.

Homonuclear Dipolar Recoupling with Spin Echo Sequences
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I. Introduction

The homonuclear dipolar interaction provides a direct route to

internuclear distances among spins in solids possessing the same

gyromagnetic ratio y. In rotating solids, weak dipole-dipole couplings are

greatly attenuated, and so in order to recover valuable information about

molecular structure from the dipolar interactions, several "recoupling"

techniques have been developed in recent years to restore and measure the

couplings selectively in various MAS experiments [1, 2]. In this section, the

application of n pulse sequences to recoupling homonuclear interactions [3-5]

is explored with an emphasis on longitudinal exchange experiments involving

weak interactions.

Since the application of spin echo sequences leads to recoupling over a

broad range of chemical shift parameters, in contrast to rotational resonance

experiments, where exchange proceeds only at certain resonance conditions

[6, 7], this approach is suitable for recoupling several spins simultaneously in

two-dimensional (2D) exchange experiments. A suitable pulse sequence is

shown in Figure (2-1). With 2D acquisition and longitudinal mixing [8], the

polarization transfer is achieved by a train of rotor-synchronized n pulses [4,

9]. Figure (2-2) shows a two-dimensional spectrum of triply-13C-labeled

alanine obtained with this radio-frequency driven recoupling (RFDR) method

[4], revealing correlations among all three spins in the two-dimensional plane

after 8.6 ms. This approach has also been applied to the study of the 26 kD

membrane protein bacteriorhodopsin [10]. In simple cases, such as a sample

with a pair of 13C-labeled nuclei, a one-dimensional approach to n pulse

exchange [5], which is illustrated in Figure (2-3), is often more convenient in

practice due to the shorter acquisition time.



-55-

Frequently, because of relaxation processes and signal losses from

insufficient proton decoupling, decay parameters for the spin coherences

must be included in the analysis of exchange with weak dipole-dipole

couplings. Simulated trajectories based on a simple model for the observed

signal losses are in good agreement with experimental results for

homonuclear couplings as weak as 80 Hz, which corresponds to a 4.56 A
internuclear distance.
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Figure (2-1). Two-dimensional RFDR pulse sequence. Frequency-labeling in

the two dimensions is obtained during the time intervals tl and t 2. During

the mixing period, the polarization is stored along the static magnetic field

direction z, and exchange among resonances is obtained with the rotor-

synchronized echo sequence of one nr pulse per rotor period.
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Figure (2-2). Two-dimensional spectrum of triply-13C-labeled D,L-alanine at

3.720 kHz with a mixing time of 8.6 ms. The polarization is exchanged

rapidly among the three 13C resonances in the molecule via the = 2 kHz one-

bond interactions. The magnitude spectrum is shown here. Since "anti-echo"

phase cycling is employed, no sidebands involving non-exchanging resonances

appear away from the diagonal.
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Figure (2-3). One-dimensional RFDR pulse sequence. Instead of frequency-

labeling during tl, a state of difference polarization is prepared with selective

inversion of the one of the resonances of interest by either a weak pulse or a

DANTE sequence. Rotor-synchronized 7 pulse mixing then promotes

exchange among resonances experiencing a difference in polarization between

them.
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II. Average Hamiltonian Analysis

In the limit of weak dipolar coupling, the effect of applying an arbitrary

rotor-synchronized n pulse sequence to a system of coupled homonuclear

spins can be treated analytically with either Average Hamiltonian Theory

(AHT) [4] or Floquet Theory [3]. Since cyclic time-dependent Hamiltonian

operators [11] can be defined for both the chemical shift terms and the RF

pulses, the AHT approach provides a particularly transparent means of

examining the recoupling dynamics. With the assumption of 8-function R

pulses (i. e. instantaneous rotations), only three coherences are involved in

longitudinal exchange experiments: the state of difference polarization

1/2[1,, - z2 ] between the two spins and their in-phase [IXlIX2 + 1,y2, ] and

out-of-phase [Iy,Ix2 - I,21y2] zero quantum coherences, so the qualitative

physics can also by analyzed by inspection of numerical simulations where

the spin evolution within the three state subspace is followed [5].

At high magnetic field (e. g. 50-100 MHz for 13C), the chemical shift

dispersion of 13C resonances expressed in kHz is comparable to the range of

practical spinning frequencies. Consequently, it is not always appropriate to

expand the chemical shift contribution to the Hamiltonian in a perturbation

series. However, the dipolar coupling between dilute spins is generally small

compared to the spinning speed, and it is therefore reasonable to accept the

lowest order of a series expansion in powers of the dipolar coupling constant.

The difficulty posed by large chemical shift interactions can be solved by

establishing an interaction frame defined by the chemical shift terms [7, 12].

Since it is also convenient to define an interaction frame to describe the

action of the RF pulses, these transformations lead to a second toggling

frame, in which the Magnus expansion can be carried out [11].
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In considering the simple case of a spin pair experiencing 8-function R

pulses and magic angle spinning, it is useful to divide the internal spin

Hamiltonian into three terms which commute with one another at all times

[13]:

Hint (t) = HOa (t) + HOb (t) + H(t), (2-1)

where:

Hoa (t) = 2 1(t)+3 2 (t)[I 1 + I], (2-2)

HOb (t) = d 12 (t) 21z11z2 , (2-3)

Hi(t) = Hcs,l(t)+ HD,(t)

1 (2-4)
= 2 •{(S1(t) -82 1(t)}I[1 I 2]-d12 [II 2 + IylI y2].

As Levitt et. al. have pointed out [13], the terms H0, (t) and Hob (t), but not

H 1(t), commute with themselves at different times and are therefore

"inhomogeneous" in the sense that their influence cancels exactly after

multiples of the rotor period [14]. Under MAS, the chemical shift interaction

of each spin j has a time-independent isotropic contribution, as well as

oscillating terms due to its anisotropy, which depends on the Euler angles

(aj,Pj, yj ) of the individual crystallites with respect to the rotor frame:

m=+2

8,(t)= ,[m=01+ 1 3, [m](aj,Pf)exp{im(wRt+ y,)}; (2-5)
m=-2,m*0
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on the other hand, the dipole-dipole interaction dl2 (t), whose orientation in

the rotor frame is defined by the polar angles (0, 0) of the internuclear vector,

is fully amplitude-modulated and, taken alone, averages to zero over one

rotor cycle:

m=+2

dl2 (t = 1 d12 [m]() exp{im(wRt + )} .  (2-6)
m=-2,m*0

In a toggling frame defined by the external RF field, all of the above

commutation relations are unchanged under an arbitrary sequence of 8-

function n pulses. Therefore, the time evolution operator for the two spin

system undergoing rotor-synchronized pulse excitation can be written as

follows:

U(r,O) = URF(r,O)exp{-i jdt Hoa(t)

(2-7)

xexp{-i jdt Hb (t) Texp{-if dt H1(t) ,

where the toggling frame is defined by the time evolution operator for the RF

field alone, URF(t,O):

H(t) = U; (t, )H (t)URF(t,O). (2-8)

As in the theory of rotational resonance [12, 13], the important dynamics

involve the "homogeneous" term H, (t), which does not commute with itself at

different times. In the particular case where a rotor-synchronized i pulse

sequence satisfies the constraint that it leads to the formation of a spin echo
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[9, 15], all of the chemical shift terms average to zero over some cycle time Tc,

which is a multiple of the rotor period, i. e. rc = nfR, and the chemical shift

difference term Ics,1(t) is therefore cyclic in the sense required for the

application of AHT [11]. Under these conditions, it is useful to define a

second toggling frame via the action of the RF-modulated chemical shift

difference term on the dipolar flip-flop Hamiltonian HD.1(t), resulting in the

following partition:

Texp{-iJre dt (t) = Ucs,1(r,0) Texp -i dt (t)} (2-9)

where:

HD, l(t = U,l(t)HDo,l (t)Ucs,l(t), (2-10)

Ucs., (, 0,) = exp{-if 'dt Hcs. (t)}. (2-11)

The Dyson time-ordering operator T is unnecessary in the definition of

Ucs,1 (r, 0) because cs,1 (t) is always self-commuting.

The time evolution operator involving HOb (t) has no effect on the density

matrix after an integer number of rotor periods. On the other hand, a secular

dipolar interaction emerges from HD,1(t) when the RF-modulated chemical

shift difference term partly cancels out the coherent averaging effect of MAS.

This interaction can be adequately approximated using AHT when the

condition Id12 (t)I < vR is satisfied, which is generally the case since Id12 (t)l is

always _< 2.5 kHz for 13C-13C couplings.

For example, the application of one a pulse per rotor period refocuses all

chemical shift terms following two rotor cycles [15] and also yields an
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effective dipolar flip-flop term [3, 4, 16]. The AHT result for the latter,

neglecting the chemical shift anisotropy, is the following:

H 1 - 12 x[Ixx2 +yl y2 2d12 [+1 -2 I +2] (2-12)

where, with the definitions of the spinning frequency vR and the isotropic

chemical shift difference AS = 1 [0] - 2 [0], the effective coupling constant

has the form:

1 ~[2 =) d 12[M ( 8 ) COS ( M ) m2 (- (/1sin . (2-13)
nI m=1,2 R 2  VR

More generally, the double toggling frame approach reveals two conditions for

recoupling by rotor-synchronized sequences consisting only of n pulses: (1) the

coherent averaging of all chemical shift interactions and (2) the recovery of a

non-zero dipolar coupling from destructive interference between MAS and the

motion of the flip-flop operator in the second toggling frame under the RF-

modulated chemical shifts. In order to fulfill the second condition, the latter

time-dependence must exhibit some non-zero Fourier component at either v,

or 2 vR.

In Figure (2-4), the effective coupling for two model crystallite

orientations, corresponding physically to the m = 1 and m = 2 Fourier

components of the dipolar interaction, illustrates the recoupling efficiency of

the basic echo sequence of one n pulse per rotor period as a function of

( vR / AS). Though a broad function of the spinning frequency, the effective

coupling peaks near the rotational resonance conditions AS = mvR, in these

artificial crystallites. In general, real crystallites involve a linear
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combination of these terms, and overall recoupling in a powder sample is

most efficient in the region of the primary rotational resonance conditions

m = 1,2 [13].

At exact rotational resonance AS = MvR, the effective Hamiltonian

reduces to the form:

int -° 2 1[ (0) cos(MO) [II4 2  -I +2], (2-14)

while the analogous Hamiltonian in the absence of n pulses does not depend

on the azimuthal angle 0:

t 212 M]()[+1-2 1+2] (2-15)

From a physical viewpoint, the angle 4 is expected to appear in the result,

since there is a well-defined phase difference between the pulse sequence and

the rotationally induced oscillation of the spin interactions. Indeed, the

azimuthal angle appears in the effective coupling recovered by any multiple

pulse recoupling sequence where a phase can be defined [1]. A consequence

of the phase dependence is that n pulse recoupling is somewhat less efficient

than rotational resonance over a powder distribution of crystallites [1, 3, 5].

The effect of any rotor-synchronized n pulse sequence can be analyzed

within this framework. For example, the application of one n pulse per N

rotor periods also leads to joint rotational and Hahn echoes, and also

generates a non-vanishing homonuclear coupling with an increasingly narrow

bandwidth in the vicinity of the rotational resonance conditions for increasing

N. Likewise, although eight 7 pulses per rotor period promotes the formation
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of an echo every rotor period, it does not recouple interactions in the limit of

8-function n pulses [9]. In the regime where the spinning speed dominates

the CSA, it is reasonable to neglect it in the derivation. In the slow spinning

regime, the coupling constant d12 becomes a function of the RF-modulated

CSA term, and its influence can be included within the same framework as

the isotropic chemical shifts. In practice, however, it is most convenient to

explore the influence of the CSA tensors using simulations.

In the case of total correlation spectroscopy (TOCSY) [17], a method

broadly employed in solution NMR spectroscopy, a sequence of R pulses

eliminates chemical shifts, but leaves the complete homonuclear J coupling

J I, I2 intact in the limit of rapid pulsing compared to the chemical shift

difference frequencies. In solution experiments, the homonuclear J coupling

is sufficient to promote either the transverse or longitudinal exchange of spin

polarization, i. e. the mixing is isotropic. In rotating solids, however, the

mixing sequence recouples only the flip-flop part of the interaction, while the

rest of the dipolar coupling, d12 (t) . 21,,,2, vanishes exactly over each rotor

cycle. Under these conditions, transverse magnetization undergoes

dephasing, but not exchange [4]:

p(z) = I,, cos{2x d-2z / 2 + 2 1,I,2 sin2x- d12/2}. (2-16)

Under 8-function n pulses, or in the absence of RF pulses, exchange of the

transverse magnetizations is forbidden over multiples of the rotor period,

since only the flip-flop portion of the spin-spin interaction is recovered.

Therefore, in order to use ni pulse recoupling in two-dimensional spectroscopy

with transverse mixing, n/2 pulses must be applied for coherence transfer
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[18]. On the other hand, the flip-flop coupling directly couples longitudinal

polarizations:

p(0r)==I,,cos2n 2-.212/2 +Iz2sin 2 12n-12T/2
(2-17)

+ [Iy1Ix2 -Ix 1Iy2]sin{ 2.-d122r .

so longitudinal exchange is the most convenient and straightforward means

of acquiring two-dimensional spectra. In addition, the spin trajectory

develops twice as rapidly in longitudinal experiments, which are therefore

advantageous for the examination of weak interactions. In one-dimensional

RFDR experiments, the corresponding trajectory begins with a state of

inverted relative polarization:

p(r) = ~1[zl - zl2 ]os2-12 +[ylx2 -1y2 sin{2t.-12}r. (2-18)

In all of these trajectories, differential effective rates of decay among the

various coherences perturb the trajectories, particularly when the decay rates

are comparable to the dipolar coupling [13]. A simple empirical approach for

selecting decay rates in spin echo experiments is described in the fourth

chapter. Kubo and McDowell have discussed the approximation of the decay

rates of homonuclear two spin coherences as the sum of the relevant single

spin rates [19], which is valid in limit where the fluctuating fields causing the

disappearance of the signals are independent at each spin. For example, if

the spin coherence I,, is taken to disappear exponentially with decay

constant r'I, and the decay constant of Ix2 is Tx2, then the corresponding

decay parameter for the two spin coherence Iz1x2 is the sum {r,1 + j 2 }. In
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the numerical simulations of longitudinal exchange discussed here, this

approximation is applied to all of the spin coherences. For a two spin system,

a total of fifteen coherences are necessary to span the density matrix in finite

pulse simulations of longitudinal exchange.
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Figure (2-4). Effective dipolar coupling constant as a function of the

dimensionless parameter V /AS for two artificial single crystallite

orientations, where v, is the spinning frequency and AS is the difference

between the isotropic chemical shift frequencies of the two spins. The smooth

curves provide the results predicted by the AHT treatment; the additional

points correspond to the interaction derived from the exact time evolution

operator. For m = 1, dl2,11 (0) = 1kHz and dl2, 21() = 0 kHz; for m = 2,

d,2,1x(08)= 0 kHz and dl2,|121() = 1 kHz. In all cases 0 = 0. The greatest extent

of dipolar recoupling is achieved in the neighborhood of the rotational

resonance conditions. Real crystallites within an isotropic powder

distribution involve various linear combinations of these basic contributions.
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III. Longitudinal Exchange Experiments

Figure (2-5) demonstrates the longitudinal exchange trajectory of 1,3-

13C- 15N-D,L-alanine at 4.8 kHz spinning speed [10]. In the numerical

simulations, the anomalously short T1 of the methyl carbon (i. e. 65 ms in

these experiments) must be included in the analysis [20]. Likewise, although

the 13C-1H coupling is relatively small for both resonances, additional signal

decay is observed under the n pulse sequence. In Figure (2-5a), the decay of

the z polarizations is observed. With the dipolar coupling (475 Hz) included,

parameters are chosen for the losses of the single spin coherences during the

pulse train in order to match the experimental rates of longitudinal decay.

An additional effective T2 parameter is also introduced in order to describe

the somewhat more rapid transverse dephasing of the single spin coherences

during periods of free evolution in the pulse cycle (not shown). Since the

dipolar interaction also contributes to the decay trajectories, it is necessary to

include an initial estimate of its magnitude in the simulations. Figure (2-5b)

illustrates the good agreement which is obtained between the observed

trajectory with the inversion of the CO 2H group and the simulated spin

evolution, demonstrating that relatively large dipole-dipole couplings can be

measured in the presence of differential signal losses and a rapid T1 process.

For multiple spin applications, the dynamics of all spins which are

strongly coupled and their dipole-dipole interactions must be considered

simultaneously. Under most circumstances, the exchange trajectories are

dominated by the largest interactions. Figure (2-6) illustrates experimental

trajectories obtained with triply-13C-labeled alanine and two alternative

simulation approaches. With the perturbation of the 13C0 2H polarization in

Figure (2-6b), it exchanges rapidly with the neighboring a- 13CH site that is
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coupled to it via the one-bond interaction of 2.2 kHz and then with the methyl

carbon. The direct interaction between the 13C0 2H and 13CH 3 groups of 475

Hz has a small influence on the transfer of polarization among the spins. For

computational convenience, the finite pulse simulation does not include

signal losses, while the 8-function pulse calculation does include them. At

short times, the finite pulse widths have a significant effect in this spin

system, but at longer times, the 8-function pulse simulation is in better

agreement because it includes the influence of the empirically observed rates

of signal decay which are important at long times.

In the case of a spin pair, it is often most valuable to measure relatively

weak couplings in order to gain the most important information concerning

molecular conformations [21, 22]. Doubly-13C-labeled 1,4- 13C- 15NH3-

glycylglycine hydrochloride monohydrate provides a suitable test case. Its

crystal structure is known from neutron and X-ray diffraction [23, 241, and

the labeled homonuclear spin pair has an internuclear separation of 4.56 A,

which corresponds to a dipole-dipole coupling constant of 80.0 Hz.

With the initial choice of 80 Hz as the coupling constant, the decay

parameters for the longitudinal and transverse spin coherences under the

echo sequence are selected to match the simulations with the observed

trajectories shown in Figure (2-7). In the sample under study, which is 10%

diluted in natural abundance material, intermolecular couplings are also

expected to play a role in the experimental exchange trajectories because

there are three intermolecular distances < 5 A in addition to the

intramolecular coupling, i. e. with separations 4.26 A, 4.22 A, and 4.71 A, all

corresponding to dipolar coupling constants of similar magnitude.

The use of a second moment expansion is helpful in deriving an

empirical correction for the intermolecular effects [25, 26]. At short times,
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the longitudinal exchange trajectory of spin 1, for example, proceeds as

follows:

1 -1 (2 )2 + (d2 2 (2-19)
4 rj1, 2

where the outer brackets (.- ) indicate averaging over the powder

distribution. The parameters pj are the populations of the intermolecular

13C spins. Here the parameters are pj = 0.1 with the ten-fold dilution of the

sample. The averaged moments (d) involve the chemical shift parameters

according to Eq. (2-13) and are directly proportional to d., the dipolar

coupling constant. This expansion suggests the following empirical correction

for the intermolecular effects in the observed exchange trajectories:

observed al Xa2tual (= (+ , (2-20)
j*1,2

where ((I, (r))) = 1- x12(r). This approach is valid for times which are

relatively short compared to the inverse of the largest dipolar coupling

constant involved. In the case of the glycylglycine sample, Eq. (2-20) implies

that the true exchange process x tual (r) is overestimated by 39% at each

point. The exchange data shown in Figure (2-8) are corrected accordingly,

leading to good agreement with the simulated finite pulse trajectory

employing a coupling constant of 85 Hz, which implies an underestimate of

0.1 A in the internuclear distance. Without the correction, the experimental

results imply a coupling constant of = 95 Hz, which underestimates the

interatomic separation in the molecule by 0.3 A, a significant error. More

generally, when the crystal structure is unknown, experiments can be
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performed as a function of dilution in order to vary the constants pj.

Otherwise, in relative small molecules, it is difficult to distinguish between

weak intra- and inter-molecular interactions.

Figure (2-8b) shows the somewhat modified exchange trajectory which is

obtained when the system is perturbed at 10.67 ms by the elimination of the

zero-quantum (ZQ) coherences, which is achieved by briefly removing the

proton decoupling field to destroy all spin coherences of transverse character.

This experiment has two purposes. First, it provides evidence that the decay

parameters for the spin coherences are being selected realistically, since

these parameters, together with the dipolar coupling constant, determines

how much zero-quantum coherence is present during the trajectory.

Although the ZQ coherences are not directly observable, the effect of

eliminating them in the middle of the exchange trajectory has a direct impact

on the subsequent dynamics. In limit of very rapid zero-quantum relaxation,

little ZQ coherence is present at all times, and accordingly attenuating it has

little effect. On the other hand, if its decay rate is negligible, then the

trajectory of Eq. (2-18) is modified as follows:

AP(r + 2) = 1[z1 - Iz 2]sin{d12 r }sin{ 2
(2-21)

+ [IyIX2 -IIy2]sin{l 2 1 }COS Ilj22 I}

where Ap(; + 2r) signifies the difference between the density matrix

obtained with and without the removal the two spin coherences at time ;i.

The simultaneous agreement of the simulations with the experimental points

in both the cases ri = 0 ms and T = 10.67 ms provides additional

confirmation that the spin dynamics are being described correctly. A second
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application of this approach is the filtering of signals via the ZQ coherences.

Clearly, no signal is obtained from the difference trajectory Ap(,r + z2) when

the coupling constant dl2 vanishes, so Ap(;r + r2) provides a filtered signal

which is maximized when r; = 1/d12 and rT = r2.

Sample Preparation. The triply-labeled 1,2,3-13C-D,L-alanine sample in

Figure (2-2) was purchased from MSD Isotopes and used without further

purification. The 1,3- 13C-15N-D,L-alanine sample (MSD Isotopes Inc.) was

recrystallized from water by slow evaporation with ten-fold dilution in

natural abundance material, and likewise for the 1,2,3- 13C-L-alanine sample

(Cambridge Isotopes Inc., Cambridge, MA) used for the experiment shown in

Figure (2-6). The sample for the long distance was polycrystalline 1,4-13C-

15NH3-glycylglycine hydrochloride monohydrate, which was also ten-fold

diluted.

NMR Experiments. All experiments discussed here were carried out at

79.9 MHz for 13C using a home-built NMR spectrometer and double

resonance probes for magic angle spinning employing commercial spinning

assemblies (Doty Scientific, Columbia, SC). Mixing was performed in all

cases with the rotor-synchronized spin echo sequence of one n pulse per rotor

period. It is necessary to make corrections for the imperfect creation of an

inverted state of relative polarization (usually < 5-10% error) in processing

one-dimensional data, and in addition the contribution from uncoupled spins

must be subtracted from the experimental data.

The 2D spectrum shown in Figure (2-2) was acquired with a 7mm rotor

spinning at 3.720 kHz with a total mixing time of 8.6 ms. The spectrum was

acquired with "anti-echo" phase cycling [27], which eliminates sidebands from

non-exchanging peaks away from the diagonal when the mixing period is



-78-

rotor-synchronized. The magnitude spectrum is shown. The XY-8 phase

alternation scheme for the compensation of pulse errors was also applied [28].

All of the one-dimensional experiments on alanine were carried out at

4.800 kHz spinning speed with a 7 mm Doty stator using one n pulse per

rotor period with XY-16 phase cycling and selective inversion of the CO 2H

resonance via the DANTE pulse sequence [29]. The 7 pulses employed in

mixing were 20.0 ps, and the 1H n/2 pulse 3.1 jPs, yielding the large

Hartmann-Hahn mismatch ratio of 3.2.

The glycylglycine experiments were performed at 9.000 kHz spinning

frequency using a 5 mm high-speed stator from Doty with c pulse lengths of

15.6 ps for 13C and 5.6 ps for 1H, yielding a mismatch ratio of 2.8. These

trajectories were also acquired with XY-16 cycling and one n pulse per rotor

period. The spinning speed of 9 kHz was selected in order to reduced the

influence of the CSA tensors on the results and place the system between the

m = 1 and m = 2 rotational resonance conditions. The chemical shift

difference between the 1-13CO 2 and the 4- 13CH 2 nuclei is 10.28 kHz in these

experiments.

Numerical Simulations. In the case of doubly-labeled alanine, a decay

parameter is chosen to account for the loss of the methyl group polarization

during the n pulses, and an effective zero-quantum relaxation rate of 32 msec

is extracted from the transverse echo trajectory. The 8-function pulse

calculations for the three spin alanine case include the longitudinal losses

within a similar framework and omit the additional transverse decay rates.

Because the spinning rate of 4.800 kHz is relatively slow compared to the

CSA tensor parameters, these are included in the numerical simulations. For

L-alanine, the orientations of the CSA tensors in the crystal reference frame

[30] are known from single crystal NMR studies [31] and explicitly included
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in the three spin calculations, while the CSA orientations for D,L-alanine are

estimated from those of the L-alanine case. The two spin alanine trajectories

fit a dipolar coupling constant of 480 Hz (2.51 A), which is slightly shorter

than the value of 475 Hz (2.52 A) given by the X-ray crystal structure [32].

For glycylglycine, only the anisotropic chemical shifts of the CO 2H

resonance (principal values of -150.9, -36.1, and +6.6 ppm) are included in the

calculations, since the a- 13C CSA is quite small relative to the 9 kHz

spinning speed. The isotropic shift the a- 13C line is 68.6 ppm. Although the

trajectories are virtually insensitive to the orientation of the CSA in the

molecular reference frame, again because of fast MAS, it is estimated from

the known molecular orientations of carboxyl CSA tensors derived from

single crystal studies [33]. During the pulses, the decay parameters

1'CO2 H = 0.024 kHz and TCH2 = 0.357 kHz are chosen based on the data in

Figure (2-7), while the single spin effective transverse decay rates are

T CO2H = 0.024 kHz and T CH2 = 0.008 kHz during periods of free evolution

between the RF pulses. With the correction of the experimental points for the

overestimate of exchange from intermolecular couplings (as discussed above),

the results fit a coupling constant of 85 Hz quite well, which underestimates

the internuclear distance of 4.56 A obtained from single crystal diffraction

studies [23, 24] by only 0.1 A.
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Figure (2-5). One-dimensional inversion exchange data for 1,3- 13C- 15N-D,L-

alanine at 4.800 kHz spinning speed with one i pulse per rotor period: (a)

decay of sum polarization, (b) decay of difference polarization, revealing the

magnitude of the dipolar interaction. In (b) the CO2 resonance is inverted via

the DANTE technique. The observation of the sum polarization state, i. e.

the initial condition with no spin inversion, is useful for ascertaining the

behavior of the resonances under the pulse sequences, since the dipolar flip-

flop interaction affects only differences in spin polarizations. The simulated

results include finite pulse effects.
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Figure (2-6). One-dimensional inversion exchange data for 1,2,3- 13C-L-

alanine at 4.800 kHz spinning speed with one n pulse per rotor period and

inversion of the CO2 resonance. The creation of the inverted state is

imperfect, and the experimental data and simulations are scaled to the

observed values of their relative initial magnitudes: (a) decay of sum

polarization, (b) decay of the spin polarizations with inversion of the CO2

resonance.



-83-

(a)
1.2

1.0
O
= 0.8
N

,D 0.6

S0.4

0.2

0.0

0 2 4 6 8 10 12 14 16
time (ms)

(b)
1.0-

C 0.5-
0.o
N

0. o0-
C
CO

2 -0.5-

-1.0-
I I I I I I I I I
0 2 4 6 8 10 12 14 16

time (ms)

1,2,3-Alanine
RFDR Exchange
4.800 kHz spinning speed

... .. ......... _60. ".4 W 4 -t ,. ....... .... ... .= ........... N. .. .r ..... go"- ...• ' " " ........... -W.. .--. . -

is
i CO2 Resonance - Finite Pulse Simulation

f/ A CH2 Resonance - - Delta Pulse Simulation
* CH3 Resonance ........... Delta Pulses with Losses



-84-

Figure (2-7). One-dimensional results for the decay of spin coherences in the

1,4- 13C-glycylglycine sample at 9.000 kHz: (a) losses of the spin polarizations

beginning with the sum polarization state, and (b) decay of the state of

initially prepared transverse spin magnetizations.
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Figure (2-8). One-dimensional results for inversion exchange in the

glycylglycine sample, where the CO 2H line is inverted via the DANTE

sequence: (a) longitudinal exchange trajectory (experimental results and both

8-function and finite pulse calculations), and (b) the same trajectory obtained

with the elimination of the ZQ coherences at 10.67 ms via the brief removal of

the decoupling field (for two rotor periods).
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IV. Conclusion

The recoupling of homonuclear interactions via spin echo sequences and

the observation of 1D and 2D longitudinal exchange trajectories among 13C.

labeled spins is a simple and accurate means of determining internuclear

distances in favorable cases. Its advantages include tolerance of the results

to RF pulse errors, such as the RF inhomogeneity (up to at least 5 5%) and

phase transients, as well as the simplicity of implementation and analysis.

For weak couplings, the 5-function pulse calculations yield reasonable

agreement with the experimental data and are relatively easy to perform

using the established method for selecting decay parameters.

The advantages of the longitudinal exchange approach include the rapid

evolution of the spin polarizations (twice as fast as in transverse

experiments) and their relatively slow decay during the pulse sequence. The

major disadvantages of the n pulse approach as a non-selective recoupling

method are the losses of spin magnetizations experienced with an

insufficiently strong proton decoupling field and the dependence of the

effective coupling of the chemical shift parameters. In practice, this approach

is most suitable for large differences in isotropic chemical shifts. In these

cases, the use of fast spinning eliminates the dependence of the trajectories

on the chemical shift anisotropy. Particularly with improved probe

technology, the accurate measurement of distances greater than 5 A using

this method appears feasible.
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Chapter 3.

Two-Dimensional Dipolar Correlation Spectroscopy

of Bacteriorhodopsin
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I. Introduction

Bacteriorhodopsin (bR) is a 26 kD integral membrane protein found in

the bacterium Halobacterium salinarium, and it serves as a light-driven

proton pump [1-4]. Five of its seven transmembrane alpha helices enclose a

channel for ion transport across the cell membrane. Approximately in the

middle of the channel, a retinal chromophore is bound to the end of the

sidechain of lys-216 through a Schiff base linkage. Following the absorption

of light, the retinal undergoes conformational changes which are coupled to

the expulsion of protons from the cytoplasm to the exterior of the cell [5, 6].

In the plane of the lipid bilayer, the purple membrane fraction of the

Halobacterium, which contains bacteriorhodopsin in large concentration, has

the unusual property that it forms two-dimensional crystals consisting only of

ordered arrays of bR molecules appearing in clusters of three surrounded by

lipids. Henderson et. al. have provided a detailed structural model of the

ground state of bR based on electron microscopy and other available

information [2]. Still, there is significant uncertainty in the resolution

normal to the bilayer (= 3.5 A in lateral resolution, but only - 10 A in the

normal direction) because the purple membrane is not ordered in this

direction. Therefore, it remains important to examine key structural aspects

of the retinal binding pocket using alternative methods which contribute

information at the atomic level. Furthermore, there is far greater

uncertainty about the structural changes that occur during the bR photocycle

among the various amino acid sidechains present in the retinal binding

pocket. These structural changes are intimately related to the mechanism of

proton transport [6].
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Solid state NMR spectroscopy has been used extensively in the study of

bacteriorhodopsin [7] and, in particular, for investigations of the structure of

the retinal chromophore and the Schiff base linkage in the bR ground states

(i. e. bR555 and bR568 - where the subscript indicates the absorption

maximum in nm) [8-11] and the deprotonated M intermediate of the bR

photocycle [12, 13]. Other methods which have found utility in examining the

photointermediates include Fourier transform infared (FTIR) [14, 15] and

resonance Raman spectroscopy [16, 17]. These approaches, however, do not

provide chemical information about individual atoms, and indeed the results

are subject to misleading interpretations. For example, FTIR results have

implied that the sidechain carboxyl group of the asp-212 residue probably

becomes protonated in the M state [14], but 13C chemical shifts [18] point

convincingly to a deprotonated state. This conclusion is also supported by

mutagenesis studies, as discussed by Henderson [2]. In combination with all

of these spectroscopic techniques, site-directed mutagenesis has played a

major role in elucidating the mechanistic features of proton pumping [4, 18].

Although 13C and 15N chemical shifts have been useful in elucidating

protonation states and conformational information [8, 10], rotational

resonance experiments have also been applied to samples labeled with 13C

spin pairs [9, 11]. These experiments provide direct measurements of

homonuclear internuclear distances in favorable cases [19, 20].

Unfortunately, in many cases, it is difficult to match the rotational resonance

condition or to create an inverted state of relative polarization in the spin

pair of interest. Samples with several 13C-labeled nuclei provide a further

impetus for the development of other approaches. For these cases it is

important develop more general dipolar recoupling techniques.
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The technique of longitudinal exchange with spin echo recoupling, in

particular, provides a means of observing dipolar correlation away from the

rotational resonance conditions [21, 22]. In two-dimensional (2D)

applications, cross peaks can be observed among coupled spins without

undesirable overlap with spinning sideband intensities, while in rotational

resonance experiments the spinning sidebands are by definition placed at

potential cross peak positions in the 2D plane. In simple cases, the accurate

measurement of internuclear distances is also possible. However, the

application of two-dimensional MAS experiments to bacteriorhodopsin is

quite challenging, particularly when rotor-synchronized multiple pulse

mixing is applied, principally because of the poor signal to noise ratio

encountered with a sample of high molecular weight. Other experimental

difficulties include the need to control and maintain the spinning speed with

great precision (i. e. within 5 Hz or less) for long periods of time at low

temperature (e. g. -850 C).

II. Retinal-Schiff Base Conformations

In order to demonstrate the feasibility of performing dipolar correlation

spectroscopy on proteins in the solid state, two-dimensional RFDR

experiments [21] have been performed on 13C-enriched samples of bR [23,

24]. In the first example, relative distances between the retinal-14 position

and the e-13C position of the lys-216 are measured approximately with a

single two-dimensional spectrum of dark-adapted (DA) bacteriorhodopsin,

which consists of a mixture of the two species bR555 and bR568 in an

approximately 60:40 ratio. The latter is the all-trans retinal species of bR

which predominates after irradiation with white light, and it is this light-
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adapted (LA) state which undergoes the photocycle. The retinal

configurations in these states are shown in Figure (3-1), and a widely

accepted basic scheme for the photocycle is illustrated in Figure (3-2) [6],

although many of the details are controversial [3-6]. As discussed in Refs. [5]

and [6], it appears that there may also be further intermediates, including

two M states, and even alternative photocycles. It is generally believed that

all of the photointermediates adopt the 13-cis, 15-anti configuration near the

Schiff base linkage, while the bR568 and bR555 states reside in the 13-trans,

15-anti and 13-cis, 15-syn conformations, respectively [3, 13]. The distances

in the dark-adapted species, which have already been measured using

rotational resonance techniques [11], serve to constrain the retinal

conformation at the Schiff base linkage.

In the 2D RFDR spectrum of [14- 13C]retinal, [e- 13C, 15N]lys-bR shown in

Figure (3-3) [23], the dipolar cross peaks in the two states are observed

simultaneously in a single experiment recorded with a mixing time of 15 ms.

The corresponding 1D CPMAS spectrum, also shown in the figure, indicates

the positions of the spectral lines corresponding to the labeled spins in [e-

13C]lys-216 at 48 and 53 ppm and in [14- 13C]retinal at 110 ppm and 122 ppm

in bR 555 and bR568, respectively [10]. The large resonance at 40 ppm arises

from the other six lysine residues, which are also 13C-enriched. The

remaining spectral intensity is attributable to the 1.1% natural abundance of

13C nuclei in the protein, retinal, and surrounding lipid. The diagonal in the

2D spectrum (with its rotational sidebands spaced by multiples of the 3.2 kHz

rotor frequency), as well as the two pairs of cross peaks corresponding to the

selectively enriched sites, are the major features in the two-dimensional

spectrum. Cross peaks from dipolar exchange between centerbands and

sidebands are also evident owing to the slow spinning rate and the large



-97-

shielding anisotropy of the [14-13C]retinal spectral lines. A 2D spectrum of

the same sample was also recorded in the absence of mixing pulses, i. e.

T. = 0 ms, and it differs from the spectrum of Figure (3-3) only in that the

cross peaks are absent, aside from signal losses, providing confirmation that

the origin of the cross correlation peaks is dipolar exchange.

The intensities of the cross peaks reflect the extent of polarization

exchange. The cross peaks associated with bR555 have greater intensities

than the cross peaks associated with bR568 , indicating a stronger dipolar

coupling (and therefore a shorter distance) in bR555. Separate numerical

calculations are performed for each spin pair in the sample. Dipolar

exchange between the two pairs of peaks is not correlated because the

conformers are essentially separate dilute spin systems. The simulation

results, shown in Figure (3-4), correspond to distances of 3.1 A (255 Hz) and

3.9 A (128 Hz) for bR555 and bR568 , respectively, which are obtained from

energy minimization calculations for the syn and anti conformations [11].

The results are scaled to a ratio of 60:40 in order to coincide with the relative

equilibrium populations of the two conformers.

For simplicity, 8-function pulses are assumed in the numerical

simulations. Following the 15 ms mixing time, the signal losses of the

retinal-14 and e-lysine peaks are approximately 35% in this experiment. As

shown in Figure (3-4) for the case of the cross peak above the diagonal, the

predicted off-diagonal intensities are 0.17 in bR555 and 0.09 in bR568 at

Tm = 15 ms, yielding a ratio of 1.9 for the relative intensities. Similar

calculations predict almost the same ratio for the opposite side of the 2D

spectrum, where polarizations begin at the retinal-14 position. Upon

integration of the experimental cross peak areas, a ratio of 1.9 (bR555/bR 568 )

is obtained for magnetizations stemming from the E-lysine resonances and 1.6
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for magnetizations proceeding from the retinal-14 lines. The average

experimental ratio of 1.75 is therefore in reasonable agreement with the

simulated value of 1.90, in spite of the poor spectral sensitivity.

The absolute measurement of internuclear distances from 2D spectra

requires knowledge of the relative changes in both the diagonal and cross

peak intensities which occur during mixing. In a system of large molecular

weight, only a crude estimate can be made of these intensities because of the

13C background signals which congest the diagonal bands, unless an

analogous reference spectrum of an unlabeled sample is also acquired for

subtraction under identical conditions. In the experiment discussed here,

however, the results reflect the relative internuclear distances surprisingly

well, implying that quantitative measurements are possible using two-

dimensional MAS experiments on macromolecules.

Sample Preparation. [E-13C, 15N]Lysine was synthesized according to

the procedure of Raap et. al. [25] by Prof. J. Lugtenburg and co-workers in

Leiden and was incorporated into bacteriorhodopsin of the JW-3 strain of

Halobacterium salinarium as described previously [26] in the laboratory of

Prof. J. Herzfeld. The 15N label was introduced primarily in order to reduce

the line-broadening of the E-lysine resonance line arising from its dipolar

coupling to the quadrupolar 14N nucleus [27]. Retinal labeled at the 14

position was also provided by J. Lugtenburg and co-workers. Replacement of

the naturally occuring retinal with the labeled species was carried out as

outlined in Ref. [23]. A similar procedure was also employed in regenerating

the aspartic acid samples discussed below with labeled retinal. After

repeated washing with deionized water, the purple membrane sample was

centrifuged for 60 min at 30,000 g, and the pellet was packed into a 7 mm

sapphire rotor for magic angle spinning.
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NMR Experimental Procedure. The NMR spectra were recorded at 79.9

MHz for 13C using the 2D RFDR pulse sequence. The 1H r/2 pulse length

was 4.4 ps, the 13 C nd2 flip up and flip back pulses 5.0 gs, and the n pulses

used for mixing were 22 ps in length. The long pulses were used in order to

avoid signal losses from interference of the 13C RF pulses with the proton

decoupling field, which is relatively weak (only 57 kHz) in this experiment.

All samples were spun in an home-built variable-temperature double

resonance probe equipped with a 7 mm double bearing MAS assembly (Doty

Scientific, Inc., Columbia, SC). The sample temperature was maintained at

-600 during the 2D acquisition.

In the acquisition of the 2D spectrum, eighteen ti increments were used

in the first dimension (F1) with a total spectral window of ± 4.8 kHz, while

1024 time points were recorded during acquisition of the FID in the second

dimension (F2) with a spectral window of + 25.0 kHz. Some aliasing of the

carbonyl region and its sidebands occurs in F1 as a consequence of the narrow

spectral limits, but these peaks appear in regions where they do not interfere

with the resolution of the cross peaks of interest. The construction of the 2D

spectrum involves the addition of many 2D spectra acquired with a minimum

phase cycling scheme, which consists of a total of 128 scans with permutation

of the 13 C cross polarization pulse, the flip up and flip back pulses, and phase

inversion of the initial 1 H pulse combined with receiver alternation [28]. A

total of 3840 transients were recorded for each tl increment with a 3 sec

recycle delay.

In-phase (real) and out-of-phase (imaginary) spectra in the Fl domain

were separately recorded according to the "pure phase" method States et. al.

[29], and subsequently recombined to obtain absorption mode lineshapes

across all directions in the 2D plane. Although the absorption mode spectral
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lines are narrower than lineshapes with mixed absorption and dispersion

mode characters, the absorption mode spectra involve a combination of the

"echo" and "anti-echo" components of the 2D spectrum [30]. Unfortunately,

even with a rotor-synchronized mixing period, sidebands appear away from

the diagonal in the "echo" part of the 2D spectrum [28] even though they

cancel in the corresponding "anti-echo" portion of the phase cycle. Since the

large off-diagonal sideband manifolds do not arise from dipolar exchange,

they are a nuisance which contributes to spectral congestion. At the same

time, dipolar exchange between any two members of the sideband manifolds

of different spins is never forbidden.

The accumulated FID was treated with a double Fourier transformation

which yields a single 2D absorption mode spectrum. The 2D data sets were

processed by applying an exponential line-broadening function of 50 Hz prior

to the first Fourier tranformation, which was carried out with respect to the

t2 variable. A standard linear prediction algorithm was employed to

extrapolate from 18 to 36 points in the tj domain, and the slices from the half

transform were zero-filled to 1024 points prior to the second Fourier

transformation (applied to the tl variable). A sample rotation rate of 3.200

kHz, which lies between the m = 1 and m = 2 rotational resonance conditions

for the coupled resonances, was employed in order to maximize the efficiency

of polarization transfer [21, 22, 31]. The spinning speed was kept stable

within ± 20 Hz in order to enforce the condition of rotor-synchronization to

the greatest extent possible.

Simulation Parameters. Because the spinning rate does not greatly

exceed the magnitude of the retinal-14 CSA tensor [32], it is included

explicitly in the 8-function pulse calculations of dipolar exchange in the two

species with estimates of the relative orientations, which are based on known
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relationships between the CSA tensors and the molecular reference frames in

model compounds [33, 34]. The zero-quantum relaxation process during the

periods of free evolution between the pulses is neglected for the resonances in

the binding pocket of bR where the 13C spins exist in a rigid environment

[35]. In addition, effective transverse relaxation is extremely slow in the

polycrystalline model compounds alanine and glycylglycine (as discussed in

Chapter 2), implying that it can be neglected for approximate applications

with couplings _ 100 Hz. The loss of longitudinal spin polarizations,

however, is incorporated into the calculations, as well as the assumption of

similar losses in the zero-quantum coherence between the spins during the

pulses.
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Figure (3-1). Conformations of the linkage between the Schiff base and the

retinal chromophore in the two species of the dark-adapted ground state of

bacteriorhodopsin and several photointermediates. In the M state, the Schiff

base becomes deprotonated. The atoms which are 13C-labeled are indicated,

i. e. the retinal-14 and the e-lysine sites. In the ground states of bR (bR 568

and bR 555), the Schiff base has a bound proton which is oriented toward to

the extracellular side of the channel for proton transport.
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Figure (3-2). Simplified version of the bacteriorhodopsin photocycle. The

absorption maxima of the various intermediate states of the photocycle are

indicated in the prefixes in units of nm. The all-trans state bR568 initiates

the photocycle upon absorption of a photon, which leads to the K

intermediate.
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Figure (3-3). Two-dimensional RFDR spectrum of dark-adapted [14-

13C]retinal, [e-13C, 15N]lys-bacteriorhodopsin with a mixing time of 15 ms.

The pairs of dipolar cross peaks are positioned between the sideband

manifolds which appear at multiples of the spinning frequency from the

diagonal. The spectral intensity along the diagonal includes the signals from

the natural abundance 13C nuclei in the sample. Above the spectrum, the

corresponding one-dimensional spectrum is shown with the 13C-labeled peaks

indicated.
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Figure (3-4). Numerical calculations of dipolar exchange in the two

components of dark-adapted bR with 8-function pulses including the

influence of the observed 35% loss of the magnetizations. The experimental

cross peak ratios compare favorably to the simulation results at 15 ms.
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III. Aspartic Acid-Retinal Structure

The second bR sample examined here contains a 13C label at the retinal-

14 position [10] and enrichment of the [4-13C] positions of the aspartic acid

and the [11-13C] positions of the tryptophan residues [18, 35]. The individual

[4-13C]aspartic acid resonances which play a role in the binding pocket have

been assigned [18, 35]. The asp-96, -85, and -212 residues are directly

involved in proton transport [4, 6], and in the bR ground states, the Schiff

base proton appears to be solvated by a "complex counterion" consisting of the

arg-82, asp-85, and asp-212 residues [36], before its transfer to asp-85 upon

Schiff base deprotonation to form the M state [2, 18]. At the same time,

however, the asp-212 plays an important role in stabilizing the structure of

the retinal binding pocket in bR 568 [37, 38], and mutants lacking either the

aspartic acid-85 or -212 are greatly inhibited in their proton pumping

efficiency [4]. In the second half of the photocycle, the Schiff base recovers its

proton from the asp-96 sidechain, possibly via water molecules of hydration

in the channel [6]. Figure (3-5), adapted from Refs. [2] and [4], illustrates the

most important residues in the ion channel and their general relationships

within the binding pocket.

In the Henderson model, the separations between the retinal-14 carbon

and the [4-C] positions of the asp-212 and asp-85 residues are 4.1 A and 5.6

A, respectively [2]. These dipolar couplings are weak (110 Hz and 20 Hz

coupling constants), and the second is expected to be too small to observe in

practice. However, visible cross peaks are anticipated for correlation to the

asp-212. Figure (3-6) shows a CPMAS difference spectrum of the sample

enriched in the amino acids prior to the labeling of the retinal peak. In the

sample with the 13C-label inserted at the retinal-14 position, a cross peak is
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observed in the upper left portion of the 2D RFDR spectrum shown in Figure

(3-7), corresponding to the transfer of polarization from the retinal-14

position to the asp-212 site in the light-adapted state of bR. However, in the

lower right half, no cross peak is seen above the noise level. Conversion of

the whole sample into bR568 is carried out prior to acquiring the spectrum in

order to increase the intensity of its retinal peak. This all-trans species is in

any case the relevant one because it initiates the photocycle. However, in

comparable dark-adapted spectra, the same cross peak has been observed in

bR568 while no correlations have been observed in bR555.

Asymmetries in the cross peak amplitudes in the 2D MAS dipolar

exchange spectra are observed frequently, especially in the case of weak

homonuclear coupling. In the case of RFDR spectra, one source of genuine

asymmetry in the intensities arises from the differences in losses of

polarization between the resonances. These losses arise from insufficient

proton decoupling during the spin echo sequence. In general, weak dipolar

exchange from a resonance whose polarization is decaying rapidly to another

spin whose coherences are more long-lived in the multiple pulse sequence

leads to larger cross peaks than the reverse process. In the case of doubly-

13C-labeled 1,4- 13C- 15NH3-glycylglycine hydrochloride monohydrate (10%

diluted in natural abundance material), similar cross peak asymmetries are

observed in 2D RFDR spectra, where the methylene resonance decays much

more rapidly under the n pulse sequence than the carbonyl signal. Another

possible reason for asymmetric peaks involves discrepancies in the efficiency

of cross polarization among different resonances in the bR spectrum. A

further source of apparent asymmetry in 2D contour plots are differences

between the linewidths of the peaks. Since the resolution in these

experiments is reduced in the first time domain by the acquisition of a small
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number of time points, and is therefore limited by the acquisition parameters,

peaks which are narrower in the second time domain appear taller in the

final 2D spectrum.

Because only one of the cross peaks is visible in the 2D RFDR spectrum,

a second set of experiments employing dipolar "spin diffusion" induced by

heteronuclear couplings to the protons was also performed [39, 40]. These

experiments can also be carried out in two-dimensional fashion using a

mixing time where the decoupling field applied to eliminate the heteronuclear

interactions is removed. The reintroduction of the 13C-1H interactions

resolves the frequency mismatch between the 13C resonances, allowing slow

magnetization exchange to proceed according to an exponential law in the

limit where the 13C- 1H and 1H-1H couplings greatly exceed the spinning rate

[41]. A basic 2D version of this approach is illustrated in Figure (3-8).

Because the protons participate directly in the exchange process, the

rates are difficult to assess quantitatively from first principles. In addition to

the extremely slow observed rates of dipolar exchange, this complication in

interpreting the results is a disadvantage of the spin diffusion approach

compared to RFDR and other multiple pulse methods [42]. However, in the

10% diluted 1,4- 13C- 15NH3-glycylglycine sample, where the 13C T1 values are

> 10 sec, exchange is 80% complete after 2000 ms mixing with the weak

dipole-dipole coupling of 80 Hz (corresponding to a 4.56 A distance) at 4.800

kHz spinning speed. In spite of the inhomogeneous distribution of

crystallites in the powder sample, the glycylglycine spin diffusion trajectory

from one dimensional data fits a single exponential decay rate of

F = 0.78 ± 0.05 Hz quite well. According to the theory of Kubo et. al. [41], the

rates involving protonated carbon resonances are not very sensitive to the

spinning speed, and are proportional to the inverse sixth power of the
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internuclear distance. Consequently, the glycylglycine result implies that

internuclear distances under 5 A should be readily observable in the bR

sample, where the retinal-14 is monoprotonated.

Fortunately, the T1 values of the [4-13C] resonances of the aspartic acid

sidechains in the binding pocket of bR are quite long, i. e. 2 10 sec [35], so it

is feasible to collect spectra with mixing periods of at least 5 2000 ms and

probably much longer. In fact, the sample discussed here exhibits no decay

after 2000 ms either in the retinal-14 or in the aspartic sidechain [4-13C]

resonances of the binding pocket at low temperature within experimental

error. The 2D spin diffusion spectrum shown in Figure (3-9) demonstrates

the expected dipolar correlation on both sides of the diagonal in the light-

adapted bR sample, confirming the proximity of the asp-212 to the retinal-14

position in bR568 .

The asymmetry in cross peak intensities is again observed in this

spectrum and in similar ones which have been acquired. Possibly, the peak

in the lower right half of the 2D plane is apparently smaller because of line-

broadening in the retinal-14 relative to the unprotonated aspartic acid peaks,

but this explanation is most likely inadequate. The cross peak intensities

under observation are quite small, and they must be extracted from much

larger background signals in the 2D Fourier transformation. In addition, the

signal to noise ratio is quite low in all of the 2D bR spectra because of limits

on how long the MAS experiment can be stably maintained. There is no a

priori reason to expect the spin diffusion rates to be greater in one direction

than in the opposite polarization transfer process. Interestingly, some

unexplained asymmetry is also seen in 2D spin diffusion spectra of the

doubly-labeled glycylglycine sample, where the signal to noise ratio is much

greater.



-114-

The two cross peaks exhibit experimental integrated intensities of 0.30

and 0.12 relative to unity for the diagonal retinal intensity, which resides in a

region of little spectral overlap with the other resonances. With an estimate

of 36% for the population of 13C-labeling in the aspartic acid residues, the

maximum relative cross peak intensity is 0.22, so exchange appears to be

virtually complete in < 2000 ms. The smaller cross peak implies a spin

diffusion rate of F = 0.46 Hz. With the crude assumption that the constants

of proportionality are the same for the glycylglycine and the bR samples, this

rate implies a distance of 5.0 A, applying the fact that the spin diffusion rate

is proportional to the inverse sixth power of the interatomic separation

between the dilute spins. A conservative distance constraint of < 5.5 A

emerges from these results, but it is most likely much shorter, since the

larger cross peak implies complete exchange on this time scale. Certainly,

these results are consistent with the distance of 4.1 A given by the

Henderson model. In addition, the aspartic acid-85 distance, and likewise

those of the other asp residues, to the retinal-14 are 2 5.5 A based on the

absence of any observable cross peaks in these experiments and similar ones.

Sample Preparation. The aspartic acid/tryptophan-labeled bR samples

were kindly provided by Prof. M. Engelhardt and co-workers, and have been

characterized in the literature [43]. The incorporation of the 13C-label into

the aspartic acid residues of bR is only about 36% in these samples. The

labeled retinal, 13C-enriched to 99% at the 14 position, was provided by Prof.

J. Lugtenburg and co-workers. The labeled retinal was again introduced into

the protein according to the regeneration procedure outlined in Ref. [23] for

the sample used in the RFDR experiment by Drs. J. M. Griffiths and K. V.

Lakshmi. Since the bleaching step (i. e. the removal of the natural

abundance chromophore from the sample) is not complete, the 13C-labeling is
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approximately 90% for the retinal in the regeneration reactions. A second

sample was regenerated with the enriched retinal for the spin diffusion

experiments by Dr. Griffiths and the author [44], using a protocol similar to

one developed by J. Hu [45]. Again the retinal is approximately 90% labeled

because of incomplete bleaching, based on UV/visible absorption spectroscopy.

NMR Experiments. The 2D RFDR spectrum in Figure (3-7) was

recorded at 6200 ± 10 Hz spinning speed with a mixing period of 31.0 ms,

using the rotor-synchronized sequence of one I pulse per rotor period [46]

with the compensated XY-16 echo sequence [47]. The spectrum was acquired

with an home-built high speed MAS probe using a 5 mm sapphire rotor from

Doty Scientific. The translucent rotor was irradiated for 1 hour at 0 ± 50 C

with a 500 W projector lamp and quickly transfered to the cooled probe in

order to convert the whole bR sample into its light-adapted state (bR 568).

The pulse lengths were 2.6 js for the 1H x/2 pulse (and the corresponding

decoupling field of 96 kHz), 6.0 ps for the 13C n/2 cross polarization and flip

pulses, and 14.2 ps for the n pulses during mixing. A total of 512 scans were

collected for both the real and imaginary parts at each tl point, and the

temperature was held constant at -38° C during acquisition.

The spin diffusion spectrum was acquired at 4900 + 30 Hz with a 2000

ms mixing period where decoupling was not applied. Precise control of the

spinning frequency is not essential to obtain dipolar exchange using this

approach. Here, a 7 mm sapphire rotor and stator assembly from Doty was

employed, and as in the RFDR experiment, the sample was light-adapted

prior to acquisition. The number of scans was 384 scans per t1 point. The

temperature was maintained at -90 ± 5 C during acquisition. Here the 1H

n/2 pulse was only 3.8 gps, and accordingly the decoupling field was 73.5 kHz.
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In both the RFDR and spin diffusion spectra, 24 tl points were acquired

with a dwell time of 125 jis. A 2 sec recycle delay was employed in these

experiments between consecutive scans. The phase cycling and data

acquisition parameters were otherwise similar to the E-lys experiment

discussed earlier. The spin diffusion spectrum was processed by extending

the FID in the first time domain to 64 points with a standard linear

prediction routine incorporated into the RNMR program of Dr. D. Ruben after

adding 40 Hz of exponential line-broadening. The same 40 Hz was also

applied in the second time domain, where 1024 points was acquired with a 20

jis dwell time. The first dimension were then zero-filled to 1024 points prior

to the second Fourier transformation.

The 1D CPMAS spectrum of the aspartic acid labeled material in Figure

(3-6), provided by Drs. Janet Griffiths and K. V. Lakshmi, is a difference

spectrum between the [4- 13C]aspartic acid enriched material and an

otherwise similarly prepared sample (also provided by Prof. Engelhard and

co-workers). This spectrum was acquired at 100 MHz for 13C, providing

somewhat better resolution than is usually obtained at 79.9 MHz, where the

2D experiments were performed.
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Figure (3-5). Schematic diagram of the proton transport channel in

bacteriorhodopsin, illustrating the retinal, the key aspartic acid residues, and

the arginine-82. Asp-96 is thought to be the proton donor to the Schiff base

in the second half of the photocycle, while asp-85 is the proton acceptor upon

Schiff deprotonation to form M in the first portion.
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Figure (3-6). One-dimensional CPMAS difference spectrum of the aspartic

acid/tryptophan 13C-enriched sample of dark-adapted bacteriorhodopsin at

100 MHz for 13C.
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Figure (3-7). Two-dimensional RFDR spectrum of light-adapted [4-13C]asp,

[14- 13C]retinal-bacteriorhodopsin at 6.200 kHz with a 31 ms mixing period.

A dipolar cross peak corresponding to exchange from the retinal-14 to the

asp-212 residue is observed in the spectrum. The reverse process is not

visible in the opposite side of the 2D plane because of the low signal to noise

ratio and the frequently observed asymmetries in the cross peak intensities,

which have been seen in other similar 2D experiments.
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Figure (3-8). Pulse sequence for 2D dipolar exchange with spin diffusion

generated by coupling to protons. Slow exchange is stimulated over a broad

range of chemical shift differences between the spins by removal of the proton

decoupling field during the mixing time in the 2D longitudinal exchange

experiment.
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Figure (3-9). Two-dimensional spin diffusion spectrum of light-adapted [4-

13C]asp, [14- 13C]retinal-bacteriorhodopsin at 4.900 kHz with a 2000 ms

mixing period. Dipolar cross peaks are observed between the asp-212 and the

retinal-14 position, which are both 13C-enriched. However, although the

dipolar exchange process is symmetric in principle, the cross peak above the

diagonal is much larger in the processed 2D spectrum. Similar RFDR and

spin diffusion spectra of the doubly-labeled glycylglycine sample also exhibit

some cross peak asymmetry.
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IV. Conclusion

With current technical constraints, it is challenging to acquire two-

dimensional spectra of samples with large molecular weights, since these

exhibit a low signal to noise ratio and extensive spectral overlap in solid state

NMR experiments. However, the results shown here for a 26 kD sample

demonstrate the promise of these methods for approximate distance

measurements in large proteins in the solid state. Because solid state NMR

methods do not require crystalline samples or soluble molecules possessing a

short correlation time for tumbling in solution [48, 49], they are

complimentary to the methods of solution NMR and X-ray crystallography.

Improvements in the spectral sensitivity and the stability of MAS equipment

at low temperatures will enhance the prospects for studying large isotopically

enriched proteins which exhibit some chemical shift resolution among the

resonances of interest.

Based on the spin diffusion experiment, where the sensitivity is

sufficiently high to estimate cross peak intensities in the aspartic acid

sample, a constraint of < 5.5 A has been established for the retinal-14 to

aspartic acid-212 distance. None of the other aspartic acid or tryptophan

residues exhibits observable cross peaks in either the RFDR or spin diffusion

spectra, in agreement with the Henderson model [2], for which all of the

corresponding distances are greater than 5.5 A. Likewise, the same asp-212

correlation is not observed in bR555, indicating that the corresponding

distance is greater than 5.5 A.
Similar efforts to characterize these structural constraints in the M

intermediate of the bR photocycle have also been in progress. In these

experiments, the deprotonated Schiff base state is trapped in guanidine
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hydrochloride under basic conditions by irradiation with yellow light at low

temperature [10]. These experiments have the potential to contribute

important information about how the retinal binding pocket changes upon

formation of the trapped M intermediate, which plays a critical role in the bR

photocycle [3, 5, 6].
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Chapter 4.

Performance of Spin Echo Sequences in Double Resonance Experiments
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I. Introduction

The refocusing of spin evolution under the Zeeman-like terms in the spin

Hamiltonian, such as the chemical shifts, is a common technique in NMR

spectroscopy [1]. The formation of a Hahn echo is achieved through the

application of n pulses which reverse the sense of rotation under

inhomogeneous interactions. Rotor-synchronized n pulse sequences can be

applied to achieve joint spin and rotational echoes [2, 3] in spinning samples,

generalizing the Hahn echo to MAS experiments. For example, the simple

sequence of one n pulse per rotor period leads to complete refocusing of the

signal following every two rotor cycles [2]. Trains of n pulses are also applied

frequently in solution experiments, such as measurements of diffusion

constants [1], and in MAS recoupling experiments [4]. When the signal is

observed after many pulses (i. e. 2 100), the degradation, or spurious rotation

of the signal in the transverse plane, becomes a serious problem.

Accordingly, several methods have been introduced to compensate for

rotation errors in the i pulses. An early approach, the Carr Purcell Meiboom

Gill echo train [1], consists of a train of X pulses applied to initially prepared

Y magnetization. This scheme is particularly useful for reducing the problem

of RF inhomogeneity.

For more general applications, the XY-4 scheme was introduced to

compensate simultaneously for pulse imperfections in the refocusing of all

components of the spin magnetization [5]. Expansions of the basic cycle [6]

have been applied to solution experiments [7] and several MAS applications

[8-11]. Another four pulse cycle for compensating pulse errors is the "MLEV-

4" cycle [12], which is based on the general scheme XXXX for a supercycle

consisting of net it pulse rotations [13]. The relative performance of the two
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expansion schemes of simple n pulses has been compared in solution

experiments [6] and with Floquet Theory for MAS applications [14]. Here, a

general approach to the analysis of compensated n pulse sequences is applied

to the comparison of these three basic approaches. The net rotation error

obtained with XYXY and XXXX is strikingly similar in the most general

case, although in the windowless limit the latter is more favorable for large

resonance offsets and RF inhomogeneity.

In addition to compensation for pulse errors experienced by a single

isolated spin, a major difficulty encountered in solid state double resonance

experiments is the interference between the proton decoupling field and pulse

sequences which are applied to dilute spins under observation [15]. In

general, rapid signal losses are observed unless the RF fields are greatly

mismatched in amplitude. Here, the problem of insufficient proton

decoupling is discussed within the framework of a simple model, and it is

shown that a mismatch in the RF field strengths by a factor of approximately

three is necessary for the case of n pulses. Because the depolarization effect

tends to increase with the length of the pulse, composite pulse rotations [16,

17] are generally undesirable in double resonance MAS applications, where

sample spinning and 1H-1H couplings contribute additional complications.

Consequently, a more favorable solution is to apply phase alternation

schemes like the ones analyzed here.

II. Theory of Compensated Pulse Sequences

Figure (4-1) illustrates three schemes of phase alternation which are

used in multiple pulse spin echo experiments [6]. The Carr Purcell Meiboom

Gill sequence is often employed in the formation of spin echoes of the
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transverse magnetization, and it provides a means of measuring the

homogeneous portion of magnetization decay [1]. The others are approaches

which are more generally tolerant to a variety of pulse errors, including

resonance offsets, RF inhomogeneity, and phase transients. The principal

difficulty in analyzing these sequences is that the cycle time Tc is often long

relative to the inverse of the spin interactions, and as a consequence, it is

inappropriate to apply the AHT approximation directly to the case of long

windows between the pulses.

The case of long windows, however, is the most relevant one for rotor-

synchronized MAS experiments on dilute spins. In the limit of short

windows, the performance of these sequences has been investigated with

Floquet Theory [14]. An approximate theory which is more generally

applicable is introduced here in order to evaluate the performance of the

compensated echo sequences. In MAS recoupling experiments, the largest

errors in applying multiple pulse sequences arise from the resonance offsets

and the RF inhomogeneity. Neither can be eliminated in most cases. With

several spins at different frequencies, it is impossible to place the RF field at

exact resonance with all of them simultaneously. Moreover, the resonance

offset is oscillating through a range of values in AMAS experiments. The RF

field amplitude in the sample coil is typically within its nominal strength by

+5%, or + 10% at most, in typical CPMAS applications. The treatment

presented here applies to the case of sample spinning under two conditions:

the first is that TR >> r, so that the resonance offset 3(t) is essentially time-

independent during the brief pulse interval r,, and the second is that the

pulses are applied only at points in time where the offset recurs repeatedly to

the same value. The class of echo sequences where the n pulses are applied

every N rotor periods possesses this property. The sequences analyzed here
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cannot compensate for pulse errors which change from the application of one

pulse to the next.

Including these effects, the Hamiltonian for a single spin has the form:

H= Ho+H 1
(4-1)

= VRF Sx + { S + vF S, (4-1)

during the application of an X pulse, but just H = 3 Sz during free evolution

between the pulses, where 8 represents the deviation of the spin frequency

from resonance with the RF transmitter and vRF is the RF field strength.

The AvR, term represents the deviation in the RF field from its nominal

value. Although AHT cannot be applied for the entire cycle time rc, it is

valid for small pulse errors during the pulse time ' when vRF >> 3, Av,.

Through orders RD' and RD•'•, the time evolution operator for the X pulse can

be conveniently approximated to O(error 2):

Ux(Tr,O) = exp{-i2i vRF~ p Sx exp {-i(tO) +H fl') )r}

=exp{-inSx}exp -i 27cAvaF - pSx-48 1+ •pS (4-2)

VRF ) VRF

With the definition of a time evolution operator for the phase accumulated

during half of the window period:

U, ((r- r), 0 = exp{-i27r 2 (, -, r ,)S (4-3)
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the evolution operator for the entire XYXY sequence can be written, omitting

most of the time arguments for convenience, as follows:

U(r , 0) = {UU, }{U,8 UU, U U,}U, UUU} U , U . (4-4)

With aid of the two identities [1]:

Uexp{-iA}U - 1 = exp{-iUAU - 1};
(4-5)

Uexp{-iA}U- 1 = exp{-iUAU-1}U,

which are always valid for unitary operators U, all terms are collected into

small rotations and recombined through lowest order in the Baker Campbell

Hausdorff expansion [18].

In terms of the phase V which is accumulated between the pulses,

V= 2 i S (. - •p), and with the convenient definitions:

a =• . 1+ ;; b = 2+ ' , (4-6)
RF VRF 2 v2F VRF

the rotation error through lowest order following the XYXY cycle reduces to

the form:

U(c, 0) = exp+i [(b 2 -a2) cos - 2absin V]S S}. (4-7)

The condition U(c, 0) = ±1 holds for an ideal echo sequence, where no

apparent spin evolution occurs over the cycle. Since V can assume any value

for long windows, the resonance offset effect most generally enters in second
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order O(2 / vRF) as a rotation about the z axis, although the performance is

compensated to 0(3' / vRF) when V/ = (2n + 1)n / 2. In other words, the

compensation in XYXY benefits from the phase evolution during the windows.

Since the rotation error is oriented along the z axis, the performance of the

sequence is much worse for transverse magnetization than for recovery of

longitudinal magnetization.

A similar derivation can be performed for the cycle XXXX, leading to

the analogous expression:

U(rc,O0)= exp{+i[(a2 - b2)sin V- 2abcos ]S}. (4-8)

Interestingly, the order of compensation is almost identical for arbitrary Vy,

although the performances of XYXY and XXXX differ substantially for a

given V/. However, in the windowless limit y -4 0, the XXXX cycle is

clearly superior because the residual error from the offset, for instance, is

0(58 / V F). Therefore, for windowless applications in the presence of large

inhomogeneous local fields, such as heteronuclear spin decoupling, the

MLEV-4 cycle [13] is clearly the better framework for the expansion of

compensated sequences. On the other hand, the XYXY is advantageous over

XXXX for the problem of amplitude imbalance [19], where the RF field

strength deviates slightly when applied with different phase settings.

However, this error is quite small for an optimized RF transmitter (5 0.1%),

and in any case random fluctuations of this nature cannot be refocused

effectively via phase alternation. In practice, the two basic cycles exhibit

similar performance in MAS applications. In REDOR experiments [20], for

example, XY-8 and MLEV-8 yield comparable signal losses and dephasing

curves [21], at least for heteronuclear dipole-dipole couplings 2 200 Hz. For
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the RF inhomogeneity, the resonance offset, and pulse errors of similar

symmetry, the analytic expressions derived here imply very similar

performance. Other cycles can also be examined with this approach, but it is

interesting to note that only the two examined here yield the same degree of

compensation. There appears to be no other four pulse cycle with the

property of general tolerance to imperfections in pulse rotations.

The same analysis applied to XXXX, the basic Carr Purcell sequence,

leads to the expression:

U(,rc, O)=
(4-9)

exp{i([4bcos W/2- 4asin y/2]S x +[(a2 - b2)sin y - 2abcos V]S2) }.

Because there is a large first order error along x, the best performance is

obtained when the sequence is applied with the initial condition of transverse

magnetization along X, with which it commutes. This approach is the

Meiboom Gill modification to the Carr Purcell sequence for multiple echoes.

The second term is identical through lowest order to that of XXXX.

In order to obtain terms of cubic and higher orders in the rotation error,

the AHT treatment of the imperfections during the pulses must be calculated

through higher order - or alternatively the error can be derived with exact

analytic calculations. The recombination of small rotation operators must

also be pursued through higher orders. With the assumption of convergence,

this framework enables the calculation of the net error through higher order

terms in the Baker Campbell Hausdorff expansion [18]:
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exp{A}exp{B} =

exp{(A+B)+ 12 [A,B]+ 1 2 ([A,[A,B]]+[[A,B],B])+... (410)

It is useful to understand the higher orders in order to expand the sequences.

For example, the extension of the basic sequences to eight pulses [6, 12],

XYXY -+ XYXY YXYX and XXXX -+ XXXX XXXX, cancels the lowest order

term along z, but leaves a smaller rotation error about an axis within the

transverse plane. This deviation is in turn eliminated by expansions to

sixteen pulse cycles via inversion of all phases.
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Figure (4-1). Three compensated pulse sequences for multiple pulse echo

formation: the Carr Purcell (XXXX), XY-4 (XYXY), and MLEV-4 (XXXX)

schemes of phase alternation. The notation X(n) indicates a pulse of net

rotation angle n applied with the appropriate phase corresponding to the X

axis in the rotating frame. The pulse timings ( Tz, T., and r,) used in the

analytic derivation of the net rotation error are indicated. In the case of

synchronized pulse sequences in rotating samples, the condition r = N=R

(i. e. that the period of pulse application is a multiple of the rotor period) is

satisfied in order to obtain an echo. Under these conditions, the periodic

resonance offset term recurs to the same value with each application of the n

pulse. The pulses are separated by "windows" of length (r. - ,r).
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III. Effect of Insufficient Proton Decoupling

A simple model which is useful in understanding the influence of proton

decoupling on the performance of a n pulse applied to the dilute spins consists

of the basic Hamiltonian:

H = vIix + vsSx + ds -2I1Sz, (4-11)

where v1 and vs are the RF field amplitudes applied to the heteronuclear

spin pair. The S spin, whose echo intensity is observed, is coupled to the I

spin via d1s. Although the decoupling field v, is typically applied

continuously, the S spin RF field is active only for a short time z, in order to

stimulate a n pulse rotation. During these intervals, the decoupling efficiency

is generally reduced because of interference between the two fields. With

sample rotation, this discussion again applies to the case R,>> z,. However,

in the case of strong 1H-1H interactions, spin coherences involving the

protons experience dephasing within a short time interval [22], strongly

limiting the applicability of long compensated echo sequences to the

refocusing of the large local fields which arise from insufficient decoupling.

As a consequence, it is important to obtain efficient decoupling on the short

time scale rp.

The mechanism of decoupling degradation can be understood by

examining the time evolution operator during the short interval 'p when the

S spin pulse is applied:
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U(, 0) = exp(-i o 1rI. } exp(-icor, S) x

TTexpl-if "dt dIs -2, (t)l,(t)1(-

The angular frequencies o, and co are defined as co = 2n vy and ws = 2n vs,

and the spin operators are transformed into the toggling frame in order to

investigate the joint behavior under the two RF fields. To evaluate the time

evolution operator, the AHT approximation is employed under the reasonable

assumption that both RF fields dominate the dipolar coupling:

U(TP,O)= exp(-imr1xI)exp(-imsrSx xexp(-iHf)r . (4-13)

where:

H( ) = fT dt ds 21z (t)Sz (t). (4-14)

The evaluation of Eq. (4-14) leads to the following expression:

D I sinS(m, + { s)P} sin{(m, - s)'r}

+ dIs -IzSY cos(m, + s)T P  (1-cos(, -)p)

+ dI IYS c(o{( + o s)r, } 1-cos{( - s) p  (4-15)

d -sin{,+ )} + s co,-o)) }(4-15)
(O + Cs))P (O - S )Tp

+d 1 sin{(w,1 +ws)rP} sin{(wp-CO8)r} J
s01 , + Ss)2, (Co - .) )Z
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Three cases deserve special attention. First, within the toggling frame

approach, when the RF fields are matched in amplitude at the Hartmann

Hahn condition os = wo [23], the coherent averaging effect of the dipolar

coupling is spoiled by interference between the simultaneous modulations of

the I and S spin operators. This resonance condition is fulfilled in cross

polarization experiments [24] in order to stimulate rotating frame

magnetization exchange. The effective dipolar coupling H•' ) assumes the

well-known form of a flip-flop interaction in the rotating frame defined along

the x direction:

HbD) = ds IzS, +ISy }. (4-16)

In order to minimize dephasing of the signal in spin echo experiments, this

dipolar recoupling condition must clearly be avoided. However, in the case of

a ir pulse applied to the S spin, where wsr, = n, an especially large mismatch

is required in order to reduce signal losses to an acceptable level. For

example, if the Hartmann Hahn condition is mismatched by a factor of two,

i. e. o, = 2ms, then the dipole-dipole interaction is still not eliminated even

through zeroth order:

2 4
H)- -- djs IzS, +- ds IySz . (4-17)3 7c 3 7c

In fact, to eliminate HD') over the course of the 7c pulse, the condition

Co) = 3Oo s must be fulfilled. For more general pulse sequences, this stringent

condition is relaxed somewhat. For r, such that wsT,, = 27c, a case which is
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realized in cases such as cross polarization where CW fields are employed,

H•°) vanishes under the condition am = 2ms, which is easier to fulfill.

On the other hand, over a single cycle r, of the decoupling field such

that cojrp = 2n, the coupling vanishes in the absence of the S spin RF field.

Since the efficiency of the decoupling field is reduced roughly according to the

expression 0, - co - O, it is necessary to apply particularly strong proton

RF fields during double resonance echo experiments to minimize the decay of

S spin coherences. In practice, the signal losses are reduced continuously as

the decoupling field and the Hartmann Hahn ratio wm/a s are increased, as

implied by Eq. (4-15); however, this simple model provides insight into the

slow convergence which is observed. In Figures (4-2) and (4-3), the signal

losses of both the CO2 (which lacks an attached proton) and CH 2 resonances

of glycine with one 7c pulse per rotor period [2] exhibit great improvements as

the mismatch condition reaches mo = 3%s . The signal decay is also

attenuated strongly with increasing wm for a fixed Hartmann Hahn ratio. It

is not always practical to reduce cos for the purpose of achieving the condition

mo = 3ms , since other finite pulse effects such as resonance offsets require the

use of relatively strong RF fields ws. Within the limitations of the NMR

probe, a compromise must be achieved for particular applications.

In order to interpret some recoupling experiments, it is necessary to

provide a quantitative estimate of the time scale of coherence losses into the

numerical simulations. To order to account for the attenuation of coherences,

which plays an important role in the case of weak dipole-dipole coupling, an

exponential model is employed in both the homonuclear n pulse recoupling

experiments and in the heteronuclear dephasing experiments described in

other chapters. In the absence of pulses, the longitudinal polarization does

not decay on the 30 msec time scale because T 1 relaxation is much slower. To
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model the loss of coherences from insufficient proton decoupling, an effective

rate of decay F,, which is the same for the longitudinal and transverse spin

magnetizations, is chosen during the pulses.

In order to account for the somewhat faster observed transverse decay,

an effective T2 is also selected to match the observed rate of echo decay. This

framework accounts for the observed multiple pulse echo intensities

reasonably well in polycrystalline solids, and it provides a route to

incorporating these influences explicitly in a way which is computationally

tractable. The exponential model is most appropriate at lower decoupling

fields and for protonated resonances, where the Hartmann Hahn

depolarization effect is especially significant. Although this approach

provides effective relaxation parameters for multiple pulse experiments, it is

more appropriate to apply a single pulse echo experiment in measuring the

true homogeneous T2 due to molecular motion. With a single pulse, the

depolarization effect does not accumulate with time.

Experimental Procedure. The echo experiments discussed here were

performed at 317 MHz for protons with a home-built spectrometer and double

resonance probe with a 7 mm double bearing MAS assembly (Doty Scientific,

Columbia, SC). The echo sequence consists of one n pulse applied per rotor

period with the XYXY YXYX XYXY YXYX (XY-16) compensation scheme.

The analog phase splitters were balanced within 0.10 and the amplitudes

balanced within 0.1%. The RF field amplitudes are indicated in the figures.

Echo intensities from samples of polycrystalline 13CO2-labeled and 13CH 2

glycine, recrystallized with ten-fold dilution in natural abundance material,

were acquired with the isotropic peaks placed on resonance at 4800 + 2 Hz

spinning speed. With a 69.4 kHz decoupling field, the observed full widths at

half maximum (FWHM) of the 13CO 2 and 13CH 2 glycine resonance lines are
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35 Hz and 85 Hz, respectively; and with a 54.3 kHz decoupling field, 34 Hz

and 111 Hz, respectively. The additional line-broadening in the methylene

line arises from insufficient decoupling power, but this contribution does not

behave homogeneously in these experiments.
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Figure (4-2). Echo decay signals of the CO2 resonance of glycine as a function

of several 13C and 1H RF field amplitudes in double resonance MAS

experiments: (a) decay of longitudinal polarization; (b) decay of transverse X

magnetization. The Hartmann Hahn depolarization effect discussed in the

text is observed even in this unprotonated system. In 30 msec, a total of 144

pulses is applied. HF indicates the proton decoupling (high frequency) field

strength, while LF indicates the 13C RF field strength (low frequency). In

addition, the dashed lines shown are simulation results with the parameters

FP = 0.03 kHz, T2 = 100 ms at HF 69.4 kHz, LF 24.3 kHz; T = 0.15 kHz,

T2 = 83 ms at HF 54.3 kHz, LF 24.3 kHz. The evolution of the isolated spins

is calculated explicitly including the CSA and finite pulses, in addition to the

exponential decay parameters.
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Figure (4-3). Echo decay signals of the CH 2 resonance of glycine as a function

of several 13C and 1H RF field amplitudes in double resonance MAS

experiments: (a) decay of longitudinal polarization; (b) decay of transverse X

magnetization. The transverse decay is somewhat more rapid because of

insufficient proton decoupling between the pulses and T2 relaxation. The

dashed lines are simulation results with the parameters F, = 0.45 kHz,

T2 = 50 ms at HF 69.4 kHz, LF 24.3 kHz; T, = 2.50 kHz, T2 = 50 ms at HF

54.3 kHz, LF 24.3 kHz.
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IV. Conclusion

The analytic framework presented here for calculating the rotation error

obtained with compensated echo sequences leads to the conclusion that there

is little difference between the basic XYXY and XXXX cycles for RF

inhomogeneity and resonance offsets, which are important influences in

double resonance MAS applications involving dilute spins. For rotor-

synchronized pulse sequences, these general conclusions are applicable

because the resonance offset assumes the same value at each interval r,.

However, for alternative MAS echo sequences, such as 8 n pulses per rotor

period [25], the resonance offset is constantly changing, invalidating the time-

independent analysis discussed here. In the windowless limit where the

accumulated phase between the pulses vanishes, XXXX is better in

principle. For sequences such that rz = Nz,, because the phase accumulated

from the CSA vanishes between the pulses under magic angle spinning, the

MLEV-4 cycle is also more favorable for overcoming this perturbation.

However, in practice, the signal decay is frequently dominated by the

insufficient decoupling effect, so these subtle distinctions are not easy to

observe in MAS experiments. The condition wo >> 2w s must be fulfilled in

order to eliminate the heteronuclear coupling completely, necessitating a

decoupling field >100 kHz, which is difficult to achieve. Under the conditions

in Figures (4-2) and (4-3), numerical simulations of the isolated spins predict

signal losses of < 1% after 30 msec in the absence of relaxation effects, even

with RF inhomogeneities of ±10%. In crystalline solids, the signal relaxation

from molecular motion is also extremely slow in most cases and is therefore

typically an insignificant contribution to the NMR linewidths of dilute spins
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[26]. In hexamethylbenzene, for example, T2 relaxation contributes less than

2 Hz to the line-broadening in CPMAS experiments [27].

The XY-16 sequence compensates partially for the insufficient

decoupling effect, but cannot refocus it fully because of the complications of

MAS and strong 1H-1H interactions. In addition, various random

fluctuations in the output of the RF transmitter and the mechanical rotation

contribute other possible sources of echo decay. The net loss of the spin

coherences can often be modeled adequately with exponential decay

parameters. Although the particular cases of RF inhomogeneity and

resonance offsets are investigated here, the XYXY and MLEV sequences

compensate in a similar way for any rotation error which is fixed for each

pulse, so other imperfections such as phase transients are similarly corrected.
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Chapter 5.

Frequency-Selective Heteronuclear Dipolar Recoupling
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I. Introduction

Several methods have recently been introduced for the purpose of

restoring dipolar couplings into magic angle spinning experiments [1]. These

techniques are useful for the measurement of internuclear distances [2, 3]

and, more generally, for filtering and correlation experiments in

polycrystalline materials [4-7]. For homonuclear spin pairs, the rotational

resonance (R2) experiment [8, 9] provides a technique which is frequency-

selective in that only pairs of spins whose chemical shift difference matches a

multiple of the spinning frequency, i. e. A8 = mvR, are recoupled. In the case

of heteronuclear spins, a particularly successful recoupling technique has

been the Rotational Echo Double Resonance (REDOR) experiment [10-12].

The dipolar dephasing trajectory obtained with REDOR is ideally non-

selective with respect to the frequencies of the nuclear spins.

However, there are cases where an approach which recouples

heteronuclear spins only at certain frequencies is of interest. Two examples

are organic samples with multiple isotope labels and inorganic samples with

broad inhomogeneous linewidths [13]. Here, a method is introduced for

restoring heteronuclear couplings which is spectrally selective - in particular,

the dipole-dipole coupling is restored to the MAS experiment only at exact

resonance and at multiples of the spinning frequency [14]. Analogous

multiple pulse experiments are also applicable to static solids, and a selective

Spin Echo Double Resonance (SEDOR) experiment [15, 16] which yields

information about relative chemical shift anisotropy tensor orientations is

introduced.

Figure (5-1) illustrates the basic pulse sequence which is used to monitor

the decay of S spin magnetization in the presence of coupling to I spins in a
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triple resonance dephasing experiment with magic angle spinning. A

compensated spin echo sequence [17] of one 7c pulse per rotor period is applied

to the observed S spin in order to refocus its chemical shift interactions [18],

while the combined application of pulses to the S and I spin systems leads to

frequency-selective dipolar recoupling. This effect can be understood through

the use of Average Hamiltonian Theory (AHT) [19-20]. Unfortunately, the

basic pulse sequence applied to the I spin in Figure (5-1), X(n / 2) X(x / 2), is

poorly compensated with respect to phase transients which occur at the

leading and trailing edges of each RF pulse [21-23], and it is also not highly

tolerant to resonance offset effects. Consequently, the pulse sequence

illustrated in Figure (5-2) is more suitable for difficult applications such as

the measurement of weak dipolar couplings. Illustrated in the figure is one

half of the complete cycle of pulses applied to the I spin. The entire

compensated sequence consists of the following:

X(I / 2) X(n) X(n) X(n) X(in/ 2)- -X(n /2) X(n) X(n) X(n) X(n / 2) -- ,

where the dashes represent delays of one rotor period each. Although this

phase alternation scheme was determined primarily through

experimentation with numerical simulations, it is essentially a modified

MLEV-8 cycle [17], which provides a high degree of compensation for

resonance offsets, phase transients, RF inhomogeneity, and other pulse

errors. Here X(n / 2) indicates a 900 pulse applied along the X axis in the

rotating frame.



-161-

Figure (5-1). Basic pulse sequence for the frequency-selective dipolar

recoupling (FDR) experiment with observation of dipolar dephasing.

Following cross polarization, the spin echo signal of the observed S spins (e. g.

13C) dephases under the the influence of pairs of ir2 pulses applied to non-

observed I spins (e. g. 15N). The length of the dephasing period is

incremented in successive experiments, and the signal is acquired and

integrated to the obtain the signal intensity (indicated by solid circles) as a

function of mixing time. Since cross polarization and proton decoupling are

required, an MAS probe simultaneously tuned to three RF channels is

employed in heteronuclear recoupling experiments. In addition, the condition

of rotor-synchronization (i. e. that one pulse is applied on each channel per

rotor period TR) must be maintained within a few Hz.
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Figure (5-2). Compensated pulse sequence for the frequency-selective dipolar

dephasing experiment. Only the dilute S and I spin channels in the triple

resonance experiment are shown. While the compensated XY-8 sequence

XYXY YXYX is applied to the S spin, a sequence analogous to MLEV-8 is

applied to the I spin channel as follows:

X(n / 2) X(i) X(ni) X(n) X(n / 2) - -X(n / 2) X(n) X(ir) X(x) X(n / 2) --.

Half of the I spin cycle is illustrated in the figure, while the complete

sequence occupies twelve rotor cycles. Simultaneous compensation through

the level of XY-8 and MLEV-8 on both channels is obtained after multiples of

twenty-four rotor periods, the least common multiple of eight and twelve.
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II. Average Hamiltonian Analysis

Analysis of the pulse sequence shown in Figure (5-1) by AHT provides a

means of understanding how frequency-selectivity is obtained. For the two

spin case, the appropriate Hamiltonian includes the chemical shifts of the

observed S spin and the non-observed I spin, as well as the heteronuclear

dipole-dipole coupling between them. In a toggling frame defined by the RF

pulses, the Hamiltonian can be divided as follows:

Hint (t) = Hs (t) + (t) + ts (t)
(5-1)

= 8s (t)0(t)t) + 8, (t)i• (t) + djs (t) .2i, (t)ý, (t),

where the angular momentum operators A, acquire time-dependence via the

relationship:

A(t) = U (t, 0)A U (t,0). (5-2)

The pulses applied on the S spin channel act only on S_ in the toggling frame,

while I, (t) acquires its time-dependence from the RF pulses applied near the

I spin Larmor frequency. Using the Fourier expansions of the spatial

prefactors, the AHT calculation results in the following effective Hamiltonian:

2 2
(5-3)

1 1-
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where 6, [0] is the isotropic chemical shift (i.e. the frequency shift of the

transmitter from resonance), and dis is the effective dipolar coupling

constant, which depends on the crystallite orientation via (Os, Is):

- = - ý (o A f y a) 3-4)Is 32 4 sin(20s)sin(Os). (5-

Here, the angular momentum operators of the I spin have been rearranged in

order to simplify further calculations according to the following unitary

transformation: Ix, = 1/2 {I, - Iy, I,, = , I, = 1/-42 {I + I,}.

Although the AHT approximation has been applied to evaluation of the

effective dipolar coupling [1, 14], the disappearance of the I spin chemical

shift anisotropy (CSA) from the effective Hamiltonian is an exact result for 8-

function pulses, since the I spin chemical shift commutes with the other

terms in the spin Hamiltonian during the complete rotor periods placed

between the I spin pulses. Likewise, the S spin chemical shift Hs (t) always

commutes with the rest of the Hamiltonian and therefore cancels entirely

from the dipolar dephasing dynamics. With strong RF pulses, large chemical

shift anisotropies are therefore not expected to impair the measurement of

weak dipole-dipole couplings, even in the case of 31p nuclei, where the

magnitude of the CSA can exceed 500 ppm [24].

In REDOR experiments, 7c pulse sequences with various timings are

applied to both the S and I spins in order to spoil the rotational refocusing of

the dipolar coupling [11]. In a toggling frame defined by the n pulses, the

chemical shift term of the I spin also commutes with the heteronuclear

coupling at all times and consequently does not influence the dynamics of S

spin evolution. Therefore, REDOR experiments are not spectrally selective.
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In the simple case where one n pulse is applied per rotor period to each spin,

and the S and I spin pulses are placed completely out of phase, the effective

Hamiltonian for REDOR dephasing adopts the simple form [25]:

fl 0 = Js -2I , S. (5-5)

In the frequency-selective extensions presented here, the effective dipolar

coupling is scaled down by 1/V-2 relative to the interaction recovered in

REDOR experiments, because the dipolar interaction is averaged about two

orthogonal directions in spin space.

Since the transformed operators I,, and Ix, are orthogonal, the

expression given by Eq. (5-3) is identical to the Hamiltonian which describes

heteronuclear spin decoupling with a single phase RF field. Under the

influence of the effective Hamiltonian, the transverse magnetization of the S

spin evolves according to the following expression, which is valid for

synchronous sampling at times t = n c:

(SX(t))= A [0+ cos 2 rr/ [0S]+ t . (5-6)

At exact resonance, where 6, [0] = 0, the dipolar dephasing trajectory

proceeds under a scaled dipole-dipole coupling, as in REDOR experiments:

(S (t)) = cos -2 dIst . (5-7)

In the spin dynamics, 6S [0] plays the role of the decoupling field. In the limit

where 65 [0] greatly exceeds the dipolar coupling ~s, the dephasing
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trajectory is quenched, and (Sx (t)) = 1 at all times. More generally, the

selectivity of the pulse sequence is determined by the magnitude of dipolar

constant dI.

With the compensated version of the frequency-selective sequence shown

in Figure (5-2), the effective Hamiltonian is modified somewhat:

f(o) 1 2

=n bS[0]I +- d4.2IxSz. (5-8)3 3

The dipolar coupling is scaled down by 2/3 in this case, which is slightly

smaller than the scaling factor of 1/-2 recovered with the first sequence.

The effective frequency offset is reduced even further. The smaller resonance

offset is of possible advantage in observing weak dipolar couplings because

the frequency dispersion from inhomogeneous line-broadening is reduced,

and consequently does not promote undesirable quenching of the dephasing

effect in the neighborhood of resonance.

The compensated version of the sequence also provides a simple means

of time-reversing a dipolar dephasing trajectory. With phase reversal of all

pulses on the I spin channel, the effective dipolar coupling constant

appearing in Eq. (5-8) is inverted in sign, i. e. ds - -ds. Therefore, a rotor-

synchronized interval of dephasing, followed by a similar period where the

phases of all the I spin pulses are rotated by n, refocuses the formation of

non-observable two spin coherences from the S spin magnetization, resulting

in a complete echo of the signal.
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III. Dipolar Dephasing Experiments

Figure (5-3) demonstrates the dephasing trajectories observed in

polycrystalline 2- 13C- 15N-glycine with the basic pulse sequence of Figure (5-

1). For comparison, the REDOR dephasing curve at resonance, obtained by

changing the I spin pulse lengths according to n/2 -4 n, is also shown,

illustrating the somewhat faster dephasing trajectory obtained with n pulses.

The directly bonded spin pair has a dipolar coupling constant of -950 Hz,

corresponding to an internuclear distance of 1.48 A according to neutron

diffraction [26]. The signal trajectory is renormalized with respect to the

signal decay observed without pulses on the I spin channel (15N in this

example) [2]. In this way, the influence of other contributions to the signal

decay is removed. On resonance, a scaled REDOR dephasing trajectory is

observed with the frequency-selective sequence. In both cases, the signal

disappears at long times because of the inhomogeneous distribution of

crystallite orientations, and therefore dipolar couplings, present in a powder

sample. Off resonance, the quenching of the dipolar recoupling effect is

demonstrated.

The simulations involve exact numerical calculation of the evolution of

the S spin transverse magnetization in the two spin system, including the

effect of finite pulses. However, even with the relatively weak RF pulses

employed here, the finite pulse effect is insignificant, and simulations with 6-

fimction pulses yield the same results as the finite pulse calculations within

±_: 0.02, where the initial magnetization is defined as unity. Although the

agreement between the experiments and simulations is quite good, the AHT

trajectories differ somewhat from the exact results because the cycle time of

two rotor periods (830 ms at 2.41 kHz spinning speed) is not extremely short
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compared to the inverse of the 950 Hz coupling strength, and consequently

higher order terms in the Magnus expansion make a significant contribution.

In contrast, the AHT result for REDOR in Eq. (5-5) is exact with 8-function

pulses because the toggling frame Hamiltonian always commutes with itself

at different times, and the trajectories predicted by AHT and the numerical

calculations are therefore in close agreement. In both cases, the finite widths

of the pulses have little effect and can be neglected.

Experimental Procedures. All of the results obtained in this chapter

were obtained on a 7.4 T home-built NMR spectrometer (79.9 MHz for 13C).

The sample discussed here is 2- 13C- 15N-glycine, 99% enriched in both

isotopes. The experiment was conducted with a spinning speed of 2.410 kHz

using an home-built triple resonance probe with a commercially available 5

mm double bearing MAS assembly (Doty Scientific Inc., Columbia, SC). The

n/2 pulse lengths were 3.1 ps for 1H (with the corresponding decoupling

power strength), 4.8 gs for 13C, and 5.4 js for 15N, and the trajectory was

sampled every two rotor periods. Rotor-synchronization was maintained

within ± 5 Hz by means of an home-built spinning speed controller.
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Figure (5-3). Magnetization dephasing trajectories of the 13C (S spin): (a) on

and off of resonance (by 1 kHz) on the 15N (I spin) RF channel for 2- 13C-15N-

glycine; (b) comparison of the basic frequency-selective sequence with the

analogous non-selective pulse scheme obtaining by modifying the I spin

pulses according to n/2 - n, with the 15N on resonance. The experimental

trajectories, numerical simulations with finite pulses, and the dephasing

curves predicted by AHT are shown. Numerical calculations with delta-

function pulses (i. e. infinitely short and strong for a given total flip angle)

yield imperceptibly different results from those obtained with finite pulses in

the case shown here.
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A second example is the case of 1-13C- 15N-glycine, where the dipolar

coupling is weaker (i. e. -200 Hz coupling constant corresponding to 2.49 A
[26]). In Figure (5-4), several dephasing trajectories obtained with the

compensated sequence are shown with increasing I spin resonance offsets. At

resonance, and even more so in the immediate neighborhood of resonance,

there are some discrepancies between the simulations and experiments.

These inconsistencies appear to arise from incoherence in the evolution of the

spin system. In addition to T1 and T2 relaxation, random fluctuations in the

rotor phase, the RF excitation, and the synchronization between them

contribute possible sources of coherence decay in the two spin system.

Especially in the case of protonated nuclei, insufficient proton decoupling is

another major source of signal losses.

With the compensated FDR sequence applied on resonance, the spin

trajectory proceeds with exchange between the S spin magnetization and two

spin coherence according to the following approximate expression:

p(t)= Sx cos{ .2ldist +2SIx sin{ Y 27Cdist. (5-9)

With 8-function pulses, the exact trajectory involves at most the four

coherences: S,, 2SI,,, 2SyI,, and 2SyI. In the current example, finite pulse

simulations predict the refocusing of the S spin magnetization within 2%

when 12 ms of dephasing is followed by the time reversal sequence for

another period of 12 ms. However, in the experiment, 12% of the echo

intensity is lost following the complete 24 ms period. This signal loss is

straightforward to treat with the adoption of an exponential decay model.

In the usual way [2, 10], the experimental background decay of the S

spin magnetization is eliminated by renormalization of the signal with the
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reference intensity obtained without pulses applied to the 15N spin [2]. The

dephasing function which is plotted to reveal the dipolar evolution consists of

S / SO where S is the signal with I spin pulses, and So is the signal obtained

without I spin pulses. Although this approach accounts for the inevitable loss

of S spin magnetization during the n pulse train, it fails to include the

differential rates of decay among the various spin coherences, which do not

cancel from the spin dynamics.

With a single parameter F to describe the differential decay rates of the

two spin coherences, 2SyI,, 2SI,, and 2SyI, relative to the single spin

coherence Sx, the 8-function simulations yield good agreement with the

experimental results acquired with several offsets of the 15N frequency from

resonance. The dipole-dipole coupling constant of -195 Hz (corresponding to

an internuclear distance of 2.51 A) matches the results better than the

neutron diffraction value of -200 Hz. In the simulations, the choice of

dephasing constant F = 25 Hz leads to recovery of only 81% of the echo

intensity after 24 ms in a simulation where 12 ms of dephasing is followed by

12 ms of time reversal refocusing. The influence of the incoherence

parameter F on the results is greatest for small departures from resonance,

because at those values there is considerable formation of two spin coherence

during the trajectory, followed by its partial refocusing at longer times.

Consequently, the faster decay rates of the two spin coherences compared to

the S spin magnetization has the largest impact for these trajectories.

Similar considerations are possibly of significance in the measurement of

extremely weak dipole-dipole couplings (i. e. approximately 20-100 Hz) using

REDOR dephasing experiments, where distortions in the trajectory have

been observed at long times [27, 28].
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The AHT treatment becomes inappropriate for the case of large

resonance offsets. Although it properly predicts the quenching of the

dephasing trajectory with increasing offset, it fails to predict the harmonics

which are observed with the frequency-selective sequence. Specifically, with

the basic sequence, where full rotor periods of evolution are placed between

the pulses, trajectories for which the resonance offset is any multiple of the

spinning frequency, 3, [0] = mvR, are indistinguishable from the behavior on

resonance. For the sequence in Figure (5-2), two rotor periods of chemical

shift evolution are required in order to achieve favorable tolerance to RF

pulse errors; therefore, harmonic behavior is observed at all frequencies

which satisfy the condition 3i [0] =- 12 mR. Alternative trial compensation

schemes employing at most one rotor period of free evolution under the

frequency offset were unfortunately found to be susceptible to RF

inhomogeneity.
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Figure (5-4). Dipolar dephasing trajectories with 13C observation in 1-13C-

15N-glycine. The experimental results and the corresponding 8-function

pulse simulations with and without the differential decay parameter

F = 25 Hz for the two spin coherences are shown. The influence of finite

pulse lengths is again negligible in this example. The O parameter indicates

the offsets of the RF transmitter on the 15N channel from resonance.
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For the application of recoupling techniques to several spins, a simple

test case is the dipeptide glycylglycine, 13C-labeled at the 1- and 4-positions

and 15N-labeled at both the N terminus and the peptide bond. Using

frequency-selective dipolar dephasing experiments, the couplings of the 13C

spins to each 15N can be observed separately. A schematic representation of

the four spin system with the relevant heteronuclear interatomic distances is

shown in Figure (5-5). The frequencies of the 13C and 15N nuclei are well-

resolved, with the latter separated by 76.1 ppm, i. e. 2450 Hz at 32.2 MHz

Larmor frequency for 15N. Therefore, the FDR approach can be used to

observe dipolar dephasing trajectories independently to each 15N nucleus.

Figure (5-6) provides a demonstration of selective dephasing within the

multiple spin environment. With the selection of the NH resonance in the

peptide bond, the recoupling effect between the directly bonded 15N-13C pair

with dipolar coupling strength -950 Hz is quenched while the 13CH 2

dephasing trajectory proceeds according to the weaker dipolar coupling of

-225 Hz, the known value from its structure determination by X-ray [29] and

neutron diffraction [30]. At the same time, the 13CO2 proceeds according to

its -205 Hz interaction with the NH spin. With the selection of the NH3

group, it appears that 13CO2 dephasing occurs selectively according to its

very weak dipole-dipole coupling of -20 Hz to the N-terminus. However, at

least some of the dephasing may result from imperfect quenching of the

larger interaction from RF pulse and rotor synchronization errors. Further

experiments with shorter pulse widths and improved spinning speed control

will resolve the extent to which large interactions can be suppressed in

practice.

Because of the relatively low RF field amplitudes employed in this

experiment, the compensated sequence is employed in order to minimize
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resonance offset effects and phase transients, and the dephasing trajectory is

sampled every 12 rotor cycles. The trajectories are calculated with a three

spin finite pulse simulation. Since there are five intermolecular distances

involving the 13CO 2 and 13CH 2 resonances which are < 5.4 A, a simulated

curve which is scaled according to the additional couplings is also shown.

Here, the finite pulse widths affect the trajectories obtained with weak RF

fields somewhat, while the 15N-15N (26 Hz) and 13C-13C (80 Hz) homonuclear

couplings are too small to influence the results significantly. More generally,

large homonuclear interactions, especially among the non-observed spins, are

expected to perturb the results, most notably when the chemical shift

differences between the interacting homonuclear spins nearly satisfy the

rotational resonance condition [9].

Sample Preparation. The polycrystalline 1-13C-15N-glycine (Cambridge

Isotopes Inc., Cambridge, MA) sample, 99% enriched in both isotopes, was

recrystallized from deionized water with ten-fold dilution in natural

abundance material. The polycrystalline sample of 1,4-13C-1,2-15N-

glycylglycine hydrochloride monohydrate was synthesized and kindly

provided by Raul Zambrano of Prof. P. Landsbury's group at MIT, and was

also recrystallized from deionized water with ten-fold dilution in natural

abundance material and packed into a 7 mm sapphire rotor (Doty Scientific,

Columbia, SC) for magic angle spinning. Dilution of the labeled material

minimizes the influence of intermolecular couplings on the experimental

results.

NMR Experiments. In both the glycine and glycylglycine experiments,

the compensated sequence in Figure (5-2) was applied with sampling every

twelve rotor cycles. The glycine experiment was carried out at 4000 + 3 Hz

spinning frequency, and the glycylglycine trajectories at 3300 ± 5 Hz, using a
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7 mm double bearing spinner from Doty Scientific. In the two spin glycine

experiments, the pulse lengths employed were 3.3 gs 900 for 1H, 14.0 js 1800

for 13C, and 17.6 ps 1800 for 15N. However, in order to avoid signal losses

from insufficient proton decoupling, weaker pulses were employed on the

dilute spins in the glycylglycine dephasing experiments: 3.6 tps 900 for 1H,

20.4 Rs 1800 for 13C, and 20.4 jis 180' for 15N.

Numerical Simulations. The two spin 8-function simulations for 1-13GC-

15N-glycine include the decay of all two spin coherences relative to the S spin

magnetization explicitly with the general computational approach described

in the first chapter. The dipole-dipole coupling constant of-195 Hz with

F = 25 Hz fits the data better than the crystal value of -200 Hz, implying an

internuclear distance which is too long by 1%, i. e. 0.02 A. Similar

discrepancies have been observed in TEDOR [7, 311, and these have been

attributed to thermal motions [32].

A three spin finite pulse simulation which does not include coherence

decay is used for the glycylglycine experiment. With weak pulses, the CSA

tensors of the NH and CO2 nuclei influence the results slightly, and they are

included in the calculations with reasonable estimates of all tensor

orientations. Relative to CO 2, there are intermolecular interactions to NH3

groups with interatomic separations: 5.44, 5.11, 5.00, 5.24, and 3.79 A in the

X-ray structure. Although they are only 10% populated with the 15N label in

this sample, they lead in principle to an approximately 127% additional

dephasing at short times, where a second moment expansion is applicable [2].

The "corrected simulation" points simply involve this scaling of the extent of

dipolar dephasing, giving a more realistic trajectory for the diluted sample.

The degree of observed experimental decay at 21.8 ms is overestimated by

33% for the 5.41 A distance, implying a 5% error in the interatomic
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separation compared to the corrected simulation, although some portion of

the dephasing is possibly from the larger coupling.

The simulation results are usually converged with approximately _ 5000

crystallite orientations and forty time points per rotor period.
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Figure (5-5). Schematic diagram of the glycylglycine molecule with the

relevant heteronuclear internuclear distances shown. The atoms marked

with asterices indicate the 13C and 15N labeled nuclei in the sample.
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Figure (5-6). Glycylglycine dephasing trajectories with the compensated FDR

sequence: (a) 13CO2 results, (b) 13CH 2 results. The selective dipolar

recoupling to more weakly coupled resonances can be observed with

frequency-resolved 15N peaks. Squares indicate results obtained with the

15N transmitter set on resonance with the 15NH3 peak, which is shifted from

the 15NH resonance by 2.45 kHz. The circles indicate the corresponding

results with frequency selection of the NH group. Open markers represent

the simulated dephasing trajectories, which generally agree well the

experimental data.
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IV. Application to Static Solids

The basic scheme for the frequency-selective multiple pulse analogue to

the SEDOR experiment is shown in Figure (5-7). In MAS experiments, the

pulses applied to the two RF channels must be out of phase with each other

in order to hinder the rotational refocusing of the spin coherences with the

greatest efficiency. In stark contrast, the opposite arrangement of the

relative phases of the pulses is the most effective timing scheme in static (i. e.

non-spinning) experiments. While an echo is formed with respect to the

chemical shift evolution of the observed S spin, the simultaneous application

of RF pulses to the I and S spins leads to dipolar dephasing [16].

In the static case, with the definition of the I spin shift from resonance

S,, the time-independent internal spin Hamiltonian has the form:

Hint = S•I + ds 1 - 3 C s 2 o 2IzS , (5-10)

where d1s is the dipolar coupling constant and 0 is the angle between the

internuclear vector and the magnetic field. Again, the S spin chemical shift

is neglected because it commutes at all times with the rest of the

Hamiltonian during the application of n pulses, and in any case it is averaged

out by the overall sequence, which yields an effective Hamiltonian closely

paralleling that of Eq. (5-3):

1 1 1- 3 cos 2  (5-11)
S=nt 2 Si xI + dis • 2IzS . (5-11)
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In this case, there is no special synchronization condition to fulfill. However,

it is desirable to make the cycle time relatively short compared to the inverse

of the size the dipolar interaction in order to maximize the validity of the

AHT approximation used to derive Eq. (5-11). In the static application as

well, dipolar dephasing occurs at the harmonic conditions S, = 2nvc, with the

definition of the cycling rate vc = 1/ rc, but this feature is minimized with the

choice of a sufficiently short rc. On the other hand, the accumulation of

finite pulse effects places practical restrictions on Tc, since the RF duty cycle

(which is the fraction of time during which RF power is applied) increases

with shorter Tc .

Although the approach introduced here is quite generally applicable to

systems where the I and S spin systems have relatively narrow linewidths,

the example discussed here involves an inhomogeneously broadened two spin

system, namely, the 13C- 15N spin pair in the peptide bond of glycylglycine.

In Figure (5-8), the plane of the peptide bond is illustrated with the

orientations of the all and a22 directions of the principal axis system (PAS) of

the 13C nucleus, whose transverse magnetization is observed in the

experiment. These axes lie in the plane with the a33 direction oriented in the

perpendicular direction. For the 15N spin, the all and a 22 directions are

nearly degenerate and quite difficult to resolve. However, the a 33 direction of

the 15N CSA tensor and the orientation of the 13C tensor in the molecular

reference frame are known from single crystal studies [33, 34].

In many cases, however, the relationship between the CSA and

molecular frames cannot be measured directly because of the unavailability of

large single crystals. Still, general principles have been developed based on

numerous single crystal studies which have established the probable

relationship between the CSA tensor and its local electronic environment in
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many cases [20, 24]. The most likely orientations of several other carbonyl

tensors in peptide bonds have been determined by correlating them to the

13C-15N internuclear vector through the study of static powder spectra.

These NMR spectra manifest both the 13C CSA interaction and the 13C- 15N

dipole-dipole coupling [35]. Further information about molecular structure

can be obtained via correlation of the CSA tensors of both spins. For

example, with the assumption that the CSA tensors are determined by their

local electronic environments, the relative orientation of the 13C and 15N

principal axis systems reflects the conformation of the peptide bond.

In a disordered system such as a polycrystalline sample, all possible

molecular orientations are represented, and the chemical shift spectrum of

the 15N resonance exhibits a broad inhomogeneous lineshape. In Figure (5-

9), simulated powder spectra of glycylglycine are shown with and without the

dipole-dipole coupling to the 13C spin. In the frequency-selective SEDOR

experiment, the transmitter frequency is placed in the neighborhood of the

spectrum corresponding to orientations where the a33 direction of the 15N

CSA points along the magnetic field. At sufficiently long times, dipolar

dephasing proceeds preferentially in portions of the 13C CSA lineshape

corresponding to tensor orientations which are in turn correlated with the

selected region of the 15N CSA. Although the strength of the dipolar

coupling, which is also orientation-dependent, plays an important role in the

dephasing trajectory, the behavior at long times (i. e. greater than the inverse

of dipolar coupling constant) is dominated by the frequency offset effect. The

net result is that the 13C lineshape after dephasing sensitively reflects the

relative orientations of the 13C and 15N CSA tensors.

In Figure (5-10), this effect is demonstrated. Since the a 33 direction of

the 15N PAS lies between the all and a 22 directions of the 13C CSA tensor,
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spectral intensity develops selectively in the 13C dephasing difference NMR

spectrum in the corresponding region. The difference spectrum between the

static echo signal with and without the application of pulses to the 15N

channel also exhibits limited amplitude near a 33. This intensity, however,

arises from the harmonic dephasing effect. Since the dipolar evolution is

unquenched at all 15N frequencies which are multiples of 5 kHz (i. e. twice

the cycling rate of the pulse sequence), dephasing also occurs near ca3 to a

limited degree. Simulations predict a reduction of dephasing in this region

with a faster sequence. Although an uncompensated pulse scheme is applied

in this experiment and the signal to noise ratio is quite poor, the difference

lineshape agrees reasonably well with the simulation. More generally,

numerical simulations reveal that the details of the powder difference

lineshape are highly sensitive to small changes in the relative tensor

orientations.

Experimental Techniques. The polycrystalline sample of 3- 13C-15NH-

glycylglycine hydrochloride monohydrate, labeled at the peptide bond, is

diluted to 10% in natural abundance material. This experiment was carried

out at 317 MHz for protons using an home-built triple resonance probe tuned

to a single coil. The n/r2 pulse lengths were 6.0 js for 1H, 13.3 ps for 13C, and

12.7 ps for 15N. The 13C n pulses were phase-alternated according to the XY-

16 scheme. The total dephasing time is 3.2 ms (>> longer than the inverse of

1310 Hz, the dipolar coupling constant, which corresponds to an internuclear

separation of 1.33 A [29]) with ~c = 400 ps.

Lineshape Simulations. The lineshape simulations consist of the exact

propagation of the 13C magnetization in the two spin system for the 3.2 ms

mixing period with finite pulses. Because of the broad character of the

inhomogeneous lineshapes, a total of 500,000 crystallite orientations are
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included in the calculations, and 500 Hz of Lorenztian line-broadening is

applied to the results for 13C and 250 Hz to the 15N simulations. All of the

CSA and dipole-dipole orientational parameters are available from the

literature [33, 34]: the (an, a 22, ý 33 ) principal values of the 13C CSA tensor

are (-115.6,-48.6,+40.6) ppm with respect to benzene, and

(+33.0, +43.6, +188.6) ppm for the 15N tensor relative to saturated aqueous
15NH 4C1 solution.
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Figure (5-7). Basic pulse sequence for the frequency-selective dipolar

dephasing experiment in non-spinning samples. The spin echo signal of the

observed S spins (e. g. 13C) dephases under the the influence of pairs of rd/2

pulses applied to non-observed I spins (e. g. 15N), but here the pulses are

applied simultaneously. Although only the dilute spin channels are shown,

cross polarization and proton decoupling are also applied in the experiment

discussed here, so a triple resonance probe is again required. The pulse cycle

time is twice the separation period between application of the pulses:

rc = 2r,. Harmonic recoupling occurs when 2•5, = 2nn, which implies

8, = 2nvc .
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Figure (5-8). Schematic diagram of the peptide bond in glycylglycine where

the directions of the CSA directions of the 13C and 15N nuclei in the plane are

illustrated. The a33 direction of the 13C tensor is close to perpendicular to the

planar peptide bond, but the all and a22 directions of the 15N tensor are not

resolved because of their near degeneracy.
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Figure (5-9). Lineshape simulations of the (a) 13C and (b) 15N NMR spectra

of polycrystalline glycylglycine selectively labeled at the peptide bond.

Because the 15N CSA interaction has a narrower inhomogeneous distribution

averaged over the powder sample, the heteronuclear dipole-dipole coupling

has a larger influence on the 15N lineshape than on the 13C spectrum. The

15N lineshape also exhibits near axial symmetry arising from the

approximate degeneracy of the all and a22 directions of its chemical shift

tensor.
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Figure (5-10). Experimental and simulated dephasing difference lineshape of

13C after 3.2 ms mixing with the frequency-selective sequence applied at the
15N frequency corresponding to its a33 CSA orientation. The experimental

spectrum is scaled to a similar amplitude as the simulated lineshape, and the

simulated static 13C spectrum without dephasing is also provided for

comparison. Dipolar dephasing is selectively enhanced in the region between

all and a 22 of the 13C CSA tensor and likewise inhibited between a 22 and

a33.
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V. Conclusion

In cases where frequency-selectivity is desirable, the approach described

here is a useful complement to REDOR and SEDOR experiments. One

application of frequency-selective recoupling is the simultaneous

measurement of internuclear distances between an observed spin and several

non-observed spins in samples with multiple isotope labels. A related

possibility is the de-selection of unwanted dipolar couplings arising from the

natural abundance background in REDOR experiments [2, 12]. A second

application, demonstrated here with a static sample, is the observation of the

heteronuclear coupling in a spin pair with the selection of one portion of an

inhomogeneous lineshape. For application to very broad lineshapes, selective

SEDOR experiments have already been performed with weak refocusing

pulses on the non-observed spin [36]. Although the correlation of frequency

and dipolar coupling strength is also possible using two-dimensional

techniques in the case of a spin pair, the multiple pulse approach is one-

dimensional [37] and therefore provides an efficient means of obtaining

information selectively in systems exhibiting a poor signal to noise ratio. In

addition, since the FDR approach is based upon an Average Hamiltonian

argument, it is straightforwardly applicable to heteronuclear coherence

transfer methods such as TEDOR [7, 31].

In the heteronuclear dephasing experiments discussed here (couplings

> 200 Hz), the influence of finite pulse widths on the observed trajectories is

quite small with RF fields Ž 30 kHz, and calculations based on 8-function

pulses are often sufficient for REDOR and the frequency-selective sequences.

Furthermore, in the case of REDOR experiments, since the AHT approach is

exact with 8-function pulses [1], the universal form of the dephasing curve
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obtained from an isotropic distribution of internuclear vector orientations [2,

11] is usually sufficient. However, it appears that differences in the effective

rates of decay between the single spin and the two spin coherences can have a

significant influence on the observed dephasing trajectories. A single

differential decay parameter has been introduced here in order to interpret

the frequency-selective results for a variety of resonance offsets.

In the multiple spin case, experiments with distinct resonances in both

the observed and non-observed spin systems provide a route to several

internuclear distances within a single sample. For example, in the case of a

system containing two S spins and two I spins, a combination of frequency-

selective heteronuclear measurements, along with separate homonuclear

recoupling experiments, could yield as many as six distance constraints to aid

in the determination of molecular structure. To date, most recoupling

experiments have involved the accurate measurement of the dipole-dipole

coupling in a single spin pair [1]. In future years, however, it seems likely

that frequency-selective approaches, including the experiment presented here

and the rotational resonance method, will be important means of obtaining a

larger number of internuclear distances from the same sample, which will

lead to the much more efficient acquisition of structural information from

solid state NMR experiments.
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Chapter 6.

Improved Heteronuclear Decoupling in Rotating Solids
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I. Introduction

In the presence of a sufficiently strong proton decoupling field, the

resonance offset effect is the principal mechanism of 1H line-broadening in

solid state magic angle spinning NMR spectra of dilute spins, such as 13C,
15N, and 31p [1]. This is the case even though the 1H offsets from exact

resonance are small compared to any reasonable RF field amplitude. In

rotating solids, the frequency shift of the decoupling field from resonance

originates from two sources. One is the dispersion of the isotropic chemical

shifts in the proton spectrum (< 10 ppm), and this contribution represents

the fundamental difficulty encountered in solution NMR spectroscopy.

However, a crystallite in a powdered sample which is spinning about the

magic angle also experiences a range of proton frequencies which are sampled

over the course of a rotor cycle. As a consequence, it is impossible to set the

1H RF transmitter precisely "on resonance" even for an isolated proton [2].

In addition to resonance offsets, a particularly important consideration

in multiple pulse decoupling is the necessity of minimizing undesirable

"cycling sideband" intensities that arise from the application of an RF field

which is not large relative to the spin-spin couplings in the system [3].

Specifically, under conditions of low power, undesirable artifactual spectral

lines of low intensity appear along the baseline in the NMR spectrum. The

cycling sideband problem is exacerbated further by destructive interference

between the pulse sequence and the amplitude modulation of the interactions

imposed by sample rotation in MAS experiments. These effects are

particularly pronounced in the case of relatively long decoupling sequences

based on composite pulses, such as the COMARO-2 sequence designed for

liquid crystal applications [4-6], as well as many other sequences employed in
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solution spectroscopy [7-9], such as WALTZ-16 [10]. In the limit of high

power relative to the spin-spin coupling, these sequences retain their

decoupling efficiency even when the resonance offset is as large as a

significant fraction of the RF field strength; for example, in the case of

COMARO-2, the bandwidth is approximately one half of the RF amplitude in

frequency units [6]. Theoretical efforts have focused on increasing resonance

offset compensation in order to facilitate the use of lower RF field strengths

and thereby minimize sample heating in solution applications [8, 11, 12].

The development of these broad-banded methods has been reviewed by Shaka

and Keeler [3].

However, with the typical proton RF field amplitudes (60-100 kHz)

which are employed in MAS experiments, the cycle time of many composite

pulse sequences becomes comparable to the rotor period, leading to

degradation of the decoupling efficiency. Even without the complicating

factor of sample spinning, the association between the cycling sideband

problem and increasing resonance offset compensation is an important

consideration in the development of ultra-high bandwidth decoupling

techniques [9, 13]. Fortunately, the resonance offset effect is relatively small

under ordinary MAS conditions, since large decoupling fields (greater than 40

kHz) are necessary to suppress the dipolar couplings between 1H and 13C

nuclei, which are in the range of 10-40 kHz for directly bonded spins. A

method with smaller bandwidth enhancement than the composite pulse

approaches can therefore lead to significant improvement in the observed

linewidths. A general approach which compensates for small resonance

offsets, but which is very economical with the available decoupling power, is

transverse phase modulation in the rotating frame. This approach was first

introduced by Anderson and co-workers [14, 15], but was later abandoned
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because its range of resonance offset compensation is insufficent for modern

solution NMR applications.

More recently, pronounced difficulties in applying proton decoupling to

paramagnetic samples, where protons experience a large dispersion of

inhomogeneous local magnetic fields, has stimulated great interest in the

development of relatively simple excitations which reduce the resonance

offset problem in MAS experiments [16-18]. In these cases, the line-

broadening can be so serious that even relatively inefficient sequences often

yield significant improvements in observed linewidths over CW decoupling.

Likewise, in the case of diamagnetic solids, interest in the decoupling

problem has arisen from the deterioriating quality of CW decoupling observed

in the regime of high spinning speeds [19-21], as well as the increasing

significance of the resonance offset effect in solid state experiments which are

performed in ever increasing magnetic fields [22]. For the most part, the line-

broadening observed at high spinning speeds appears to be attributable to

the reduction of the homonuclear proton linewidth under fast spinning [19,

23], which attenuates the favorable line-narrowing influence, or "self-

decoupling" effect, exerted by the homonuclear couplings among protons [24,

25].

The linewidths obtained in diamagnetic solids with CW decoupling can

be improved when the influence of small resonance offsets is compensated

while at the same time the available decoupling power is applied with the

greatest possible efficiency. The development of undesirable dynamical

artifacts associated with sample spinning and broad-banded sequences must

be suppressed. Since these objectives are somewhat conflicting, it appears

that the ideal decoupling sequence should provide a limited degree of offset

compensation, but no more than necessary, and simultaneously perform well
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with large heteronuclear couplings under sample rotation. An additional

consideration in designing solid state decoupling sequences is the role of

homonuclear couplings among protons. The decoupling pulse sequence must

perform well in the presence of a network of strong homonuclear couplings,

and in order to compete with the results obtained with CW decoupling -

whose performance benefits from the "self-decoupling" effect provided by

homonuclear interactions [24, 25] - the ideal sequence should also exploit

this line-narrowing influence, rather than eliminate it via coherent

averaging.

In order to improve upon CW decoupling, a flexible implementation of

the coherent phase modulation approach involving two pulses is introduced

here, which generally requires non-orthogonal phase shifts and approximates

the type of excitation first introduced by Anderson and Freeman [14] and

more recently analyzed by Shaka and Keeler [3]. This approach improves the

dipolar linewidths of ordinary diamagnetic solids in powdered samples at

high magnetic field, and it performs well up to a spinning frequency of at

least 12 kHz. Related multiple-frequency excitation techniques have already

been exhibited improvements in the MAS spectra of paramagnetic samples

[18]. The two pulse phase modulation (TPPM) approach presented here

reduces the degradation of CW decoupling in 13C NMR spectra from

resonance offsets present in the system, including the 1H chemical shift

anisotropy, as well as other fields which resemble the Zeeman term in the

spin Hamiltonian, such as magnetic susceptibility fields and heteronuclear

couplings to additional nuclei, such 15N and 14N [1, 2].

In general, these local fields are anisotropic and oscillatory under

mechanical rotation. In this chapter, several theoretical aspects of phase

modulation decoupling under strong interactions and MAS are addressed,
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including the impact of RF inhomogeneity, and calculations of the dynamical

evolution of a model crystallite of the CH 2 group are presented in order to

illustrate the role of oscillatory interactions. Experimental MAS spectra of

several polycrystalline model compounds demonstrate that the linewidth

improvements are quite general, even in compounds with large homonuclear

1H-1H interactions. For solid state experiments, where the greatest

difficulties have been the poor spectral resolution and signal-to-noise ratio

[25], the improved 13C lineshapes presented here provide significant

enhancements in both resolution and sensitivity.

II. Experimental Results with TPPM Decoupling

The TPPM decoupling sequence consists of the following: application of

RF pulses of length z, alternating between two phases separated by an angle

0. In Figure (6-1), the basic sequences is illustrated within the usual context

of a double resonance CPMAS experiment.

All of the spectra presented in this chapter were acquired at room

temperature on an home-built solid state NMR spectrometer operating at 397

MHz for protons. The transmitter, provided by Dr. David Ruben and co-

workers, has digital phase, amplitude, and frequency-switching capabilities,

with a maximum 50 ns transient switching period between the pulses, during

which power was applied continuously. In these experiments, windowless

application of the pulse sequence is essential. The double resonance probe is

also home-built and employs a commercially available 5 mm double bearing

spinner assembly (Doty Scientific, Columbia, SC). The RF inhomogeneity

experienced by the sample is in the range of 5% to 10%.
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Figure (6-2) demonstrates the improvement which is obtained in the

case of polycrystalline tyrosine hydrochloride monohydrate spinning at 10

kHz with an RF field amplitude of 75.8 kHz. The linewidths of the a- (85 to

52 Hz) and p-13C (120 to 48 Hz) resonances exhibit especially pronounced

narrowing under the phase-modulated sequence. The transmitter frequency

is optimized with respect to the lineshape of the a-13C resonance (second

centerband line from the left). In the region of the ring carbon resonances,

the spectral lines corresponding to the monoprotonated carbons are improved

to a lesser degree, but their linewidths are already relatively narrow under

CW decoupling (i. e. 55-67 Hz). In fact, even the linewidths of the

unprotonated resonances are reduced significantly. The CW decoupling full

widths at half maximum (FWHM), which range from 55-120 Hz, are all

converged by application of the TPPM sequence to a minimum of 50 + 5 Hz.

Figure (6-3) demonstrates striking improvement in the resolution of the

two 13C resonances in calcium formate, which arise from the non-equivalence

of the two formate ions in the crystal structure. The spectral lines are

separated by 0.8 parts per million (ppm) [26], i. e. 80 Hz in this experiment.

In this more unusual case, CW decoupling is relatively inefficient because of

the weak intermolecular couplings among the protons in calcium formate,

which provide little assistance in quenching the heteronuclear interaction via

the "self-decoupling" effect. As a consequence, the 13C linewidths degrade

more quickly than usual with increasing spinning frequency, and

compensated methods are therefore of particular utility. In fact, Tekely et. al.

[19] have already shown that the low-frequency phase-inversion technique of

Grutzner and Santini [27] leads to substantial improvements in the

linewidths under similar conditions.
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In general, there is some optimal combination of pulse length 'r and

total modulation angle 0 to apply with the TPPM sequence, which depends

on several factors, including the MAS frequency, the RF field strength, and

the system under study. This dependence is pursued here as a function of

spinning speed for the 4-CH 2 group in 1,4-13C-2- 15N-glycylglycine

hydrochloride monohydrate (ten-fold diluted in natural abundance material)

'with an RF field of 69.4 kHz (i. e. corresponding to a 900 pulse length of 3.6

us). At 4 kHz spinning speed, Figure (6-4) illustrates the joint dependence of

the FWHM on the pulse length and phase angle in a contour plot, which

exhibits a stable global minimum in the 13C linewidth of 60 Hz. At 8 kHz

spinning speed, additional local minima are observed, but a stable global

minimum persists. Similar trends are observed for the methylene resonance

of 15N-2-13C-glycine. Figure (6-5) summarizes the enhancement in the

optimized FWMH as a function of spinning speed at the slightly higher RF

power level of 75.8 kHz. With empirical optimization, the pulse length 'r is

somewhat shorter than the flip angle n in these experiments, which is the

approximate value expected with a small modulation angle 0.

The largest improvements are found at high and low spinning speeds,

where CW decoupling performs with reduced efficiency.
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Figure (6-1). Pulse sequence for the CPMAS experiment with the addition of

phase modulation TPPM decoupling on the 1H channel. A small hatched

region of the decoupling period is expanded in order to illustrate the rapid

alternation of the phase of the RF excitation between values - / 2 and + / 2

with overall period 2 T,, which is repeated throughout the acquisition of the

FID.
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Figure (6-2). CPMAS spectra of tyrosine hydrochloride monohydrate at 10

kHz spinning with a 75.8 kHz 1H decoupling RF field (which corresponds to a

3.3 js 7d2 pulse length). The 1H transmitter frequency is optimized for the a-

13C resonance, the second centerband line from the right. A comparison is

given between the CW and TPPM results with the parameters 0 = 150 and

T, = 6.0 ps. From left to right, the nine centerband lines in the spectrum

correspond to the 0- (carbonyl), ý, 6, 6', y, 8, e', 6, 6', a, and 3-13 C resonances of

the amino acid, respectively.
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Figure (6-3). The centerbands of the CPMAS spectra of calcium formate at

10.7 kHz spinning frequency with CW and TPPM decoupling obtained using

the parameters: 0 = 750, r, = 7.5 ps. An RF field strength of 62.5 kHz (4.0 Rs

I/2 pulse length) is applied. The non-equivalent formate ions are separated

by 80 Hz in their centerband positions.
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Figure (6-4). Contour plot of the linewidths (defined as the full width at half

maximum in Hz) of the 4-CH 2 resonance of 1,4-13 C-4-1 5N-glycylglycine

hydrochloride monohydrate as a function of the pulse width (expressed in

units of flip angle in degrees) and phase modulation angle (also in degrees) at

i4 kHz spinning speed. The RF field strength is 69.4 kHz (3.6 ps r/2 pulse

length).
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Figure (6-5). (a) Plot of the FWHM of the 4-CH 2 resonance of 1,4- 13C-4- 15 N-

glycylglycine hydrochloride monohydrate as a function of spinning frequency

under CW and TPPM decoupling with optimized parameters. The RF field

strength on the 1 H channel is 75.8 kHz. Line-broadening effects other than

decoupling inefficiency lead to a linewidth of 35 + 5 Hz. (b) The

corresponding optimal pulse lengths (flip angle in degrees) and modulation

angles (also in degrees) are shown as a function of spinning speed. Although

the optimal flip angle corresponding to T, is only mildy dependent on the

spinning speed, the phase angle 0 has considerable spinning speed

dependence.
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III. Theory of Transverse Phase Modulation Decoupling

In the most general case, three complications arise in the dynamics of

heteronuclear spin decoupling in MAS experiments. First, the decoupling

field is typically less than an order of magnitude larger than the

heteronuclear coupling to be suppressed in the case of 13C atoms with

directly bonded 1H spins. Second, strong homonuclear dipolar interactions

are present among the protons in the system, and these have profound effects

on CW decoupling via the self-decoupling effect, as well as on the spin

dynamics of multiple pulse decoupling. Lastly, when MAS is employed, the

amplitude modulation of all internal interactions in the spin Hamiltonian

must be considered explicitly.

Ordinarily, the dilute spins which are observed in MAS experiments are

essentially independent while the protons form a coupled network. The

appropriate Hamiltonian for a single rare spin experiencing chemical shift

and heteronuclear interactions is the following:

Hin (t) = s (t)Sz + Dj (t) 2Sz z + 5j (t) I,j
J J

(6-1)
+ A, (t){2Iziz - xixj, - IyJlyj1,

i<j

where S, represents the a component of the angular momentum operator of

the observed spin, and I, the angular momentum operators of the abundant

spinsj (i. e. usually 1H, which are not observed but instead decoupled).

Although the chemical shift 8s (t) of the S spin generally represents the

interaction of the greatest interest to the observer, it commutes with the rest
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of the Hamiltonian of Eq. (6-1) and can therefore be omitted subsequently

from consideration of the spin decoupling dynamics [11].

The parameters Sj (t) in Eq. (6-1) represent the various inhomogeneous

local fields experienced by the protons in MAS experiments. In typical

diamagnetic solids, the local fields bj (t) are at most 5 kHz, say, with a 500

MHz magnetic field strength for protons. In contrast, the heteronuclear

couplings Dj (t) between directly bonded 13C and 1H nuclei are much larger,

on the order of 10-40 kHz, and the strongest 1H-1H couplings A, (t) are of

similar magnitude. In all cases, the spatial prefactors are time-dependent

because of sample spinning. The dipolar couplings are amplitude-modulated

at )R and 2 mR, where cOR is the spinning frequency in angular units, with

many possible relative phases among the various terms [28]. In general, the

terms j (t) also include a time-independent contribution, which defines the

shift of the transmitter from resonance with proton j.

The two pulse phase modulation scheme contributes two additional

terms to the rotating frame Hamiltonian:

H(t) = Hint (t) + vRF cos( / 2)1 x + 4(t) vRF sin(4 / 2)I, , (6-2)

where 4(t) is a square-wave function of unit amplitude which represents

phase switching with angular frequency cop = 2n / 2 T,. Here I, indicates the

total a component of the I spin angular momentum. Only terms that are

secular with respect to the dominant term vRF cos( / 2)Ix, which include the

heteronuclear couplings and resonance offsets through first order, must be

retained after averaging over the time period 1 / vRF cos(o / 2), in the limit of

a strong decoupling field strength. With the assumption of small phase

modulation angle 4, the term 4D(t) vRF sin(o / 2)1, represents a small
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transverse excitation, and it is necessary to retain only the portion of it which

is resonant with the dominant "spin lock" field vRF cos( / 2)Ix. The following

result is obtained with the additional assumption of very slow spinning

relative to the primary time scale of decoupling 1/ vRF cos(o / 2):

Heff(t) = vcos( / 2)Ix + 2 RF sin( / 2){cos(wCt)I, +sin(copt)I,)

+ 2VRF ~)2(t)+ D2(t)}Ix + 1 2)SJ(t)Dj(t). 2 SzIJ (6-3)

2 v, cos(o / 2) , vRFCOs( / 2)

- 1 E Aiij (t)M 2IxiIj - IyiIyj - IiIz}2 i~j

The separation of time scales which is assumed relative to the MAS

modulation of the spatial prefactors amounts to an adiabatic assumption

which is justified in the limit vRF cos( / 2) >> 2 vR.

The first term in Eq. (6-3) represents the dominant Zeeman-like field,

which defines the direction along which "good quantum numbers" can be

defined. In the second term, only the first Fourier coefficient of the small

excitation transverse to I x is retained, and the rotating wave which is far off

resonance with the field along I x is neglected. The third term represents a

second order shift in the main field amplitude. The fourth and most

important contribution to Eq. (6-3) corresponds to the scaled residual

coupling between the dilute spin and the protons. Although this term in the

spin Hamiltonian is linear in a small offset 3j (t) from resonance, the

homonuclear coupling contribution in the fifth term generates the well-known

self-decoupling effect, which leads to a quadratic, rather than linear,

dependence of the 13C linewidth on the offset term 38 (t) [25]. In order to

obtain further linewidth reduction, a resonance condition with respect to the
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dominant field, i. e. c, / 2i = vRF cos(O / 2), must be fulfilled. In practice, this

condition indicates that rp should be set approximately to the ir pulse length

in the regime of small 0.

To calculate the effect of the second field on the effective heteronuclear

coupling, a second rotating frame transformation is carried out in order to

eliminate the time-dependence of the transverse field, in a way similar to the

treatment discussed by Shaka and Keeler [3]. The residual spin interactions

are evaluated to lowest order after averaging over a second period

1/ vRF sin(o / 2). On longer time scales, this transformation is expected to

lead to an excellent approximation, since the final secular terms involving

Sj(t) and Dj(t) in Eq. (6-3) are quite small compared to the cycle time of

averaging. However, in the case of solids, it is also necessary to overcome the

proton-proton couplings which remain after the first rotating frame

transformation, necessitating the application of a large RF field amplitude

vRF, given that the phase angle 0 is constrained to be small by construction.

Another difficulty with the second rotating transformation is that the

secondary averaging time scale is not necessarily much shorter than the rotor

period, which calls the adiabatic assumption with respect to sample rotation

into question.

In spite of these difficulties, a second rotating frame transformation

illustrates how additional line-narrowing can be obtained [3]. Since it is

impossible to satisfy the resonance condition V, = vRF cos(o / 2)

simultaneously at all points in an inhomogeneous RF coil, there is in general

a distribution of small shifts AvRF = v, - vRF cos(o / 2) from resonance,

leading to the following effective Hamiltonian after transformation into the

second rotating frame:
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He )X S4j (t)+ D2 (t) AvH (t)W= 7 + j _+ A
S 2 v~, sin( / 2)cos( /2) vR sin( / 2)

x{ R(t +FCO /2)4 (6-4)x 6× ( / 2) D (t) -2S, Iy +1 Aj (t)012Irj j - xil -Ili, Is (6-4)

+- vRF sin( / 2)Iy.

For sufficiently large vRF,>> I 6(t)l, Dj(t), IAvRF1, according to Eq. (6-4), the

effective coupling is greatly scaled down compared to the CW decoupling

result. Although the various spatial factors remain time-dependent in the

final expression, time-independent couplings emerge from products such as

3j (t) Dj (t). Upon truncation in the second rotating frame, the homonuclear

couplings are also scaled down by an additional factor of x -1/2.

Since it is necessary to partially average the proton-proton interactions

along a new direction in the interaction frame, it is expected that the

secondary line-narrowing process is most effective in the limit of large RF

fields. However, in cases where the homonuclear couplings are weak, greater

relative improvements over CW decoupling are expected in the regime of

reduced decoupling power. Lastly, the breakdown of the adiabatic

assumption under fast spinning implies that explicit calculations are

necessary in order to assess the efficacy of line-narrowing by simple phase

modulation techniques. In the applications presented here, the characteristic

cycling frequency (2 / n) vRF sin(O / 2) in the second rotating frame is on the

order of 10-20 kHz, i. e. comparable to the oscillation frequencies imposed by

MAS, which are as great as 2 vR = 24 kHz at 12 kHz spinning speed.
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IV. Numerical Calculations with TPPM Decoupling

Because of the great complexity of the time-dependent spin system

under phase-alternated pulses, magic angle spinning, and proton-proton

interactions, a model problem is investigated here via numerical simulations

in order to understand the spin dynamics. In a rotating sample with realistic

parameters, the assumption of adiabaticity leading to Eq. (6-4) is

problematic, and the combined effects of homonuclear couplings and sample

spinning are difficult to follow analytically. The simplest model problem

which exhibits these complications is a representative CH 2 fragment. This

model has already found use in the study of CW decoupling in static single

crystals at high magnetic field [22]. An appropriate internal spin

Hamiltonian is the following:

Hint (t) = 61(t0lI1 + 52(t)Iz2 + Dj(t). 2SzIz + D2 (t). 2SzIz2

+A12 (t){ 2IzIz2 - Ix1Ix2 y- IYIy2}, (6-5)

where:

5,(t) = 1.0 cos(wRt) + 1.0 cos( 2 wRt),

2 (t)= 1.0 cos()Rt)+ 1.0 cos( 2wRt),

D (t) = 5.0 cos(oRt) + 5.0 cos( 2 wRt), (6-6)

D2 (t) = 5.0cos(wRt +7r / 2 ) + 5 .0 cos(2 (wRt+ / 2),

A.12 (t) = 10.0 cos(wt + n /4)+ 10.0 cos( 2 oRt + x / 4).

These parameters for the resonance offsets and dipolar couplings -

heteronuclear Dj (t) and homonuclear A 12 (t) - are reasonably typical of an

arbitrary methylene group crystallite orientation with a large 1H- 1H



-228-

interaction. In a real polycrystalline sample, of course, there is an isotropic

distribution of crystallite orientations to consider, in addition to many dipolar

couplings of longer range, but this simple model is sufficient to provide some

basic insights into the combined dynamics of mechanical rotation and RF

excitation.

In these calculations, the decoupling field is nominally applied at exact

resonance, so there is no time-independent contribution to the resonance

offset term. However, the anisotropic fields contribute local fields which

reduce the decoupling efficiency. In the rotating system, since it is impossible

to be at exact resonance at all times, the transmitter frequency is generally

optimized to minimize the linewidth contribution from the isotropic chemical

shifts. The free induction decay (FID) of the S spin under the Hamiltonian of

Eq. (6-5) is defined as follows:

(S, (t)) = Tr{U(t,O)p(O) U-1(t,O)S }, (6-7)

and is calculated by exact numerical evaluation of the time evolution operator

U(t, 0), followed by application to the density matrix corresponding to initial

transverse magnetization p(0) = 2S,. No synchronous relationship between

the modulations of magic angle spinning and the externally applied RF

pulses is assumed, since the experiments are in general performed

asynchronously. Consequently, the time evolution operator for the entire FID

is calculated. For sufficiently short time steps, the Hamiltonian is taken to

be time-independent, and its two 2 by 2 blocks (each corresponding to one

value of the quantum number ms where ms = ± 1/ 2), are diagonalized and

exponentiated using the Cayley-Klein parameters for the Hamiltonian

submatrices [11, 29].
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In all cases, the typical RF field amplitude vRF of 75.76 kHz

(corresponding to a 3.3 gs proton x/2 pulse length) is employed in the

calculations. The FID trajectories are shown for two spinning speeds, 2 kHz

and 10 kHz, with comparison of the results obtained at 200 and 50' phase

modulation angle 4. The pulse length r, is varied in the neighborhood of its

optimum value in order to illustrate the influence of deviations from the ideal

setting. Since an error in pulse length behaves almost in the same way as a

deviation in the RF field strength, these trajectories also illustrate the

consequences of RF inhomogeneity within this simple model. The free

induction decays for four pulse lengths r, are plotted, and the CW result is

illustrated as a solid line in Figures (6-6), (6-7), and (6-8). Since no S spin

chemical shift is included in the simulations, the oscillations in the FID are

purely the consequence of unwanted dipolar evolution arising from the

heteronuclear couplings experienced by the dilute S spin. Perfect decoupling

is therefore obtained when (Sx (t)) = 1 at all times, reflecting no apparent

influence from the protons. On the other hand, rapid oscillations in the FID

and spurious cycling behavior with large amplitude reflect poor decoupling

performance.

The simulations of the model problem are consistent with the

observation that the optimal phase modulation angle becomes more sensitive

to the spinning speed under fast MAS and that it tends to decrease at higher

spinning speeds. In the simulations shown at 2 kHz spinning speed,

illustrated in Figures (6-6) and (6-7), the time scale of FID evolution is

greatly increased compared to the CW result. With the addition of the

proton-proton interaction in Figure (6-7), a reduction in the efficiency of the

phase-modulated decoupling sequence is observed, indicating imperfect "spin

locking" of the 1H-1H coupling in the second rotating frame. Here, the most
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important effect in determining the optimal phase modulation angle 0 is the

improvement with respect to RF inhomogeneity which is achieved by using a

greater amplitude in the phase alternation. For practical applications, where

an inhomogeneous distribution of field amplitudes is present within the RF

coil, a dispersion of pulse lengths is expected within the sample. In Eq. (6-4),

the deviation from the ideal phase modulation rate plays the role of a

secondary resonance offset in the decoupling effect generated in the second

rotating frame. In direct analogy to the case of CW decoupling in the first

rotating frame, this line-broadening effect can be reduced by raising the field

strength (2 / ) vRF sin(o /2) or by employing a more homogeneous coil.

In the case of vanishing homonuclear interactions, simulations exhibit

similar behavior at 10 kHz spinning frequency. However, when the large

coupling A12 (t) is introduced, as shown in Figure (6-8), the secondary

decoupling effect becomes less stable at the larger modulation angle of 500 as

spurious oscillations develop with small deviations in the pulse length p,.

Because of the attenuation of the homonuclear interaction at higher spinning

speeds, the result obtained with the smaller phase angle of 20' is better at 10

kHz than at 2 kHz spinning frequencies, although the sensitivity to RF

inhomogeneity is somewhat increased for the same reason under rapid

sample spinning. In all cases, the 1H-1H couplings degrade the quality of

phase-modulation decoupling, although they also reduce the sensitivity of the

FID somewhat to the pulse length r, and consequently to the RF

inhomogeneity.
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Figure (6-6). Simulations of the free induction decay in the CH 2 model

problem defined by Eqs. (6-5) and (6-6) at 2 kHz spinning speed, omitting the

proton-proton interaction. The phase modulation angles are: (a) 0 = 20';

(b) 0 = 500. The TPPM trajectories with several values of r, (in units of gs)

are shown in order to illustrate the sensitivity of the results with respect to

the pulse length and deviations in the RF field amplitude.
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Figure (6-7). Simulations of the free induction decay in the CH 2 model

problem defined by Eqs. (6-5) and (6-6) at 2 kHz spinning speed, including the

proton-proton interaction. The phase modulations angles are: (a) 0 = 200;

(b) 0 = 500. The TPPM trajectories with several values of r, (in units of gs)

are shown.
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Figure (6-8). Simulations of the free induction decay in the CH 2 model

problem defined by Eqs. (6-5) and (6-6) at 10 kHz spinning speed, including

the proton-proton interaction. The phase modulations angles are: (a) 4 = 200;

(b) 0 = 500. The TPPM trajectories with several values of r, (in units of gs)

are shown.
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V. Influence of Homonuclear Interactions on Continuous-Wave Decoupling in

Rotating Samples

The influence of homonuclear interactions among protons in decoupling

experiments on static solid samples has been the subject of much interest

[25]. In particular, these couplings are effective in quenching the

heteronuclear linewidth either in the presence or absence of a decoupling

field, in cases where they dominate the heteronuclear interactions [1]. In

static solids, one consequence is that CW decoupling is more efficient than

otherwise expected in the presence of resonance offsets, and the change from

linear to quadratic linewidth dependence on shifts from resonance is well-

known and frequently observed in NMR spectra. This conversion parallels a

shift from a lineshape of largely gaussian character (i. e. inhomogeneous) to a

more Lorentzian (i. e. homogeneous) functional form, where the flip-flop

terms of the homonuclear interactions are treated as agents of random

fluctuation in the heteronuclear couplings within a suitable interaction frame

[24, 25]. A second consequence of strong homonuclear interactions is that the

CW decoupling field strength must exceed not only the heteronuclear

linewidth, but also the homonuclear couplings, in order to promote significant

additional dipolar line-narrowing.

The application of magic angle spinning modifies this general picture

somewhat. To obtain an expression for the approximate spin Hamiltonian

with CW decoupling, the angle 0 is set to zero in Eq. (6-3), and for

convenience the "tilted frame" is adopted, where Ij is defined to lie along the

RF field direction in the rotating frame:
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Heff(t)= VRFI.+ 1 S j2(t)+Dj2(t)}I,+ 1 SJ(t)D,(t)-2SIj
J RF J RF

(6-8)
- iA,r<j ( t ) 2I.zj _ •

With a large separation of time scales between the RF field amplitude vRF

and the spinning frequency vR, i. e. vF>> 2 vR, the effective Hamiltonian of

Eq. (6-8) provides an excellent approximation to the low frequency behavior of

the system. Without the homonuclear interactions appearing in the fourth

term, the approximate Hamiltonian of Eq. (6-8) commutes with itself at

different times, and it is therefore inhomogeneous in the MW sense [30].

Consequently, contributions to the small residual coupling in the third term

are completely eliminated if they oscillate at some multiple of the spinning

speed, even in the slow spinning regime. In computer simulations on the

simple model system of an isolated CH group, the spin system appears to

evolve only under the static contribution to Eq. (6-8) to an excellent

approximation, and this contribution is independent of the spinning speed.

With expansions of the resonance offsets and heteronuclear couplings in

their Fourier series, the S spin experiences the following coupling in the

absence of homonuclear interactions:

+2 +2 1
Hcoupaing(t) = 1 1 3 j [m]Dj [n]exp{i(m + n)oRt} -2SzJ , (6-9)

j m=-2 n=-2,n*O VRF

which can be divided into contributions from the average shift of the

transmitter from resonance (m = 0) and the anisotropic offsets (m # 0):
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1 +2Hol.(t) = XCL6[O] D j[n]exp{inot}.2SjZ j ,
j RF n=-2,n0*

(6-10)
+2 +2

+ -- 3,[m]D,[n]exp{i(m+n)Rt}'.2SI. ,
j m=-2,m*O n=-2,n*O VRF

In the inhomogeneous system, the first term disappears completely, since the

dipolar coupling is fully amplitude-modulated. However, both static (m = -n)

and oscillating (m # -n) residual couplings arise from the second term. The

net result is that finite line-broadening arises only from the oscillating

resonance offsets, while an overall shift of the transmitter frequency from

resonance is expected to have no effect. However, the addition of the

homonuclear flip-flop operators [Iil_j + IlI+j] causes the failure of the

Hamiltonian of Eq. (6-8) to commute with itself at different times. Since the

quality of rotational refocusing is therefore degraded, the homonuclear

interactions are expected to increase the line-broadening from the static

offsets 3j [0], which are under experimental control. This situation contrasts

fundamentally with the case of static solids, where the homonuclear

interactions assist the decoupling field by quenching the heteronuclear

interactions. The anisotropic contribution contains both static and oscillating

terms, so an overall expectation of the qualitative effect of homonuclear

couplings does not emerge directly from Eq. (6-10).

This perspective provides a qualitative framework for understanding the

dependence of 13C linewidths on resonance offsets in rotating polycrystalline

samples. As the spinning speed is increased, an increase in the linewidths of

13C resonances is generally observed [19, 20, 23], and this effect is generally

attributed to a reduction in the favorable influence of the homonuclear

couplings [19, 23], although it is possible that rotational interference also
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plays a subtle role [20]. These interactions are themselves amplitude-

modulated, but their spin Hamiltonian is not self-commuting in general. As a

consequence, their influence on the spin dynamics is removed slowly as the

spinning speed is increased, and it is eliminated with great efficiency only

when the spinning speed significantly exceeds the proton linewidth [30].

With optimization of the transmitter frequency, the homonuclear interactions

are a line-narrowing influence on the dilute spins in this commonly accepted

picture, but their favorable influence is increasingly attenuated with higher

spinning frequencies.

On the other hand, it is clear a priori that homonuclear interactions

have the opposite effect in the case of static shifts from resonance. They are

detrimental to the efficient decoupling of the isotropic contribution to the

resonance offset effect. Consequently, the sensitivity of 13C linewidths to the

transmitter offsets 6j [0] is reduced in principle as the spinning speed is

increased (in the fast MAS limit). In calcium formate, the protons are

relatively isolated from each other, and their homogeneous linewidth

(FWHM) is only = 2 kHz at 4.3 kHz spinning speed in the 100% 13C-labeled

sample. Figure (6-9) illustrates the relative insensitivity of the 13C

centerband lineshape to small transmitter offsets and the increasingly

inhomogeneous character obtained at higher spinning speeds. As the

spinning speed is increased from 4 kHz to 8 kHz, the splitting between the

two non-equivalent formate ions becomes unresolved, yet the lineshape

becomes almost insensitive to small resonance offsets.

In the case of the methylene resonance, the sensitivity of the linewidths

to transmitter frequency shown in Figure (6-10) is well-described by

quadratic functions at both 2 and 10 kHz spinning speeds - the fitted curves

are also plotted - while the curvature is greatly reduced at higher spinning
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speeds (i. e. > 5 kHz). Simultaneously, at least for all spinning speeds

< 10 kHz, the TPPM approach yields further improvements in the resonance

offset tolerance of the 13C lineshapes. In these experiments, however,

although the offset dependence of the TPPM lineshapes is also well-described

by a quadratic functional form, the curvature increases somewhat with

spinning speed.

The paradox that the optimized linewidth grows larger with increasing

spinning speed, while at the same time the offset sensitivity decreases, is

observed here in both the cases of strong and weak 1H-1H interactions.

Although it is very difficult to estimate the simultaneous influences of MAS

and 1H-1H quantitatively in a many-body system of coupled spin-1/2 nuclei,

the considerations discussed here are the most likely explanations for these

general trends.
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Figure (6-9). Experimental lineshapes of the 100% 13C-labeled calcium

formate centerband as a function of the transmitter frequency in increments

of 2 kHz from the optimal setting at 4 kHz (bottom) and 8 kHz spinning

speeds (top) at 100 MHz Larmor frequency for 13C. The RF field strength is

65.8 kHz. At 4 kHz spinning frequency, the 80 Hz splitting between the non-

equivalent ions in the crystal structure is partially resolved under optimal

conditions.
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Figure (6-10). Linewidths of the 4-CH 2 resonance of 1,4-13C-4-15N-

glycylglycine hydrochloride monohydrate as a function of the relative

frequency of the 1H transmitter at (a) 2 kHz and (b) 10 kHz spinning speeds

under both CW and TPPM decoupling. The RF field strength is 73.5 kHz.

The TPPM parameters are P = 6.2ps, 0 = 450 at 2 kHz; and rP = 6.0ps,

0 = 150 at 10 kHz spinning speeds. Up to at least 10 kHz, the offset

dependences fit a quadratic function quite well for both CW and TPPM

decoupling. From 2, 4, 6, 8, to 10 kHz spinning speeds, respectively, the

curvature of the FWHM dependence on the offset decreases as follows: 12.9,

7.4, 6.1, 5.3, 4.8 Hz/kHz 2 for CW decoupling; and increases as follows: 1.4,

1.7, 2.2, 2.2, 2.4 Hz/kHz 2 for TPPM decoupling. The inhomogeneous

contribution to the methylene linewidths is approximately 35+5 Hz.
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VI. Rotational Interference Effects in Composite Pulse Decoupling

The COMARO-2 sequence consists of the following supercycle of

composite 900 pulses: XYXYXY XYXYXY [4, 6]. Each net 900 rotation is

comprised of the composite rotation 385' 3200 250, which operates via the

approximate coherent averaging of Zeeman-like terms in the spin

Hamiltonian through zeroth and first orders [31]. Consequently, the removal

of the heteronuclear dipole-dipole coupling accompanies each net 90' rotation

with simultaneous compensation for resonance offset effects. The supercycle

leads to the coherent averaging of the homonuclear couplings, and further

reduction in the heteronuclear couplings, on a longer time scale. For these

reasons, the sequence provides decoupling which is robust with respect to

large heteronuclear and homonuclear couplings, and which at the same time

provides tolerance to large resonance offsets. Therefore, for solids and liquid

crystals, it is more suitable than other compensated sequences which have

been developed for solution NMR spectroscopy [3] based on composite pulses

[32]. With the addition of magic angle spinning, however, the performance of

this sequence and similar ones is degraded because of rotational interference

effects [5, 16]. This problem has motivated the development of sequences

based on simpler excitations [17, 19]. A typical example is the methylene

group of sodium propionate. While the 13C linewidth is 196 Hz at 4.9 kHz

spinning speed with a CW decoupling field of 73.5 kHz on resonance, only 397

Hz is obtained with COMARO-2 at 100 MHz Larmor frequency for 13C.

Figure (6-11) illustrates how the model CH 2 crystallite discussed earlier

behaves under the COMARO-2 sequence. Without the 1H-1H interaction,

highly efficient decoupling is obtained even with deviations of ± 5% in the

nominal RF field strength. However, the addition of the homonuclear
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coupling leads to a low frequency cycling sideband whose amplitude is

unstable with respect to small deviations in the RF field. It is therefore the

combination of MAS and the homonuclear interactions which causes

degradation of decoupling performance.

Because the homonuclear couplings are weak in calcium formate, its

COMARO-2 linewidths compare more favorably to those obtained with CW

decoupling. Figure (6-12) shows how COMARO-2 is able to resolve the small

splitting in the 13C spectrum at several spinning speeds. The broadening at

the base reflects the inhomogeneous distribution of cycling sidebands at low

frequency which accompany long composite pulse sequences in rotating

samples. For the relatively isolated CH moiety, sharply defined destructive

interference between the RF and MAS modulations occurs at resonance

conditions where the time scales of the two excitations are approximately

synchronized.. In the spectra shown in Figure (6-11), the 1H RF field strength

is 65.8 kHz, yielding a cycle time of rc = 369.9 ps for the COMARO-2

sequence. The sample rotation induces maximum deterioration of the

lineshape at 8 kHz, where the condition rc = 3 r, is approximately satisfied.

The corresponding TPPM lineshapes acquired with z = 9.5 ps and 0 = 90 0

are also shown. Apart from the result at 10 kHz spinning speed, for which

the phase angle 0 is too large, the splitting is greatly enhanced without the

additional undesirable perturbations in the 13C spectrum.

Figure (6-13) demonstrates the experimental and simulated spectra

obtained with precise synchronization of MAS and the decoupling pulse cycle.

The simulated lineshapes are obtained from exact calculations of the isolated

CH pair with parameters appropriate for calcium formate. For this system,

the 13C and 1H CSA tensors, including their orientations in the molecular

frame, are known from single crystal studies [33-35]. An additional 45 Hz of
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exponential line-broadening is added to the simulated free induction decays

in order to compare them directly with the experimental spectra. Line-

broadening resulting from the 1H CSA interaction, which contributes

oscillatory resonance offsets, is predicted by the CW simulation. Similar

simulations omitting this interaction predict an essentially vanishing

linewidth. With COMARO-2 decoupling, the regeneration of powder spectra

resulting from rotational interference is also demonstrated. The 1H CSA

interaction is not necessary to predict this behavior because the coherent

averaging of the heteronuclear coupling itself is partially spoiled by the

interplay between MAS and the phase modulated RF field.

The numerical calculations do not include several important effects,

including imperfections in the application of the sequence (particularly the

RF inhomogeneity), weak homonuclear interactions, and heteronuclear

couplings of longer range. These factors contribute additional perturbations

to the observed lineshapes. In spite of these difficulties, the total centerband

FWHM values from the experiments, 200 Hz for CW and 417 Hz for

COMARO-2, are reflected reasonably well by the somewhat larger simulated

values of 286 Hz and 456 Hz with the two techniques, respectively. More

generally, the simulated CW lineshape is virtually insensitive to the spinning

speed, since 1H-1H interactions are not included.
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Figure (6-11). Simulations of the free induction decay in the CH 2 model

problem defined by Eqs. (6-5) and (6-6) at 2 kHz spinning speed with the

COMARO-2 decoupling scheme: (a) without the proton-proton interaction,

and (b) with the proton-proton interaction. The CW results are also shown

for comparison, as well as the COMARO-2 trajectories with the nominal RF

field of 75.76 kHz, and deviations in it corresponding to 75.76 + 5% kHz. In

the context of MAS, the 1H-1H interaction and the RF inhomogeneity lead

jointly to instability in the quality of heteronuclear decoupling.



-250-

(a)

0 5 10 15 20 25
time (ms)

(b)

250 5 10 15 20
time (ms)

1.0

0

0
a,

LL.

0.5

0.0

-0.5

-1.0

0

0

o

Lo

1.0

0.5

0.0

-0.5

-1.0



-251-

Figure (6-12). Experimental 13C centerband lineshapes of 100% 13C-labeled

calcium formate with an 1 H decoupling field strength of 65.8 kHz applied on

resonance. Spectra at several spinning speeds are shown with CW,

COMARO-2, and TPPM decoupling. The TPPM cycle is implemented with

the parameters: ,P = 9.5 ps and 0 = 900. The reduced centerband intensity

in the slow spinning regime results mostly from the dispersion of spectral

intensity among the sidebands arising from the 13C CSA interaction, which is

not shown. In these experiments, pulses can only be set within 0.1 gs, so the

elements of the 900 composite pulse are rounded to the closest appropriate

value.
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Figure (6-13). Simulated and experimental MAS spectra of calcium formate

comparing CW and COMARO-2 decoupling performance under rotor

synchronization at 2.622 kHz spinning speed with a 64.1 kHz RF field. The

simulations include all parameters for the isolated heteronuclear two spin

system with CSA and dipolar parameters for calcium formate. The finite

line-broadening under CW decoupling and the degradation of the COMARO-2

lineshapes are predicted. An additional 45 Hz of exponential line-broadening

is added to the simulated spectra prior to Fourier transformation in order to

account for the estimated linewidth from sources other than insufficient

decoupling. In the computer simulation of CW decoupling performance, the

80 Hz splitting is not resolved.
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VII. Conclusion

In our examples, the advantage of the TPPM approach relative to CW

decoupling persists even when strong proton-proton couplings are present in

the spin system, although these interactions impede the efficiency of the

method to some extent. The theoretical treatment of TPPM decoupling

predicts that the relative improvement over CW irradiation increases as the

RF field strength is raised. Greater improvement is expected for shorter 1H

pulse widths, while at sufficiently low decoupling power levels, no

enhancement is expected because of insufficient decoupling field amplitude in

the second rotating frame, where the homonuclear linewidth is scaled down

further only by x-1/2. In the first rotating frame, it is well-known that a

certain minimum level of RF power (20-40 kHz in many organic molecules

[1]) is necessary in order to overcome the proton linewidth. These

considerations imply that the optimum angle 0 is a compromise between the

favorable effects of large modulation angle on the 1H-1H interactions and the

RF inhomogeneity, on the one hand, and the constraint that 0 be a small

angle, on the other.

Unfortunately, the addition of MAS complicates this simple picture.

Although the TPPM sequence has a short cycle time, it already exhibits

cycling sideband behavior in the low frequency regime, ranging from 5-20

kHz in the applications described here. Furthermore, the homonuclear

couplings serve to disperse the pattern of cycling sidebands and create

additional opportunities for destructive interference with the sample rotation

at frequencies oR / 2n and 2. c R / 2n, effects which degrade the decoupling

efficiency. In the case of single phase RF irradiation with a weak field,

cancellation of the CW decoupling effect via this interference behavior has
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been observed at the "rotary resonance conditions" vRF = nw, / 21 [20, 36]. In

the applications of TPPM decoupling to the methylene group examined here,

the best FWHM at high spinning speeds is obtained with a somewhat smaller

phase modulation angle than in the slow spinning regime because of

rotational interference. More generally, sample rotation reduces the

efficiency of the averaging process obtained with composite pulse sequences

such as COMARO-2, resulting in poor methylene linewidths and distorted

lineshapes for the more simple case of an isolated heteronuclear spin pair.

In all of the cases examined so far, the contribution to the 13C linewidth

from inefficient proton decoupling is greatly reduced with the TPPM

approach. This approach is therefore expected to find general utility in

CPMAS experiments on diamagnetic polycrystalline samples, especially in

the regime of high magnetic field where the resonance offset effect is

increased. In high magnetic fields, it is also advantageous to employ rapid

sample spinning in order to reduce the sideband intensities which arise from

the CSA, whose magnitude scales linearly with the magnetic field. TPPM

decoupling leads to the largest enhancements in this regime, where CW

decoupling becomes increasingly inefficient with respect to anisotropic

resonance offsets. Greater improvements are also expected with more

homogeneous RF coils, particularly at high spinning speeds. The spectra

presented here, however, exhibit substantial improvements in 13C spectra

with RF inhomogenities of approximately 5-10%.

The compounds discussed here are all diamagnetic organic solids.

Although the range of resonance offset compensation is small in this

implementation of coherent phase modulation decoupling, the TPPM

sequence is also potentially advantageous for application to MAS experiments

on moderately paramagnetic solids [16-18], since the sequence is readily
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optimized to avoid destructive interference effects and exhibits robust

decoupling performance in the presence of large heteronuclear couplings.
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