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I. A BSTRACT

A multiple-point Arnoldi method is derived for model reduc-
tion of computational fluid dynamic systems. By choosing the
number of frequency interpolation points and the number of
Arnoldi vectors at each frequency point, the user can select the
accuracy and range of validity of the resulting reduced-order
model while balancing computational expense. The multiple-
point Arnoldi approach is combined with a singular value de-
composition approach similar to that used in the proper orthog-
onal decomposition method. This additional processing of the
basis allows a further reduction in the number of states to be
obtained, while retaining a significant computational cost ad-
vantage over the proper orthogonal decomposition. Results are
presented for a supersonic diffuser subject to mass flow bleed at
the wall and perturbations in the incoming flow. The resulting
reduced-order models capture the required dynamics accurately
while providing a significant reduction in the number of states.
The reduced-order models are used to generate transfer func-
tion data, which are then used to design a simple feedforward
controller. The controller is shown to work effectively at main-
taining the average diffuser throat Mach number.

II. I NTRODUCTION

Computational fluid dynamics (CFD) has reached a consider-
able level of maturity and is now routinely used in many appli-
cations for both external and internal flows. Euler and Navier-
Stokes solvers enjoy widespread use for aerodynamic design
and analysis, and provide accurate answers for a variety of com-
plex flows. However, despite ever increasing computational
power, unsteady problems are computationally very expensive
and time-consuming. More efficient methods for time-varying
flow can be obtained if the disturbances are small, and the un-
steady solution can be considered to be a small perturbation
about a steady-state flow [1]. In this case, a set of linearized
equations is obtained which can be time-marched to obtain the
flow solution at each instant.

Even under the linearization assumption, any CFD-based
technique will generate models with a prohibitively high num-
ber of states. For this reason, CFD models are not appropriate
for many applications where model size and cost are issues. For
example, when the aerodynamic solver must be coupled to an-
other disciplinary model, as in aeroelastic analysis or multidis-
ciplinary optimization, CFD models cannot be used. Another
application which requires low-order models is control design.

The concept of using active control to enhance the stability
properties of an unsteady flow has been addressed for several
applications [2],[3]. In order to derive control models that will
be effective, it is vital that the relevant unsteady flow dynamics
are captured accurately. A model is required that will capture
not only the dynamics of the disturbance to be controlled, but
also the visibility offered by the sensing and the effect on the
flow of the actuation mechanism. A high-fidelity CFD code can
offer the degree of flow resolution that is required; however, for
control design it is imperative that the flow model have a low
number of states.

One approach to creating more efficient flow models is to
make a set of physically-based simplifying assumptions about
the flow; however, this results in reduced fidelity results. Model
reduction is one approach to obtaining efficient, low-order mod-
els while retaining the high-fidelity flow dynamics of CFD [4].
The basic idea is to project the high-fidelity CFD solutions onto
a set of basis functions which span the flow solution space ef-
ficiently. Models are obtained which retain the high-fidelity
aerodynamics of the CFD analysis, but which have only a few
states. The proper orthogonal decomposition (POD) technique
has been developed as an effective method of deriving the basis
functions [5], [6] and has been widely applied to many different
problems, including the derivation of active control models for
vortex shedding [7], [8].

Another set of reduction techniques exist, which derive
reduced-order models based on matching moments of the sys-
tem transfer function. In particular, the Arnoldi algorithm can
be used to generate a set vectors which forms an orthonormal
basis for the Krylov subspace. Arnoldi-based reduced-order
models have been developed for RLC circuits [9] and com-
pressor aeroelastic models [10]. One can liken the moment-
matching techniques to matching the transfer function and its
derivatives at a particular frequency (usually zero). Ifq basis
vectors are included in the reduced-order model, thenq mo-
ments of the transfer function will be matched. Because the
vectors are derived at a single frequency point, the Arnoldi ap-
proach is computationally much cheaper than the POD. Mul-
tiple frequency point Arnoldi methods have also been devel-
oped [11]. The idea here is to select multiple frequency points
about which to match moments. Once again, multiple vectors
are evaluated at each frequency point, and the number of mo-
ments matched at each point is equal to the number of vectors
included in the basis. The computational expense of deriving



the model increases with the number of frequency points used;
however, using several interpolation points typically reduces
the size of the resulting reduced-order model. The multiple-
point Arnoldi method provides a way to trade computational
expense of model derivation with the size of the reduced-order
model.

In this work, reduced-order models will be generated for the
flow through an actively-controlled supersonic diffuser. This
diffuser is subject to perturbations in the incoming flow. Active
control to stabilize the inlet is effected through a bleed actuation
mechanism and sensing of upstream pressure. The model will
be developed in the time domain and cast in state-space form,
which allows for ease of coupling to the active control model.

In this paper, a description of the physical problem will be
given and the underlying CFD model will be described briefly.
The basic Arnoldi-based reduction algorithm will then be pre-
sented, and an extended algorithm which uses multiple fre-
quency points will be developed. Results will be presented for
the supersonic diffuser, and a comparison is made with the POD
method. Finally, a design of a simple controller for the diffuser
is considered.

III. C OMPUTATIONAL MODEL

A. Nonlinear Aerodynamic Model

The unsteady, two-dimensional flow of an inviscid, com-
pressible fluid is governed by the Euler equations. The usual
statements of mass, momentum, and energy can be written in
integral form as

∂

∂t

∫∫
ρ dV +

∮
ρ~Q · d ~A = 0 (1)

∂

∂t

∫∫
ρ~QdV +

∮
ρ~Q

(
~Q · d ~A

)
+

∮
p d ~A = 0 (2)

∂

∂t

∫∫
ρE dV +

∮
ρH

(
~Q · d ~A

)
+

∮
p ~u · d ~A = 0, (3)

whereρ, ~Q, H, E, andp denote density, flow velocity, total
enthalpy, energy, and pressure, respectively.

The governing equations are discretized using a finite vol-
ume formulation on a structured grid. This formulation
does not make use of the usual set of conserved variables
(ρ , ρQx , ρQy , E). Instead, the local flow velocity compo-
nentsq andq⊥ are defined using the computational grid.q is
the projection of the flow velocity on the meanline direction
of the grid cell, andq⊥ is the normal-to-meanline component.
To simplify the implementation of the integral energy equation,
total enthalpy is also used in place of energy. The vector of
unknowns at each node is therefore

Ui =
[
ρi , qi , q⊥i , Hi

]T
. (4)

Details of this CFD formulation can be found in Drela [12].
The CFD formulation described above will be applied to un-

steady analysis of a supersonic diffuser. Two physically differ-
ent kinds of boundary conditions exist: inflow/outflow condi-
tions, and conditions applied at a solid wall. At a solid wall, the
usual no-slip condition of zero normal flow velocity is easily

applied asq⊥ = 0. In addition, we will allow for mass addi-
tion or removal (bleed) at various positions along the wall. The
bleed condition is also easily specified. We set

q⊥ =
ṁ

ρ
, (5)

whereṁ is the specified mass flux per unit length along the
bleed slot. At inflow boundaries, Riemann boundary conditions
are used. For the diffuser problem considered here, all inflow
boundaries are supersonic, and hence we impose inlet vorticity,
entropy and Riemann’s invariants. At the exit of the duct, we
impose outlet pressure. Variations in inlet and exit conditions
will be represented by the disturbance parameter vectord.

The discrete nonlinear system of equations can be written

F
(
U̇ , U , ṁ , d

)
= 0, (6)

whereU contains the state vector at every node as defined in
equation (4),ṁ contains the bleed mass fluxes at each bleed
location, andd contains the inlet and exit disturbances as de-
scribed above.

All results presented in this paper are based on a fixed geom-
etry. The actuation mechanism selected is mass flow bleeding;
however, wall displacement could have been another possibil-
ity. Such a choice would involve modifications of the grid ge-
ometry, which in turn would become another perturbation input
for system (6).

B. Linearized Aerodynamic Model

Steady-state solutions can be evaluated by solving the non-
linear set of equations (6) witḣU = 0; however, integrating
the full nonlinear equation in time for unsteady flows is com-
putationally expensive. If we limit ourselves to the considera-
tion of small amplitude unsteady motions, the problem can be
considerably simplified by linearizing the equations [1]. The
unsteady flow and bleed input are assumed to be small pertur-
bations about a steady state,(U, ṁ), as follows:

U(t) = U + U′(t)
ṁ(t) = ṁ + ṁ′(t), (7)

and the unsteady inflow disturbances contained ind are as-
sumed to be small. Performing a Taylor expansion about
steady-state conditions and neglecting quadratic and higher or-
der terms in the perturbationṡU′ andU′, the linearized form of
equation (6) is

∂F
∂U̇

dU′

dt
+

∂F
∂U

U′ +
∂F
∂ṁ

ṁ′ +
∂F
∂d

d = 0, (8)

where all derivatives are evaluated at steady-state conditions.
The above equation can be rewritten

E
dU′

dt
= AU′ + Bmṁ′ + Bdd, (9)

where the definitions of the matricesE, A, Bm andBd fol-
low directly from (8). BothE andA aren × n real matrices.
It is important to note that boundary conditions do not involve



temporal differentiation (although the prescribed value may be
time-varying). Therefore,n2 rows ofE associated with then2

boundary condition equations are populated with zeroes exclu-
sively: E is singular.

To further simplify notation, we define the global input vec-
tor u = [ṁ′ , d]T and write the linearized CFD system as

E
dU′

dt
= AU′ + Bu (10)

y = CU′ + Du, (11)

wherey is a vector containing the output quantities of interest
andC andD are matrices containing mean flow contributions
to the output evaluation. For the analyses presented here, the
vectory contains pressure sensing upstream of the shock and
the average Mach number over the height of the inlet at a given
location.

IV. A RNOLDI-BASED MODEL ORDER REDUCTION

The idea behind developing a reduced-order aerodynamic
model is to project the large space used by a high-fidelity CFD
model, such as that described in the previous section, onto a
lower dimensional space which is characterized by a set of ba-
sis vectors. If these vectors are chosen so as to accurately span
the solution space, the model behavior can be captured with
just a few states. In this way, a low-order, high-fidelity aerody-
namic model can be obtained. There are several options avail-
able for selecting the basis vectors; we will focus on Arnoldi-
based methods.

The theory of Arnoldi-based model reduction will first be
described for the generic system (10, 11) and then extended
for the case of singularE matrix. If the set ofq orthonormal
basis vectors is contained in the columns of the matrixV , aqth
order approximation to the perturbation solution can be made
by assuming

U′(t) = V Û(t), (12)

whereÛ(t) is the reduced-order aerodynamic state vector. Sub-
stituting this representation ofU′ into the linearized governing
equations (10) and premultiplying the system byV T , we obtain
the reduced-order system

Ê
dÛ
dt

= ÂÛ + B̂u, (13)

ŷ = ĈÛ + Du, (14)

whereÊ = V T EV , Â = V T AV , B̂ = V T B, Ĉ = CV andŷ
is the output of the reduced-order system.

A. Arnoldi Basics

One approach to ensuring accurate representation of system
dynamics is to try to match the transfer function of the reduced
and original systems. Several different matching criteria are
possible. Here we describe a process based on matching mo-
ments of the transfer function. This approach is described in
more detail in Silveira et al. [9] and Willcox et al. [10].

Consider the transfer functionH(s) of system (10) and (11):

H(s) = C (sE −A)−1
B + D, (15)

This expression can be expanded in a Taylor series abouts = 0,
resulting in the following expression:

H(s) = −
∞∑

k=0

mksk + D, (16)

where
mk = C

(
A−1E

)k
A−1B (17)

is thekth moment ofH(s). One can think of the moments of the
transfer function as being analogous to its derivatives evaluated
ats = 0.

The qth-order basis of Arnoldi vectors spans theqth-order
Krylov subspace, which is defined for the single-input, single-
output systemU̇′ = AU′ + bu as

Kq (A , b) = span
{
b , Ab , A2b , · , Aq−1b

}
. (18)

It can be shown that thisqth order basis matches the firstq mo-
ments of the transfer function. For a system with multiple in-
puts, the Krylov subspace is generated by considering each in-
put in turn:

Kq (A , B) = span
{
b1 , Ab1 , · , Aq−1b1 ,

b2 , Ab2 , · , Aq−1b2 , · · ·}, (19)

whereb1,b2, · · · are the columns ofB. For our system (10,
11), which includes the matrixE, the following theorem
applies [11].

Theorem 1 (Krylov Subspace Model Reduction)
If colspan(V ) ⊂ Kq

(
A−1E , A−1B

)
then the reduced order

transfer functionĤ(s) = Ĉ
(
sÊ − Â−1

)
B̂ + D matches the

first q moments of the original transfer functionH(s).
Proof : see Grimme [11].

B. Multiple Interpolation Point Arnoldi Method

The basic Arnoldi method results in a reduced-order model
which matches coefficients of a Taylor series expansion of the
full-order transfer function abouts = 0. Although this means
that low-frequency dynamics can be captured accurately with
just a few reduced-order states, the model cannot be expected
to be well-behaved as the disturbance frequency increases, or to
accurately capture transient response. As the frequency range
of interest increases, Arnoldi-based reduced-order models of-
ten require a large number of basis vectors to achieve accurate
results.

Instead of matching transfer function moments at zero fre-
quency (the so-called time moments), an interesting exten-
sion is to shift the interpolation point to higher frequencies, or
to consider multiple interpolation frequencies. Writings =
s0 +s′, the Taylor series expansion of the transfer function (15)
about some complex points0 yields

H(s) = −
∞∑

k=0

m′
ks′k + D, (20)

where

m′
k = C

[
(A− s0E)−1

E
]k

(A− s0E)−1
B (21)



Equations (20) and (21) are equivalent to (16) and (17), which
can be seen by considering an analogous dynamical system in
whichA ↔ (A− s0E) ands ↔ s′. The following statement
is therefore a corollary of Theorem 1, as follows.
Corollary 1

If colspan(V ) ⊂ Kq

(
(A− s0E)−1

E , (A− s0E)−1
B

)

then the reduced order transfer function̂H(s) =

Ĉ
(
sÊ − Â

)−1

B̂ + D matches the firstq moments abouts0

of the original transfer functionH(s).
Although both real and imaginary shifting have been in-

vestigated in literature (see Grimme [11]), we will focus on
minimizing the frequency-response error between the reduced
and full-order transfer functions, and therefore restrict our
consideration to imaginary interpolation points of the form
s0 = jω0. The use of complex matrices raises an important
implementation concern: our reduced-order model should be
consistent with the original system and yield real outputs. The
avoidance of a complex basisV is therefore desirable. This is
done by choosings0 ands∗0 pairwise: two Krylov subspacesK
andK∗ are constructed, generated from sequences of vectors
that are complex conjugates of each other. No additional com-
putational effort is involved in this method, since knowledge of
the first sequence of vectors immediately implies knowledge of
its conjugate. Moreover, the conjugate Krylov subspaceK∗ is
not explicitly generated. The union spaceK ∪ K∗ is the span of
the real and imaginary parts of the vectors ofK. Only one set of
vectors is computed, andV will be the set of the real and imag-
inary parts, after orthogonalization. This is best described in
the algorithm below for the single interpolation points0 = jω0.

Algorithm 1 (Arnoldi method)
function V = arnoldi( E, A, b, ω0, q)

Factor (A − iω0E)
Solve (A − iω0E) w = b
V1 = w

‖w‖
for j = 2 : q

Solve (A − iω0E) w = E Vj−1

for k = 1 : j − 1
h = w′ Vk

w = w − h Vk

end
Vj = w

‖w‖
end

Here,w′ Vk denotes the Hermitian product of vectorsw
andVk. Each of theq computed vectors is orthogonalized with
respect to the previous ones using a Gram-Schmidt orthogonal-
ization process.

The matrixV as computed by Algorithm 1, which contains
the q vectorsVj as columns, is an orthonormal complex ba-
sis forKq. V needs to be further processed to spanKq ∪ K∗q :
the real and imaginary parts of each basis vector will be ex-
tracted, and the resulting2q vectors orthogonalized. There are
two possibilities for performing this orthogonalization. Gram-
Schmidt appears to be a natural choice, and can be done at each
step of Algorithm 1, in parallel with the Hermitian orthogo-
nalization used for generation of the complex basis. However,

an alternate approach is to perform the orthogonalization using
singular value decomposition (SVD). Unlike Gram-Schmidt or-
thogonalization, SVD enables the assessment of the amount of
new information added by each basis vector. Using the singular
values, the option is available to reduce the size of the resulting
basis.

For the sake of simplicity, Algorithm 1 was restricted to a
single interpolation pointjω0. This does not yield a better
behaved model than the basic Arnoldi model derived about
s = 0, since if a limited number of basis vectors are used,
the reduced-order model will give a good match only in the
neighborhood ofω0. The range of accuracy of the model
can be improved by using multiple interpolation points in
order to obtain a good fit over the entire frequency range of
interest. In the case ofr interpolation points, the basisV spans
∪r

q=1Kq, which includesr Krylov subspaces by definition.
Corollary 1 still holds, and moment matching is thus ensured
at every interpolation pointω0, ω1, . . . , ωr. We can therefore
evolve Algorithm 1 to considerr frequency points as follows,
whereq̂ is a vector containing the number of Arnoldi vectors
to be computed at each interpolation point andω is a vector
containing the interpolation frequencies.

Algorithm 2 (Multi-Point Arnoldi method)
function V = arnoldi( E, A, b, ω, q̂, r)

for l = 1 : r
Q =

∑l−1
m=1 q̂m

Factor (A − iωlE)
Solve (A − iωlE) w = b
j = Q + 1
Vj = w

‖w‖
for j = Q + 2 : Q + q̂r

Solve (A − iωlE) w = E Vj−1

for k = Q + 1 : j − 1
h = w′ Vk

w = w − h Vk

end
Vj = w

‖w‖
end

end

As described previously, real and imaginary parts are then ex-
tracted and orthogonalization is done using SVD. At this time,
the size of the basis can be further reduced. When the final
set of basis vectors,V , is obtained, the reduced-order model
is constructed by projection as described by equations (13) and
(14). This method extends readily to multiple input cases by
applying the algorithm to each column ofB separately. The fi-
nal basis is then computed by recombining all the sets obtained
from Algorithm 2 with SVD.

C. Application to Singular Descriptor Matrix Dynamical Sys-
tem

Since the descriptor matrixE is singular, system (10) is al-
gebraic. Although, the previous theorems apply to the sin-
gular descriptor matrix system [13], performing reduction via
the Arnoldi method directly on system (10) would not only re-
duce its dynamics but would also affect its boundary conditions.



However, it is possible to extract an actual state-space system
of ordern1 = n − n2, whose dynamics are identical to (10).
Boundary conditions will be put aside and treated separately.
System (10) can be written

[
E11 E12

0 0

] [
U̇′

1

U̇′
2

]
=

[
A11 A12

A21 A22

] [
U′

1

U′
2

]
+

[
B1

B2

]
u, (22)

whereU′
2 is a vector of lengthn2 containing those flow un-

knowns which are prescribed via boundary conditions, and the
vectorU′

1 comprises the remainingn1 unknowns, which are
determined by the equations of state.

Since the matrixA is invertible, the change of variables
U′ = A−1Z can be applied, yielding
[

Ẽ11 Ẽ12

0 0

] [
Ż1

Ż2

]
=

[
I1 0
0 I2

] [
Z1

Z2

]
+

[
B1

B2

]
u

(23)
whereẼ = EA−1, andI1 and I2 are the identity matrices
of dimensionsn1 and n2 respectively. The prescribed states
Z2 can now be condensed out, leading to the actual state-space
system

Ẽ11 Ż1 = Z1 + B1 u + Ẽ12 B2 u̇, (24)

where we have usedZ2 = −B2 u. Denoting

C̃ = CA−1 =
[
C̃1 C̃2

]
, the expression for the

outputy becomes

y = C̃1 Z1 +
(
D − C̃2 B2

)
u. (25)

The multiple frequency point Arnoldi reduction technique
described is applied to the condensed state-space system (24,
25). The existence of a ’second’ inputu̇ does not alter the
method described previously, as shown by the transfer function

H(s) = C̃1

(
sẼ11 − I1

)−1 (
B1 + sẼ12B2

)
+ D̃

(26)

whereD̃ =
[
D − C̃2B2

]
. The presence oḟu simply doubles

the number of inputs to consider, since we can define a new set
of moments generated by the term̃E12B2. Application of the
multiple input, multiple frequency point Arnoldi method de-
scribed above is unchanged, and the resulting basis spans the
following Krylov subspace:

Kq

{ (
I1 − jω0Ẽ11

)−1

Ẽ11,

(
I1 − jω0Ẽ11

)−1 [
B1 , Ẽ12B2

] }
. (27)

Due to the CFD formulation, boundary condition rows are
mixed with state equations rows iñE = E A−1. It would not
be practical to explicitly extract̃E11 andẼ12. Instead of com-
putingV , ann1 × q matrix, it is far more convenient to compute[
V T 0

]T
, ann × q matrix, directly with the original system

(10). For details of the actual implementation, see Lassaux [14].

V. RESULTS

Reduced-order models have been developed for supersonic
started duct flows. A supersonic diffuser has been studied at a
steady-state Mach number of 2.2 and a nominal upstream bleed
of 1% of the inlet mass flow. Figure 1 shows the different inputs
and outputs of the system. The output of interest is the average
Mach number at the throat in response to two unsteady inputs:
a planar inlet density perturbation and an upstream bleed per-
turbation about the nominal bleed. Bleed occurs through small
slots located on the lower wall between 46 % and 49 % of the
inlet overall length. For control purposes, a sensor is located
on the top wall, which measures pressure variations from the
steady-state pressure.

Pressure sensing

Upstream bleed

Shock
Average
   machInlet disturbance

      (density)
height h

Engine compressor

Incoming flow

Fig. 1. Definition of the system inputs and outputs: incoming density distur-
bance, air bleed, pressure sensing, and average Mach number at the throat.

The CFD computational grid has 3078 points, which corre-
sponds to 11,730 unknowns. A time-domain computation of
this size is expensive, however we will show that the linearized
flow dynamics can be accurately captured with less than 80
modes. Several reduction methods will be shown, all of which
are applied over the frequency range0 to 2f0, wheref0 = h/a0

is the reference frequency of the diffuser, defined as its height
divided by the freestream speed of sound. According to the at-
mospheric model considered, disturbances are expected to be in
this range.

A. Unshifted Arnoldi Method

We begin with the basic Arnoldi method, which leads to a
basis of vectors that matches moments of the transfer function
abouts = 0. Orthogonalization is performed using a Gram-
Schmidt procedure. Figures 2 and 3 show the resulting gains
and phases of the transfer functions from bleed input to average
throat Mach number, for the full-order and reduced-order sys-
tems. In each plot, the dotted line corresponds to the full-order
transfer function (n = 11, 730). The solid lines are transfer
functions for reduced-order models of sizeq = 10, 20, 30, 40
and50, plotted from top to bottom. With just ten states in the
reduced-order model, a good approximation is obtained locally
nearf/f0 = 0, however for higher frequencies the error in-
creases rapidly. As more Arnoldi vectors are added to the basis,
the quality of the match improves for higher and higher fre-
quencies. With 40 and 50 basis vectors, the transfer function
is approximated well over the entire frequency range of inter-
est, although some discrepancy in phase at high frequencies is
observed. Although the size of the reduced-order models has
increased to obtain this fit, we note that the computational ex-
pense to obtain each of the models shown in Figures 2 and 3 is
of the same order (i.e. the cost of a single system factorization).

The evolution of accuracy with total number of modes is bet-
ter shown in Figure 4. In this figure, the absolute value of the
error in transfer function gain at each frequency is plotted for
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Fig. 2. Magnitudes of full-order transfer function vs. ROM transfer function
(bleed to average Mach number at throat). From top: 10, 20, 30, 40 and 50
reduced-order states, all models interpolated atf/f0 = 0.
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Fig. 3. Phases of full-order transfer function vs. ROM transfer function (bleed
to average Mach number at throat). From top: 10, 20, 30, 40 and 50 reduced-
order states, all models interpolated atf/f0 = 0.

the reduced-order models shown in Figure 2. It can be seen that
with just 10 modes, the model is very accurate in the neigh-
borhood off = 0, and this local accuracy does not improve
as more modes are added (due to round-off errors). Figure 4
shows clearly that as more modes are included in the model,
the accuracy at frequencies away from the interpolation point
increases. It is interesting to note that for theq = 30 case, the
improvement in accuracy over the frequency range[0, 0.8f/f0]
is achieved at the expense of a worse prediction at higher fre-
quencies. This can also be clearly seen in Figure 2 and high-
lights the fact that these basic Arnoldi models can be unreliable
far away from their interpolation point. In order for all gain er-
rors over the frequency range to be less than10−2, more than
100 basis vectors were required in the reduced-order model.

B. Multiple-Point Arnoldi Method

While the previous results showed that the basic Arnoldi
model required a large number of states to accurately cap-
ture the relevant dynamics over the frequency range, signifi-
cant improvement can be realized by using the multiple-point
Arnoldi method. As discussed, using multiple interpolation
points causes moments of the transfer function to be matched
at several frequencies. At each frequency chosen to be an in-
terpolation point, the fit between the reduced-order and full-
order transfer functions isexact. This can be seen in Figures
5 and 6 where results are shown using five frequency inter-
polation points:f/f0 = 0, 0.5, 1, 1.5 and2. The top plot in
both Figures 5 and 6 is a reduced-order model of total size
q = 9. This corresponds to one Arnoldi vector at each fre-
quency point, calculated using Algorithm 2 and orthogonalized
using Gram-Schmidt. Note that the Arnoldi vectors at the non-
zero frequency points are complex, and thus result in two basis
vectors (total number of basis functions = 1+4*2 = 9). As the
plot shows, the transfer functions of the reduced and full-order
systems match exactly at the selected interpolation points. The
local behavior of the moment matching approach can also be
seen: for frequencies not close to an interpolation point, the
error is large.

The size of the reduced-order model is increased by con-
sidering increments of one Arnoldi vector at each interpola-
tion point. This results in reduced-order models of sizeq =
18, 27, 36 and 45, whose transfer functions are shown in the
lower four plots of Figures 5 and 6 from top to bottom re-
spectively. These figures demonstrate the analogy between the
moments and the derivatives of the transfer function. As dis-
cussed, for the9th-order model (the top plots), the value of
transfer function at each interpolation point is matched exactly.
In the second plots (two Arnoldi vectors and hence two mo-
ments matched per frequency point), it can be seen that the
value of the transfer function plus its slope are matched. Fig-
ures 5 and 6 also show that as the number of Arnoldi vectors
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at each interpolation point is increased, the fit away from that
frequency improves.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

|G
|

ROM
full

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

|G
|

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

|G
|

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

|G
|

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

|G
|

f/f
0

Fig. 5. Magnitudes of full-order transfer function vs. ROM transfer function
(bleed to average Mach number at throat). All models derived with five inter-
polation points atf/f0 = 0, 0.5, 1, 1.5, 2. From top: 9, 18, 27, 36 and 45
reduced-order states.
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to average Mach number at throat). All models derived with five interpolation
points atf/f0 = 0, 0.5, 1, 1.5, 2. From top: 9, 18, 27, 36 and 45 reduced-
order states.

Figure 7 shows the error in transfer function gain between
reduced-order and full-order transfer function versus frequency
for five models ranging in size fromq = 18 to q = 63. For
the four lower order models, the maximum error is on the order
10−1. A significant reduction in error is achieved by including
63 state vectors. In this case, the maximum error over the fre-
quency range of interest is10−2. For the single-point Arnoldi
method, more than 100 basis vectors are required to achieve this
level of accuracy. Figure 7 shows clearly that for a low number
of states, accuracy remains localized to the neighborhood of the
interpolation points.
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Fig. 7. Absolute value of error in transfer function gain for five reduced-order
models of size 18, 27, 36, 45, 63. All models derived with five interpolation
points atf/f0 = 0, 0.5, 1, 1.5, 2.

Gram-Schmidt was used to orthogonalize all the basis vec-
tors for the multiple-point Arnoldi models described above. A
better approach is to use SVD to perform this orthogonaliza-
tion. Once the Arnoldi basis about each frequency point has
been computed (which uses an internal Gram-Schmidt proce-
dure), the resulting sets of vectors can be combined and orthog-
onalized using SVD. This approach gives us the option to select
a subset of the resulting orthogonal vectors, based on the calcu-
lated singular values. If not all of the vectors are retained, then
the moment matching properties will not be preserved exactly.
However, the singular values give a good indication of the im-
portance of a particular mode, and neglecting those modes with
small singular values was found to result in efficient reduced-
order models without compromising accuracy. Results using
SVD will be presented in the following examples.

C. From Multiple-Point Arnoldi to Proper Orthogonal Decom-
position

Since the efficiency of the reduced-order model has been
significantly increased by using the multiple-point Arnoldi
method, the question might be asked: why not increase the
number of interpolation points and reduce the number of mo-
ments matched per interpolation point? As discussed by Will-
cox et al. [10], as the number of frequency points is increased
and the number of moments matched at each point is reduced to
one, the method becomes a frequency-domain POD approach,
which uses SVD on a set of complex responses obtained at se-
lected frequency sample points to construct a basis [15], [16],
[17].

Figure 8 compares the accuracy provided by the multiple-
point Arnoldi method and the POD method. The top plot shows
the maximum absolute value of error in the transfer function
over the frequency range[0, 2f0]. This error is plotted versus
the total number of basis vectors in the reduced-order model
for five approaches. The first three models use multiple-point
Arnoldi with 5, 11 and 21 interpolation points. The baseline



models in these three cases contained 99, 126 and 123 basis
vectors respectively (corresponding to 11, 6 and 3 Arnoldi vec-
tors per frequency point). SVD was then used to select an
orthogonal subset of the baseline vectors and create reduced-
order models ranging in size fromq = 1 to q = 75. The last
two models shown in Figure 8 were created using POD with
41 and 61 frequency points. It can be seen that for models of
sizeq = 30 or less, the maximum error is virtually independent
of the number of interpolation points. For higher-order mod-
els and lower error levels, the plot shows that, in most cases,
choosing more frequency points improves the accuracy of the
reduced-order model for a given number of basis functions.
(When a very large number of basis vectors is selected, numer-
ical noise becomes an issue, as can be seen for the 61-point
POD model.) This improvement in accuracy must be traded
with the computational cost of deriving the model, which is di-
rectly proportional to the number of interpolation points. The
lower plot in Figure 8 shows the first 75 singular values for each
of the models. While the POD singular values drop off more
rapidly, the plot shows that there is considerable advantage in
post-processing the Arnoldi-based models with SVD to obtain
a further reduction in size.
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Fig. 8. Comparison of multiple-point Arnoldi and POD models. Results are
shown for Arnoldi models with 5, 11 and 21 interpolation points, and POD
models with 41 and 61 interpolation points. Top: maximum absolute value
of error in transfer function gain over[0, 2f0] versus number of basis vectors.
Bottom: singular values.

The final example demonstrates the accuracy of a multiple-
point Arnoldi model for a time domain computation. For this
case, we consider the second unsteady input to the system, an
incoming density perturbation. Five interpolation points were
used, at frequencies off/f0 = 0, 0.5, 1, 1.5, 2. Ten Arnoldi
vectors were calculated at each interpolation point, resulting in
a total of 90 vectors. These vectors were then combined and
orthogonalized using SVD. The magnitude of the singular val-
ues drops off rapidly once the basis reaches a size of approx-
imately q = 70. Reduced-order models of varying size were
constructed using the vectors obtained from the SVD analysis.
Figure 9 shows a time-domain simulation of the diffuser in re-

sponse to an incoming density perturbation calculated by the
linearized CFD code and several reduced-order models. The
perturbation considered is constant across the inlet plane, but
varies temporally with a Gaussian distribution as follows:

ρ′(t) = −0.02ρ0e
−α(t−2/f0)

2
. (28)

The parameterα in the above equation was selected to beα =
6f2

0 , so that the dominant frequency content of the perturbation
falls in the range[0, 2f0]. The responses shown in Figure 9
support the conclusion drawn from the distribution of singular
values; for models withq = 40 andq = 50, there is significant
error in the time domain response. Increasing the number of
modes to 60 gives a very good result, while the response with
70 modes is virtually indistinguishable from the CFD.
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Fig. 9. Linearized response to a density perturbation in the incoming flow.
The full-order model (circles) is compared with several reduced-order models
ranging in size from 40 to 80 states.

D. Control Design

The reduced-order models will now be used to develop a
simple controller to monitor the average Mach variation over
the throat of the supersonic duct, in response to incoming flow
variations. These results will not focus on the specifics of con-
troller design, but rather are intended to demonstrate that a con-
troller designed using reduced-order system dynamics is effec-
tive when applied to the full-order model. A feedforward con-
troller is used that evaluates the level of upstream bleed needed
to limit the perturbation due to the incoming density distur-
bance, after assessing its importance via the upstream sensor.
The block diagram of the control system is shown in Figure 10.
Since the flow upstream of the throat is supersonic, the pressure
sensor is not affected by the actuation input.

The relationship between the controlled average Mach num-
ber variationy and the incoming density disturbanced can be
written as

Y (s) = (G + WaWcWs) D(s) (29)
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Fig. 10. Block diagram of control system using a feedforward controller.
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Fig. 11. Gain (left) and phase (right) of the transfer functions of the system.
From top to bottom: perturbation to be controlledG, actuationWa and sensor
Ws.

whereY (s) andD(s) are the Laplace transforms of the out-
put y and disturbance inputd respectively. The transfer func-
tions in (29) are as follows:G(s) represents disturbance input
to average throat Mach number,Wa represents fractional mass
flow input to average throat Mach number,Ws represents dis-
turbance input to pressure sensing output, andWc represents
the controller (pressure sensing input to mass flow bleed out-
put).

For this study, three reduced-order models were built to sim-
ulate the throat Mach number response to an incoming density
disturbance, the throat Mach number response due to bleed, and
the sensed pressure response due to the inlet density perturba-
tion. For each model, five interpolation points were used, at
frequencies off/f0 = 0, 0.5, 1, 1.5, 2. Ten Arnoldi vectors
were calculated at each interpolation point, resulting in a total
of 90 vectors. Based on results such as those shown earlier,
it was determined that including 76 states in the reduced-order
models results in sufficient accuracy over the frequency range
of interest. The transfer functionsG, Wa and Ws based on
the above reduced-order models were computed over the range
[0, 2f0] and are shown in Figure 11.

Once the reduced-order models have been generated, the in-
put/output behavior can be evaluated at many frequencies with
low computational cost. Each evaluation requires one system
factorization and solve, which for the high-order system is ex-
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Fig. 12. Mach number averaged over the throat as a function of time for
full-order and reduced-order models. Top: control off. Bottom: control on.
T0 = 1/f0.

pensive. The reduced-order models were used to generate 100
data points over the frequency range of interest; to generate this
amount of data with the original model would be computation-
ally prohibitive.

The data generated by the reduced-order models were used to
fit a secondary lower-order model using an optimization tech-
nique. The controller transfer functionWc was then designed
usingH∞ optimization: adding a low pass filter to the input
path, | (G + WaWcWs) (iω)| was minimized over the range
[0, 1.5f0]. Optimization was made more aggressive over the
range[0, 1.5f0] at the expense of an ill-behaved response be-
yondf = 1.5f0. For more details on the controller design, see
Lassaux [14].

The important question is whether the controller designed us-
ing only reduced-order dynamics will be effective for the high-
order CFD model. The controller was implemented in the full-
order linearized CFD code and comparison was made of the
Mach number response to an incoming density disturbance of
amplitude 1% of the nominal valueρ0. Figure 12 shows the re-
sponsey at the throat for both the linearized CFD code and the
reduced-order model, when actuation is off and on. The inlet
disturbanced has the form described in equation (28), withα
set to0.5f2

0 and peak time at5T0. The significant frequency
content of this disturbance lies in the range[0, 0.6f0], which
fits in the design frequency range of the controller. Figure 13
shows the controller output, that is the fraction of mass flow
dumped though the bleed slots, for both the reduced-order and
CFD model.

Both the reduced-order and the full-order linearized model
yield satisfactory response using the controller design presented
previously. The variation in Mach number is considerably re-
duced by using the controller and the reduced-order model re-
sponse is virtually indistinguishable from that of the full-order
linearized model. This shows that, for this case, the reduced-
order models enable control design and accurate simulation of
the linearized CFD model response under control. Moreover,
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Fig. 13. Fraction of inlet mass flow dumped through upstream slots, for full-
order and reduced-order model.

since the controller is effective at reducing the amplitude of the
variation, the linearization assumption of small perturbations
should hold for the controlled system.

VI. CONCLUSIONS

The multiple-point Arnoldi method developed in this paper
combines aspects of the traditional Arnoldi approach and the
frequency domain POD. The POD-based concept of sampling
at multiple frequencies and selecting a basis using SVD leads to
efficient reduced-order models, which are accurate over a broad
range of frequencies. The Arnoldi-based concept of evaluating
multiple vectors at each frequency point reduces the computa-
tional cost of the reduction process without a significant com-
promise in accuracy. By balancing the number of frequency
points and Arnoldi vectors per frequency point, the multiple-
point Arnoldi models can achieve roughly the same level of
accuracy as POD models with the same number of basis vec-
tors, but with a significant decrease in the cost of obtaining the
model.

For the supersonic diffuser considered here, the multiple-
point Arnoldi approach led to reduced-order models on the or-
der of 60 states, which captured the relevant dynamics with a
high degree of accuracy. This level of accuracy was quantified
by comparing the transfer functions of the reduced and full-
order systems over the range of interest, and by performing
a time-domain simulation using both CFD and reduced-order
models.

Reduced-order models were developed for all aspects of a su-
personic diffuser control problem, which aimed to control the
throat Mach number in the presence of an incoming density dis-
turbance using upstream pressure sensing and bleed actuation.
These models were use to generate many transfer function data
points, which were subsequently processed to obtain a set of
very low-order models. These models were then used to de-
sign a simple feedforward controller. When implemented on
the linearized CFD model, this controller was shown to work

effectively. Application of the controller to the nonlinear CFD
model is the subject of ongoing research.
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