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. ABSTRACT The concept of using active control to enhance the stability
A multiple-point Arnoldi method is derived for model reducProperties of an unsteady flow has been addressed for several

tion of computational fluid dynamic systems. By choosing tr@Pplications [2],[3]. In order to derive control models that will
number of frequency interpolation points and the number be effective, it is vital that the relevant unsteady flow dynamics
Arnoldi vectors at each frequency point, the user can select ff€ captured accurately. A model is required that will capture
accuracy and range of validity of the resulting reduced-ordBt only the dynamics of the disturbance to be controlled, but
model while balancing computational expense. The multipl@lso the visibility offered by the sensing and the effect on the
point Arnoldi approach is combined with a singular value ddlow of the actuation mechanism. A high-fidelity CFD code can
composition approach similar to that used in the proper orthd@]ﬁer the degree of flow resolution that is required; however, for
onal decomposition method. This additional processing of tR@ntrol design it is imperative that the flow model have a low
basis allows a further reduction in the number of states to BEmber of states.
obtained, while retaining a significant computational cost ad- One approach to creating more efficient flow models is to
vantage over the proper orthogonal decomposition. Results arake a set of physically-based simplifying assumptions about
presented for a supersonic diffuser subject to mass flow bleedte flow; however, this results in reduced fidelity results. Model
the wall and perturbations in the incoming flow. The resultingeduction is one approach to obtaining efficient, low-order mod-
reduced-order models capture the required dynamics accuratdtywhile retaining the high-fidelity flow dynamics of CFD [4].
while providing a significant reduction in the number of stateShe basic idea is to project the high-fidelity CFD solutions onto
The reduced-order models are used to generate transfer fumeset of basis functions which span the flow solution space ef-
tion data, which are then used to design a simple feedforwdiciently. Models are obtained which retain the high-fidelity
controller. The controller is shown to work effectively at mainaerodynamics of the CFD analysis, but which have only a few

taining the average diffuser throat Mach number. states. The proper orthogonal decomposition (POD) technique
has been developed as an effective method of deriving the basis
Il. INTRODUCTION functions [5], [6] and has been widely applied to many different

Computational fluid dynamics (CFD) has reached a consid@Foblems, including the derivation of active control models for
able level of maturity and is now routinely used in many appliortex shedding [7], [8].
cations for both external and internal flows. Euler and Navier- Another set of reduction techniques exist, which derive
Stokes solvers enjoy widespread use for aerodynamic desigduced-order models based on matching moments of the sys-
and analysis, and provide accurate answers for a variety of caem transfer function. In particular, the Arnoldi algorithm can
plex flows. However, despite ever increasing computationa¢ used to generate a set vectors which forms an orthonormal
power, unsteady problems are computationally very expenshasis for the Krylov subspace. Arnoldi-based reduced-order
and time-consuming. More efficient methods for time-varyingiodels have been developed for RLC circuits [9] and com-
flow can be obtained if the disturbances are small, and the ymessor aeroelastic models [10]. One can liken the moment-
steady solution can be considered to be a small perturbatimatching techniques to matching the transfer function and its
about a steady-state flow [1]. In this case, a set of linearizddrivatives at a particular frequency (usually zero)g lhasis
equations is obtained which can be time-marched to obtain tectors are included in the reduced-order model, theno-
flow solution at each instant. ments of the transfer function will be matched. Because the

Even under the linearization assumption, any CFD-baseédctors are derived at a single frequency point, the Arnoldi ap-
technique will generate models with a prohibitively high numproach is computationally much cheaper than the POD. Mul-
ber of states. For this reason, CFD models are not appropriipde frequency point Arnoldi methods have also been devel-
for many applications where model size and cost are issues. Bped [11]. The idea here is to select multiple frequency points
example, when the aerodynamic solver must be coupled to alvout which to match moments. Once again, multiple vectors
other disciplinary model, as in aeroelastic analysis or multidiare evaluated at each frequency point, and the number of mo-
ciplinary optimization, CFD models cannot be used. Anothenents matched at each point is equal to the number of vectors
application which requires low-order models is control desigrincluded in the basis. The computational expense of deriving



the model increases with the number of frequency points usegplied as;~ = 0. In addition, we will allow for mass addi-
however, using several interpolation points typically reducei®n or removal (bleed) at various positions along the wall. The
the size of the resulting reduced-order model. The multipleleed condition is also easily specified. We set

point Arnoldi method provides a way to trade computational

expense of model derivation with the size of the reduced-order - = — (5)
model. p

In this work, reduced-order models will be generated for thgnere 15, is the specified mass flux per unit length along the
flow through an actively-controlled supersonic diffuser. Thi§eeq sjot. At inflow boundaries, Riemann boundary conditions
diffuser is subject to perturbations in the incoming flow. Active e used. For the diffuser problem considered here, all inflow
control to stabilize the inlet is effected through a bleed actuatip ,nqaries are supersonic, and hence we impose inlet vorticity,
mechanism and sensing of upstream pressure. The model Wity and Riemann's invariants. At the exit of the duct, we
be developed in the time domain and cast in state-space foffyynse outlet pressure. Variations in inlet and exit conditions
which allows for ease of coupling to the active control model, ;|| pe represented by the disturbance parameter vettor

In this paper, a description of the physical problem will be ¢ giscrete nonlinear system of equations can be written
given and the underlying CFD model will be described briefly.

The basic Arnoldi-based reduction algorithm will then be pre- F (U U.m d) -0 (6)
sented, and an extended algorithm which uses multiple fre- T ’

quency points will be developed. Results will be presented f@ere 1y contains the state vector at every node as defined in
the supersonic d'ﬁuserj anda comparisonis made with the PQ,Quation (4),m contains the bleed mass fluxes at each bleed
method. Finally, a design of a simple controller for the diffus§pcation, andd contains the inlet and exit disturbances as de-
is considered. scribed above.
All results presented in this paper are based on a fixed geom-
[1l. COMPUTATIONAL MODEL etry. The actuation mechanism selected is mass flow bleeding;
A. Nonlinear Aerodynamic Model however, wall displacement could have been another possibil-
. . Lo ity. Such a choice would involve modifications of the grid ge-
The unsteady, two-dimensional flow of an inviscid, comé etry, which in turn would become another perturbation input
pressible fluid is governed by the Euler equations. The usggé]:S g’éem (6) P P
statements of mass, momentum, and energy can be written'in y '
integral form as ) . )
B. Linearized Aerodynamic Model
9 . Steady-state solutions can be evaluated by solving the non-
&//pdVJr]{pQ -dA = 0 (1) linear set of equations (6) wittl = 0; however, integrating
the full nonlinear equation in time for unsteady flows is com-
9 // pQdV + j{pQ’ (Q . dg) + %pdg = 0 (2) Pputationally expensive. If we limit ourselves to the considera-
ot tion of small amplitude unsteady motions, the problem can be

0 = 7 Lo considerably simplified by linearizing the equations [1]. The
— EdV 74 H(Q-dA % -dA=0 3
ot //p e (Q ) tpru - G unsteady flow and bleed input are assumed to be small pertur-

. _ _ bations about a steady stat&], m), as follows:
wherep, @, H, E, andp denote density, flow velocity, total

enthalpy, energy, and pressure, respectively. Ut) = U+U(®)
The governing equations are discretized using a finite vol- m(t) = m+m(t), 7)
ume formulation on a structured grid. This formulation
does not make use of the usual set of conserved variabdesl the unsteady inflow disturbances containedl iare as-
(p, pQz, pQy, E). Instead, the local flow velocity compo-sumed to be small. Performing a Taylor expansion about
nentsq andq* are defined using the computational grigis steady-state conditions and neglecting quadratic and higher or-
the projection of the flow velocity on the meanline directiodler terms in the perturbatio$’ andU’, the linearized form of
of the grid cell, and;* is the normal-to-meanline componentequation (6) is
To simplify the implementation of the integral energy equation,
total enthalpy is also used in place of energy. The vector of @dU/ OF U + aim’ + ajd =0, (8)

unknowns at each node is therefore ouU dt ou Om od

U, = [piair gt H-]T 4) where all derivatives are evaluated at steady-state conditions.
’ Pir @iy iy Haf The above equation can be rewritten

Details of this CFD formulation can be found in Drela [12]. JU’
The CFD formulation described above will be applied to un- E
steady analysis of a supersonic diffuser. Two physically differ- dt
ent kinds of boundary conditions exist: inflow/outflow condiwhere the definitions of the matricds, A, B,, and B, fol-
tions, and conditions applied at a solid wall. At a solid wall, thiow directly from (8). BothE and A aren x n real matrices.
usual no-slip condition of zero normal flow velocity is easilyt is important to note that boundary conditions do not involve

= AU’ + B,,ii’ + Byd, 9)



temporal differentiation (although the prescribed value may Géis expression can be expanded in a Taylor series abeui,

time-varying). Thereforep, rows of E associated with the,  resulting in the following expression:

boundary condition equations are populated with zeroes exclu- o

sively: E is singular. H(s) = — Z mys® + D, (16)
To further simplify notation, we define the global input vec- —o

toru = [m’, d]7 and write the linearized CFD system as

where .
/ _ -1 -1
™M _ AU 4 Bu (10) my = C (A7'E) fl B (47
dt , is thekth moment ofH (s). One can think of the moments of the
y = CU + Du, (11)  transfer function as being analogous to its derivatives evaluated

s =0.

The gth-order basis of Arnoldi vectors spans tth-order

?ﬁg lov subspace, which is defined for the single-input, single-
put systenlU’ = AU’ + bu as

wherey is a vector containing the output quantities of intere&t
andC and D are matrices containing mean flow contribution
to the output evaluation. For the analyses presented here,
vectory contains pressure sensing upstream of the shock an
the average Mach number over the height of the inlet at a given K,(A,b) = span{b, Ab, A%b, -, A‘I—lb}. (18)

location.
It can be shown that thigth order basis matches the firstno-

IV. ARNOLDI-BASED MODEL ORDER REDUCTION ments of the transfer function. For a system with multiple in-

The idea behind developing a reduced-order aerodyna:;ﬁﬁts’ the Krylov subspace is generated by considering each in-

model is to project the large space used by a high-fidelity C tin turn:

model, such as that described in the previous section, onto a K, (A, B) = spa{by, Aby, -, A7 by,

Iqwer dimensional space which is characterized by a set of ba- by, Aby, -, AT 'by, -}, (19)
sis vectors. If these vectors are chosen so as to accurately span

the solution space, the model behavior can be captured withereb, b,, - -- are the columns of3. For our system (10,
just a few states. In this way, a low-order, high-fidelity aerodyt1), which includes the matrixz, the following theorem
namic model can be obtained. There are several options avajplies [11].

able for selecting the basis vectors; we will focus on Arnoldi-

based methods. Theorem 1 (Krylov Subspace Model Reduction)

The theory of Arnoldi-based model reduction will first bef colspan(V) C K, (A~'E, A~'B) then the reduced order
described for thg generic sy;tem (10, 11) and then eXtenQ%sfer functionﬁ[(s) -0 (sE — A1) B + D matches the
for the case of singulaF’ matrix. If the set ofg orthonormal
basis vectors is contained in the columns of the matri®agth
order approximation to the perturbation solution can be ma
by assuming

first ¢ moments of the original transfer functidii(s).
géoof: see Grimme [11].

U'(t) = Vﬁ(t), (12) B. Multiple Interpolation Point Arnoldi Method

N ] The basic Arnoldi method results in a reduced-order model
whereU (¢) is the reduced-order aerodynamic state vector. SURich matches coefficients of a Taylor series expansion of the

stituting this representation &’ into the linearized governing ¢ 1-order transfer function about — 0. Although this means
equations (10) and premultiplying the systemiby, we obtain - ¢ low-frequency dynamics can be captured accurately with
the reduced-order system just a few reduced-order states, the model cannot be expected
to be well-behaved as the disturbance frequency increases, or to

dU .. . ;
Ed— = AU + Bu, (13) accurately capture transient response. As the frequency range
t of interest increases, Arnoldi-based reduced-order models of-
v = CU + Du, (14) tenrequire a large number of basis vectors to achieve accurate
results.

whereE = VTEV, A=VTAV,B=VTB,C = CV andy

. Instead of matching transfer function moments at zero fre-
is the output of the reduced-order system.

guency (the so-called time moments), an interesting exten-

) ) sion is to shift the interpolation point to higher frequencies, or

A. Amoldi Basics to consider multiple interpolation frequencies. Writiag=
One approach to ensuring accurate representation of systgm- s’, the Taylor series expansion of the transfer function (15)

dynamics is to try to match the transfer function of the reducedbout some complex poiny yields

and original systems. Several different matching criteria are -

possible. Here we describe a process based on matching mo- _ 1k

ments of the transfer function. This approach is described in H(s) = o ms o+ D, (20)

more detail in Silveira et al. [9] and Willcox et al. [10].

Consider the transfer functici (s) of system (10) and (11): Where
k

H(s) = C(sE—A)""'B + D, (15) my, = C [(A— SOE)’lE] (A-sE)'B (21)



Equations (20) and (21) are equivalent to (16) and (17), whieim alternate approach is to perform the orthogonalization using

can be seen by considering an analogous dynamical systemsiimgular value decomposition (SVD). Unlike Gram-Schmidt or-

whichA « (A — soF) ands < s’. The following statement thogonalization, SVD enables the assessment of the amount of

is therefore a corollary of Theorem 1, as follows. new information added by each basis vector. Using the singular

Corollary 1 values, the option is available to reduce the size of the resulting

If colspan(V) C K4 ((A —s50B) "E, (A—soE)! B) basis. o . .

For the sake of simplicity, Algorithm 1 was restricted to a

e single interpolation poin§wy. This does not yield a better

C (sE - fl) B + D matches the firs§ moments about, behaved model than the basic Arnoldi model derived about

of the original transfer functiot (s). s = 0, since if a limited ngmb_er of basis vectors are_used,
Although both real and imaginary shifting have been i€ reduced-order model will give a good match only in the

vestigated in literature (see Grimme [11]), we will focus of€ighborhood ofwy. The range of accuracy of the model

minimizing the frequency-response error between the reduc@! Pe improved by using multiple interpolation points in

and full-order transfer functions, and therefore restrict o@der to obtain a good fit over the entire frequency range of

consideration to imaginary interpolation points of the forriflterest. In the case ofinterpolation points, the basis spans

so = jwo. The use of complex matrices raises an importafti=1 K. Which includesr Krylov subspaces by definition.

implementation concern: our reduced-order model should B@rollary 1 still holds, and moment matching is thus ensured

consistent with the original system and vield real outputs. T €Very |nte.rpolat|on poinby, wi, ..., w,. We can therefore

avoidance of a complex basisis therefore desirable. This is€v0lve Algorithm 1 to consider frequency points as follows,

done by choosing, ands; pairwise: two Krylov subspaces whereg is a vector contal_mng the r_wumbe_r of Arnoldl vectors

and KC* are constructed, generated from sequences of vectiftd® computed at each interpolation point ands a vector

that are complex conjugates of each other. No additional cofntaining the interpolation frequencies.

putational effort is involved in this method, since knowledge of ) o )

the first sequence of vectors immediately implies knowledge 919°rithm 2 (Multi-Point Amoldi method)

its conjugate. Moreover, the conjugate Krylov subspiicgs unction V= amoldi( £, 4, b, w, ¢, 7)

not explicitly generated. The union space) K* isthe spanof ~ fOF 1 =1:7

the real and imaginary parts of the vector&ofOnly one set of Q= >y dm .

vectors is computed, arid will be the set of the real and imag- ~ Factor (4 — iwB)

inary parts, after orthogonalization. This is best described in  S°Ve (A —dwE)w =b

then the reduced order transfer functiol(s) =

the algorithm below for the single interpolation paigt= jwy. i[: Q Jvrv
I vl
Algorithm 1 (Arnoldi method) for j=Q+2:Q+4¢r
function  V = arnoldi( E, A, b, wo, q) Solve (A —iwE)w = EV; 4
Factor (A — iwFE) for k=Q+1:5-1
Solve (A —iwpE)w = Db =w Vi
VvV, = HTWH w =w — h Vg
for j=2:¢q end
Solve (A — inE) W = EVj_l Vj = HWTH
for k=1:5-1 end
h=w Vy end
w=w — h Vg
end As described previously, real and imaginary parts are then ex-
vV, = H%H tracted and orthogonalization is done using SVD. At this time,
end the size of the basis can be further reduced. When the final

set of basis vectord/, is obtained, the reduced-order model
Here,w’ V), denotes the Hermitian product of vectoxs is constructed by projection as described by equations (13) and
andV . Each of they computed vectors is orthogonalized witi{14). This method extends readily to multiple input cases by
respect to the previous ones using a Gram-Schmidt orthogor@#Plying the algorithm to each column Bfseparately. The fi-
ization process. nal basis is then computed by recombining all the sets obtained
The matrixV’ as computed by Algorithm 1, which containgfom Algorithm 2 with SVD.
the ¢ vectorsV; as columns, is an orthonormal complex ba- o ) ) ) _
sis for ;. V needs to be further processed to spanJ K;: C. Application to Singular Descriptor Matrix Dynamical Sys-
the real and imaginary parts of each basis vector will be el@m
tracted, and the resultirgy vectors orthogonalized. There are Since the descriptor matrik is singular, system (10) is al-
two possibilities for performing this orthogonalization. Gramgebraic. Although, the previous theorems apply to the sin-
Schmidt appears to be a natural choice, and can be done at eadhr descriptor matrix system [13], performing reduction via
step of Algorithm 1, in parallel with the Hermitian orthogo-the Arnoldi method directly on system (10) would not only re-
nalization used for generation of the complex basis. Howevelyce its dynamics but would also affect its boundary conditions.



However, it is possible to extract an actual state-space system

V. RESULTS

of ordern, = n — ny, whose dynamics are identical to (10). Reduced-order models have been developed for supersonic
Boundary conditions will be put aside and treated separatedyarted duct flows. A supersonic diffuser has been studied at a

System (10) can be written

Ey1 Eig Ull A A 1
0 0 U, Ag1 Aao U,
B,
e

|+

(22)

steady-state Mach number of 2.2 and a nominal upstream bleed
of 1% of the inlet mass flow. Figure 1 shows the different inputs
and outputs of the system. The output of interest is the average
Mach number at the throat in response to two unsteady inputs:
a planar inlet density perturbation and an upstream bleed per-
turbation about the nominal bleed. Bleed occurs through small

L . slots located on the lower wall between 46 % and 49 % of the
where Uy is a vector of length, containing those flow un- jyiet overall length. For control purposes, a sensor is located

knowns ‘/’Vh'Ch are prescribed via boundary conditions, and (g the top wall, which measures pressure variations from the
vector U} comprises the remaining; unknowns, which are steady-state pressure.

determined by the equations of state.
Since the matrixA is invertible, the change of variables

U’ = A~'Z can be applied, yielding tncoming flow | Pressure sensing | _
_ _ ) Il ciurbence | A\r/negcage 1 shock Engine compressor
u | 1 _—
[ Ey Ero ] [ Z, ] _ { I; 0 Z, n B, u (censty) g Upstream bleed i
0 0 Zo | |0 L || Z By ‘

~ _ . . . Fig. 1. Definition of the system inputs and outputs: incoming density distur-
_ 1
whereE = EA™, andl; and I, are the identity matrices pance, air bleed, pressure sensing, and average Mach number at the throat.

of dimensionsn; andn, respectively. The prescribed states
Z, can now be condensed out, leading to the actual state-spacehe CFD computational grid has 3078 points, which corre-

system sponds to 11,730 unknowns. A time-domain computation of
Bog - 7 B B Boi 24 this size is expensive, however we will show that the linearized

mwar = 1+ Bia + LB b, @4 fiow dynamics can be accurately captured with less than 80

where we have usedZ, = —B,u. Denoting modes. Several reduction methods will be shown, all of which

are applied over the frequency rar@g® 2 fy, wherefy, = h/ag

is the reference frequency of the diffuser, defined as its height
divided by the freestream speed of sound. According to the at-
mospheric model considered, disturbances are expected to be in
this range.

C = CA' =
outputy becomes

[C’l ég:|, the expression for the

y = CiZ; + <D—C’2 Bg) u (25)
The multiple frequency point Arnoldi reduction technique . .

described is applied to the condensed state-space system '%24l,JnSh'ft'ed Arnoldl MEthOd _ .

25). The existence of a 'second’ inpitdoes not alter the ~ We begin with the basic Arnoldi method, which leads to a

method described previously, as shown by the transfer functipasis of vectors that matches moments of the transfer function
abouts = 0. Orthogonalization is performed using a Gram-

Hs) = G (sEu B Il)_l (B1 N 8E1232> +D Schmidt procedure. Figures 2 and 3 show the resulting gains
and phases of the transfer functions from bleed input to average
(26)  throat Mach number, for the full-order and reduced-order sys-

- ~ ) tems. In each plot, the dotted line corresponds to the full-order
whereD = | D - CQB?}' The presence ol simply doubles y5nsfer function 4 — 11,730). The solid lines are transfer
the number of inputs to consider, since we can define a new ggictions for reduced-order models of size= 10, 20, 30, 40
of moments generated by the tetfth, B>. Application of the and50, plotted from top to bottom. With just ten states in the
multiple input, multiple frequency point Arnoldi method dereduced-order model, a good approximation is obtained locally
scribed above is unchanged, and the resulting basis spanspiégr 7/ f, = 0, however for higher frequencies the error in-
following Krylov subspace: creases rapidly. As more Arnoldi vectors are added to the basis,
the quality of the match improves for higher and higher fre-
quencies. With 40 and 50 basis vectors, the transfer function
is approximated well over the entire frequency range of inter-
est, although some discrepancy in phase at high frequencies is
observed. Although the size of the reduced-order models has
Due to the CFD formulation, boundary condition rows argcreased to obtain this fit, we note that the computational ex-
mixed with state equations rows i = £ A~'. It would not pense to obtain each of the models shown in Figures 2 and 3 is
be practical to explicitly extrack; and E1». Instead of com- of the same order (i.e. the cost of a single system factorization).
putingV’, ann; x g matrix, itis far more convenientto compute  The evolution of accuracy with total number of modes is bet-
vr O}T, ann x ¢ matrix, directly with the original system ter shown in Figure 4. In this figure, the absolute value of the
(10). For details of the actual implementation, see Lassaux [1dtror in transfer function gain at each frequency is plotted for

’Cq{ (-71 - jw()E11)_1 Enq,

(11 - jonn)il [Bl, E12BQ} }. (27)
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Fig. 2. Magnitudes of full-order transfer function vs. ROM transfer functio
(bleed to average Mach number at throat). From top: 10, 20, 30, 40 and
reduced-order states, all models interpolatefl/afp = 0.

Fig. 3. Phases of full-order transfer function vs. ROM transfer function (bl
to average Mach number at throat). From top: 10, 20, 30, 40 and 50 redt
order states, all models interpolatedfdtfo = 0.

the reduced-order models shown in Figure 2. It can be seen
with just 10 modes, the model is very accurate in the nei¢
borhood of f = 0, and this local accuracy does not impro'_
as more modes are added (due to round-off errors). Figu®
shows clearly that as more modes are included in the mc
the accuracy at frequencies away from the interpolation p:

B. Multiple-Point Arnoldi Method

While the previous results showed that the basic Arnoldi
model required a large number of states to accurately cap-
ture the relevant dynamics over the frequency range, signifi-
cant improvement can be realized by using the multiple-point
Arnoldi method. As discussed, using multiple interpolation
points causes moments of the transfer function to be matched
at several frequencies. At each frequency chosen to be an in-
terpolation point, the fit between the reduced-order and full-
order transfer functions iexact This can be seen in Figures
5 and 6 where results are shown using five frequency inter-
polation points: f/f, = 0,0.5,1,1.5 and2. The top plot in
both Figures 5 and 6 is a reduced-order model of total size
g = 9. This corresponds to one Arnoldi vector at each fre-
quency point, calculated using Algorithm 2 and orthogonalized
using Gram-Schmidt. Note that the Arnoldi vectors at the non-
zero frequency points are complex, and thus result in two basis
wectors (total number of basis functions = 1+4*2 = 9). As the
ﬁﬂ)t shows, the transfer functions of the reduced and full-order
systems match exactly at the selected interpolation points. The
local behavior of the moment matching approach can also be
seen: for frequencies not close to an interpolation point, the
error is large.

The size of the reduced-order model is increased by con-
sidering increments of one Arnoldi vector at each interpola-
tion point. This results in reduced-order models of sjze-

18, 27,36 and 45, whose transfer functions are shown in the
lower four plots of Figures 5 and 6 from top to bottom re-
spectively. These figures demonstrate the analogy between the
moments and the derivatives of the transfer function. As dis-
cussed, for the&)*-order model (the top plots), the value of
transfer function at each interpolation point is matched exactly.
In the second plots (two Arnoldi vectors and hence two mo-
ments matched per frequency point), it can be seen that the
value of the transfer function plus its slope are matched. Fig-
ures 5 and 6 also show that as the number of Arnoldi vectors

10° T
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20 vect
11130 vect
40 vect
- 50 vect

10° -

increases. It is interesting to note that for the- 30 case, the "
improvement in accuracy over the frequency rafigé.8f/ fo)

is achieved at the expense of a worse prediction at higher
quencies. This can also be clearly seen in Figure 2 and h

12

lights the fact that these basic Arnoldi models can be unreli¢ 0™

far away from their interpolation point. In order for all gain €.

rors over the frequency range to be less th@n?, more than Fig. 4. Absolute value of error in transfer function magnitude for five reduced-
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100 basis vectors were required in the reduced-order model.order models of size 10, 20, 30, 40, 50. All models interpolatet)/# = 0.



at each interpolation point is increased, the fit away from that
frequency improves. 10
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Fig. 5. Magnitudes of full-order transfer function vs. ROM transfer function

(bleed to average Mach number at throat). All models derived with five inter- _ : ; ; .
polation points atf/fo = 0,0.5,1,1.5,2. From top: 9, 18, 27, 36 and 45 1M Schmidt was used to orthogonalize all the basis vec

reduced-order states. tors for the multiple-point Arnoldi models described above. A
better approach is to use SVD to perform this orthogonaliza-
tion. Once the Arnoldi basis about each frequency point has
been computed (which uses an internal Gram-Schmidt proce-

............... | dure), the resulting sets of vectors can be combined and orthog-

’m‘ """""""""""""" onalized using SVD. _This approach gives us the option to select
a subset of the resulting orthogonal vectors, based on the calcu-

lated singular values. If not all of the vectors are retained, then

the moment matching properties will not be preserved exactly.

However, the singular values give a good indication of the im-

portance of a particular mode, and neglecting those modes with

small singular values was found to result in efficient reduced-
order models without compromising accuracy. Results using

SVD will be presented in the following examples.

C. From Multiple-Point Arnoldi to Proper Orthogonal Decom-
position

Since the efficiency of the reduced-order model has been
significantly increased by using the multiple-point Arnoldi
method, the question might be asked: why not increase the
Fig. 6. Phases of full-order transfer function vs. ROM transfer function (bledtimber of interpolation points and reduce the number of mo-
B s o . 15,57 v 48 reaupas s maiched per interpolation point? A cscussed by Wil-
order states. cox et al. [10], as the number of frequency points is increased

and the number of moments matched at each point is reduced to

Figure 7 shows the error in transfer function gain betweeame, the method becomes a frequency-domain POD approach,
reduced-order and full-order transfer function versus frequenajich uses SVD on a set of complex responses obtained at se-
for five models ranging in size from = 18 to ¢ = 63. For lected frequency sample points to construct a basis [15], [16],
the four lower order models, the maximum error is on the ordgi7].
10~!. A significant reduction in error is achieved by including Figure 8 compares the accuracy provided by the multiple-
63 state vectors. In this case, the maximum error over the fwint Arnoldi method and the POD method. The top plot shows
quency range of interest i€©)~2. For the single-point Arnoldi the maximum absolute value of error in the transfer function
method, more than 100 basis vectors are required to achieve thisr the frequency randé, 2f,]. This error is plotted versus
level of accuracy. Figure 7 shows clearly that for a low numbée total number of basis vectors in the reduced-order model
of states, accuracy remains localized to the neighborhood of the five approaches. The first three models use multiple-point
interpolation points. Arnoldi with 5, 11 and 21 interpolation points. The baseline




models in these three cases contained 99, 126 and 123 bapinse to an incoming density perturbation calculated by the
vectors respectively (corresponding to 11, 6 and 3 Arnoldi velinearized CFD code and several reduced-order models. The
tors per frequency point). SVD was then used to select gerturbation considered is constant across the inlet plane, but
orthogonal subset of the baseline vectors and create reduogdies temporally with a Gaussian distribution as follows:

order models ranging in size from= 1to ¢ = 75. The last ,

two models shown in Figure 8 were created using POD with () = —0.02pge(t=2/F0)* (28)

41 and 61 frequency points. It can be seen that for models of

sizeq = 30 or less, the maximum error is virtually independenthe parametes in the above equation was selected tabe:

of the number of interpolation points. For higher-order modfZ, so that the dominant frequency content of the perturbation
els and lower error levels, the plot shows that, in most caséal)s in the rang€0,2f;]. The responses shown in Figure 9
choosing more frequency points improves the accuracy of thepport the conclusion drawn from the distribution of singular
reduced-order model for a given number of basis functionglues; for models witly = 40 andq = 50, there is significant
(When a very large number of basis vectors is selected, numetror in the time domain response. Increasing the number of
ical noise becomes an issue, as can be seen for the 61-pointes to 60 gives a very good result, while the response with
POD model.) This improvement in accuracy must be tradé® modes is virtually indistinguishable from the CFD.
with the computational cost of deriving the model, which is di-

rectly proportional to the number of interpolation points. The

lower plotin Figure 8 shows the first 75 singular values fore T

of the models. While the POD singular values drop off m: y
rapidly, the plot shows that there is considerable advantac
post-processing the Arnoldi-based models with SVD to ob  **
a further reduction in size.
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Fa s G ) ¢ multinle-boint Amoldi and POD models. Resul The reduced-order models will now be used to develop a
stl%wr.\ for%Tr?;g?%]o%e?;uwzgheS?ollrl] anr(rijlI %?erpolatig?lopgiﬁis, Z?\lé Sggimple controller to mo”'t9r the a_Verage Mach V_a”atlo_n over
models with 41 and 61 interpolation points. Top: maximum absolute valiBe throat of the supersonic duct, in response to incoming flow
of error in transfer function gain ovéd, 2 fo] versus number of basis vectors.ygriations. These results will not focus on the specifics of con-
Bottom: singular values. . .
troller design, but rather are intended to demonstrate that a con-
troller designed using reduced-order system dynamics is effec-
The final example demonstrates the accuracy of a multipls«e when applied to the full-order model. A feedforward con-
point Arnoldi model for a time domain computation. For thisroller is used that evaluates the level of upstream bleed needed
case, we consider the second unsteady input to the systemtcatimit the perturbation due to the incoming density distur-
incoming density perturbation. Five interpolation points wefigance, after assessing its importance via the upstream sensor.
used, at frequencies ¢f/f, = 0,0.5,1,1.5,2. Ten Arnoldi The block diagram of the control system is shown in Figure 10.
vectors were calculated at each interpolation point, resulting$ince the flow upstream of the throat is supersonic, the pressure
a total of 90 vectors. These vectors were then combined asghsor is not affected by the actuation input.
orthogonalized using SVD. The magnitude of the singular val- The relationship between the controlled average Mach num-
ues drops off rapidly once the basis reaches a size of apprbgr variationy and the incoming density disturbandean be
imately ¢ = 70. Reduced-order models of varying size wereyritten as
constructed using the vectors obtained from the SVD analysis.
Figure 9 shows a time-domain simulation of the diffuser in re- Y(s) = (G + W,W.W,) D(s) (29)
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pensive. The reduced-order models were used to generate 100
data points over the frequency range of interest; to generate this

,w4 ' EY amount of data with the original model would be computation-
23 £° ally prohibitive.
2
-2

The data generated by the reduced-order models were used to
0 os 1 15 2 0 o5 1 15 2 fit a secondary lower-order model using an optimization tech-
’ ’ nigue. The controller transfer functidi, was then designed
Fig. 11. Gain (left) and phasg (right) of the transfer functions of the sySte'[’JSing H > optimization: adding a low pass filter to the input
From top to bottom: perturbation to be controli&d actuationi?, and sensor . L
W path, | (G + W, W_.W;) (iw)| was minimized over the range
[0,1.5fp]. Optimization was made more aggressive over the
range[0, 1.5 fy] at the expense of an ill-behaved response be-
whereY (s) and D(s) are the Laplace transforms of the outyond f = 1.5f,. For more details on the controller design, see
put y and disturbance input respectively. The transfer func-Lassaux [14].
tions in (29) are as follows(s) represents disturbance input The important question is whether the controller designed us-
to average throat Mach numbé¥,, represents fractional massing only reduced-order dynamics will be effective for the high-
flow input to average throat Mach numbér, represents dis- order CFD model. The controller was implemented in the full-
turbance input to pressure sensing output, Hndrepresents order linearized CFD code and comparison was made of the
the controller (pressure sensing input to mass flow bleed omach number response to an incoming density disturbance of
put). amplitude 1% of the nominal valyg. Figure 12 shows the re-
For this study, three reduced-order models were built to sirsponsey at the throat for both the linearized CFD code and the
ulate the throat Mach number response to an incoming densiguced-order model, when actuation is off and on. The inlet
disturbance, the throat Mach number response due to bleed, distirbancel has the form described in equation (28), with
the sensed pressure response due to the inlet density pertuseato0.5f2 and peak time a57,. The significant frequency
tion. For each model, five interpolation points were used, ebntent of this disturbance lies in the ranj@e0.6 f,], which
frequencies off /fo = 0,0.5,1,1.5,2. Ten Arnoldi vectors fits in the design frequency range of the controller. Figure 13
were calculated at each interpolation point, resulting in a totsthows the controller output, that is the fraction of mass flow
of 90 vectors. Based on results such as those shown earlinmped though the bleed slots, for both the reduced-order and
it was determined that including 76 states in the reduced-ord&FD model.
models results in sufficient accuracy over the frequency rangeBoth the reduced-order and the full-order linearized model
of interest. The transfer functions, W, and W, based on yield satisfactory response using the controller design presented
the above reduced-order models were computed over the rapg@viously. The variation in Mach number is considerably re-
[0,2fo] and are shown in Figure 11. duced by using the controller and the reduced-order model re-
Once the reduced-order models have been generated, thesponse is virtually indistinguishable from that of the full-order
put/output behavior can be evaluated at many frequencies wittearized model. This shows that, for this case, the reduced-
low computational cost. Each evaluation requires one systemter models enable control design and accurate simulation of
factorization and solve, which for the high-order system is exae linearized CFD model response under control. Moreover,
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Fig. 13. Fraction of inlet mass flow dumped through upstream slots, for fuIIIS]
order and reduced-order model.

(6]
since the controller is effective at reducing the amplitude of the
variation, the linearization assumption of small perturbationﬁ]
should hold for the controlled system.

VI. CONCLUSIONS [8]

The multiple-point Arnoldi method developed in this paper
combines aspects of the traditional Arnoldi approach and thg
frequency domain POD. The POD-based concept of sampling
at multiple frequencies and selecting a basis using SVD leads to
efficient reduced-order models, which are accurate over a broad
range of frequencies. The Arnoldi-based concept of evaluatii§!
multiple vectors at each frequency point reduces the computa-
tional cost of the reduction process without a significant cormi1]
promise in accuracy. By balancing the number of frequency
points and Arnoldi vectors per frequency point, the multiplgyo;
point Arnoldi models can achieve roughly the same level of
accuracy as POD models with the same number of basis veg;
tors, but with a significant decrease in the cost of obtaining the
model. [14]

For the supersonic diffuser considered here, the multiple-
point Arnoldi approach led to reduced-order models on the g15]
der of 60 states, which captured the relevant dynamics with a
high degree of accuracy. This level of accuracy was quantifiﬁ@]
by comparing the transfer functions of the reduced and full-
order systems over the range of interest, and by performiﬂg]
a time-domain simulation using both CFD and reduced-order
models.

Reduced-order models were developed for all aspects of a su-
personic diffuser control problem, which aimed to control the
throat Mach number in the presence of an incoming density dis-
turbance using upstream pressure sensing and bleed actuation
These models were use to generate many transfer function data
points, which were subsequently processed to obtain a set of
very low-order models. These models were then used to de-
sign a simple feedforward controller. When implemented on
the linearized CFD model, this controller was shown to work

. effectively. Application of the controller to the nonlinear CFD
o : ) ;
model is the subject of ongoing research.
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